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Klimaatvariabiliteit, zoals de El Niño-Southern Oscillation, zorgt voor jaarlijkse fluctuaties in hydro-
meteorologische en klimatologische extremen. Elk jaar veroorzaken zulke extremen, zoals 
overstromingen of droogtes, wereldwijd voor hoge economische schades. Ondanks dat een aantal 
studies suggereren dat de kwetsbaarheid en financiële verliezen van overstromingen de laatste paar 
decennia afnemen, vergt rampenrisicovermindering (disaster risk reduction; DRR) nog steeds een 
substantiële verandering van het managen van rampen naar het managen van risico’s. Om DRR te 
bereiken is het daarom belangrijk om te begrijpen hoe klimaatvariabiliteit kan resulteren in impacts 
van overstromingen en droogtes. 

De impact van rampen kan worden verminderd wanneer betrouwbare, voorspelde risico informatie 
beschikbaar is om preventieve risicoverminderingsmaatregelen aan te sturen. De afgelopen jaren 
hebben deze systemen de kwaliteit van voorspellingen over hydro-meteorologische en 
klimatologische variabelen verbeterd, door voorspellingen over de omvang van overstromingen en 
droogtes met hogere precisie op langere tijdschalen dan voorheen te produceren. Er is echter nog 
steeds een gat in het vertalen van extreme gebeurtenissen naar impact informatie, zoals de schade 
van weer-gerelateerde gebeurtenissen. Eén van de grootste uitdagingen is daarom de overgang van 
“wat voor een weer wordt het?“ naar “wat zal het weer doen?”. Voorspellingen die zijn ontworpen 
om de verwachte impact uit te drukken, worden “impact-based forecasting” genoemd. Recente 
literatuur beschrijft manieren om automatisch preventieve maatregelen, gebaseerd op vroege 
waarschuwingssystemen, te activeren om zo de impact van weer-gerelateerde gebeurtenissen te 
verminderen. In zulke systemen kunnen vroege acties worden geactiveerd wanneer een voorspelling 
een bepaalde drempelwaarde overstijgt. Boeren kunnen bijvoorbeeld van tevoren financieel 
gecompenseerd worden wanneer neerslagtekorten onder een bepaalde drempelwaarde voorspeld 
worden, gebruik makende van indicatoren van neerslaganomalieën. Echter, ondanks vooruitgang in 
overstromings- en droogtevoorspellingen, blijven bijbehorende onzekerheden van de 
voorspellingsinformatie groot, en is wetenschappelijk bewijs voor de gunstige impact van vroeg 
handelen gebaseerd op voorspellingen nog beperkt. Doordat men niet precies weet hoe hydro-
meteorologische gebeurtenissen een impact kunnen hebben op mens hun leven, levensonderhoud en 
op de economie, treffen stakeholders vaak niet de juiste maatregelen. Als gevolg hiervan wordt het 
grote deel van vroege waarschuwingen niet routinematig gebruikt als een basis voor het financieren 
en activeren van preventieve maatregelen tegen weer-gerelateerde gebeurtenissen.  

Het hoofddoel van deze scriptie is om het begrip van de verbanden tussen klimaatvariabiliteit en 
weer-gerelateerde impacts van zowel overstromingen als droogtes te verbeteren. Dit verband wordt 
onderzocht van globale tot regionale schaal en op verschillende tijdschalen, met als doel om een 
impact-based forecast te bereiken die effectief de implementatie van vroege handelingen kan leiden 
voordat een potentiele droogte of overstroming plaatsvindt.  

Als eerste worden de ruimtelijke en temporele invloeden van klimaatvariabiliteit op extreme 
meteorologische- en overstromingsgebeurtenissen op pan-Europese schaal geanalyseerd. Dit wordt 
gedaan door de El Niño Southern Oscillation (ENSO), de North Atlantic Oscillation (NAO) en de East 
Atlantic pattern (EA) te onderzoeken tijdens hun neutrale, positieve en negatieve fases, om zo hun 
relatie tot vier overstromingsindicatoren te begrijpen: het voorkomen van extreme neerslag, de 
intensiteit van extreme neerslag, het voorkomen van overstromingen en schade van overstromingen. 
Resultaten laten zien dat klimaatvariabiliteit sterke connecties heeft met de vier 
overstromingsindicatoren. Zowel de positieve als de negatieve fase van de NAO en EA worden in 
verband gebracht met meer frequente en intensere extreme neerslag over grote gebieden in Europa, 
terwijl de effecten van ENSO op de intensiteit en frequentie van extreme neerslag in Europa veel 
kleiner is. Voor de eerste keer wordt aangetoond dat de schade van overstromingen en het 
voorkomen van overstromingen in Europa sterk geassocieerd worden met klimaatvariabiliteit, met 
name in Zuid- en Oost-Europa, waarbij de sterkste link geobserveerd wordt voor de NAO.  



Vervolgens wordt de rol van seizoensgebonden vertragingen en gelijktijdige indices van 
klimaatvariabiliteit op overstromingsverliezen op sub-regionale Europese schaal onderzocht. Speciale 
aandacht wordt gegeven aan het onderzoeken van de waarschijnlijkheid van seizoensgebonden 
overstromingsverliezen gebaseerd op indices van klimaatvariabiliteit, en om te detecteren of sommige 
van deze verliezen een seizoen eerder voorspeld kunnen worden. Resultaten laten zien dat de indices 
van klimaatvariabiliteit gebruikt kunnen worden om classificaties van schadelijke, laag schadelijke en 
medium schadelijke overstromingsgebeurtenissen te voorspelling, veelal in op zijn minst twee van de 
vier seizoenen in alle Europese deelregio’s. Bovendien wordt aangetoond dat de classificaties van 
overstromingsverliezen een seizoen eerder voorspeld kunnen worden omdat er een vertraagde relatie 
kan bestaan tussen de indices van klimaatvariabiliteit en de overstromingsverliezen in alle Europese 
deelregio’s. We zien dat de waarschijnlijkheid van het voorkomen van overstromingsverliezen kan toe- 
of afnemen met tot wel ±100% in vergelijking met historische kansen. De resultaten bieden een beter 
begrip van het gecombineerde effect van klimaatvariabiliteit op overstromingsverliezen, en 
reflecteren op hoe zulke op impact gebaseerde informatie kan worden gebruikt om 
overstromingsrisicomanagement te verbeteren.  

Bovendien identificeert deze scriptie regio’s waarin anomalieën in Europese gewassenproductie 
kunnen worden voorspeld aan de hand van de indices van klimaatvariabiliteit, gebruik makend van 
een Machine Learning techniek genaamd “Fast-and-Frugal Trees”. Resultaten laten zien dat door Fast-
and-Frugal Trees toe te passen, hoge/lage klassen van suikerbietenproductie in 77% van de 
onderzochte regio’s kunnen worden voorspeld, overeenkomend met 81% van de totale Europese 
suikerbietenproductie. Voor bijna de helft van deze regio’s is zulke op impact gebaseerde informatie 
zes of vijf maanden voor het begin van het suikerbietenoogst beschikbaar, wanneer ongeveer 44% van 
de gemiddelde jaarlijkse suikerbieten worden geproduceerd. Gebruikmakend van deze resultaten 
bediscussieert deze scriptie hoe impact-based forecasting het management van de agrarische sector 
in Europa sterk kan verbeteren. Om verdere inzichten in de sterke en zwakke punten van deze aanpak 
te verschaffen, wordt de voorgestelde methode vervolgens getest op andere datasets van 
gewassenproducties en typen gewassen.  

De Fast-and-Frugal Trees aanpak wordt ook toegepast op een case in Kenia (gebaseerd op indices van 
klimaatvariabiliteit en vegetatie dekking) om maïsoogsten te voorspellen. Dit vroege 
waarschuwingssysteem van lage maïsoogsten wordt gebruikt om de kostenefficiëntie te analyseren 
van het van tevoren uitbetalen van boeren in plaats van het compenseren van gederfde inkomsten na 
een droogte. Resultaten laten zien dat de Fast-and-Frugal Trees modellen vaardig zijn in het 
voorspellen van lage maïsoogsten in alle vijf Keniaanse districten. In de meeste gevallen hebben de 
modellen al zes maanden voor het begin van het oogstseizoen een voorspellende vaardigheid. 
Ondanks dat het niet perfect is, voorspelt het model 85% van de tijd correct de “lagere oogst 
drempelwaarde”, over verschillende percentielen, districten en looptijden van de opbrengsten. De 
modelprestaties verbeteren richting het einde van het groeiseizoen, gedreven door een afname van 
29% in de kans op een False Alarm. Wanneer we een perfecte voorspelling aannemen (Hits=100% en 
False Alarms=0%), zijn geldtransacties zes maanden van tevoren het meest kosteneffectief. Bovenal, 
wanneer gebruik gemaakt wordt van de daadwerkelijke voorspellingen gebaseerd op de Fast-and-
Frugal Trees voorspellingen, laten resultaten zien dat geldtransacties vooraf vaak meer kosteneffectief 
zijn dan geldtransacties achteraf, in het bijzonder voor de meer extreme oogsttekorten. Meerdere 
uitdagingen voor het operationaliseren van geldtransacties gebaseerd op indicatoren van droogtes 
worden geïdentificeerd. Zo heeft het ondernemen van gepaste maatregelen naar aanleiding van 
vroege waarschuwingen van droogte-risico’s gebaseerd op indices van klimaatvariabiliteit bijvoorbeeld 
een diepgaand begrip nodig van de potentiele impact en timing van een extreme gebeurtenis.  

Ondanks zulke uitdagingen, biedt deze scriptie beleidsaanbevelingen waarin we kansen laten zien om 
het risico op rampen te verminderen, door te reageren op voorspellingen van klimaatvariabiliteit, en 
door het bijbehorende risico beter te begrijpen. Het laat voorbeelden zien van organisaties die al 
gebruik maken van ENSO-voorspellingen om risico’s te verminderen, maar erkent ook dat een aantal 



beperkingen voor vroeg handelen met betrekking tot de ENSO-voorspellingen nog bestaan. Ondanks 
dit concluderen we dat vooraf bekende informatie over de ruimtelijke configuratie van risico, 
bevorderd door impact-based forecasting met lange looptijden zoals degene ontworpen in deze 
scriptie, een verschuiving richting een meer anticiperende en preventieve risicomanagement kan 
ondersteunen.  

Deze scriptie laat een aantal belangrijke uitdagingen en onderwerpen zien die in de toekomst verder 
onderzocht moeten worden. Zo wordt gesuggereerd dat onderzoek naar de dynamiek van 
klimaatvariabiliteit nodig is om het begrip van de impacts van klimaatvariabiliteit te verbeteren. Verder 
wordt ook voorgesteld om dit begrip van de impacts van klimaatvariabiliteit te verbeteren, betere data 
en een onderzoek naar de relatie tussen mensen en natuurlijke systemen nodig is. Bovendien laat 
deze scriptie zien dat toekomstig onderzoek naar impact-based forecasting verbeterd kan worden 
door de voorspellingsvaardigheden en looptijden van indices van klimaatvariabiliteit te verbeteren, en 
door de voorspelling van de indices van klimaatvariabiliteit met de socio-economische impact van 
overstromingen en droogtes te combineren. Als laatste kan toekomstig onderzoek worden uitgevoerd 
om de onderliggende interesses en motieven die belangrijk zijn voor stakeholders om DRR te 
integreren in overstromings- en droogterisicomanagement te identificeren, in combinatie met het 
verkennen van de voordelen van vroeg handelen. Deze scriptie biedt vooruitgang in het begrip van de 
connecties van klimaatvariabiliteit en weer-gerelateerde impacts van zowel overstromingen als 
droogtes, die gebruikt kunnen worden om impact-based forecasts te maken en vroegtijdige 
handelingen te activeren. 

 



 
 

Climate variability, such as El Niño-Southern Oscillation, drives year-to-year 
fluctuations in hydro-meteorological and climatological extremes. Every year, such 
extremes (e.g. floods and droughts) account for high economic losses around the 
globe. Despite some studies suggesting progress in reducing vulnerability and the 
financial losses of floods in recent decades, disaster risk reduction (DRR) still 
requires a substantial shift from managing disasters to managing risks. Therefore, 
an important step for achieving DRR lies in understanding how climate variability 
may result in flood and drought impacts.  

The impact of disasters can be reduced when reliable forecasted risk information is 
available to steer preventative risk reduction measures. In recent years, these 
systems have improved the capability of forecasting hydrometeorological and 
climatological variables, producing predictions of flood and drought magnitudes 
with higher accuracy at longer lead times than before. However, there is still a gap 
in translating hazard events into impact information, such as damages from 
weather events. Hence, one of the biggest research challenges is the transition 
from “what will the weather be?” to “what will the weather do?”. Forecast 
information that is designed to express the expected impacts is known as “impact-
based forecasting”. Recently, there has been an emerging literature describing 
ways to automatically trigger preventative actions to reduce the impacts of 
weather events based on early warning systems. In such a system, early actions can 
be triggered when a forecast surpasses a certain threshold. For example, farmers 
could receive ex-ante cash compensation when a forecast projects rainfall deficits 
below a certain threshold using an indicator of rainfall anomalies. However, despite 
advances in flood and drought forecasting systems, associated uncertainties with 
the forecast information remain large, and scientific evidence of the beneficial 
impacts of acting early based on forecast information is still limited. Hence, not 
knowing precisely how hydrometeorological hazards might have an impact on 
people’s lives, livelihoods and on the economy, stakeholders often do not take 
appropriate action. As a consequence, the vast majority of early warnings are not 
routinely used as a basis for financing and triggering preventative actions against 
weather events.  

The main objective of this thesis is to improve the understanding on links between 
climate variability and weather-related impacts of both floods and droughts. This 
relationship is investigated from global to regional scales, and at different lead 
times, with the purpose of achieving an impact-based forecast that can guide the 
implementation of early actions effectively before a potential drought or flood 
materializes. 



 
 

First, the spatial and temporal influence of climate variability on extreme 
meteorological and flood events at the pan-European scale is analysed. This is done 
by investigating the El Niño Southern Oscillation (ENSO), the North Atlantic 
Oscillation (NAO), and the East Atlantic pattern (EA) during their neutral, positive, 
and negative phases, to understand their relationships with four flood indicators: 
Occurrence of Extreme Rainfall, Intensity of Extreme Rainfall, Flood Occurrence, 
and Flood Damage. The results show that climate variability has strong links with 
the four flood indicators. Both positive and negative phases of NAO and EA are 
associated with more frequent and intense extreme rainfall over large areas of 
Europe, whereas the effect of ENSO on the intensity and frequency of extreme 
rainfall in Europe is much smaller. It is shown for the first time that Flood Damage 
and Flood Occurrence in Europe are strongly associated with climate variability, 
especially in southern and eastern Europe with the strongest link being observed 
for NAO. 

Subsequently, the role of seasonally lagged and synchronous indices of climate 
variability on flood losses at the sub-regional European scale is examined. Special 
attention is given to investigating the likelihood of seasonal flood losses based on 
indices of climate variability, and to detect whether some of these losses can be 
predicted one season ahead. Results show that the indices of climate variability can 
be used to predict classes of Damaging, Low Damaging and Medium Damaging 
flood events, mostly in at least 2 out of 4 seasons in all European sub-regions. 
Furthermore, it is shown that some of the classes of flood losses can be predicted 
one season ahead because a lagged relationship may exist between the indices of 
climate variability and the flood losses in all European sub-regions. It is observed 
that the likelihood of flood losses occurring may increase or decrease by up to 
±100% in comparison to historical probabilities. The results provide a better 
understanding of the combined effect of climate variability on flood losses, and 
reflect on how such impact-based information can be used to improve flood risk 
management practices.  

Furthermore, this thesis identifies regions where anomalies in European crop 
production can be forecasted based the indices of climate variability using a 
Machine Learning technique called “Fast-and-Frugal Trees”. Results show that by 
applying the Fast-and-Frugal Trees, high/low classes of sugar beet production can 
be predicted in 77% of the investigated regions, corresponding to 81% of total 
European sugar beet production. For nearly half of these regions, such impact-
based information is available six or five months before the start of the sugar beet 
harvesting season, where approximately 44% of the mean annual sugar beet is 
produced. Based on such findings, this thesis discusses how impact-based 
forecasting information can widely improve the management of the agricultural 
sector in Europe. To provide further insights into the strengths and limitations of 



 
 

the approach, the proposed method is subsequently tested on other crop 
production database and crop type.  

The Fast-and-Frugal trees approach is also applied to a case in Kenya (based on 
indices of climate variability and vegetation coverage) for predicting maize yields. 
This early warning information of low maize yields are used to assess the cost-
effectiveness of providing farmers with ex-ante cash transfers, instead of 
compensating yield losses after a drought. Results show that the Fast-and-Frugal 
Trees models have skill to forecast low maize yields in all five Kenyan districts. In 
most cases, models have predictive skill already six months before the start of the 
harvesting season. While not perfect, the model correctly forecasts “below yield 
threshold” 85% of the time, across different low yield percentiles, districts, and 
lead times. The models' performance improves towards the end of the growing 
season driven by a decrease of 29% in the probability of False Alarms. When 
assuming a perfect forecast (Hits = 100% and False Alarms = 0%), cash transfers 
can be most cost-effective ex-ante at a lead time of 6 months. Moreover, when 
using actual forecasts based on the Fast-and-Frugal trees predictions, results 
demonstrate that ex-ante cash transfers can often be more cost-effective than ex-
post cash transfers, especially for the more extreme yield deficits. Multiple 
challenges for operationalizing cash transfers based on indicators of droughts are 
identified. For instance, taking adequate actions in response to early warnings of 
drought risks based on indices of climate variability requires an in-depth 
understanding of the potential impact and timing of a hazard.  

Despite such challenges, this thesis provides policy recommendations showcasing 
opportunities to reduce the risk of disasters by responding to forecasts of climate 
variability, and by better understanding risks associated with it. It shows examples 
of organizations that already use ENSO forecasts for reducing risks, but also 
acknowledges that some constraints to early action still exist to respond to ENSO 
forecasts. Nevertheless, it concludes that ex-ante information regarding the spatial 
configuration of risk leveraged by impact-based forecasts with long lead times, 
such as the ones developed in this thesis, can support a shift towards a more 
anticipatory and preventative risk management. 

This thesis highlights some key challenges and topics that require further 
investigation in future research. For instance, it suggests that in order to improve 
the understanding of the impacts of climate variability, research is required 
regarding the dynamics of climate variability. It also proposes that for improving 
the understanding on the impacts of climate variability, better data and an 
investigation on the relationships between human and natural systems is needed. 
Moreover, this thesis indicates that future studies can enhance impact-based 
forecasting by improving the forecasting skill and lead-time of indices of climate 
variability, and by combining the forecast of indices of climate variability with 



 
 

socioeconomic impacts of floods and droughts. Lastly, further research can be 
performed to identify the underlying interests and incentives that are relevant to 
stakeholders for mainstreaming DRR into flood and drought risk management and 
policies, in combination with exploring the benefits of acting early. This thesis 
advances the understanding on links between climate variability and weather-
related impacts of both floods and droughts, which can be used for generating 
impact-based forecasting and triggering early action.  
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In January 2017, the Famine Early Warning System Network (FEWS NET) 
forecasted an unprecedented global food security crisis. Indeed, in 2018, a 
global food security crisis occurred, especially across southern, eastern and 
western Africa, where 1.0 – 4.9 million people were in need of humanitarian 
assistance (FEWS NET, 2018a). However, despite the availability of the forecast 
information, the droughts and food shortages further pushed several countries 
into deeper humanitarian crises. Food insecurity is a recurrent crisis in large 
areas in Africa (Coughlan de Perez et al., 2019), where droughts have high 
socio-economic impacts, such as crop failures and the widespread death of 
livestock, high food prices and inflation, and increased levels of malnutrition 
and displacement (ReliefWeb, 2018). The chain of impacts often begins when 
rainfall is significantly lower or higher than average. Therefore, droughts and 
food insecurity have strong links with the variability in the climate.  

Climate variability, such as El Niño-Southern Oscillation (ENSO) events, drive 
year-to-year fluctuations in hydrometeorological and climatological extremes 
such as floods and droughts. However, the severity of these disasters and their 
consequent losses – either to the economy or to well-being – not only depend 
on the intensity and frequency of an event, but deeply on “who” and “what” is 
susceptible to it. These two “Ws” are known as vulnerability and exposure 
(UNISDR, 2009). Developing countries are  relatively vulnerable and have a high 
exposure to natural hazards: they often lack resources to invest in risk-reducing 
measures and ‘build-back-better’ strategies, their populations often live in 
hazard-prone areas, and people work in sectors highly susceptible to weather 
events, such as (rainfed) agriculture (D’Alessandro et al., 2015). However, 
developed countries face similar challenges, and increasingly strive for disaster 
resilience. European countries, for instance, have experienced increases in 
exposed population, economic wealth, and urbanization of hazard-prone areas 
(Paprotny et al., 2018). Consequently, every year disasters account for billions 
of Euros of economic losses across the continent. Despite studies suggesting 
some progress in reducing vulnerability (Jongman et al., 2015) and the financial 
losses of floods in recent decades (Paprotny et al., 2018), disaster risk reduction 
(DRR) still requires a substantial shift from managing disasters to managing 
risks. Such an anticipatory and preventative approach is urged in several 
international frameworks such as the Sendai Framework for Disaster Risk 
Reduction and the Agenda for Humanity (UNISDR, 2015b; UNOCHA, 2016a). 

An important step for achieving DRR lies in understanding how climate 
variability may drive flood and drought impacts. The impact of disasters can be 
reduced when reliable forecasted risk information is available to steer 
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preventative risk reduction measures. To this end, several continental-scale 
flood and drought forecasting systems have been developed, such as the Africa 
Flood and Drought Monitor of Princeton University (Sheffield et al., 2014), and 
the European Flood Awareness System of the European Commission 
(Bartholmes et al., 2009). Other examples of global-scale forecasting systems 
are FEWS NET of the US Agency for International Development (Funk et al., 
2019), and the Global Flood Awareness System (GloFAS) of the European Centre 
for Medium-Range Weather Forecasts (Alfieri et al., 2013). In recent years, 
these systems have improved the capability of forecasting hydrometeorological 
and climatological variables, producing predictions of flood and drought 
magnitudes with higher accuracy at longer lead times than before. For instance, 
GloFAS has been producing probabilistic flood forecasts with up to 2 weeks lead 
time in a semi-operational fashion since 2011 (Emerton et al., 2016). From April 
2018 onwards, GloFAS has been running operationally to produce global 
probabilistic forecasts of river discharge up to 30 days ahead. In addition, it 
provides seasonal hydrological outlooks on emerging high/low flow anomalies 
up to four months ahead (ECMWF, 2018, 2019). However, these systems focus 
on forecasting the physical hazard, and there is still a gap in translating this 
information into socioeconomic impacts such as damages from weather events 
(Dottori et al., 2017). Hence, one of the biggest research challenges is the 
transition from “what will the weather be?” to “what will the weather do?”. 
Forecast information that is designed to express the expected impacts is known 
as “impact-based forecast”(WMO, 2015). 

Recently, there has been an emerging literature describing ways to 
automatically trigger preventative actions against weather events based on 
early warning systems (Coughlan De Perez et al., 2016, 2015; Suarez & Tall, 
2010). For instance, in 2015 the first pilot of the “Forecast-based Financing” 
(FbF) project from the Red Cross Red Crescent was initiated, inspired by the 
idea that humanitarian financing could be made automatically available based 
on forecasts of extreme events. In such a system, early actions can be triggered 
when a forecast surpasses a certain threshold. For example, farmers could 
receive ex-ante cash compensation when a forecast projects rainfall deficits 
below a certain threshold using an indicator of rainfall anomalies. However, 
despite advances in flood and drought forecasting systems, associated 
uncertainties with the forecast information remain large. Hence, not knowing 
precisely how hydrometeorological hazards might impact on people’s lives, 
livelihoods and on the economy often leads governments, economic sectors 
and the public to not take appropriate action. In addition, insufficient funding 
and the lack of measured benefits of early actions undermines the integration 
of forecast-based actions in disaster risk management strategies. As a 
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consequence, the vast majority of early warnings are not routinely used as a 
basis for financing and triggering preventative actions against weather events.  

The main objective of this thesis is to improve the understanding on links 
between climate variability and weather-related impacts of both floods and 
droughts. In this thesis, this relationship is investigated from global to regional 
scales, and at different lead times, with the purpose of achieving an impact-
based forecast that could guide the implementation of early actions effectively 
before a potential drought or flood materializes.  

There is a growing understanding that disasters are far from “natural”, because 
disasters only occur when hazard meets vulnerability and exposure (Cannon, 
1994). This thesis adopts the definition of “disaster risk as used by the United 
Nations Office for Disaster Risk Reduction (UNDRR). Thus, the risk of a disaster is 
defined as the probability and magnitude of harm to a society or a community 
in a specific period of time, as a function of hazard, exposure and vulnerability 
(illustrated in Figure 1.1.). Natural hazards are predominantly associated with 
natural processes and phenomena that pose a level of threat to life, property or 
the environment (UNISDR, 2009), which is addressed as “weather and climate 
events” in Figure 1.1. Exposure refers to “people, infrastructure, housing, 
production capacities and other tangible socio-economic assets located in 
hazard-prone areas” (ibid). Lastly, vulnerability is defined as “the conditions 
determined by physical, social, economic and environmental factors or 
processes, which increase the susceptibility of an individual, a community, 
assets or systems” to suffer adverse impacts when interacting with a hazard 
(ibid). 

Hydrometeorological hazards are of atmospheric, hydrological or 
oceanographic origin (UNISDR, 2009), which may lead to different types of flood 
and drought events. For instance, floods most frequently occur due to heavy 
rainfall when (natural) watercourses are unable to accommodate excess water, 
which can result in riverine floods, flash floods and urban floods (UNISDR, 
2017). Furthermore, floods can also initiate from other phenomena, especially 
in low-lying coastal zones, such a storm surge, tsunami or a high tide, which is 
also known as coastal flooding (ibid). Droughts come in four different types 
(Wilhite & Glantz, 1985): (1) meteorological drought, which refers to 
precipitation deficits; (2) hydrological drought, which reflects reduced water 
availability from surface water or groundwater, not including human demand; 
(3) agricultural drought, which links characteristics of meteorological and 
hydrological droughts to agricultural impacts; and (4) socio-economic drought, 
which associates the supply and demand of economic goods with elements of 
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all three types of droughts described. In this thesis, special attention is placed 
on agricultural droughts. 

 

Figure 1.1 Framework for defining the term “disaster risk”. Source: Field et al., (2012). 

To estimate flood and drought risk, risk assessment models require data on 
characteristics of the event (hazard) with information on the assets (exposure) 
and the susceptibility of what or who is exposed (vulnerability) in the hazard-
prone zone (Vogt et al., 2018; Ward, De Moel, & Aerts, 2011). More specifically, 
flood risk is often expressed in terms of the “expected annual damage” (EAD) 
with an economic figure attached to it (e.g. US$/year). Commonly, the first step 
towards calculating the EAD is to produce hazard-maps, where specific 
characteristics of the flood event are highlighted, such as inundation depth, 
extent, duration, and flow velocity in the case of river floods (Ward et al., 2011). 
Secondly, such hazard maps are then combined with exposure data, such as 
land use maps (Meyer, Haase, & Scheuer, 2009) or detailed building-level data 
(Aerts et al., 2013). Lastly, this information is combined with information on 
vulnerability. For example, depth-damage functions are often used, which show 
the physical vulnerability of buildings or land use classes to flood waters of 
different depths (Romali et al., 2015). In summary, flood risk includes both the 
probability of an event and its potential socioeconomic impact. 

In contrast to floods, drought risk assessment is often carried out for a specific 
sector of interest. Consequently, droughts are monitored using indicators that 
are typically derived from hydroclimatic variables (e.g. precipitation, soil 
moisture), but that can express drought impacts over a specific sector (Vogt et 
al., 2018). For instance, indicators of rainfall anomalies and soil moisture such 
as the Standardized Precipitation-Evapotranspiration Index (SPEI, Vicente-
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Serrano, Beguería, and López-Moreno 2010), and the Soil Moisture-based 
Drought Severity Index (Cammalleri, Micale, & Vogt, 2016) can be used to 
assess the risk of droughts to the agricultural sector, whereas hydrological 
indicators, such as flow percentiles or the Standardized Stream Flow Index can 
be used to quantify low flow volumes in reservoirs, which is relevant to the 
hydropower sector. In addition, remote sensing-based indicators such the 
Normalized-Difference Vegetation Index (NDVI) are also used to monitor 
drought impacts on vegetation cover (Vogt et al., 2018). 

Databases of historical events that capture information on actual losses of 
disasters are often used to evaluate the performance of such models. An 
example of such disaster loss database is the Emergency Events Database (EM-
DAT). This open access global database registers the impact of floods and other 
disasters from 1900 onwards, such as the number of people killed, injured or 
affected, the disaster-related economic damage, and disaster-specific 
international aid contributions (Guha-Sapir, Vos, & Below, 2014). This database 
is compiled from various sources, including UN agencies, non-governmental 
organisations, insurance companies, research institutes and press agencies. 
Furthermore, other private databases exist, such as the NatCatSERVICE 
database managed by the re-insurance company Munich Re. Munich Re’s 
NatCatSERVICE is one of the largest databases for flood loss events worldwide, 
and has been reporting flood events since 1980 (Munich Re, 2016a). Despite 
the fact that global disaster databases face limitations, such as reporting errors 
and underreporting of small flood events (Kron et al., 2012; Paprotny et al., 
2018), systematic data collection on costs and impact of disasters can support 
both short and long-term strategies to address flood risks. For droughts, global- 
and regional databases exist for monitoring and reporting statistics on food, 
agriculture and agricultural drought losses data. Examples of global scale 
initiatives are the EM-DAT and the FEWS NET, while the European Statistical 
Office (EUROSTAT) of the European Union provides information at the 
continental scale. Crop production and yield are particularly sensitive to 
weather conditions at key periods of the growing season. Therefore, 
comprehensive statistics on crop production and yield could support the better 
understanding of the relationship between weather variability and agricultural 
drought impacts, which may assist several programs designed to strengthen 
agricultural climate resilience.  

As illustrated in Figure 1, anthropogenic climate change and natural climate 
variability are key drivers of disaster risk. Short- and long-term changes in the 
climate system can increase disaster risk in several ways, including  the change 
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in frequency and intensity of hazard events (Field et al., 2012). While climate 
tends to change at a slow pace over decades, there are seasonal to annual 
fluctuations of hydrometeorological variables compared to climatic means. This 
phenomenon is called “climate variability”, which refers to the climatic 
fluctuations on seasonal to multi-seasonal time-scales of natural processes that 
affect the atmosphere (Kimball, 2008). Climate change refers to alterations in 
the global atmosphere over longer periods – decadal to millennia – due to 
natural internal processes or external forcing (e.g. modulations of the solar 
cycles, volcanic eruption) and by human activity (IPCC, 2018).  

Globally, the El Niño Southern Oscillation (ENSO) is the most dominant mode of 
climate variability, and has been linked with changes in hydrometeorological 
extremes in past studies at different scales (Emerton et al., 2017; Ionita, 
Boroneanṭ, & Chelcea, 2015; Villafuerte et al., 2014). Extreme phases of ENSO 
are known as El Niño and La Niña. El Niño is a phenomenon that occurs when 
there are unusually warm oceanic and atmospheric conditions in the tropical 
Pacific. This can cause the trade winds, which usually blow towards Indonesia 
and Australia, to slow down or even reverse direction, allowing the warmer 
water to spread east towards the South American coast. As opposed to El Niño, 
the so-called La Niña emerges when unusually cold oceanic and atmospheric 
conditions are observed in the eastern tropical Pacific. Typically, ENSO events 
are identified monitoring seas surface temperatures anomalies in a region 
called Niño 3.4. However, it is now widely recognized that ENSO can occur in 
many different “flavors” (Johnson, 2013). Moreover, ENSO’s impact is not 
constant throughout the year, nor are all continents of the globe equally 
affected by El Niño and/or La Niña. ENSO’s phases occur irregularly every two to 
seven years, and their signal tends to peak during boreal winter months, 
affecting mostly African, Asian and Latin American countries (Trenberth, 1997).  

ENSO’s phases cause large variability in hydrometeorological and climatological 
systems over different parts of the world. For instance, El Niño or La Niña 
intensify extreme rainfall mostly in boreal winter, and least during summer 
seasons (Sun et al., 2015). Extremes are more severe in the boreal winter during 
El Niño, mainly in central and southern North America, southeast and northeast 
China, and southeast South America, and during La Niña in western Pacific areas 
(Sun et al., 2015). In addition, El Niño and La Niña exert a significant influence 
on annual floods in river basins covering over a third of the world’s land surface 
(Ward et al., 2014), and about one-fifth of the global land surface is more likely 
to experience abnormally high river flows during El Niño conditions, especially 
in the tropics (Emerton et al., 2017). These anomalies in precipitation and river 
flow compared to normal conditions are often asymmetric between ENSO 
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phases (Lee, Ward, & Block, 2018). Connections between El Niño or La Niña and 
low river flows also exist in many parts of the world (Chiew et al., 1998; Lü et al., 
2011; Richard et al., 2001; Ryu et al., 2010). Furthermore, globally, disasters 
triggered by droughts occur twice as often during the second year of an El Niño 
event than during other years, especially in Southern Africa and Southeast Asia 
(Richard et al., 2001). Regions where rainfall and hydrological extremes are 
influenced by ENSO (Dai & Wigley, 2000; Dettinger & Diaz, 2000) also show a 
connection between ENSO and annual total water availability or water scarcity 
conditions. In these areas, rainfall deficits during an ENSO event enhance 
droughts, which can result in water scarcity events if consumptive demands 
outweigh the available water resources (Dilley & Heyman, 1995). As a result, 
regional water scarcity conditions become more extreme under El Niño and La 
Niña phases for almost one-third of the global land area (Veldkamp et al., 2015). 
Lastly, El Niño and La Niña conditions are also related with changes of mean sea 
level of ± 20-30 cm (Becker et al., 2012), and are strongly associated with 
extreme storm surges (Muis et al., 2018). ENSO events can induce changes in 
tropical cyclone activity in the Atlantic basins (Saunders et al., 2000), as well as 
extra-tropical cyclone activity (Eichler & Higgins, 2006). 

The Euro-Atlantic region is less influenced by ENSO (Casanueva et al., 2014), 
and is mainly dominated by four northern hemisphere modes of climate 
variability. The North Atlantic Oscillation (NAO) is the main mode of low-
frequency variability over the North Atlantic, and consists of a north-south 
dipole of anomaly in surface pressure between Greenland and the central 
latitudes of the North Atlantic between 35°N and 40°N. The East Atlantic 
Pattern (EA) is the second prominent mode of low-frequency variability over the 
North Atlantic, consisting of a north-south dipole of anomaly centres that 
extends across the entire region from the East to the West. The East 
Atlantic/West Russian pattern (EAWR) represents four main anomalies, centred 
over Europe and northern China, the central North Atlantic and north of the 
Caspian Sea. Lastly, the Scandinavian Pattern (SCA) captures anomalies 
primarily over the Scandinavian Peninsula, with centres of action over the north 
eastern Atlantic and central Siberia (Barnston & Livezey, 1987; Bueh & 
Nakamura, 2007). These four types of atmospheric circulation are often 
represented using indices based on sea surface pressure averages at different 
geopotential heights, which are then standardized based on their climatological 
mean. When such anomalies are above or below zero, the indices are classified 
as being in “positive” or “negative” phase, respectively.  

Positive and negative phases of the four northern hemisphere modes of climate 
variability can also cause large variability in hydrometeorological variables in 
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Europe. Previous studies have found links between anomalies in seasonal mean 
and extreme rainfall in Europe with phases of the NAO, EA, EAWR and SCA 
(Álvarez-García et al., 2018; Bueh & Nakamura, 2007; Casanueva et al., 2014; 
Comas-Bru & McDermott, 2014; Vicente-Serrano et al., 2009). In addition, these 
modes of climate variability have been found to influence annual maximum and 
mean river discharges across the continent (Bouwer, Vermaat, & Aerts, 2008; 
Kingston et al., 2006; Steirou et al., 2019). A recent study suggests that NAO in 
winter exerts a strong influence on streamflow extremes in large parts of 
Europe (46% of the stations investigated; Steirou et al. 2019). Furthermore, past 
studies have shown that different indices of climate variability may play a role in 
explaining European drought variability and severity (van der Schrier et al., 
2006; Vicente-Serrano et al., 2016, 2011). The NAO and SCA were found to 
influence droughts strongly in southern Europe (Sousa et al., 2011), whereas 
the EAWR affects droughts in western and central Europe (Kingston et al., 
2015). Furthermore, other studies show some predictive capacity for drought 
conditions based on indices of climate variability. For instance, Ionita (2014) 
suggests that spring drought conditions can be predicted based on EAWR over 
extended European regions. 

Scientific evidence on the relationship between climate variability and the 
socioeconomic impacts of floods and droughts is still limited, especially in 
relation to the four northern hemisphere modes of climate variability, and at 
several lead times before observing such impacts. At the global level, an initial 
study assessed links between ENSO and the reported frequency of drought and 
flood disasters (Dilley & Heyman, 1995). Subsequently, Bouma et al. (1997) 
investigated links between El Niño and the burden on human health, while a 
recent study by Anyamba et al. (2019) suggests that the 2015–2016 El Niño 
event may have triggered a series of global disease outbreaks in areas affected 
by ENSO teleconnections. These studies were followed by Goddard and Dilley 
(2005), where they analysed whether phases of ENSO could be associated with 
an increase in reported climate-related disasters. More recently, global flood 
risk models were used to examine ENSO's relationship with river flood risk at 
the global scale (Ward et al., 2014), and the number of people potentially 
exposed to global coastal flooding (Muis et al., 2018). A recent study has also 
found connections between NAO and flood losses in Europe (Zanardo et al., 
2019). Furthermore, previous studies have investigated relationships between 
modes of climate variability and agricultural impacts worldwide. For example, 
Heino et al. (2018) investigated the role of ENSO, NAO and the Indian Ocean 
Dipole, concluding that two-thirds of global cropland is significantly affected by 
one of these large-scale climate oscillations. Furthermore, ENSO was found to 
either negatively or positively to affect crop productivity in 28% of global 
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cropland area, inhabited by 1.5 billion people, while other studies found 
significant connections between major European crops and NAO, EA, EAWR and 
SCA (Ceglar et al., 2017). Recent studies suggest that ENSO can affect food 
security and agricultural production, with cascading effects on livelihoods. For 
instance, the rapid shift between El Niño and La Niña conditions in 2016 
intensified the shortage of rainfall, driving major hydrological crises over 
Eastern and Southern Africa, where 29 million people were faced with food 
insecurity due to the combination of drought exacerbated conditions (Funk et 
al., 2019), while contributing to severe flooding in the northwest of Latin 
America, forcing the evacuation of more than 150,000 people (BBC News, 
2015).  

Weather forecasting refers to predictions of atmospheric variables and how 
they are expected to change on a timescale of days or less, while climate 
forecasting refers to these expected changes on a timescale of at least a month 
(WMO, 2015). Translating climate forecasts into socioeconomic impacts is 
referred to as “impact-based forecasting” (ibid). Over the past years, new 
drought and flood forecasting systems have emerged, while others have greatly 
improved their capability of forecasting flood and drought events at longer lead 
times than before. Despite such advancements, there is still a gap in translating 
forecasts for flood and drought events into societal impacts. Several ways exist 
to forecast flood and drought impacts, for example by using a modelling chain 
that combines climatological-, hydrological- and hydrodynamic processes with 
exposure and vulnerability information. Other approaches employ statistical 
methods describing relationships between weather variables and actual flood 
and drought impacts (Carisi et al., 2018; Devia, Ganasri, & Dwarakish, 2015). 
Statistical models may neglect or simplify some of the underlying physical and 
socio-economic processes, assuming that past interactions between risk drivers 
may propagate similarly in the future. However, such models are simple and can 
provide a first rapid estimation of the impacts of floods and droughts. 

One example of an impact-based flood forecasting systems that runs 
operationally using a chain of dynamical models is the European Flood 
Awareness System (EFAS), which provides information on expected flood 
impacts for the continent with a lead time up to 10 days (Dottori et al., 2017). In 
addition to dynamic modelling predictions, scenario development 
methodologies are used to assist in forecasting future impacts. For instance, to 
describe the forecasted levels of acute food insecurity, FEWS NET (Funk et al., 
2019) translates numerous drivers (e.g. rainfall, staple food price, migration 
patterns and others) into one indicator: integrated Food Security Phase 
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Classification (IPC). This indicator is intended to help actors on the ground to 
readily understand the level of food insecurity, and the urgency to take action. 
However, forecasting the expected impact (e.g. famine and displacement) given 
a certain drought/flood event is surrounded with much uncertainty.  

One advantage of producing impact-based forecasts using indices that 
represent climate variability is that some of them can be predicted with longer 
lead times than hydrometeorological variables such as rainfall and streamflow 
(Ceglar et al., 2017). For instance, with an improvement of stratosphere–
troposphere coupling and atmospheric initial conditions, high skill has been 
observed in predicting an important mode of circulation in the northern 
hemisphere winter circulation (Ceglar et al., 2017; Stockdale, Molteni, & 
Ferranti, 2015). Furthermore, increased horizontal and vertical resolution of 
climate models, and a greater availability of forecast ensembles in combination 
with improved understanding of potential sources of NAO’s predictability, have 
allowed skilful predictions of the winter NAO more than a year in advance 
(Dunstone et al., 2016). Also ENSO forecasting is highly developed, and most 
prediction systems have some skill in detecting events with lead-times of 12–14 
months (Gonzalez & Goddard, 2016). EA summer and autumn anomalies have 
been forecasted with a lead-time of 1 to 2 months (Iglesias, Lorenzo, & 
Taboada, 2014). In comparison, GloFAS produces global probabilistic forecasts 
of 10-day rainfall up to 10 days ahead and daily river discharge up to 30 days 
ahead. Further value could be added to the forecasts of indices of climate 
variability by combining them with information on the resulting socioeconomic 
impacts (e.g. flood and drought risk), thereby enabling the seasonal forecasting 
of those socioeconomic impacts. Such forecasts may support risk management, 
enable the prioritization of adaptation efforts, and allow for improved early 
warning and action by local-to-national governments and non-governmental 
organizations. Thus, understanding the effects of climate variability on flood 
and drought impacts will support disaster resilience from global to regional 
scales.  

Some organizations are starting to use climate information, such as the 
predictions of ENSO, to estimate the seasonal impacts of floods and droughts, 
and to trigger early actions and risk transfer mechanisms such as insurance 
products. For instance, an El Niño contingent insurance product was developed 
for the region of Piura (Peru) to compensate firms for lost profits or possibly 
occurring extra costs as a result of floods (Cavanaugh, Collier, & Skees, 2010; 
Coughlan De Perez et al., 2015). Furthermore, in 2015, based on an El Niño 
forecast, funds were released through the World Food Program’s Food Security 
Climate Resilience Facility for Zimbabwe and Guatemala (World Food 
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Programme, 2016) to help both countries to face their consequent droughts. 
Despite these advances, associated uncertainties in forecast systems remain 
large, and the vast majority of forecast information is not routinely used as a 
basis for financing early action for drought and flood risk reduction. One of the 
reasons for such insufficient funding is the lack of evidence regarding the 
beneficial impacts of acting upon uncertain early warning information. 

In 2019, the FEWS NET estimated that there were 85 million people in need of 
emergency food assistance, 80% more than in 2015 (FEWS NET, 2019). Between 
1991 and 2010, the international financing community heavily funded 
emergency responses to humanitarian crises, while financing for disaster risk 
reduction was a low priority in development aid (Kellett & Caravani, 2013). 
During this period, over US$3 trillion was spent in aid, of which US$106.7 billion 
was allocated to disasters induced by natural hazards. Of this amount, 13% was 
spent on ex-ante risk reduction measures, compared to 87% spent on ex-post 
activities - 22% on reconstruction and rehabilitation and 65% on emergency 
response (ibid). Furthermore, for some middle-income countries, flood 
prevention and control has accounted for a very high proportion of overall ex-
ante disaster risk reduction funding. It is estimated that over the period from 
1991 to 2001, investments in flood prevention and control made up 90% of all 
ex-ante disaster risk reduction financing (ibid). On the other hand, drought-
affected low-income countries have received negligible international financing 
for drought risk reduction (ibid). Apart from protection measures (e.g. levees to 
reduce flood impacts or developing reservoirs to store water for a period of 
drought), there is always a residual risk, which can be addressed through risk 
transfer mechanisms. An example is insurance, which shifts the financial burden 
of risks from one party to another (Bouwer et al., 2007). A well-known example 
is index-based insurance, which correlates crop losses with weather parameters 
(Clement et al., 2018). The coverage of a risk is obtained from an insurer in 
exchange for ongoing premiums paid by farmers to the insurer (Dick et al., 
2011).  

However, at present, the insurance penetration rates in developing countries 
are low (Linnerooth-Bayer et al., 2009), and other mechanisms are needed to 
reduce residual risks. Furthermore, when a disaster hits a country, and 
governments appeal for international financial support, the aid often arrives too 
late, and can involve highly bureaucratic processes. Acting ex-ante to a crisis 
could enable governments to be more proactive in achieving short- and long-
term goals of disaster risk reduction, while alleviating the weight of natural 
hazards on the most vulnerable. Therefore, a debate has started as to whether 
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aid should be given directly to people in the form of cash as an alternative to 
traditional in-kind food aid and food vouchers (Harvey, 2007). Such cash 
transfers are typically less expensive to administer and have the advantage of 
transferring the purchasing power to the recipients. They can therefore be 
effective for disaster risk financing (Kenya Red Cross, 2017; UNDP, 2015). 
However, among the numerous cash transfer programmes (Garcia & Moore, 
2012), only a handful focus on transfers before an event occurs; the majority 
focus on transfers after an event occurs. Therefore, cash transfer programmes 
for disaster responses are typically based on observations after an event has 
taken place (Pulwarty & Sivakumar, 2014), which may result in ineffective 
delayed assistance.  

Given the recent improvement of forecasting systems, combined with an 
emerging understanding on ways to automatically trigger action based on early 
warning systems (Coughlan De Perez et al., 2015; Stephens et al., 2015; Suarez 
& Tall, 2010), there is a growing recognition that there may exist a window of 
opportunity to take actions to reduce risks based on a forecast, rather than 
taking actions after a disaster has occurred. Timely ex-ante action has the 
potential to be more cost-effective than ex-post disaster relief when leveraged 
by a credible plan, pre-agreed triggers for action, and pre-arranged financing. 
One way to leverage investments for ex-ante action is improving the 
understanding of the beneficial impacts of acting early. A key research question 
is whether early action can be efficiently managed based on improvements in 
the forecastability of natural hazard and new automated funding allocation 
methods. Currently, there is an increasing interest in the use of Big Data in 
combination with Machine Learning algorithms for improving impact-based 
forecasts and designing more accurate triggers for parametric financial 
products and humanitarian aid (Meier, 2015). Such emerging technologies may 
offer decision-makers with skilful impact-based predictions, providing insights 
on how to deliver effective disaster risk mitigation efforts that maximize 
benefits and reduce human impact and losses. However, given the fact that 
there is no system with a “perfect forecast” skill, predictions of future impacts 
always remain susceptible to errors and uncertainties. In order to create 
guidelines for ex-ante aid and risk transfer mechanisms, a comprehensive 
understanding of the costs and likelihood of “acting in vain” due to false alarms 
is needed.  

In response to the limited understanding on links between climate variability 
and weather-related impacts of both floods and droughts, and the current gap 
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in translating such relationships into impact-based information that can be used 
as a basis for triggering early action, the main objective of this thesis is: 

To assess the link between climate variability and weather-related impacts 
(flood and drought) at the global and regional levels, and to develop impact-
based forecast methods that can potentially reduce these impacts through early 
action.  

In order to fulfil this objective, the following five research questions are 
formulated: 

1. What are the links between large-scale climate variability, the occurrence 
and intensity of extreme rainfall, and anomalies in flood occurrence and 
damage? 
 

2. Can large-scale climate variability be used to forecast flood losses?  
 

3. Can large-scale climate variability be used to forecast agricultural 
production and support agricultural management and decision-making? 
 

4. How can information about climate variability be used to increase the cost-
effectiveness of ex-ante risk financing programmes?  
 

5. How can the reduction of disaster risks be achieved by improving our 
understanding and prediction of the impacts associated with large-scale 
climate variability? 

This thesis contains 7 chapters, in which chapters 2-6 address the research 
questions presented above, as illustrated in Figure 1.2. Chapters 2-7 are 
outlined as follow:  

 Chapter 2 analyses the El Niño Southern Oscillation, the North Atlantic 
Oscillation, and the East Atlantic pattern during their neutral, positive, and 
negative phases, to understand their relationships with four flood 
indicators: Occurrence of Extreme Rainfall, Intensity of Extreme Rainfall, 
Flood Occurrence, and Flood Damage. This chapter investigates the spatial 
and temporal influence of climate variability in extreme meteorological and 
flood events at the pan-European scale. This chapter pays special attention 
to assessing relationships between multiple indices of climate variability and 
flood losses; 
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Figure 1.2 Thesis’ reading guide.  

 

 Building upon findings from Chapter 2, Chapter 3 examines the role of 
seasonally lagged and synchronous indices of climate variability on flood 
losses at the sub-regional European scale. Furthermore, this chapter 
investigates the likelihood of seasonal flood losses based on indices of 
climate variability, and whether some of these losses can be predicted one 
season ahead. It aims at providing a better understanding of the combined 
effect of climate variability on flood losses, and how such information could 
be used to improve flood risk management practices;  

 Chapter 4 analyses multiple time-scale relationships between large-scale 
indices of climate variability and anomalies in crop production at the pan-
European scale. It aims at identifying regions where anomalies in crop 
production can be forecasted based on the indices of climate variability. It 
also discusses how this information potentially improves the management 
of the agricultural sector; 

 Chapter 5 evaluates the cost-effectiveness of ex-ante cash transfers during 
the growing season of maize, prompted by the expected probabilities of low 
maize yield obtained from a predictive model. It compares the costs of ex-
ante cash transfers with the costs of ex-post cash transfers after harvesting. 
This chapter provides novel early warning information that can be useful for 
reducing the costs and increasing the effectiveness of existing cash transfer 
programmes for drought risk management. The approach is tested in five 
districts in Kenya; 
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 Chapter 6 reviews the global effects of El Niño Southern Oscillation on 
disaster risks, including water scarcity and agricultural droughts, extreme 
rainfall, and river- and coastal flooding. It provides policy recommendations 
by showcasing opportunities to reduce the risk of disasters by responding to 
El Niño Southern Oscillation forecasts; 

 Chapter 7 concludes and summarises the thesis, providing answers to the 
research questions and discussing future avenues of research.  
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Climate variability is shown to be an important driver of spatial and temporal 
changes in hydrometereological variables in Europe. However, the influence of 
climate variability on flood damage has received little attention. We 
investigated the El Niño Southern Oscillation (ENSO), the North Atlantic 
Oscillation (NAO), and the East Atlantic pattern (EA) during their neutral, 
positive, and negative phases, to understand their relationships with four flood 
indicators: Occurrence of Extreme Rainfall, Intensity of Extreme Rainfall, Flood 
Occurrence, and Flood Damage. We found that positive and negative phases of 
NAO and EA are associated with more (or less) frequent and intense seasonal 
extreme rainfall over large areas of Europe. The relationship between ENSO and 
the Occurrence of Extreme Rainfall and Intensity of Extreme Rainfall in Europe is 
much smaller than the relationship with NAO or EA, but still significant in some 
regions. We show that Flood Damage and Flood Occurrence have strong links 
with climate variability, especially in southern and eastern Europe. Therefore, 
when investigating flooding across Europe, all three indices of climate variability 
should be considered. Future research should focus on their joint influence on 
flood risk. The potential inclusion of seasonal forecasts of indices of climate 
variability could be effective in forecasting flood damage. 
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Between 1980 and 2015, Europe experienced 18% of worldwide weather-
related loss events, which accounted for over US$500 billion (bn) in damage 
(Munich Re, 2016b). Consequently, it is urgent to further develop adaptation 
strategies to mitigate the consequences of weather-related disasters, such as 
floods (Jongman et al., 2014). Europe’s capability to prepare for such disasters 
is challenged by a large range of uncertainties and a limited understanding of 
the driving forces of hydrometeorological hazards (Apel et al., 2004). One of the 
major sources of uncertainty is the relationship between climate variability and 
weather-related losses (Merz et al., 2014). 

Climate variability refers to natural fluctuations of the climate system around 
the long-term trend (Stocker et al., 2013). Such variability is caused by coupled 
interactions between atmospheric and oceanic components, measured by an 
index. Globally, ENSO is the most important mode of climate variability, and has 
been linked with changes in hydrometeorological extremes in past studies at 
different scales, including national (Rios-Cornejo et al., 2015; Sun et al., 2014; 
Villafuerte et al., 2014), continental (Cannon, 2015; Casanueva et al., 2014; 
Ionita et al., 2015), and global (Sun et al., 2015; Veldkamp et al., 2015; Ward et 
al., 2010, 2014).    

In addition to ENSO, hydrometeorological variables across Europe show 
relationships with other indices of climate variability, such as the NAO and EA. 
NAO measures anomalies in sea level pressure over the subpolar and the 
subtropical region of the North Atlantic (Hurrell et al., 2003), while the EA 
measures these anomalies across the entire North Atlantic region from east to 
west (Barnston & Livezey 1987;NOAA 2017). ENSO, NAO, and EA have positive, 
negative, and neutral phases, and can be related with variations in the 
European climate. For instance, an NAO+ phase links with increased westerlies 
over the middle latitudes, and intense weather systems over the North Atlantic. 
On the other hand, NAO- phase shows an opposite pattern over these regions 
(Hurrell et al., 2003). Therefore, different phases of ENSO, NAO and EA can be 
associated with increases or decreases in disaster burden (Goddard & Dilley, 
2005; Mitchell et al., 2017; Pinto et al., 2009) .  

Whilst several studies have assessed the regional influence of ENSO, NAO, and 
EA on precipitation (Goddard & Dilley, 2005; Gregersen et al., 2013; Lopez-
Bustins, Martin-Vide, & Sanchez-Lorenzo, 2008; Lorenzo, Taboada, & Gimeno, 
2008; Mariotti, Zeng, & Lau, 2002; Rodó, Baert, & Comin, 1997) and discharge 
(Markovic & Koch, 2014; Struglia, Mariotti, & Filograsso, 2004), less research 
has been carried out at Pan-European scale. Fewer still have examined peak 
discharge. An exception is an investigation of observed European peak river 
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discharge relationships with NAO, Arctic Oscillation (AO), frequency of west 
circulation (FWC), and north to south sea level pressure difference (SLPD) 
(Bouwer et al., 2008). Some studies have examined climate variability’s 
influence on extreme precipitation (Casanueva et al., 2014). However, these 
studies do not address differences in the frequency and intensity of extreme 
precipitation during positive and negative phases compared to neutral phases. 

Only few studies specifically addressed relationships between climate variability 
and the socioeconomic impacts of flood disasters. At the global level, an initial 
study (Dilley & Heyman, 1995) assessed links between ENSO and the reported 
frequency of drought and flood disasters. Subsequently, others (Bouma et al., 
1997) investigated links between El Niño and the burden on human health. 
These studies were followed up by research (Goddard & Dilley, 2005) that 
analysed whether phases of ENSO could be associated with an increase in 
reported climate-related disasters. Recently, a global flood risk model was used 
to examine ENSO’s relationship with flood risk at the global scale (Ward et al., 
2014), while other studies have assessed relationships between NAO and EA 
and agriculture risks e.g. (Brown, 2013; Cantelaube, Terres, & Doblas-Reyes, 
2004; Fuhrer et al., 2006; Hernández-Barrera & Rodríguez-Puebla, 2017; 
Irannezhad, Chen, & Kløve, 2016).  

To the best of our knowledge, no studies have examined the impacts on flood 
damage of multiple indices of climate variability. Therefore, we analyse ENSO, 
NAO, and EA indices during their neutral, positive and negative phases, to 
answer the following research questions:  

 Are there differences in the frequency and intensity of extreme rainfall 
between the different phases of the indices of climate variability?  

 Are there anomalies in flood occurrence and damage between the different 
phases of the indices of climate variability?  

In section 2.2 we describe the climate and flood indicators, and the statistical 
methods, followed by the presentation and discussion of the results in sections 
2.3 and 2.4. We conclude with section 2.5. 

We use statistical methods to analyse relationships between ENSO, NAO, and 
EA indices and four indicators of flooding, namely: (1) Occurrence of Extreme 
Rainfall (OER); (2) Intensity of Extreme Rainfall (IER); (3) Flood Occurrence; and 
(4) Flood Damage. These indicators were derived from two datasets: a database 
of flood disasters and losses in Europe (Munich Re, 2016a) and a gridded 
dataset of daily precipitation (Haylock et al., 2008). An overview of the 
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methodological framework is displayed in Figure 2.1. The methods and datasets 
are described in more detail in the following subsections. 

 

 

Figure 2.1 Flowchart representing the methodological framework applied in this study, handled in 
four steps: (1) collection of two input datasets; (2) extraction of four flood indicators based on 
input datasets; (3) application of statistical methodology; (4) analysis of results. 

2.2.1 Indices of climate variability 

In this study, we represent climate variability using the ENSO, NAO and EA 
indices, whose phases were divided into negative, positive and neutral. 

For ENSO, we used the Oceanic Niño Index (ONI) from 1950-2014 
(http://www.cpc.ncep.noaa.gov). ONI is a three-months running mean of sea 
surface temperature (SST) anomalies in the Niño 3.4 region. We used the data 
for December-February (DJF), March-May (MAM), June-August (JJA), and 
September-November (SON). ENSO’s phase classification was established by the 
National Oceanic and Atmospheric Administration (NOAA), which compares the 
running mean value to a 30-year average to derive periods of below or above 
normal SSTs. ENSO- (ENSO+) phases are classified when the threshold of – (+) 
0.5°C is met for a minimum of five consecutive overlapping 3-month periods.  

For NAO, we used the Hurrell NAO index (station-based) from the Climate Data 
Guide (https://climatedataguide.ucar.edu/climate-data). We obtained the 
seasonal index from 1950-2014 for DJF, MAM, JJA, and SON. For EA, we used 
the monthly standardized index from NOAA. Again, we averaged the EA series 
for the same period as for NAO. Both the NAO and EA indices follow a Gaussian 
distribution, therefore, the three phases were classified using a ± 1σ (Jeong & 

http://www.cpc.ncep.noaa.gov/
https://climatedataguide.ucar.edu/climate-data
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Ho, 2005). An overview of the indices and their classification is shown in the 
appendix Figure A1.  

2.2.2 Flood indicators and European sub-regions 

We assess flood by means of four indicators: OER, IER, Flood Occurrence and 
Flood Damage. Because Flood Occurrence and Flood Damage records were not 
sufficient to establish comparison at the country level, we grouped the records 
into four sub-regions. For the European sub-regions (appendix Figure A2), we 
used the classification established by the United Nations Statistics Division. We 
extracted all four indicators seasonally: winter (DJF), spring (MAM), summer 
(JJA), and autumn (SON). 

2.2.2.1 Occurrence of Extreme Rainfall and Intensity of Extreme Rainfall 

We obtained the OER and IER from the E-OBS rainfall dataset 
(http://www.ecad.eu/). This dataset contains daily gridded precipitation for 
1950-2014, with a horizontal resolution of 0.25 degree. We extracted the OER 
events per season and year, and the intensity of those events. We define 
extreme rainfall using Partial Duration Series (Coles et al., 2001), where the 𝑛 
largest rainfall events are extracted per year, relative to the length of the daily 
series (Prudhomme & Genevier, 2011). The extreme series contain an average 
of three high rainfall events per season (𝑛 = 3×65 years). We applied an inter-
event time criterion of 24 hours to fulfil the independence of the series, and 
calculated the OER by counting the number of extremes per season/year; the 
indicator of IER is the ratio of the sum of the intensity of these respective 
events (per season/year) and the OER indicator. 

2.2.2.2 Flood Occurrence and Flood Damage 

We used the NatCatSERVICE dataset of Munich Re (Munich Re, 2016a) to derive 
time-series of Flood Occurrence and Flood Damage. This dataset registers flood 
events in Europe, and their respective period, timing, location and damages 
(US$) between 1980-2012. To calculate Flood Occurrence we extracted the 
initial date of the floods, and then counted and sorted these events into a 
specific season of the year. For the Flood Damage indicator, we deflated the 
nominal flood damage recorded from 1980-2012 into 2010 US$ values, and 
converted these into Purchasing Power Parity (PPP) equivalent (further 
description in the Appendix A3). The distribution of reported flood events and 
damage recorded in the Munich Re database per sub-region and season is 
available in Figure A3.  

2.2.3 Statistical approach 

http://www.ecad.eu/
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For the OER and IER indicators, we applied a two-tailed T-Test (each tail α=5%). 
The test identifies whether the mean occurrence and intensity of extreme 
rainfall found in positive or negative phases are significantly different from the 
one found during the neutral phase. Field significance of the gridded results was 
assessed using the binomial distribution (Livezey & Chen, 1983). 

For the Flood Occurrence and Flood Damage indicators, we used a 
methodology proposed in previous research (Iizumi, Luo, et al., 2014). Following 
this approach, we investigated anomalies in Flood Occurrence and Flood 
Damage within phases of ENSO, NAO and EA by calculating the percentage 
anomaly that deviates from a normal value (defined as 5-years running mean) 
for the time interval (𝑡 in years) 𝑡 − 2 𝑡𝑜 𝑡 + 2.   We applied a 5-years running 
mean to minimize possible pitfalls regarding reporting issues in the Munich Re 
dataset. Often, an issue with disaster databases is that the frequency count of 
damaging floods includes increased reporting of disasters towards more recent 
years (Merz et al., 2012). In addition, we tested the long-term average (1982-
2010) as a normal value, however results did not greatly differ between the two 
methodologies (appendix A4). The percentage anomaly (𝐹′) for a respective 
season (S) and sub-region (R) is obtained by: 

𝐹′
𝑆,𝑅 =

𝐹𝑆,𝑅 − 𝐹 ̅𝑆,𝑅

𝐹 ̅𝑆,𝑅

× 100   
Equation 2.1 

𝐹𝑆,𝑅 indicates the value of the Flood Occurrence or Flood Damage, and 𝐹 ̅𝑆,𝑅 is 

the normal value for the indicator. The calculation of the percentage flood 
anomaly aims to detect the major changes in these two indicators induced by 
short-term climate factors, although other factors like exposure and 
vulnerability may also contribute to yearly variations. The second step is to 
obtain an average flood anomaly (%) for each phase of the climate indicator (I) 
for 1982-2010: 

F'
R, I+= 

1

nI+,   R 
∑ F'S,R

2010

1982

 if IS  ≥ 𝑢 
Equation 2.2 

F'
R, I-= 

1

nI-,   R 
∑ F'S,R

2010

1982

 if IS  ≤ -u 
Equation 2.3 

F'
R, IN= 

1

nIN,   R 
∑ F'S,R

2010

1982

 if   -u<IS<u     
Equation 2.4 
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𝑛𝐼+,𝑅 , 𝑛𝐼−,𝑅 and 𝑛𝐼𝑁,𝑅 are the numbers of positive, negative and neutral phases 

of indices of climate variability, respectively, and threshold u is ± 1𝜎 or ± 0.5°C 
depending on the climate indicator. Next, we compared the difference between 
average percentage flood anomalies in positive or negative seasons to the 
values in neutral seasons: 

∆𝐹′
𝑅,𝐼+ = 𝐹′

𝑅,𝐼+ − 𝐹′
𝑅,𝐼𝑁 Equation 2.5 

∆𝐹′
𝑅,𝐼− = 𝐹′

𝑅,𝐼− − 𝐹′
𝑅,𝐼𝑁 Equation 2.6 

A negative (positive) value of  ∆𝐹′
𝑅,𝐼+  and ∆𝐹′

𝑅,𝐼−, suggests, on average, a 

lower (higher) impact of the index of climate variability 𝐼+ and 𝐼− , compared to 
the average in flood anomaly for the indicators in neutral phases. We tested the 
statistical significance of the difference by bootstrapping the values of the 
percentage flood anomaly for a sub-region using 10,000 iterations. The two-
sided test considers significance level of 5% (strong significance) and 10% (weak 
significance) in each tail, adopting the null hypothesis that the difference 
between the average percentage flood anomaly in 𝐼+ or 𝐼−  and 𝐼𝑁  are equal to 
zero (details in the Appendix A5).  

In this section, we firstly describe the differences in OER and IER indicators 
within ENSO, NAO and EA phases, followed by outcomes regarding anomalies in 
Flood Occurrence and Flood Damage. 

2.3.1 Differences in the Occurrence and Intensity of Extreme Rainfall 

In Figure 2.2, we display the seasonal differences in the OER indicator between 
the I+ and I- phases compared to the IN phases in percentage terms. The 
strongest link can be seen for NAO and EA. The mean OER per season and phase 
is displayed in Figure A6.1 in the appendix. 

Extreme rainfall in winter occurs more frequently in southern and eastern 
Europe, and less frequently in northern countries during NAO-; the opposite 
pattern is seen during NAO+. In spring, during NAO- we observe more frequent 
extreme rainfall in large portions of eastern Europe. The main signal in summer 
and autumn is less frequent extreme rainfall, particularly in southern and 
eastern Europe during NAO+. Extreme rainfall is less frequent in large part of 
Europe during EA-, although more frequent extremes are seen in south-eastern 
regions. In winter and spring, we observe a higher OER in sparse areas of 
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northern Europe during EA+, and opposite pattern in southern and western 
Europe in all seasons. 

In general, the influence of ENSO on the OER in Europe appears to be much 
smaller than the influence of NAO or EA. In winter, less frequent extreme 
rainfall is seen during ENSO- in sparse areas, particularly in the east. During 
spring, we observe positive differences in parts of northern Spain and southern 
France during ENSO-, and over Sweden during ENSO+. In autumn, we observe 
more frequent extreme rainfall in large areas of Europe within both phases of 
ENSO, especially in Iceland during ENSO+. 

In Figure 2.3, we show the significant differences in the IER for the I+ and I- 
phases compared to the IN phases for each season in percentage terms. Again, 
NAO and EA show the strongest relationships. The mean IER per season and 
phase is displayed in Figure A6.2 in the appendix. 

In winter during NAO-, we observe higher IER in eastern Europe, and lower IER 
in northern and western Europe. The reverse pattern is observed during NAO+. 
Except in winter during NAO+, IER is lower in large areas of Europe. However, 
the opposite is observed in southeastern and northeastern Europe in summer 
during a NAO-.  

During EA-, extreme rainfall is less intense over the year in northern and 
western Europe. In all seasons, we observe lower IER during EA+ in large areas 
of the continent, except in summer and autumn in parts of northern and 
eastern Europe, where extreme rainfalls are on average 25% more intense.   

In general, the influence of ENSO on the IER in Europe is limited and rather 
local. During ENSO-, we observe lower IER in all seasons in scattered areas of 
western and eastern Europe, and higher IER over Spain during ENSO+, except in 
autumn. 

2.3.2 Anomalies in Flood Occurrence and Flood Damage at the pan-European 
scale 

At the pan-European scale, all three indices of climate variability show 
significant relationships with Flood Occurrence in one or more phase and/or 
season (Figure 2.4a). The strongest link is observed for NAO. In summer, during 
NAO+, anomalies in Flood Occurrence are 170% higher than during NAON. In 
winter, during NAO-, anomalies in Flood Occurrence are on average 70% higher 
than during NAON. We also found that Flood Occurrence in spring is significantly 
lower during NAO+, and higher (81% and 33%) during EA+ and ENSO+ but we find 
no significant anomalies during their negative phases. 
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Figure 2.2 Mean percentage difference in the seasonal occurrence of extreme rainfall (OER) 
(number of events/season) between negative phase and positive phase of the indices of climate 
variability, compared to the neutral phase. Blue (red) colours symbolize a significantly higher 
(lower) number of extreme events compared to the neutral phase (each tail α= 5%). Field 
significance of the gridded results was assessed using the binomial distribution and found to be 
highly significant (P < 0.001). Seasons/phases of the indices of climate variability that were found 
to be significant only due to T-Test are indicated with an asterisk  (*). 

We find significant anomalies in Flood Damage (compared to IN phases) linked 
to all three indices of climate variability, with the strongest anomalies again for 
NAO (Figure 2.4b). Anomalies in winter Flood Damage are on average 222% 
higher during NAO-, and 104% lower in spring during NAO+. Still in spring, Flood 
Damage is 137% higher during EA-. We observe positive anomalies in summer 
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Figure 2.3 Mean difference in the intensity of extreme rainfall (IER) (mm/event) between negative 
phases and positive phases of the indices of climate variability, compared to neutral phases. Blue 
(red) colours symbolize significantly higher (lower) intensity of extremes events compared to a 
neutral phase (each tail α= 5%). Field significance of the gridded results was assessed using the 
binomial distribution and found to be highly significant (P < 0.001). Seasons/phases of the indices 
of climate variability that were found to be significant only due to T-Test are indicated with an 
asterisk  (*). 

during the positive phase of the NAO and ENSO, with the highest anomalies 
(374%) during NAO+.  
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Figure 2.4 Pan-European analysis of the average percentage anomalies in (a) Flood Occurrence 
and (b) Flood Damage per season, during the positive and negatives phases of the different 
climate indices (compared to neutral). For strong significance, we use α= 5%, while for a weak 
significance α= 10% at each tail. 

 

2.3.3 Anomalies in Flood Occurrence and Flood Damage at the sub-regional 
scale 

In Figure 2.5, we show the anomalies in Flood Occurrence per season for the 
four European sub-regions. In southern Europe (Figure 2.5a), Flood Occurrence 
anomalies during winter are 181% higher during NAO-, and 40% lower in spring 
during ENSO-. In summer seasons Flood Occurrence anomalies are 111% higher 
during NAO+, and 48% lower during EA+ phases. However, anomalies in Flood 
Occurrence are 164% and 80% higher in autumn during EA+ and ENSO+, 
respectively.  

For eastern Europe (Figure 2.5b), Flood Occurrence anomalies in winter are 
89% and 59% higher during NAO+ and EA+, respectively. However, during NAO+ 
in spring, Flood Occurrence is 47% lower compared to neutral, and 110% higher 
in summer. We found positive anomalies in Flood Occurrence in spring for NAO- 
, and in autumn for ENSO-.  

In western Europe (Figure 2.5c), during NAO+ in summer, Flood Occurrence is 
much higher (247%) compared to neutral. In addition, anomalies in Flood 
Occurrence in summer and autumn are on average 53% and 69% higher during 
EA- and EA+. 

In northern Europe (Figure 2.5d), in spring and summer, anomalies in Flood 
Occurrence are on average 47% and 62% lower during NAO+ and ENSO+, 
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respectively. In addition, significant positive anomalies are seen in autumn 
during positive phases of ENSO and EA.   

 

Figure 2.5 Average percentage anomalies in flood occurrence per season, within the positive and 
negative phases of the different climate indices (compared to neutral). Results are shown for: (a) 
southern Europe; (b) eastern Europe; (c) western Europe; (d) northern Europe. For strong 
significance, we use α= 5%, while for a weak significance α= 10% at each tail. 

In terms of Flood Damage for southern Europe (Figure 2.6a), we find significant 
anomalies (compared to neutral) during several phases and/or seasons of the 
indices of climate variability. Anomalies in Flood Damage are positive (373%) in 
winter during NAO+, and in summer (389%, 129% and 230%) for NAO- (389%), 
EA- (129%) and ENSO- (230%), respectively. Flood damages are lower during 
ENSO+ in spring.  

In eastern Europe (Figure 2.6b), we found significant anomalies in Flood 
Damage for one or more seasons or phases for all of the indicators of climate 
variability. Anomalies in Flood Damage are 120% in winter during EA+, and 125% 
(277%) lower (higher) in spring during NAO+ (EA-). Flood Damages are 293% 
higher in summer during NAO+, and –125% and 140% in autumn during the 
negative phases of ENSO and EA. 
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In western Europe (Figure 2.6c), we observe significant anomalies in Flood 
Damage during several phases and/or seasons of NAO and ENSO. In winter and 
summer, anomalies in Flood Damage are 107% and 400% higher during NAO+, 
respectively. In summer and autumn, we find higher Flood Damage (121% and 
157%) during ENSO+ and ENSO-. 

In northern Europe (Figure 2.6d), spring and summer seasons are associated 
with negative anomalies in Flood Damage during the positive phases of the 
indices of climate variability. Anomalies in Flood Damage are higher in autumn 
(95% and 126%) during ENSO+ and EA+, respectively. 

 

 

Figure 2.6 Average percentage anomalies in flood damage per season, within the positive and 
negative phases of the different climate indices (compared to neutral). Results are shown for: (a) 
southern Europe; (b) eastern Europe; (c) western Europe; (d) northern Europe. For strong 
significance, we use α= 5%, while for a weak significance α= 10% at each tail. 

2.4.1 Similarities and differences between the four flood indicators 
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We observe major similarities in the overall patterns among the four flood 
indicators. Large differences in OER and IER (Figures 2.2-2.3) often coincide with 
large anomalies in Flood Occurrence and Flood Damage (Figures 2.4-2.6 and 
appendix Table A7). For example, in winter southern- and eastern Europe 
receive more frequent and intense extreme rainfall during NAO-. This may be 
causing the high anomalies in Flood Occurrence and Flood Damage at the pan-
European scale. Floods, especially in summer, are greatly anomalous in eastern 
and western Europe, where more frequent events coincide with higher costs 
(appendix A3). Summer and autumn major floods in Europe are mostly driven 
by river and flash floods, which are triggered by regional heavy rainfall followed 
by consecutive wet days (Figure A5.2) (Barredo, 2007; Kundzewicz et al., 2005). 
For instance, in western and eastern Europe, regions where major European 
river basins are located, three of their most destructive floods occurred in 
summer caused by such weather conditions (Kundzewicz et al., 2005). 

However, there are also some differences between the indicators. For example, 
for some regions/phases, floods events are not more frequent, but they are 
more damaging; this is the case in winter in western Europe during NAO+. 
However, we note that this sub-region also shows more intense extreme 
precipitation in winter during NAO+, which could result in larger floods and 
damages, even though the frequency of floods may not increase. Flood 
frequency can only partly explain anomalies in flood damage, and other drivers 
such as changes in exposure, vulnerability and intensity of extreme may also 
play a significant role. In addition, in some areas extreme rainfall is not more 
frequent, but more intense, as is the case in Scandinavian countries during NAO- 
in summer. Additionally, some of the significant anomalies in Flood Damage 
may be influenced by a few exceptionally high damage events. For example, 
anomalies in Flood Damage during summer in southern Europe were heavily 
influenced by one single event in Italy in 2002, with an estimated US$ 5.5 bn in 
damages (35% of the total summer Flood Damage for the southern sub-region). 
Moreover, some high anomalies in Flood Occurrence may be related to other 
hydrometereological variables than IER and OER, such as snow melt and storm 
surge, which needs further study (Hall et al., 2014; Muis et al., 2016).  

2.4.2 Comparison to previous research 

We provide a detailed comparison between our results and those of past 
studies in Europe in A8 of the appendix. In brief, the following points can be 
summarised: (i) occurrence of winter extreme rainfall in southern regions is 
greatly related to NAO-, while NAO+ is linked to more frequent and intense 
extreme precipitation over northeastern areas, which agrees with previous 
studies e.g. (Lopez-Bustins et al., 2008; Quadrelli, Pavan, & Molteni, 2001; Rodó 
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et al., 1997; Uvo, 2003); (ii) ENSO’s influence on the European climate is not 
clear, and changes in the intensity and frequency of extreme precipitation are 
minor (Brönnimann, 2007; Frias et al., 2010; Rocha, 1999; Sun et al., 2015); (iii) 
in summer, we observe that NAO exerts great influence on rainfall patterns, but 
with an opposite sign to that observed in winter (Barnston & Livezey, 1987; 
Casanueva et al., 2014; Lorenzo et al., 2008); (iv) in autumn, extreme 
precipitations are less frequent and intense during NAO+, which are associated 
with drier conditions over southern and eastern regions, as highlighted by 
others (Casanueva et al., 2014). 

Another aspect that affects susceptibly to climate-related disasters is the level 
of flood protection. According to a modelling study (Scussolini et al., 2015), 
large portions of southern and eastern Europe are protected against floods up 
to about a 20-year return period. Consequently, many locations are not well 
adapted to deal with extreme flood events. This has been the case in Italy and 
Spain, which have previously suffered major flash floods and river flood 
disasters (Barredo, 2007). The high levels of flood protection in northern Europe 
(Scussolini et al., 2015), may reduce the influence of climate variability on Flood 
Occurrence and Flood Damage.  

Socioeconomic development also plays a role in flood risk, and may alter the 
relationship between hydrometeorological extremes and resulting losses 
(Jongman et al., 2015). Only few studies analyzed changes in vulnerability, flood 
damage and risk due to the lack of reliable and long flood damage data (Merz et 
al., 2012). However, some studies found that changes in exposure and 
socioeconomic development are a key drivers of increasing flood losses in 
Europe (Barredo, 2009; Llasat et al., 2008). Others have suggested that 
increased flood damage is also associated with increased precipitation (Pielke Jr 
& Downton, 2000). Therefore, understanding trends in flood frequency and 
damage can only be partially explained by estimating meteorological changes. 

2.4.3 Applications, limitations and recommendations 

The indices of climate variability assessed in this study can be forecast with 
varying levels of skill and lead-times. Hindcasts of winter-mean NAO show that 
there is skill for predicting this index with lead-times of at least a month (Scaife 
et al., 2014; Smith et al., 2016). EA summer and autumn anomalies can be 
properly forecast with a lead-time of 1 to 2 months (Iglesias et al., 2014). ENSO 
forecasting is more developed, and most prediction systems have some skill to 
detect events with lead-times of 12–14 months (Gonzalez & Goddard, 2016). In 
those regions of Europe where ENSO, NAO and EA show strong relationships 
with precipitation and flood indicators, seasonal risk outlooks could potentially 
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be developed based on predicted values of the indices of climate variability. 
Such outlooks could provide information on whether flood impacts in upcoming 
seasons are likely to be higher or lower than average, which could be useful for 
flood disaster preparedness. For example, the European Union’s Solidarity 
Fund, holding 500 million Euros per year to help member states finance disaster 
losses, is greatly affected by large-scale correlations in flood losses (Jongman et 
al., 2014). Taking into account some of the long term climate variability 
anomalies in the design and budgetary planning of international finance 
mechanisms could reduce the chance of such a fund facing unexpected pay-
outs across large regions in Europe, and reduce the chance of fund depletion. 

The primary limitation of this investigation is that we analyse the impact of 
ENSO, NAO and EA separately. Globally, ENSO is the main driver of interannual 
climate variability, but interactions between ENSO and both NAO and EA have 
been identified in several studies e.g. (Greatbatch, 2004; Iglesias et al., 2014; 
Rodríguez-Fonseca et al., 2016). Future work should assess the joint impacts of 
ENSO, NAO and EA on floods. Future work would also benefit from using 
different methods to classify the different phases of climate variability, and 
examining time lags between the indices of climate variability on the flood 
indicators. For instance, ENSO’s impact on climate may vary throughout its 
developing, mature or decaying phases (Huang et al., 2012; Ronghui & Yifang, 
1989; Wang & Gu, 2016; Zhang, Sumi, & Kimoto, 1999). Moreover, some of the 
significant results may had occurred by random chance on season/phases of the 
indices of climate variability marked with an asterisk on Figures 2.2 and 2.3, 
where results would improve with a local analysis. Furthermore, global disaster 
databases, such as the one used in this study, are also know to face major 
limitations, such as reporting errors (Kron et al., 2012). Lastly, extreme rainfall 
frequency and intensity, and large-scale climate variability can only partly 
explain anomalies in flood risk (Barredo, 2009; Pielke Jr & Downton, 2000). 
Other aspects such as changes in exposure and vulnerability (Jongman et al., 
2015; Scussolini et al., 2015) were not included in this study.  

In this paper, we examined relationships between the different phases of ENSO, 
NAO and EA, and differences and anomalies in the OER, IER, Flood Occurrence, 
and Flood Damage. We show that: 

 Positive and negative phases of NAO and EA are associated with more 
frequent extreme rainfall over large areas of Europe. The NAO+ and EA+ 
phases are associated with less frequent extreme rainfall, especially 
during summer and autumn. 
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 Positive and negative phases of NAO and EA are associated with 
significant differences in the intensity of extreme rainfall compared to 
the neutral phase. 

 The effect of ENSO on the intensity and frequency of extreme rainfall in 
Europe is much smaller than the influence of NAO or EA. 

 At the aggregated pan-European scale, NAO, EA and ENSO show 
significant relationships with Flood Occurrence and Flood Damage in 
one or more phases and/or season. In summer during NAO+, these 
anomalies are on average 170% and 136% higher. 

 Anomalies in Flood Damage in spring and summer are on average 110% 
lower in northern Europe during NAO+, EA+ and ENSO+.   

 Flood Damage and Flood Occurrence are strongly related with climate 
variability, especially in southern and eastern Europe. 

Therefore, when investigating at the Pan-European scale, all three indices of 
climate variability should be taken into account. Future work should focus on 
their mutual relations to flood risk. Consequently, the inclusion of seasonal 
forecasts of the indices of climate variability could be used to develop flood risk 
outlooks for the continent. 
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Studies show that climate variability drives interannual changes in 
meteorological variables in Europe, which directly or indirectly impacts crop 
production. However, there is no climate-based decision model that uses 
indices of atmospheric oscillation to predict agricultural production risks in 
Europe on multiple time-scales during the growing season. We used Fast-and-
Frugal trees to predict sugar beet production, applying five large-scale indices of 
atmospheric oscillation: El Niño Southern Oscillation, North Atlantic Oscillation, 
Scandinavian Pattern, East Atlantic Pattern, and East Atlantic/West Russian 
pattern. We found that Fast-and-Frugal trees predicted high/low sugar beet 
production events in 77% of the investigated regions, corresponding to 81% of 
total European sugar beet production. For nearly half of these regions, high/low 
production could be predicted six or five months before the start of the sugar 
beet harvesting season, which represents approximately 44% of the mean 
annual sugar beet produced in all investigated areas. Providing early warning of 
crop production shortages/excess allows decision makers to prepare in 
advance. Therefore, the use of the indices of climate variability to forecast crop 
production is a promising tool to strengthen European agricultural climate 
resilience. 
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By 2050, the global demand for agricultural goods is expected to grow sharply, 
driven by the projected demands from an expanding world population, dietary 
shifts, and increasing biofuel consumption (Godfray et al., 2010; Pingali, 2007; 
Ray et al., 2013). At the same time, there are several major obstacles to 
boosting crop yields, including a decrease in the area of arable land per person 
(FAO, 2000), and variability in global climate. Creating a resilient agricultural 
system requires the incorporation of preparedness measures against weather-
related events that can trigger disruptive risks such as droughts. 

The use of climate information with long lead times, such as the seasonal 
predictions of the El Niño Southern Oscillation (ENSO), has allowed farmers to 
anticipate risks and to improve their management in several parts of the world 
(Bussay et al., 2015; Haigh et al., 2015; Iizumi, Luo, et al., 2014; Meinke & Stone, 
2005; Motha & Baier, 2005; Nnaji, 2001). ENSO influences global agriculture in 
several ways, including through changes in hydrometeorological extremes 
(Casanueva et al., 2014; Sun et al., 2015; UNMGCY, 2017; Veldkamp et al., 
2015;Ward et al., 2010;Ward et al., 2014) and climate extremes (Barlow, Nigam, 
& Berbery, 2001; Dilley & Heyman, 1995; Donat et al., 2014; Trenberth & 
Fasullo, 2012), which directly or indirectly impact crop yield, production and 
prices (Ferreyra et al., 2001; Iizumi, Luo, et al., 2014; Ray et al., 2015; Rowhani 
et al., 2011). However, ENSO only slightly modulates the European climate 
(Brönnimann, 2007; Guimarães Nobre et al., 2017), where the interannual 
anomalies in common atmospheric variables such as temperature and 
precipitation are driven mostly by other atmospheric oscillations (Casanueva et 
al., 2014). For instance, the North Atlantic Oscillation (NAO), the East 
Atlantic/West Russian pattern (EA/WR) and the East Atlantic Pattern (EA) are 
known to be related with precipitation patterns in Europe, especially in the 
Iberian Peninsula (Casanueva et al., 2014; Lopez-Bustins et al., 2008; Mariotti et 
al., 2002; Markovic & Koch, 2014; Rios-Cornejo et al., 2015; Rodó et al., 1997; 
Struglia et al., 2004), and the Scandinavian Pattern (SCA) influences rainfall in 
northeastern Europe (Bueh & Nakamura, 2007). 

Whilst several studies have found connections between these indices of climate 
variability and common atmospheric variables, few have addressed the role of 
large-scale atmospheric oscillations on the variability of agricultural production, 
especially at the pan-European level. Initial studies (Cantelaube et al., 2004; 
Kettlewell et al., 2003) investigating the relationship between modes of climate 
variability and winter wheat anomalies concluded that NAO and EA patterns are 
strong indicators of yearly wheat deviations, and other studies found significant 
connection between major European crops and indices of large-scale climate 
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variability (Ceglar et al., 2017; Gimeno et al., 2002; Gouveia & Trigo, 2008; 
Lorenzo et al., 2013; Marta, Grifoni, & Mancini, 2011). 

Agricultural producers make decisions regularly throughout the year, including 
tactical ones (actions to be taken within weeks or months) and strategic ones 
(actions to be taken within future seasons or years) (Haigh et al., 2015; 
Hollinger, 1991). Introducing climate forecasting into producer management 
depends on the availability of relevant information during the decision-making 
process, which requires an understanding of the relationship between 
European climate variability and crop production at several lead times (LD) 
(Calanca et al., 2011; Easterling & Mjelde, 1987; Haigh et al., 2015; Mase & 
Prokopy, 2014). To the best of our knowledge, there is no climate-based 
decision model that uses indices of atmospheric oscillation to predict 
agricultural production risks in Europe at different lead times. 

In this paper, we develop such a model for multiple time-scales by exploring the 
relationship between large-scale indices of climate variability and anomalies in 
sugar beet production. Therefore, we aim at identifying those regions where a 
robust model can be established based on the indices of atmospheric oscillation 
investigated. For this, we applied a supervised Machine Learning decision tree-
based algorithm (Phillips, Woike, & Gaissmaier, 2017), using predictors (in this 
case the ENSO, NAO, SCA, EA and EA/WR) recorded within the growing season 
to establish a prediction between high and low values of the predictands (sugar 
beet production). Based on the accuracy and predictive skill of the model, we 
also discuss how this information potentially improves the management of the 
agricultural sector by combining the findings with a seasonal forecasting system 
of crop production. 

We use Fast-and-Frugal Trees (FFT) (Phillips et al., 2017) to predict impacts on 
agricultural production applying five large-scale indices of climate variability: 
ENSO, NAO, SCA, EA and EA/WR. The FFT models identify which indices of 
climate variability are capable of classifying production in given years into high 
or low production classes. From a database of historical sugar beet production 
of the European statistical office (EUROSTAT), we derived a yearly agricultural 
production indicator from 1975-2013, namely high/low production based on 
observed anomalies. For the same period, we obtained 3-month average values 
for the indices of climate variability from January to March, February to April, 
March to May, April to June, May to July and June to August, further referred to 
as LD6, LD5, LD4, LD3, LD2 and LD1, respectively. An overview of the 
methodological framework is displayed in Figure 4.1. The methods and datasets 
are described in detail in the following subsections. 
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Figure 4.1 Flowchart representing the methodological framework applied in this study, handled in 
three steps: (1) collection of two main datasets; (2) extraction of five climate indicators at six lead 
times, and a discrete variable based on sugar beet climatological anomalies; and (3) example of 
an FFT output model containing standard classification statistics for a specific NUTS2 region and 
LD3.  

4.2.1 Indices of climate variability 

In this study, we represent climate variability using a 3-month average of the 
ENSO, NAO, EA, EA/WR and SCA indices from the National Oceanic and 
Atmospheric Administration Climate Prediction Center 
(http://www.cpc.ncep.noaa.gov). We extracted 3-month average values from 
1975-2013, corresponding to the months of January to March, February to 
April, March to May, April to June, May to July and June to August. These values 
represent six different LD before the start of the sugar beet harvesting season 
(September) in Europe (Sacks, Deryng, & Foley, 2010). For instance indices of 
climate variability at LD6 represent a 3-month average between January to 
March, therefore six months before the start of the sugar beet harvesting 
season (September). 

We used the standardized Southern Oscillation Index (SOI) from 1951-2016, 
calculated from observed sea level pressure differences between Tahiti and 
Darwin (Australia), as a continuous measure of ENSO strength(NOAA, 2005). 
The time series of the four Northern Hemisphere teleconnection patterns from 
1950-2016 represent monthly mean standardized 500-mb height anomalies at 
20°N-90°N (Barnston & Livezey, 1987). The NAO is the main mode of low-
frequency variability over the North Atlantic, and consists of a north-south 

http://www.cpc.ncep.noaa.gov/
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dipole of anomaly in surface pressure between Greenland and the central 
latitudes of the North Atlantic between 35°N and 40°N (Barnston & Livezey, 
1987). The EA pattern is the second prominent mode of low-frequency 
variability over the North Atlantic, consisting of a north-south dipole of anomaly 
centers that extends across the entire region from the East to the West. The 
EA/WR represents four main anomalies, centred over Europe and northern 
China, central North Atlantic and north of the Caspian Sea, while the SCA shows  
anomalies mainly in Scandinavia and western Russia (Barnston & Livezey, 1987). 
The Euro-Atlantic region is mainly dominated by these four Northern 
Hemisphere teleconnections (Casanueva et al., 2014; Ceglar et al., 2017). 

4.2.2 Index of agricultural impact  

We obtained annual historical records of sugar beet production (in 1000 ton of 
fresh weight) from 1975 to 2013 for 232 NUTS2 from EUROSTAT. We examined 
sugar beet records for three major reasons: the European Union (EU) is the 
world’s leading producer of sugar beet (EUROSTAT, 2016); sugar beet 
production is wide-spread within the EU territory; and generally, this crop is not 
extensively irrigated, thus having a strong dependency on rainfall (EUROSTAT, 
2010). We performed the analysis on historical records of sugar beet 
production instead of sugar beet yield (tons/hectare) due to the large 
unavailability of datasets of the latter in the vast majority of NUTS2 regions.   

Years without sugar beet production records (MN2) at the NUTS2 level were 
filled according to the following method. First, we compared sugar beet 
production data registered at the national level (PN) by EUROSTAT (if available) 
with the sum registered at the NUTS2 level (PN2) for a given country (c) and year 
(t).  

MN2,t ,c = PN,t,c - ∑ PN2,t,c Equation 4.1 

 

If there was a positive difference between both datasets (PN,t,c > ∑ PN2,t,c ) and 
more than one NUTS2 region without a record, the missing production record 
at the NUTS2 (MPN2) region was filled proportionally with respect to the sum of 
its sugar beet harvesting area (HAN2) : 

MPN2,t,c = M𝑁2,𝑡,𝑐
100

∑ 𝐻𝐴𝑁2
⁄   Equation 4.2 

 

We assumed a positive and direct relationship between harvesting area and 
production: the larger the harvesting area, the higher the production, even 
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though other factors, such as agricultural management, could affect production. 
Estimates of sugar beet harvesting areas are obtained from MIRCA 2000 and 
described in Sack et al. 2010 (Sacks et al., 2010) (available in the appendix 
Figure C1). In case of missing records in the NUTS2 region but no difference in 
the overall production (PN,t,c = ∑ PN2,t ), we assigned MPN2,t,c = 0. Last, in the 
case of a negative difference (PN,t,c < ∑ PN2,t ), the missing sugar beet 
production remained unaltered.  

For each NUTS2 region, we calculated sugar beet production anomalies 
(observed value minus the multiyear mean) after removal of the linear trend (if 
the p-value is less than or equal to 0.1). We classified below zero anomalies as 
“low production”, and above zero anomalies as “high production”, creating a 
discrete agricultural impact indicator. Only NUTS2 regions with time series 
longer than 20 years were further investigated (NUTS2 areas that fit the criteria, 
and their respective summary of statistics are displayed in appendix Figure C2 
and Table C3, consecutively). In total, we were able to fit a FFT model in 207 
NUTS2 regions. 

4.2.3 Statistical approach: Fast-and-Frugal Decision Tree (FFT)   

In this study, we used FFT to predict sugar beet production as a function of 
indices of climate variability. In heuristic decision-making, FFT are simple 
decision trees for classifying cases (e.g. sugar beet production) into one of two 
classes (e.g. low production vs. high production) based on a particular predictor, 
or cue. FFT models establish simple rules for making decisions based on fast-
and-frugal heuristics approach (Gigerenzer, Czerlinski, & Martignon, 1999; Raab 
& Gigerenzer, 2015), and offer simple and transparent search rules for practical 
decision problems (Phillips et al., 2017) as a competitive alternative for more 
complex Machine Learning and regression methods (Guimarães Nobre et al., 
2019). 

As displayed in Figure 4.1 step 3, the structure of an FFT determines the exact 
number, sequence and threshold of predictors that are applied to reach a final 
classification (Gigerenzer et al., 1999; Gigerenzer & Todd, 1999). The FFTs 
algorithm applied in this study is limited to maximum five cues (Phillips et al., 
2017). Consequently, a five-cue decision tree is based on the best five 
performing indices of climate variability. However, FFTs can be based on 1 to 5 
cues since it uses non-compensatory decision rules, which apply a limited 
subset of all predictors for establishing a binary classification (Guimarães Nobre 
et al., 2019). Non-compensatory algorithms ignore information, once a decision 
is completed, and therefore, no additional predictors can change such decision 
(Phillips et al., 2017). This aspect is often perceived to have both practical and 
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statistical advantages over compensatory algorithms, such as regression models 
(Guimarães Nobre et al., 2019). First, because by only using a partial subset of 
predictors, FFTs are relatively simple, and can perform better in predicting new 
data, thus they tend to avoid overfitting (Phillips et al., 2017). Second, FFT 
algorithms uses search rules that specify where to look for information and 
when to end search, which can guide decision makers in gathering information 
and assist in supporting decision tasks (Phillips et al., 2017; Raab & Gigerenzer, 
2015). 

The FFT algorithm is designed to learn from and make predictions on data. FFTs 
are fitted to a training dataset, which is used for learning the model, and 
deriving its parameter. In summary, the FFT’s algorithm is constructed as 
instructed: a) select predictors; b) determine a decision threshold for each 
predictor; c) determine the order of predictors; and d) determine the exit for 
each predictor (Guimarães Nobre et al., 2019; Phillips et al., 2017). By 
definition, FFTs must have either a negative or a positive exit (or both in the 
case of the final node of a decision tree) (Phillips et al., 2017).  

The accuracy of the FFT is measured by the Balanced Accuracy (BACC) Index, 
which is calculated based on the amount of correct decisions (Table 4.1) 
obtained from the ifan decision algorithm, which is described in detail in 
previous research (Phillips et al., 2017). In summary, the ifan decision algorithm 
tests several different thresholds of the investigated indices of climate 
variability to find one that maximizes the predictor’s accuracy. Consequently, 
once the set of multiple FFTs has been created, ifan selects the decision tree 
with the highest balanced accuracy.  

In order to avoid overfitting, we cross-validated the FFTs using the train-test 
split method. For this, we partitioned 70% of all data for training the FFT 
models, and the other 30% for testing the models. We chose this validation 
method to assess the FFT potential success (if applied in a practical case), and 
its hindcast skill in predicting past sugar beet production events. In addition, this 
method takes less computation power than other cross validation techniques 
such as k-fold. A more detailed explanation of the train-test split method is 
available in the appendix C4. For each FFT, we assessed the skill of the model to 
predict classes of “low production” and “high production” using the Area Under 
the Curve (AUC) index (Metz, 1978). AUC measures how well the FFT can 
distinguish binary classes (low/high) (Zweig & Campbell, 1993), displayed in 
appendix Figure C5. The AUC index was calculated using the trapezoidal rule, 
and values can vary between 0 and 1, where a perfect prediction has an 
AUC=1.0, and predictions that are randomly drawn are presumed to provide an 
AUC=0.5 (Hamill & Juras, 2006). We tested the statistical significance of the AUC 
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by bootstrapping the values of the high and low sugar beet production events 
at the NUTS2 level using 1000 iterations (more details in the appendix C6). Field 
significance of the results was assessed using the binomial distribution (Livezey 
& Chen, 1983). 

For NUTS2 regions with an AUC>0.7, we display standard classification statistics 
such as Hit Rate (HR), False Alarm Rate (FAR), Correct Rejections Rate (CR), Miss 
Rate (MS), Positive Predictive Value (PPV) and Negative Predictive Value (NPV). 
Their definition and formula are given in Table 4.1. We obtained FFT for each 
particular lead time and NUTS2 region through the following steps: 

1. Calculating the pruning parameter of the model, meaning that we assessed 
the ideal size of decision trees by cross-validating the FFT models using 
train-test split method (see appendix C4); 

2. Selecting the pruning parameter and  decision tree that maximizes the 
BACC index of the tested model; 

3. Calculating the AUC index for each best performing decision tree;  
4. Assessing the statistical significance of the AUC obtained in step 3 by 

bootstrapping and calculating field significance (see appendix C6); 
5. Analysing the performance of the significant FFT model by calculating 

standard classification statistics (Table 4.1). 
 

After following such steps, we built a new FFT after recombining the two 
samples (training and testing) and adopting the pruning parameter that was 
found to maximize the BACC index. Hence, this procedure enables us to find the 
set of predictors which are most important for each NUTS2 region and lead 
time (Figure 4.1 step 3). Since we aim at identifying regions where a robust 
model can be established based on the indices of atmospheric oscillation, we 
focus our results in regions with AUC>0.7. 

4.3.1 General performance of the FFT models 

In this section, we analyse the performance of the FFT in predicting high/low 
sugar beet production events. The best performing indices of climate variability 
for each NUTS2 (Nomenclature of territorial units for statistics) region are 
shown in the appendix (Table C7.1-C7.6 and Figure C8). 

In total, the cross-validated FFT models distinguished between sugar beet 
high/low production events in 160 out of 207 NUTS2 regions, covering nearly 
77% of investigated areas (Figure 4.2G); 81% of the mean annual sugar beet 
production is harvested in these regions (Figure 4.3). An overview of the mean 
sugar beet production in all NUTS2 regions investigated is available in Figure C9. 
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In some locations, the FFT models have skill to predict high/low production for 
more than one LD, and already at LD6 (March) before the start of the sugar 
beet harvesting season.  

Table 4.1 Definition of Standard Classification Statistics 

Standard 
Classification 

Statistics 
Definition Abbreviation Formula 

Hit Rate 

Probability of a “True Low 
Production” (TL) over the 

total samples of “Low 
production” (LP) 

 

HR 

 

 

Correct 
Rejections Rate 

Probability of a “True High 
Production” (TH) over the 

total samples of “High 
Production” (HP) 

CR 

 

False Alarm 
Rate 

Probability of a false “Low 
Production” 

 
FAR 

 
1 - CR 

Miss Rate 
Probability of a false “High 

Production” 
 

MS 
 

1 - HR 

Positive 
Predictive Value 

Probability of a “True Low 
Production” over all “Low 

Production” 

 
PPV 

 

 

Negative 
Predictive Value 

Probability of a “True High 
Production” over all “High 

Production” 

 
NPV 

 

 

Balanced 
Accuracy 

Average of Hit Rate and 
Correct Rejection 

BACC 

 

HR × 0,5 + CR 
× 0,5 

 

(
𝑇𝐿

𝐿𝑃
)  × 100  

(
𝑇𝐻

𝐻𝑃
) × 100  

HR

HR + FAR
 

CR

CR + MS
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Figure 4.2 Regions where the FFT models have predictive skill (Area Under the Curve index or 
AUC>0.7): a) six months (March) to f) one month (August) before the beginning of the harvesting 
season. In g) the maps were overlaid in descending order from longest to shortest lead time. 
Regions without predictive skill (AUC<0.7) are shown in grey. Field significance of the results was 
assessed using the binomial distribution and found to be highly significant (P<0.001). Lead times 
that were found to be significant only due to bootstrapping (P<0.1) are indicated with an asterisk. 

4.3.2 Predicting sugar beet high/low production events  
In March and April, six (LD6) and five (LD5) months before sugar beet harvesting 
in Europe respectively, we found that the FFT models have predictive skill in a 
total of 79 out of 207 NUTS2 regions, with an Area Under the Curve (AUC) index 
ranging from 0.70 to 1.00 (Appendix Table C7.1 and C7.2). Western and eastern 
Europe have the highest number of NUTS2 regions with AUC>0.7. In 56% and 
55% of the NUTS2 regions located in western and eastern Europe respectively, 
significant predictions (P < 0. 1) are already observed in these lead times. For 
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LD6 and LD5, the overall balanced accuracy (BACC), which represents the skill of 
the FFT in correctly predicting high/low production events, is on average, 79% 
for both lead times. Approximately 44% of the mean annual sugar beet is 
produced in these 79 NUTS2 regions. The HR, thus the probability of a 
predicting a true low sugar beet production event in these regions is, on 
average, 74% and 84% at LD6 and LD5, respectively. 

 

Figure 4.3 Standard deviation of the mean sugar beet production in NUTS2 regions where the FFT 
models have predictive skill (AUC>0.7) in all lead times.  

The spatial distribution of the HR, FAR and PPV are shown in Figure 4.4. The HR 
values are especially high (above 90%) in central Europe, particularly over large 
areas in Germany. On average, the probability of predicting a false low sugar 
beet production event (FAR) is 17% and 26% at LD6 and LD5, respectively. The 
probability of a true low production (hereafter referred to as PPV) over all low 
production events predictions represents the trade-off between HR and FAR. 
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PPV values are, on average, 90% and 83% at LD6 and LD5, respectively. In Figure 
4.5, the results are presented for predicting high sugar beet production events. 
We found that the probability of predicting a true high sugar beet production 
event in these regions (defined as CR) is, on average, 83% and 74% at LD6 and 
LD5 respectively (Figure 4.5A and 4.5B). The probability of predicting a false 
high sugar beet production event (defined as MS) is, on average, 26% and 16% 
at LD6 and LD5, respectively. The average NPV, which represents the probability 
of a true high production (CR) over all high production events predictions, is 
74% and 81% at LD6 and LD5 respectively. In the appendix Figure C8, we display 
the respective large-scale indices of climate variability that were used by the 
FFT models as a predictor of high/low production events; results are shown for 
areas with significant predictive skill (AUC>0.7 and P < 0. 1). In March and April, 
during the early growing stages of sowing and emergence, sugar beet is 
sensitive to water deficits and frost, and winter and early spring weather 
conditions in Europe are strongly associated with EAWR, NAO and EA 
(Casanueva et al., 2014; Ceglar et al., 2017; Guimarães Nobre et al., 2017; 
Hurrell & Deser, 2010; Ionita, 2014). Relationships between sugar beet 
production and mean EAWR, EA and NAO from January to March, and mean EA 
and NAO from February to April were found in this study, and also by others 
when assessing the relationship between these atmospheric oscillations and 
other crop types, productivity and vegetation dynamics (Ceglar et al., 2017; 
Gouveia et al., 2008; Heino et al., 2018; Kim & Mccarl, 2005). In addition, we 
observed that in most of the regions, multiple indices of atmospheric 
oscillations were used simultaneously as a predictor of sugar beet production 
instead of a single index (appendix Figure C8 and Figure C10). We observed that 
winter and early spring NAO influences summer crop production in large areas 
in Europe, especially in Germany (LD5), as previously found by others (Ceglar et 
al., 2017; Gonsamo & Chen, 2015), where positive NAO in January and February 
drives more intense precipitation in northern and north western Europe and 
the opposite in the south of the continent (Casanueva et al., 2014; Guimarães 
Nobre et al., 2017), which might affect the early growing season. However, we 
neither find a north-south dipole impact of the NAO at these lead times, as 
often is observed for rainfall, nor a large influence of NAO in southern Europe, 
as found by others (Gimeno et al., 2002; Kim & Mccarl, 2005). Other important 
predictors of sugar beet high/low production events are EA and EA/WR 
patterns, especially in regions in western and eastern Europe. Since 
precipitation and temperature variability in Europe are more strongly 
modulated by winter and spring oscillation regimes, the relevance of winter and 
spring atmospheric oscillations may be twofold: (a) winters and early spring 
modes of climate variability provide soil moisture for crop development in 
summer, as also suggested by others (Gonsamo & Chen, 2015; Kettlewell et al., 



Crop Production and Climate Variability | 090 

2006; Wang, Dolman, & Alessandri, 2011); (b) winter and spring weather 
conditions affect sowing and early growing stage, as found by previous research 
(Ceglar et al., 2017; Petkeviciene et al., 2009). 

In May and June, four and three months before the start of the sugar beet 
harvesting season, the FFT models have predictive skill in a total of 92 out of 
207 NUTS2 regions, as displayed in Figure 4.2C and 4.2D. Within the 
investigated areas, approximately 47% of the mean annual sugar beet is 
produced in these 92 NUTS2 regions. Comparing all lead times investigated, LD3 
was found to be the one with the most regions with predictive skill (74 out of 
207). In May and June, western and northern Europe have the highest number 
of NUTS2 regions with AUC>0.7. In 54% and 67% of the NUTS2 located in 
western and northern Europe respectively, significant predictions (P < 0. 1) are 
found in these lead times. In addition to LD6 and LD5, the FFT models extend 
the predictive skill to some western and southern European regions and the 
United Kingdom. The AUC index ranges from 0.70 to 1.00 (appendix Table SC7.3 
and C7.4). On average, the mean BACC is 78% (LD4) and 83% (LD3). In these 
areas, HR, PPV and FAR are, on average, 78%, 86% and 22% (LD4) and 89%, 82% 
and 27% (LD3) respectively. The CR and NPV are, on average, 78% and 74% 
(LD4), and 72% and 88% (LD3) respectively. The mean MS at LD4 and LD3 is 22% 
and 11% respectively (Fig. 4.5c and 4.5d). In June, sugar beet root has reached 
its vegetative growth, and beet leaves are subjected to both heat and water 
stress (Clarke et al. 1993). FFT models primarily used EA/WR and ENSO averages 
from spring and late spring (Figure C8 LD3) as the main predictors of sugar beet 
production in western and eastern Europe. These indices have also been found 
to have links with maize grain and wheat yield in other studies (Ceglar et al. 
2017; Iizumi, Luo, et al. 2014). Spring/late spring weather in Europe are 
associated with a range of atmospheric oscillations including EA/WR and EA 
(Gao et al. 2017), and less influenced by NAO (Casanueva et al. 2014). The 
EA/WR pattern influences mainly western and eastern Europe, where a positive 
(negative) EA/WR phase is related to high temperature anomalies (Ceglar et al. 
2017) and drier (wetter) conditions. ENSO was previously found to have 
significant associations with changes in precipitation in spring, especially over 
western and northern Europe (Shaman 2014;Casanueva et al. 2014). However, 
in Spain, where we would expect a larger spatial link between SCA, EA and ENSO 
patterns on precipitation (Casanueva et al. 2014) and consequently on crop 
production (Ceglar et al. 2017), the effect of these climate patterns may be 
weaker than elsewhere, probably due to common irrigation practices in some 
areas, especially in southern and north western Spain (EUROSTAT 2010; Wriedt 
et al. 2008; Wriedt et al. 2009). 
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In July and August, the FFT models predict sugar beet high/low production 
events in 62 of the 207 NUTS2 regions (Figure 4.2E and 4.2F), with an AUC index 
ranging from 0.70 to 1.00 (appendix Table C7.5 and C7.6). In July and August, 
western and eastern Europe have the highest number of NUTS2 regions with 
AUC > 0.7. In 35% and 41% of the NUTS2 located in western and eastern Europe 
respectively, significant predictions (P < 0. 1) are found in LD2 and LD1. In 
addition to models at LD6 to LD3, the FFT models extend the predictive skill to 
several regions in Europe, especially in large areas of Spain and Finland. On 
average, the mean BACC for LD2 and LD1 is 80%. Within the investigated areas, 
approximately 22% of the mean annual sugar beet is produced in these 62 
NUTS2 regions. The average HR, FAR and PPV is 81%, 22% and 82% for LD2, and  
83%, 22% and 84% for LD1 (Figure 4.4E and 4.4F). We found that the CR, MS 
and NPV is, on average, 78%, 19% and 83% for LD2, and  78%, 16% and 81% for 
LD1. (Figure 4.5E and 4.5F). In July and August, when the sugar beet has 
reached its late development stage, reduced water availability has a small 
impact on the yield. EA/WR from May to July in addition to EA and NAO 
averages in June to August are most used as sugar beet production predictors in 
large areas of Europe. In summer, the EA/WR pattern was found in previous 
research (Ceglar et al., 2017) to have strong links with positive temperature 
anomalies and below-average rainfall in western and south eastern Europe, 
which is beneficial for harvesting. However, our results also suggest that 
multiple indices of atmospheric oscillation show links with sugar beet 
production in scattered areas in Europe, especially at LD2 (Figure C8). In 
addition, previous investigations found that the precipitation, temperature, 
vegetation dynamics and maize yield in Europe have links with these 
atmospheric oscillations in summer (Casanueva et al., 2014; Ceglar et al., 2017; 
Gouveia et al., 2008). Large-scale atmospheric oscillation indices may have less 
predictive skill for production in early summer than winter and spring for two 
reasons: (a) due to the higher importance of regional-to-local atmospheric 
phenomena during summer, also highlighted by others (Ceglar et al., 2017). This 
means that sugar beet production estimates might be more efficiently captured 
by the regional crop model forced by observed surface climate variables locally; 
and (b) in July and August, when the sugar beet has reached its late 
development stage, reduced water availability has a small impact on the crop 
(FAO, 2015).   



Crop Production and Climate Variability | 092 

 

Figure 4.4 Performance metrics for predicting low production sugar beet events for areas with 
AUC>0.7 at six lead times. Hit Rate (HR) is the probability of low production occurrences that 
were correctly predicted; Positive Predictive Value (PPV) index represents the probability of FFT 
to detect true low production sugar beet events over all low production (including False Alarms); 
False Alarm Rate (FAR) is the probability of a false low production occurrence. Regions without 
predictive skill (AUC<0.7) are shown in grey. The FAR is cut off at <40% because in more than 90% 
of the NUTS2 regions the results are below this threshold. 



 

Crop Production and Climate Variability | 093 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Display of standard classification statistics for predicting high production sugar beet 
events for areas with AUC>0.7 at six lead times. Correct Rejection Rate (CR) shows the probability 
of high production occurrences that were correctly predicted; Negative Predictive Value (NPV) 
index represents the probability of the FFT detecting a true high production sugar beet event over 
all high production (including Misses); Miss Rate (MS) is the probability of a false high production 
occurrence. Regions without predictive skill (AUC<0.7) are shown in grey. The MS is a cut off at 
<40% because in more than 90% of the NUTS2 regions the results are below this threshold. 
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In this section we discuss how our findings could be used to support agricultural 
management and decision-making processes in Europe, followed by 
recommendations, limitations and conclusions of the study. 

Currently, the Joint Research Centre (JRC) MARS crop yield forecasting system 
(M-CYFS) forecasts national sugar beet yields for the current growing season 
based on a scenario technique and trend analysis (Baruth et al., 2008), which 
substantially differs from the method applied in this study, which also targets 
production. The M-CYFS is a decision support system with the purpose of 
providing evidence-based information on the status of annual crops in the EU 
and neighbouring countries by monitoring crop growth and forecasting crop 
yields along the season (Bussay et al., 2015; Lecerf et al., 2018; van der Velde et 
al., 2019). It uses agro-meteorological indicators derived from observed 
meteorological data as well as crop growth models and remote sensing 
information, which are applied together to build a statistical yield forecast using 
best-fit criterion to explain a cause-effect relationship with historical yield 
statistics at national level. Sugar beet forecasts early in the season are purely 
based on observed trends, but could potentially gain predictive skill if indices of 
climate variability, such the ones investigated in this study, are integrated in M-
CYFS based on the outcomes of this study. In general, agro-meteorological and 
remote sensing indicators start to demonstrate a certain reliability for the 
regression forecasts (r-squared value > 0.5 if de-trended data are used) from 
the end of June or beginning of July depending on the country. Furthermore, 
since large-scale indices of climate variability can be predicted with higher lead 
times than weather variables and related crop growth variables, the M-CYFS 
could further extend its lead time if predictions of the large-scale indices of 
climate variability were used from dynamic climate models (Ceglar et al., 2017).  

Anomalies in temperature and precipitation driven by climate variability do not 
always explain crop production, and regions without predictive skill, may have 
been masked by a number of local agro-management activities. For instance, 
irrigation practices, which are observed in Spain and Bulgaria, may have 
lowered the negative impacts of unfavourable weather conditions and the skill 
of the FFT models in detecting high and low production. Overall, the decision-
model performed more consistently in eastern and western Europe. These 
regions also have low shares of irrigated areas, which may have influenced the 
model performance (EUROSTAT, 2010). Additionally, in some regions, 
limitations in data availability on crop production were encountered during this 
investigation (described in the methods section), and this may have affected the 
extraction of the high/low sugar beet production indicator per NUTS2 region. 
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For instance, we disaggregated national crop production statistics data in 
several NUTS2 regions (available in appendix C3), and our downscaling method 
adds uncertainty to the model predictions. Therefore, the FFT models may not 
be performing satisfactorily in some regions for three reasons: (a) presence of 
irrigation practices, which may inhibit the impacts of unfavourable weather 
conditions; (b) lack of underlying physical relationship between sugar beet 
production and the investigated indices of climate variability; and (c) due to 
limitations in the sugar beet production downscaling method. 

In Europe, the growing period of sugar beet is normally between 140 and 160 
days (FAO, 2015), mostly in the northern half of Europe, where the climate is 
more suited to growing beet (European Comission, 2017). Sugar beet is planted 
in early spring and harvested in late September, before the cold season starts. 
In March, beet producers make strategic decisions regarding the amount of 
sowing for the year and planning tactical actions for the germination and early 
plant development stages, which comprise the most sensitive periods of the 
crop (FAO, 2015). Due to strict regulations of the EU sugar market, the 2007 
Sugar Reform limited total EU production to 14.7 million tonnes of raw sugar 
until the marketing year 2016/2017 (European Comission, 2017). If climatic 
conditions indicate a probable “high production” scenario at this early stage, 
the EU could better plan “out-of-quota” measures, such as: exporting the 
excess of sugar beet production to the EU's annual World Trade Organisation 
quota, which is limited to 1.374 million tonnes; disposing excess on the EU 
market for industrial purposes; or counting against the following year's sugar 
"quota" (European Comission, 2017). In addition, each year the EU market must 
decide by March 16th for a first "preventive" withdrawal to allow producers to 
reduce their beet sowings. However, the quota management ended as of 30 
September 2017. On the other hand, if climatic conditions show signs of 
shortage in production, tactical measures can be taken to increase supplies as 
follows: (1) better preparation or further investment in responsive irrigation 
schemes as sugar beet is particularly sensitive to water deficits in early spring 
(Clarke et al., 1993; Romano et al., 2012); (2) taking measures to prevent freeze 
damage to crops such as active methods (e.g. adding heat and covering crops) 
and passive methods (e.g. proper scheduling of planting within the safe freeze-
free period) as night frost in spring can damage sugar beet and delay seed 
germination (Pidgeon et al., 2001; Snyder & de Melo-Abreu, 2005); and (3) 
before planting, producers could decide to reduce their financial losses by 
purchasing appropriate crop insurance products against deviations from their 
long-term yields. Prior information about the spatial configuration of risk would 
support insurance companies to better allocate resources to comply with the 
EU solvency requirements, which demands that insurers have adequate 
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reserves for 99.5% of potential loss events (European Parliament and Council, 
2009). 

By June, sugar beet root has reached its vegetative growth, and its leaves are 
subjected to both heat and water stress (Clarke et al., 1993). Temperatures 
greater than 30°C greatly decrease sugar yields (FAO, 2015), and water stress is 
considered the major limitation to crop productivity and yield stability (Romano 
et al., 2012). In central and western Europe, drought stress can reduce sugar 
beet yields by 10-30% compared to the long-term average (Ober, 2001; Van 
Swaaij, Heijbroek, & Basting, 2001). Beet water requirements are moderate, 
and if low production is predicted, adequate water should be available to allow 
the sugar beet to develop a good root system for extracting water from the soil. 
Predictions of low or high production, mainly needed on a regional scale for 
industries and policy makers (Vandendriessche, 1995), supports the sugar 
industry in adapting normative plans for optimizing processing campaigns 
(Kenter, Hoffmann, & Märländer, 2006), such as factory operations concerning 
delivery schedules and storage capacity, transport logistics and export sales. 
Sugar beet production forecasts could also be a useful aid for marketing 
operations, where prices fluctuate based on the supply and demand of the 
product (Vandendriessche, 1995). 

In August, when the sugar beet has reached its late development stage, 
reduced water availability has a small impact on the yield (FAO, 2015). Forecasts 
of low production could support sugar beet producers to better prepare against 
cold and wet days, which often lead to deterioration of harvesting conditions 
and increase the probability of fungal infections, increasing the risk of late 
harvesting in autumn (JRC MARS Bulletin, 2016). Moreover, forecasts of high 
production may indicate favourable conditions to the harvesting period, when 
certain levels of soil moisture and rain-free days are preferred (JRC MARS 
Bulletin, 2016).   

Our study did not aim to produce quantitative prognostic information about 
crop production; instead, we focused on identifying those regions where a 
robust model can be established based on the indices of atmospheric oscillation 
investigated, and used as an early warning indicator for crop impacts. This is a 
primary step towards the adoption and use of climate-related forecasts in 
agricultural decision-making: if there were no climate variability influence on 
crop production, it is unlikely that agricultural stakeholders and markets would 
benefit from long lead time climate information. In addition, the observed 
indices of climate variability assessed in this study can be forecast with varying 
levels of skill and lead times. Skilful predictions of NAO have been extended to 
more than a year ahead (Ceglar et al., 2017; Dunstone et al., 2016). EA summer 
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and autumn anomalies can be properly hindcast with a lead time of 1 to 2 
months (Guimarães Nobre et al., 2017; Iglesias et al., 2014), while ENSO 
forecasting is more developed, and most prediction systems have some skill for 
predicting events up to 14 months lead times (Gonzalez & Goddard, 2016). 
Given that the seasonal predictability of large-scale climate variability is 
generally higher than that of surface weather variables in Europe (Ceglar et al., 
2017), empirical seasonal risk outlooks could potentially be developed based on 
predicted values of the indices of climate variability (Ossó et al., 2017).  

The current study is a statistical analysis of the effect of climate variability on 
sugar beet production, and resulted in the selection of related predictors for 
each region in Europe out of a total of five indices of climate variability. Future 
work could benefit from using different methods to classify the different 
“low/high production”, and examining time-lags between the indices of climate 
variability on the agricultural impact indicators. Moreover, some of the 
significant results may had occurred by random chance (LD4 and LD1 Figure 1), 
and results may be interpreted with caution. Further insights into relationship 
between climate variability and crop production can be obtained by applying 
compensatory models since a more complex model can reveal important 
features that are not being captured by a simple model. In addition, this study 
can benefit from testing different decision algorithms, since the ifan algorithm, 
which was adopted in this study, assumes independence between predictors. 
Furthermore, crop production databases, such as the one used in this study, are 
also known to face limitations, such as reporting errors. Testing the proposed 
method on other crop production databases and crop types could provide 
further insight in the strengths and limitations of the approach. Lastly, climate 
can only partly explain sugar beet production. Other important aspects such as 
changes in farm-level management, economy, agronomy and quality of the land 
were not included in this study. 
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Despite advances in drought early warning systems, forecast information is 
rarely used for triggering and financing early actions, such as cash transfer. 
Scaling up cash transfer pay-outs, and overcoming the barriers to actions based 
on forecasts, requires an understanding of costs resulting from False Alarms, 
and the potential benefits associated with appropriate early interventions. On 
this study, we evaluate the potential cost-effectiveness of cash transfer 
responses, comparing the relative costs of ex-ante cash transfers during the 
maize growing season to ex-post cash transfers after harvesting in Kenya. For 
that, we developed a forecast model using Fast-and Frugal Trees that unravels 
early warning relationships between climate variability, vegetation coverage, 
and maize yields at multiple lead times. Results indicate that our models 
correctly forecast low maize yield events 85% of the time across the districts 
studied, some already six months before harvesting. The models’ performance 
improves towards the end of the growing season driven by a decrease of 39% in 
the probability of False Alarms. Overall, we show that timely cash transfers ex-
ante to a disaster can often be more cost-effective than investing in ex-post 
expenditures. Our findings suggest that early response can yield significant cost 
savings, and can potentially increase the effectiveness of existing cash transfer 
systems.   
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In February 2018 the government of Kenya declared a national drought 
emergency, identifying 2.7 million people as food insecure (ReliefWeb, 2018). 
This emergency occurred due to a prolonged drought, leading to a cascade of 
events that affected the access to, and consumption of, food (FEWS NET, 
2018b; ReliefWeb, 2018). Droughts can have high socio-economic impacts in 
Kenya, such as crop failures (Omoyo, Wakhungu, & Oteng’i, 2015; ReliefWeb, 
2018), high food prices and inflation (The World Bank, 2009), and increased 
levels of malnutrition (Alinovi et al., 2010). One of the most vulnerable groups is 
smallholder farmers, who rely on rainfall for the cultivation of staple crops, and 
on maize production for income generation (D’Alessandro et al., 2015). Among 
important crops, maize is considered the main staple food of the Kenyan diet, 
accounting for about 65% of total staple food calorific intake (Mohajan, 2014). 
Therefore, increasing maize productivity and climate resilience of smallholder 
farming systems, and enabling them to better prepare for climate extremes, is a 
an important issue. This critical challenge will largely determine whether Kenya 
succeeds in achieving the Kenya Vision 2030 development agenda (Harvey et 
al., 2014), and the Sendai Framework goal of substantially reducing disaster risk. 

A potential way to compensate smallholder farmers’ production losses and 
increase their climate resilience is through weather index insurance programs, 
which correlate crop losses with weather parameters (Dick et al., 2011). While 
there has been an increased interest in such insurance products, most of these 
programs have failed to reach significant scale in Kenya (World Bank, 2015). 
Humanitarian assistance, such as the distribution of goods, food vouchers, and 
cash transfer (Bailey, 2012), is still an important instrument for enabling the 
poorest to achieve short-term goals of drought preparedness and recovery. 
Recently, there has been an increasing debate as to whether aid should be 
given to people directly in the form of cash as an alternative to traditional in-
kind food aid and food vouchers (Harvey, 2007). Such cash transfers are 
typically less expensive to administer, and have the advantage of transferring 
the purchasing power to the recipients. They can therefore be effective for 
disaster risk financing (Kenya Red Cross, 2017; UNDP, 2015).  

Among the numerous cash transfer programmes (Garcia & Moore, 2012), only a 
handful focus on transfers before an event occurs (ex-ante); the majority focus 
on transfers after an event occurs (ex-post). Therefore, cash transfer 
programmes for drought responses are typically based on observations after an 
event has taken place (Pulwarty & Sivakumar, 2014), which may result in the 
assistance not being in place in a timely manner. An example of ex-post cash 
transfers  is the Kenya Hunger Safety Net Programme, which releases cash 
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based on an observed Vegetation Condition Index that serves as a rough proxy 
for drought conditions (National Drought Management Authority, 2016).  

Over the past decades, new drought forecasting systems have emerged, which 
could pave the way towards ex-ante cash transfers. Examples are the Africa 
Flood and Drought Monitor (Sheffield et al., 2014), and the Famine Early 
Warning System (FEWS NET). Recently, there has been an emerging literature 
on ways to automatically trigger action based on early warning systems 
(Coughlan De Perez et al., 2016; Stephens et al., 2015; Suarez & Tall, 2010). For 
instance in 2015, based on an El Niño forecast, funds were released through the 
World Food Program’s Food Security Climate Resilience Facility for Zimbabwe 
and Guatemala (World Food Programme, 2016) to help both countries to face 
its consequent droughts. Despite these advances, associated uncertainties in 
forecast systems remain large, and the vast majority of forecast information is 
not routinely used as a basis for financing early action for drought risk reduction 
(Kellett & Caravani, 2013). Improving the understanding between the full costs 
of ex-ante and ex-post assistance associated with uncertainties of forecast 
information may influence more cost-effective ex-ante humanitarian aid. 
Furthermore, since agriculture employs the majority of the population in Kenya, 
adopting forecasting information into farmers’ decision-making may result in 
better forecast-based monetary policies (Anand et al., 2011), since agricultural 
production, prices and rainfall play an important role on inflation (Durevall, 
Loening, & Ayalew, 2013; Mawejje et al., 2016). 

Timely finance prior to a disaster can be more cost-effective than investing in 
post-disaster expenditures (The World Bank, 2016a). However, assessments of 
the cost-effectiveness of ex-ante and ex-post cash transfers are still missing. 
Creating better guides to cash transfer pay-outs, while overcoming the 
challenges to actions based on forecasts, greatly relies on a comprehensive 
understanding of the costs of ‘acting in vain’ due to false alarms and model 
uncertainty. The overall objective of this research is therefore to compare the 
potential cost-effectiveness of forecast-based ex-ante cash transfers during the 
maize growing cycle with ex-post cash transfers made after harvesting. To the 
best of our knowledge, no previous studies have examined the cost-
effectiveness of ex-ante and ex-post cash transfers. By doing this, we provide 
novel early warning information that can be useful for reducing cost and 
increasing the effectiveness of existing cash transfer programmes. We do this 
with a case study for five districts in Kenya. First, we set a forecast model using 
Fast-and Frugal Tree (FFT) that unravels early warning relationships between 
climate variability, vegetation coverage, and maize yields at multiple lead times 
before the maize harvesting. We then evaluate the cost-effectiveness of ex-ante 
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cash transfers during the growing season prompted by the expected 
probabilities of low maize yield that are obtained from the FFT models, and 
compare these with the costs of ex-post cash transfers after harvesting. 

The methodological framework used in this study involves three main steps 
(Figure 5.1). First, we extract monthly indicators of climate variability and 
vegetation coverage, to be used as predictors; and annual indicators of maize 
yield, to be used as predictands. The two indicators used to represent climate 
variability are: Net Precipitation (Np) and Oceanic Niño Index (ONI). Vegetation 
coverage is represented by the Normalized Difference Vegetation Index (NDVI). 
These three indices are obtained for each month of the maize growing season 
during the long-rain season (March to August). For Np, we use the cumulative 
sum over the growing period (one to six months prior to harvest) and for NDVI 
we use cumulative mean of the monthly NDVI maximum through the same 
period.  Maize yields are obtained from an annual database produced by the 
Kenyan Ministry of Agriculture, Livestock and Fisheries for the period 1983-
2014 (Figure 5.1, Step1). Second, we apply the Fast-and-Frugal Tree Machine 
Learning algorithm (Phillips et al., 2017) to predict high/low maize yield events 
for each month within the growing season. FFT uses the predictors (in this case 
the indices of climate variability and vegetation coverage) to establish a 
classification between high or low values of the predictands (in this case high 
and low yield years) (Figure 5.1, Step 2). In summary, FFT models adopt non-
compensatory algorithms that apply simple rules for making decisions based on 
few pieces of information (Gigerenzer et al., 1999), and offer transparent guides 
for practical decision problems (Phillips et al., 2017) as a competitive alternative 
for more complex Machine Learning methods. Third, we evaluate the cost-
effectiveness of ex-ante cash transfers during the growing season prompted by 
the expected probabilities of low maize yield that are obtained from the FFT 
models, and compare these with the costs of ex-post cash transfers after 
harvesting (Figure 5.1, Step 3). The study area, datasets, and methods are 
described in more detail in the following subsections. 

5.2.1 Step 1: Extract indicators from datasets 

5.2.1.1Maize yield data and study area 

Annual historical maize yields (in ton/hectare) from 1983 to 2014 are based on 
collated reports from the Kenyan Ministry of Agriculture, Livestock and 
Fisheries. These yield data have been used in prior studies examining 
agricultural drought simulations (Davenport, Husak, & Jayanthi, 2015) and 
climate/development scenarios (Davenport, Funk, & Galu, 2018). 
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Figure 5.1 Flowchart of the methodological framework applied in this study, handled in three 
steps: (1) extraction of monthly indicators of climate variability, vegetation coverage and annual 
indicators of maize yield; (2) predictions of low maize yield years for each month within the 
growing season and district using Fast-and-Frugal Tree; (3) evaluation of the cost-effectiveness of 
ex-ante cash transfers at each month of the growing season compared with ex-post cash transfer 
after harvesting. Ex-ante cash transfers are considered to be more cost-effective than ex-post 
cash transfers in months when CBHm < CAH.  

In this paper we focus on five districts (Figure 5.2), where the primary growing 
season occurs during the long-rains season, therefore planting generally occurs 
in early March and harvest in September (FEWS NET, 2017). In addition, these 
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areas are chosen because critically low annual maize yields events are often 
observed, as displayed in appendix Figure D1. While harvests occur in 
September, peak rains typically occur much earlier, in April. 

From the annual data, we derive six percentiles of annual yield (Y), namely Y15% 
representing the lowest 15% of annual maize yields, andY20%, Y25%, Y30%, Y35% 
and Y40%. For each percentile, we classify annual maize yields as “below yield 
threshold” (when they are below the defined percentile) and “above yield 
threshold” (when they are above the defined percentile). An overview of the 
annual maize yields and the six percentiles per district is shown in appendix 
Figure D1.  

 

Figure 5.2 Map of Kenya and districts examined in this study. 

5.2.1.2 Climate variability and vegetation coverage indicators 

In this study, we represent climate variability using ONI and cumulative Np 
indicators, and vegetation coverage using NDVI. 

5.2.1.2.1 El Niño Southern Oscillation  

We use the Oceanic Niño Index (ONI) from 1983–2014 (NOAA, 2017a) to 
represent the El Niño Southern Oscillation (ENSO). ONI is a three-month 
running mean of sea surface temperature anomalies in the Niño 3.4 region 
using centred 30-year base periods updated every 5 years. This index is 
calculated based on a moving average of three-months. The ONI record in 
March, for instance, is the mean value observed in February, March and April. 
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While some authors have suggested weak links between Kenyan boreal spring 
rains and ENSO (Lyon, 2014), FEWS NET studies have shown that a predictable 
La Niña drought impact has arisen due to human induced warming in the 
Western Pacific (Funk et al., 2014; Funk et al., 2018; Shukla, Funk, & Hoell, 
2014). 

5.2.1.2.2 Cumulative Net Precipitation 

We use the difference between monthly precipitation (P) estimates from the 
Climate Hazards group Infrared Precipitation with Stations (CHIRPS), and the 
reference evapotranspiration (E) to calculate the Net Precipitation (Np) 
indicator for 1983-2014. CHIRPS is a quasi-global (50°S-50°N), high resolution 
(0.05°), daily, pentad (five-day rainfall), and monthly precipitation dataset, 
which was created to support the drought early warning system FEWS NET 
(Funk et al., 2015). The CHIRPS dataset is freely available online at the CHIRPS 
website. The reference evapotranspiration product is a multi-scalar measure of 
anomalous atmospheric evaporative demand, which captures signals of water 
stress (in mm) at weekly to monthly timescales. This product can be used as a 
tool for preparedness planning for both flash droughts and ongoing. The 
cumulative Np indicator (Equation 5.1) is calculated at the district level d, and 
within each month of the maize growing season m (from March to August):  

 𝑁𝑝𝑖,𝑚,𝑑 =  ∑ 𝑃𝑖,𝑚,𝑑

6

𝑖= 1

−  ∑ 𝐸𝑖,𝑚,𝑑

6

𝑖= 1

  
 

Equation 5.1 

 

where i represents a time window accumulation that varies from 1 to 6 months. 
For instance, an Np6,August,Laikipia represents the 6 month cumulative Net 
Precipitation observed from March until August at the district of Laikipia. 

5.2.1.2.3 Cumulative Normalized Difference Vegetation Index (NDVI) 

For the same period (1983-2014), we use cumulative mean of NDVI maximum 
values over the growing season (Equation 5.2), as a proxy to measure the 
physiologically functioning surface greenness level of a region (Myneni et al., 
1995). The NDVI dataset generated from NOAA’s Advanced Very High 
Resolution Radiometer has an 8 kilometre resolution, and can be used to 
monitor vegetation changes at different spatial scales (Pinzon, Jorge E and 
Tucker, 2014). We use the version termed NDVI3g, and obtained data from 
https://ecocast.arc.nasa.gov/data/pub/gimms/.  

https://ecocast.arc.nasa.gov/data/pub/gimms/
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∑ 𝑁𝐷𝑉𝐼𝑖,𝑚,𝑑

6

𝑖= 1

 
 

Equation 5.2 

 

The monthly mean of NDVI maximum indicator is accumulated at the district 
level d, within each month of the maize growing season m, where i represents a 
time window applied for accumulation, similarly as described for the Np 
indicator. 

5.2.2 Step 2: Fit Fast-and-Frugal Tree (FFT) for a month m and obtain 
probabilities 

FFT model is a simple algorithm that establish rules for making efficient and 
accurate decisions based on limited information (Gigerenzer et al., 1999; 
Phillips et al., 2017). Such models seldom over-fit data (Phillips et al., 2017), and 
are easier to interpret  and psychologically more plausible to internalise (Keller 
et al., 2010) than other Machine Learning methods (Luan, Schooler, & 
Gigerenzer, 2011). We use FFT to predict classes of maize yields as a function of 
the indices of climate variability and vegetation coverage (Np, ONI, NDVI 
described in ‘Climate variability and vegetation coverage indicators’ section). In 
heuristic decision-making, FFT is a supervised learning algorithm that is used for 
classifying cases (e.g. maize yield) into two classes (in this case below or above 
yield threshold) based on particular predictors.  

As displayed in appendix Figure D2, the structure of an FFT model determines 
the exact number and sequence of predictors that are applied to reach a final 
classification (Gigerenzer et al., 1999; Gigerenzer & Todd, 1999). FFT uses a 
maximum of five cues, meaning that a five-cue decision tree is based on the 
best five performing indices out of the total number of climate variability and 
vegetation coverage indicators accumulated for each respective month, as 
displayed in Table 5.1. The selection of the five best performing indices for each 
particular month, district and maize yield percentile is based on their marginal 
weighted accuracy (WACC), which is further described in the paragraph below. 
Therefore, FFT uses non-compensatory algorithms, which include only a limited 
subset of all predictors for establishing a binary decision. Non-compensatory 
algorithms are designed to ignore information, because once a decision is 
completed based on the selected predictors, no additional predictors can 
change the decision (Phillips et al., 2017). This characteristic is considered to 
have both practical and statistical advantages over compensatory algorithms, 
such as regression models. First, given that FFT models use a subset of 
predictors, the decision trees can perform better in predicting unseen data, 
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thus they tend to be robust against overfitting. Second, FFT algorithms use 
information in specific and sequential order, which can guide decision makers in 
collecting information and assist in decision tasks (Phillips et al., 2017). 

The FFT algorithm is designed to learn from, and make predictions on, data. FFT 
is fitted to a training dataset, which is used derive the parameters of the model. 
The FFT algorithm is constructed as follows: a) select predictors; b) determine a 
decision threshold for each predictor; c) determine the order of predictors; and 
d) determine the exit for each predictor, which by definition, FFT must have 
either a negative or a positive exit (or both in the case of the final decision 
node) (Phillips et al., 2017). The FFT models are then tested using an 
independent testing dataset. In order to select trees that identify “below yield 
threshold” rather than “above yield threshold” cases, we set the Sensitivity 
Weighting Parameter w to w=0.75, using the ifan algorithm, which is described 
in detail by Phillips et al. (2017). Sensitivity Weighting Parameter determines 
the overall value of WACC of the FFT, and the WACC measures how well the 
algorithm balances correct decisions. In summary, the ifan decision algorithm 
tests several different thresholds of the predictors to identify the one that 
maximizes the predictor’s accuracy. Consequently, once the set of FFT is 
created, ifan selects the tree with the highest weighted accuracy. For 
clarification, it is important to notice that the value of w parameter does not 
change how the set of FFT is constructed, but rather, it changes which specific 
tree in the set of FFT is selected (Phillips et al., 2017). We performed an 
additional sensitivity analysis on the WACC index by assigning similar weight 
when identifying below yield threshold and above yield threshold cases, thus 
setting w=0.5.   

We analyse the performance of the FFT models to predict classes of “below 
yield threshold” and “above yield threshold” using Receiver Operating 
Characteristic (ROC) (Metz, 1978). ROC is a graphical plot (appendix Figure D3) 
that illustrates the performance of a binary classifier system (Zweig & Campbell, 
1993). The ROC index varies between 0 and 1, where perfect and random 
predictions have values of ROC=1.0 and ROC=0.5, respectively (Hamill & Juras, 
2006). We calculate the ROC index using the trapezoidal rule, and test the 
predictive skill of the FFT models using leave-one out cross validation, further 
described in appendix D4. We use this cross validation method since: a) it is 
highly recommended for small sets of training data; and b) it can be used with 
any kind of predictive modelling, including discriminant analysis such as decision 
trees (James et al., 2013). 
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Table 5.1 Description of accumulation periods for each variable and total number of predictors 
considered in each month. From April onwards, we included predictors of current and previous 
months. Therefore, FFT models in April take information from March if any predictor registered in 
the latter had a higher marginal weighted accuracy WACC value than predictors observed in April. 
FFTs use a maximum of five predictors. 

Month March April May June July August 

Np1 M A M J J A 

Np2 FM MA AM MJ JJ JA 

Np3 JFM FMA MAM AMJ MJJ JJA 

Np4 DJFM JFMA FMAM MAMJ AMJJ MJJA 

Np5 NDJFM DJFMA JFMAM FMAMJ MAMJJ AMJJA 

Np6 ONDJFM NDJFMA DJFMAM JFMAMJ FMAMJJ MAMJJA 

NDVI1 M A M J J A 

NDVI2 FM MA AM MJ JJ JA 

NDVI3 JFM FMA MAM AMJ MJJ JJA 

NDVI4 DJFM JFMA FMAM MAMJ AMJJ MJJA 

NDVI5 NDJFM DJFMA JFMAM FMAMJ MAMJJ AMJJA 

NDVI6 ONDJFM NDJFMA DJFMAM JFMAMJ FMAMJJ MAMJJA 

ONI FMA MAM AMJ MJJ JJA JAS 

Total 
number of 
predictors 

13 26 39 52 65 78 

 

For each FFT model where the ROC is higher than 0.5, we analyse standard 
classification statistics such as probabilities of Hits (H), False Alarms (FA), 
Correct Rejections (CR), and Misses (MS). Their definitions and formulae are 
given in appendix Table D5. In summary, we obtain FFT model for each 
particular month within the growing season, each district, and each percentile 
level of annual yield, through the following steps: 

1. Ranking and selecting 5 best predictors based on their marginal WACC, for 
each district, maize yield percentile, and month; 
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2. Pruning decision trees by cross-validating the FFT model using leave-one 
out cross validation, further described in appendix D4; 

3. Calculation of the ROC index;  
4. Analysis of the performance of the cross-validated FFT model by calculating 

standard classification statistics, as displayed in appendix Table D5. 

From April onwards, we include maize predictors of the current and previous 
months. For instance, when fitting FFT model in April, information from March 
was also taken into consideration if any predictor registered in March had a 
higher marginal WACC value than predictors observed in April. After following 
these steps, we build a new FFT using all the dataset and adopting the pruning 
parameter that maximizes the WACC index. Hence, this procedure enables us to 
suggest the set of predictors which are most important for each district, lead 
time and yield percentile. 

5.2.3 Step 3: Cost-effectiveness analysis 

We use a simple methodology to assess the cost-effectiveness of cash transfers. 
In humanitarian response, early action aims to provide short-term resources for 
emergency situations. Therefore, the aim of this cash transfers is to prevent 
populations from becoming undernourished, from slipping below the limit of 
the mean Human Energy Requirement (HER) in seasons with low yields. HER is 
defined as “the amount of food energy needed to balance energy expenditure 
in order to maintain body size, body composition and a level of necessary and 
desirable physical activity consistent with long-term good health”(Pacetti, 
Caporali, & Cristina, 2017). The HER depends on individual characteristics such 
as age, sex, body weight and lifestyle, and according to FAO a mean HER is 
approximately 3,000 kcal/cap/day (Pacetti et al., 2017; World Health 
Organization, 2004).    

We define a household energy loss value by the difference between the 
predicted low maize yield transformed into calories, and the HER mean per 
capita. Therefore, the expected cost of cash transfer (hereafter ECT) is defined 
by the amount of calories (multiplied by price levels, see Figure 5.1 step 3 and 
appendix Figure D1) needed to supply a household calorific deficit in 
comparison to the HER mean threshold. The expected total cost of cash transfer 
determines the least costly (hence most cost-effective) month for initiating cash 
transfer. The expected cost of cash transfer before harvesting (hereafter CBHm) 
takes into account the probability of Hits and False Alarms in a month m 
(equation 5.3), while the expected cost of cash transfer after harvesting 
(hereafter CAH) considers 100% and 0% probabilities of Hits and False Alarms, 
respectively (equation 5.4). Therefore, CAH is defined as the total expected cost 
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of the cash transfers only. A cash transfer is considered to be cost-effective 
before harvesting in months when CBHm < CAH. 

CBHm=P(Hits𝑚) ×   ECT𝑚  +  P(False Alarms𝑚)  ×  ECT𝑚 Equation 5.3 

CAH = ECT Equation 5.4 

In more detail, we set the cash transfers as the total costs involved in 
compensating low maize yields (in monetary values) to fulfil the calorific deficit 
of a group of smallholder farmers (equation 5.5). In this study, the total costs of 
the cash transfer depend on: a) total number of households that the cash 
transfer aims to support (NH); b) total amount of maize per household needed 
to reach the HER mean threshold (NM); and c) monthly maize price (MPm). For 
simplicity, we do not take into consideration administrative costs of ex-ante and 
ex-post cash transfers. Occasionally funding can be spent to “act in vain”, as the 
result of a false alarm. To compute the total expected costs of this action, cash 
transfers are considered to be irreversible once disbursed, and therefore the 
costs associated with False Alarms are equal to those associated with Hits.  

ECTm = NH ×  NM × MP𝑚  Equation 5.5 

We use wholesale monthly price records from Nairobi between 2000 and 2017 
from the FEWS NET data warehouse to calculate monthly mean maize prices 
between March and August. Prices are deflated to February 2009 values using a 
consumer price index generated by the Kenyan National Bank. We fit a linear 
model between deflated annual Nairobi prices in September and annual maize 
yields. When this relationship is significant (p-value<0.05), we use this model to 
determine maize prices based on yields. When not significant, we assume that 
prices in September (Ps or MP9) vary proportionally to the low maize yield 
percentile (Yp) being investigated (appendix Figure D6.2) and described in 
equation 5.6. Lastly, we consider that maize prices within the growing season 
(Pi) follow their observed respective monthly mean (𝑃̅𝑖), as described in 
equation 5.7 

Ps= -1 × Yp + 100 Equation 5.6 

𝑃̅𝑖=
∑ 𝑃𝑖

𝑁
 Equation 5.7 

Where i represent months 3 (March or MP3) to 8 (August or MP8), and N 
represents the length of the price time series in years. In addition, we assess the 
sensitivity of the cost-effectiveness analysis by adopting four different rates of 
variations in September prices for the districts where prices at harvesting are 
assumed to be conditioned to maize supply (appendix D7). 
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In order to calculate the amount of calories available per household per year, 
we consider that: 100g of maize has 365 kcal (United States Department of 
Agriculture, 2016); the mean size of a household in the Rift Valley in Kenya is 4.6 
persons (Munene, 2003); each household owns one hectare of land for farming; 
and the total number of households granted with cash transfer is 1000 per 
district. Therefore, for each of the six investigated percentiles of maize yield, we 
transform tonnes/hectare/year into kcal/household/year. In addition, we also 
assume that cash transfers do not create a disincentive to work, and 
beneficiaries do not cease maize production. This assumption was previously 
suggested by the Food and Agriculture Organization of the United Nations, 
where an investigation (Food and Agriculture Organization, 2016) concluded 
that cash transfer programmes were linked to increased livelihood activities of 
farmers. An illustration of the cost-effectiveness analysis is found in Figure 5.1 
(step 3). 

5.3.1 Obtaining probabilities using FFT models 

In Figure 5.3, we present the performance of the tested FFT models in 
predicting true low maize yield events (Hits probabilities are highlighted in 
blue), and false low maize yield events (False Alarms probabilities are 
highlighted in yellow) per district, for the six low maize yield percentiles and the 
different lead times before harvesting. We predict high/low maize yield events 
for each month within the growing season (March to August), which represent 
six lead times. The spatial distribution of the probabilities of Hits and False 
Alarms are available in appendix D8. Overall, the performance of the FFT 
models improve with shorter lead times as a result of reduced probability of 
False Alarms, and consequently increased probability of Correct Rejections. The 
FFT models have skill (ROC>0.5) in predicting annual high/low maize yield in all 
districts. For most models some skill already exists six months before the 
harvesting season (on average ROC=0.63) despite the high probabilities of False 
Alarms at this lead time. The WACC index, which measures how well the 
algorithm balances correct decisions, exhibits the highest value among districts 
and yield percentile levels in July (lead time 2 months), and the lowest in March 
(lead time 6 months). Among all models with predictive skill, lead times, and 
yield percentiles, the district of West Pokot has, on average, the highest WACC 
and ROC (0.81 and 0.73, respectively) driven specially by the high probabilities 
of Hits in this district; and on average the district of Nyandarua has the lowest 
WACC (0.72), as shown in appendix Figure D9. Across different yield percentiles, 
districts, and lead times, the mean probability of Hits is 85%. Results of the 
sensitivity analysis are available in appendix Figure D10.1. When adopting a 
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different weight parameter (w=0.5 instead of w=0.75), the performance of the 
FFT models improves with shorter lead times as a result of reduced probability 
of False Alarms. Among lead times, percentiles and districts, the probability of 
Hits is, on average, 66%. Overall, the probabilities of False Alarms and Hits are, 
on average, lower compared to those obtained when w=0.75. The best 
performing predictors of maize yield per district, and their respective 
thresholds, are shown in the appendix Table D11. 

In March and April, six and five months before the maize harvesting season in 
Kenya, the FFT models have predictive skill (ROC>0.5) for most districts and 
yield percentiles (Y). Exceptions are for percentiles Y15% and Y25% in Baringo, Y20% 

in Narok, and Y40% in Nyandarua during lead time 6, and for Y20% in Baringo, Y30% 

and Y35% in Nyandarua during lead time 5 (Figure 5.3). On average, the 
probability of Hits for the different maize yield percentiles is 84% and 86% for 
lead times of 6 and 5 months, respectively, while the probability of False Alarms 
is 56% for both of these lead times. The mean probability of Misses for the 
different maize yield percentiles is 16% and 14% for lead times of 6 and 5 
months respectively, while the mean probability of Correct Rejection is 44% for 
both of these lead times.  The most important predictor for FFT models in these 
two lead times is Net Precipitation five in March (Np5,March). In other words, the 
FFT models mostly use the difference between cumulative five months 
precipitation and reference evapotranspiration observed in months previous to 
sowing (March) for classifying between above and below yield threshold. Such 
results demonstrate that initial soil conditions play an important role during the 
emergence and establishment of maize growth, and in the vegetative 
development (approximately 60 days after sowing (Barron et al., 2003)), when 
higher moisture levels benefit yields (FAO, 2017; Mati, 2000).  

In May and June, four and three months before the maize harvesting season in 
Kenya, the FFT models also have predictive skill for most districts and 
percentiles. Exceptions are for Y30%, Y35% and Y40% in Narok, Y30% and Y35% in 
Nyandarua during lead time 4, for Y30% in Laikipia, and Y15% in Narok during lead 
time 3 (Figure 5.3). Compared to the two antecedent months (March and April), 
the probability of False Alarms remains high on average in May (56%), and 
lower in June (47%). The probability of Hits, on average, remains high (86% and 
83%) in May and June, respectively. In May and June, the FFT models predict 
maize percentiles Y15%, Y20% and Y25% using the Net Precipitation variability 
accumulated from previous and post maize planting date, such as Np5,March, 
Np6,April, and Np4,May. Other predictor that is often used is the Normalized 
Difference Vegetation Index (NDVI) such as NDVI3,April and NDVI5,June. Next to the 
climatic predictors of maize yield also suggested by others (Estes et al., 2014; 
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Funk & Verdin, 2010; Shi & Tao, 2014), the NDVI index was also found to be a 
predictor for maize yields in previous studies (Lewis, Rowland, & Nadeau, 1998; 
Rojas, 2007). For predicting below yield threshold/ above yield threshold maize 
percentiles Y30%, Y35% and Y40%, FFT models mostly used Np5,March in combination 
with other intra-seasonal indices of climate variability and vegetation coverage, 
such as the Oceanic Niño Index (ONI) in April and NDVI5,June; Both El Niño and 
NDVI indicators have also been highlighted as predictors of maize yield in other 
studies (Amissah-Arthur, Jagtap, & Rosenzweig, 2002; Lewis et al., 1998; Rojas, 
2007). The most damaging crop water deficits arise during these lead times 
(maize reproductive stage), when the cereal plants switch from growing leaves 
to growing grains (Funk & Verdin, 2010), and midseason water deficits can 
drastically reduce maize yields (Senay & Verdin, 2003). Even though the 
climatological conditions during the vegetative growth period are relevant, 
conditions during the reproductive growth period influence yields more directly 
(Iizumi, Yokozawa, et al., 2014). This may explain the improved performance of 
FFT models during lead time 3 months (maize reproductive growth stage), 
which uses intra-seasonal information of indices of climate variability and 
vegetation coverage observed in June to predict maize yield percentiles.  

In July and August, the FFT models have predictive skill in all districts and 
percentiles, except for Y15% in Narok (Figure 5.3, lead time 2). Compared to the 
previous two months of May and June, the performance of the FFT models 
improves slightly. On average, the mean probability of False Alarms is lower 
(44% and 40% in July and August, respectively), and Hits, on average, remains 
high (87% and 83%). For predicting below yield threshold/above yield threshold 
maize percentiles Y15%, Y20% and Y25%, the FFT models mostly use indicators that 
include observations from June and July such as NDVI5,June, and Np2,July and 
Np6,July, while FFT models mostly predict below yield threshold/above yield 
threshold maize percentiles Y30%, Y35% and Y40%, using Np5,March, NDVI5,June  and 
Np2,July. At these lead times, maize reaches its grain filling and drying stages 
(Barron et al., 2003), and late season soil water deficits after the grain biomass 
accumulation is complete may lead to higher yields (Funk & Verdin, 2010). Very 
high accumulated levels of precipitation in June and July may cause maize yields 
to decline due to the high likelihood of diseases, insects, and mould infestation, 
which are favourable when such conditions are observed (Funk & Verdin, 2010). 
Furthermore, maize yield in the investigated districts is linked to other seasonal 
indices of climate variability and vegetation coverage and to accumulated 
rainfall and soil moisture conditions prior to the maize-planting season. 
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Figure 5.3 Performance of the tested FFT models in predicting true low maize yield events (Hits), 
and false low maize yield events (False Alarms) per district, for different maize yield percentiles 
(shades of grey) and lead times (x-axis). Yellow bars represent the probabilities of False Alarms, 
and blue bars probabilities of Hits. The six levels of low maize yield percentiles are highlighted in 
shades of grey. Dashed black line is drawn at the 50% probability. Sensitivity weighting parameter 
is w=0.75. 

3.2 Cost-effectiveness of cash transfers 

3.2.1 Cost-effectiveness of cash transfer assuming a perfect forecast 

In Figure 5.4, we display the cost-effectiveness analysis of cash transfers 
assuming a perfect forecast skill within the growing season from March to 
August. Therefore, for this analysis we assume that the probability of Hits and 
False Alarms is 100% and 0%, respectively. (H=100% and FA=0%). Thus, in this 
case the cost-effectiveness is solely based on maize price variations. We only 
carried out a cost-effectiveness analysis for districts and maize yield percentiles 
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for which the calories/household/year fall below the Human Energy 
Requirement mean threshold (section Methods section and appendix Figure 
D1) (boxes in Figure 5.4 that are not blank).  For all of the 17 cases for which 
this is the case, we find that cash transfers assuming a perfect forecast skill are 
most cost-effective at a lead time of 6 months. This is due to lower mean maize 
price in March compared to September. In the appendix Figure D6.1 and D6.2, 
we display the pricing models used in the districts for the month of September, 
and average monthly maize prices adopted for months between March and 
August. This shows that during the growing season, mean prices are relatively 
low in March, and highest in June. 

3.2.2 Cost-effectiveness of cash transfer using probabilities from FFT models 

In Figure 5.5, we present the results of the cost-effectiveness analysis using the 
probabilities of Hits and False Alarms obtained from the FFT models per district, 
lead time, and maize yield percentile. These probabilities are available in Figure 
5.3. Overall, in 11 out of the 17 cases tested, cash transfers are cost-effective 
(CBH < CAH) for at least one of the lead times before harvesting.  

In addition, in Figure5.5, we show that for Y15%, in all districts there is at least 
one lead time for which the expected cost of ex-ante cash transfers is lower 
than ex-post cash transfers, while for Y20% ex-ante cash transfer is more cost 
effective in 3 out of 4 districts. Ex-ante cash transfers are often cost-effective 
when the probability of a False Alarms is below 50%, and when prices during 
the growing season are lower than prices in September. Cash transfer costs ex-
ante for Y15% and Y20% can be, on average, 29% and 14% lower than ex-post cash 
transfers in September, respectively.   

Ex-ante cash transfers during the growing season are also estimated to be more 
cost-effective for Y25% and Y30%. In Laikipia and Nyandarua districts (Figure 5.5), 
the expected costs of ex-ante cash transfers are 5% and 2% lower than those 
associated with ex-post cash transfers, respectively. This is attributed to a 
combination of low probabilities of False Alarms (below 13%), and low mean 
prices during the growing season compared to September. However, the 
number of months with cost-effective ex-ante cash transfers decreases when 
comparing Y25% and Y30% to those found in Y15% and Y20%. For Y35% we found ex-
post cash transfers to be more cost-effective than ex-ante. This is because the 
assumed price of maize in September, when a maize supply of Y35%, is below the 
monthly average from May and July (appendix Figure D6.2). Consequently, cost-
effective ex-ante cash transfers would only be possible in March, April and 
August if there is a low probability of a False Alarms. However, the additional 
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costs driven by high probability of a False Alarms in March, April and August 
resulted in cash transfers being more cost-effective ex-post. 

 

 

Figure 5.4 Total expected cost of cash transfer per district, for different lead times and maize yield 
percentiles, assuming a perfect forecast before harvesting from March to August. Therefore, the 
probabilities of Hits and False Alarms are 100% and 0%, respectively. Yellow dots show all lead 
times before harvesting (starts in September) for which expected cost of cash transfer is lower 
than the expected cost of cash transfer after harvesting (CBHm < CAH); black dots show the 
opposite. The most cost effective lead time is highlighted in grey. Boxes are blank when the maize 
yield percentile for the specific district is higher than the mean human energy requirement (3,000 
kcal/day/person), and therefore no cash transfer is required.  
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Figure 5.5 Total expected cost of cash transfer per district, lead time, and maize yield percentile 
calculated based on the probabilities of Hits and False Alarms obtained from the FFT models 
(using a weighting parameter of w=0.75). Yellow dots show all lead times before harvesting (starts 
in September) for which expected cost of cash transfer is lower than the expected cost of cash 
transfer after harvesting (CBHm < CAH); black dots indicate the opposite. The most cost effective 
lead time is highlighted in grey. Boxes are blank when the maize yield percentile for the specific 
district is higher than the mean human energy requirement (3,000 kcal/day/person), and 
therefore cash transfer is not triggered. Results are shown only for models with ROC>0.5. 

In addition, we assessed the sensitivity of the results using two moderate 
(Figure 5.6A an 5.6B) and two conservative (Figure 5.6C and 5.6D) scenarios of 
September prices for the districts where prices at harvesting are assumed to be 
conditioned to maize supply (Laikipia, Nyandarua, West Pokot). A more detailed 
illustration is available in appendix Figure D7.1 and D7.2. We show that when 
adopting price scenarios 1-3, there is at least one lead time for 17 out of the 36 
tested cases (boxes that are not blank in Figure 5.6A-5.6C) for which cash 
transfers are more cost-effective ex-ante. When considering price scenario 4, 
we still find some lead times for which the ex-ante cash transfers are expected 
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to have lower costs than ex-post cash transfers. Therefore, despite prices 
variations, we show that ex-ante cash transfers can often be more cost-
effective than ex-post cash transfers, especially for the more extreme yield 
deficits. 

 

Figure 5.6 Sensitivity analysis of total expected cost of cash transfer testing four rates of change in 
Ps (price) for change in Yp (maize yield), per district, lead time, and maize yield percentile. Yellow 
dots highlight all lead times before harvesting when expected ex-ante costs of cash transfer are 
lower than the expected ex-post costs of cash transfer (CBHm < CAH); black dots show the 
opposite. The most cost effective lead time is highlighted in grey. Boxes are blank when the maize 
yield percentile for the specific district is higher than the mean human energy requirement, and 
therefore cash transfer is not triggered. Results are shown only for models with ROC>0.5. 

5.4.1 Current practices and challenges of cash transfer operationalization 
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In our study, we show that despite model uncertainties and prices variations, 
ex-ante cash transfers can often be more cost-effective than ex-post cash 
transfers, especially for the more extreme yield deficits. Even though studies on 
the cost-effectiveness of early action are very limited, some suggest that early 
response can yield significant cost savings (Venton, 2018; Wilkinson et al., 
2018). For instance, in 2015 a FoodSECuRE Cost Benefit Analysis (ex-ante) in 
Sudan and Niger suggested that early actions based on a forecast mechanism 
could reduce the cost of emergency response by approximately 50 percent 
compared to ex-post responses (World Food Programme, 2016).  

Our results could potentially increase the efficacy and efficiency of existing cash 
transfer systems. Currently, the Kenya Hunger Safety Net Programme triggers 
two types of cash transfers (standard and emergency payments) based on a 
single satellite vegetation condition index (VCI). Neither of these cash transfer 
types depend on field assessment, and emergency payments are made monthly 
in any Sub-County when the VCI hits the scale up threshold (from moderate to 
extreme drought), and payments are suspended when the threshold is no 
longer reached for that month (National Drought Management Authority, 
2016). The use of a single drought indicator may not provide a comprehensive 
assessment of drought impact, and can occasionally trigger payments in 
situations where drought conditions are not evolving (National Drought 
Management Authority, 2016). The National Drought Management Authority 
could potentially improve the reliability of cash transfers and anticipate pay-
outs by including other drought early warning indicators, such as the ones 
adopted in this investigation.  

Furthermore, when different drought severity levels are observed in pre-
selected areas, fixed emergency cash transfers of 2,550 Ksh (approximately 25 
US$) are payed in addition to standard payments that are given monthly to 
households. This emergency payment aims to support the increased needs that 
households may experience during a drought period. However, establishing a 
fixed amount of cash in order to respond to different drought severity levels 
does not fully account for different needs that may arise during a drought, 
especially the more severe ones. Establishing payments of cash that vary based 
on forecasts of different agricultural drought levels, such as proposed in this 
study, may be more efficient in achieving households’ dietary diversity and 
reducing malnutrition rates. 

In addition, the Kenyan National Drought Management Authority holds the 
National Drought Contingency Fund (NDCF), which receives contributions from 
the government of Kenya and multi-donors, with the capacity to disburse funds 
to drought-prone affected districts in a flexible way (National Drought 
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Management Authority, 2016). This fund enables fast drought early responses 
in all districts based on drought early warning information and contingency 
plans. To enable fast triggering and scalability, efficient budget allocation within 
lead times while avoiding fund depletions, a set of evidence-based mechanisms 
should be in place based on drought forecasts. Therefore, impact-based 
forecast information and cost-effectiveness analysis, such as developed in this 
study, could support a more timely pooling and distribution of resources, and 
consequently a more efficient management of the NDCF. 

Multiple challenges can be observed for operationalizing cash transfers based 
on indicators of droughts. Taking actions in response to early warnings of 
drought risks based on indices requires an in-depth understanding of the 
potential impact, scale, aid-triggering thresholds, severity and timing of a 
disaster (Wilkinson et al., 2018). Operationally, cash transfer programs can be 
unconditional, meaning that they aim to reduce poverty by providing cash 
independent of the receiver’s actions; or conditional, meaning that receivers 
must make pre-specified investments.  

Most emergency drought response systems use unconditional cash transfers, 
which often have a lower cost per beneficiary compared to other interventions 
such as vouchers and in-kind food (Doocy & Tappis, 2017). However, cash 
transfer is not always a suitable option, especially when the local economy is 
isolated from other markets, in which case an inflow of cash can increase prices 
(Cunha, De Giorgi, & Jayachandran, 2019). Furthermore, beneficiaries of the 
program must be aware of the predicted drought threats in order to spend cash 
wisely (National Drought Management Authority, 2016). Therefore, cash 
transfer programs could benefit from information on individual preferences 
regarding the timing and expenditure of cash transfers when dealing with food 
insecurity. In addition, establishing a range of early warning drought indicators 
as triggers for payments may be beneficial since it can remove possible 
subjective analysis or political influence on decisions to disburse cash transfer 
(National Drought Management Authority, 2016). Lastly, initiatives that use 
forecast-based early action, such as cash transfer, have either provided support 
directly to beneficiaries, or have worked with national governments and 
partners through state institutions (Wilkinson et al., 2018). As such, a choice 
between these distribution alternatives must be made based on the capacity 
and coordination of government actors, on the country specific context, and on 
the mandates of agencies promoting forecast-based early action in order to 
ensure timely aid (Wilkinson et al., 2018). 

5.4.2 Limitations and recommendations 

https://en.wikipedia.org/wiki/Poverty
https://en.wikipedia.org/wiki/Welfare_(financial_aid)
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The primary limitation of this investigation was that we assumed that prices are 
solely dependent on the supply of maize, when in reality price is associated with 
a combination of factors including supply and demand in neighbouring regions 
and global price shocks (Brinkman et al., 2010). We also assumed that prices 
during the growing season would follow their mean values, when in practice 
price levels and volatility can increase under a perceived or actual drought 
impact. Another important cost component of cash transfers which was not 
investigated in this study is operational costs. For instance, including transaction 
costs in the analysis would result in a more realistic estimation of costs. In 
addition, we considered only indicators of climate variability and vegetation 
coverage as drivers of maize yield while other aspects such as in-farm level 
management activities play an important role on yields. Regarding the applied 
methods, further insights into relationships between climate variability and 
maize yields can be obtained by applying compensatory models (e.g. Random 
Forest) since a more complex model can reveal important features that are not 
captured by a simple model such as the FFT. In addition, the accuracy of the 
results could potentially improve when testing different decision algorithms, 
since the ifan algorithm used in this study assumes independence between 
predictors. Furthermore, historical crop yield databases, such as the one used in 
this study, are also known to face limitations, such as reporting errors.  

Future work could benefit from using other indices of climate variability at 
different time scales, and from including other aspects such as in-farm level 
management activities. More accurate results and predictions of maize yields 
can also be obtained if the threshold of skilfulness of the FFT model (ROC>0.5) 
is increased. However, this would inhibit large part of the analysis, especially at 
longer lead times, since the FFT models have, on average, ROC scores between 
0.63 and 0.72. In addition, this study would substantially benefit from a more 
detailed analysis of supply and demand dynamics and drivers of maize price in 
Kenya. Furthermore, testing the proposed methods using different algorithms, 
crop databases, crop types, and early actions (such as vouchers or in-kind food 
aid) would provide further insights in the strengths and limitations of the 
approach. Lastly, in order to produce a robust economic estimation, which 
would potentially reflect the actual expected costs of ex-ante and -post cash 
transfer programmes, other information should be taken into account such as 
operational costs, the precise number of beneficiaries, and maize yield per 
household. 

Providing timely finance prior to a disaster can be more cost-effective than 
investing in post-disaster expenditures, and may prevent farmers, especially 
small-scale ones, from falling into poverty. Increasing the productivity and 
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climate resilience of smallholder farming systems is a great challenge that will 
be important in determining whether the world succeeds in achieving the post-
2015 development agenda, and the Sendai goal of substantially reducing 
disaster risk. In Kenya, and East Africa in general, yield growth has remained 
relatively stagnant as population continues to grow rapidly (Funk & Brown, 
2009), as predictable droughts become more frequent (Davenport et al., 2018; 
Funk et al., 2014). As suggested here, developing more proactive disaster 
mitigation responses should help buffer the impacts of future crop yield deficits. 
A secondary, but important benefit of such actions might be the reduction of 
food price volatility. As seen in 2010/11, and to a smaller degree in 2016/17, 
these price spikes can affect even more fragile pastoral and marginal agro-
pastoral households.   

Our study developed a forecast model using FFT for multiple lead times for 
assessing early warnings of low maize yield based on predictors of climate 
variability and vegetation coverage. Using this model, we focused on assessing 
the relative costs of ex-ante and ex-post cash transfer in Kenya. This is a primary 
step towards the adoption and use of climate information in disaster risk 
financing and humanitarian early action. In this paper we showed that: 

 Overall, FFT models have skill to forecast low maize yields in all five districts. 
In most cases, we identify some model skill already six months before the 
start of the harvesting season; 

 Across different yield percentiles, districts, and lead times, the FFT models 
correctly forecast “below yield threshold” 85% of the time. On average, the 
probability of False Alarms is 49%, but this value decrease towards the end 
of the maize growing season. 

 When assuming a perfect forecast (Hits=100% and False Alarms=0%), cash 
transfers can be most cost-effective ex-ante at a lead time of 6 months 
(March). 

 Despite uncertainties associated with FFT predictions, we show that ex-ante 
cash transfers can often be more cost-effective than ex-post cash transfers, 
especially for the more extreme yield deficits.  
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In response to the limited understanding on links between climate variability 
and weather-related impacts of both floods and droughts, and the current gap 
in translating such relationships into impact-based information that can be used 
as a basis for triggering early action, the main objective of this thesis was: 

 To assess the link between climate variability and weather-related impacts 
(flood and drought) at the global and regional levels, and to develop impact-
based forecast methods that can potentially reduce these impacts through 
early action.  

The thesis’ main objective was achieved by investigating five research 
questions, previously defined in Chapter 1. In this final chapter, answers to the 
five research questions are provided. The chapter ends with a discussion of 
future challenges and avenues of research on the topic of climate variability, 
impact-based forecasting and early action.  

Research question 1| What are the links between large-scale climate variability, 
the occurrence and intensity of extreme rainfall, and anomalies in flood 
occurrence and damage? 

Using a pan-European case study, Chapter 2 analyses the spatial and temporal 
influence of climate variability on extreme meteorological and flood events. 
This is done by investigating the El Niño Southern Oscillation (ENSO), the North 
Atlantic Oscillation (NAO), and the East Atlantic pattern (EA) during their 
neutral, positive, and negative phases, to understand their relationships with 
four flood indicators: Occurrence of Extreme Rainfall, Intensity of Extreme 
Rainfall, Flood Occurrence, and Flood Damage. Statistical tests such as the T-
Test, bootstrapping and field significance are applied to investigate the 
strengthen and significance of the relationship between the indices of climate 
variability and the four flood indicators. This chapter pays special attention to 
assessing relationships between multiple indices of climate variability and flood 
losses, an avenue of research that has not been widely investigated.  

The results show that climate variability has strong links with the four flood 
indicators. Both positive and negative phases of NAO and EA are associated 
with more intense and frequent extreme rainfall over large areas of Europe, 
whereas the effect of ENSO is much smaller. Anomalies in the indicators of 
occurrence and intensity of extreme rainfall linked to the positive/negative 
phases of the indices of climate variability can be up to ±100% and ±60%, 
respectively. At the aggregated pan-European scale, all three indices of climate 
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variability show significant relationships with Flood Occurrence in one or more 
phase and/or season, with the strongest link being observed for NAO. Positive 
and negative phases of NAO are linked with high anomalies in Flood Occurrence 
in Europe during summer and winter, respectively. In summer, during positive 
phase of NAO, anomalies in Flood Occurrence are 170% higher than during the 
neutral phase of NAO. In winter, during the negative phase of NAO, anomalies 
in Flood Occurrence are on average 70% higher than during the neutral phase 
of NAO. Anomalies in Flood Damage are linked to all three indices of climate 
variability, with the strongest anomalies also found in connection with the NAO 
positive phase in summer (374% higher than during neutral phase). It is shown 
for the first time that Flood Damage and Flood Occurrence in Europe are 
strongly associated with climate variability, especially in southern and eastern 
Europe. 

In this study, limitations are also identified. The first one emerges from 
assessing the impact of ENSO, NAO and EA individually, and not from a 
multivariate perspective. Past studies have suggested that the indices of climate 
variability may intensify or reduce each other’s influence, and produce 
combined hydroclimatological effects (Heino et al., 2018; Seager et al., 2010). 
Therefore, analysing such indices individually may result in the 
underrepresentation of the relationship between climate variability and the 
four flood indicators. The second limitation emerges from not examining time-
lags between the indices of climate variability and the flood indicators. Given 
the long memory of atmospheric anomalies, a delayed influence on extreme 
rainfall (Tabari & Willems, 2018) and on flooding is expected, and therefore, 
such lagged relationships should be examined. These limitations are addressed 
in Chapter 3, and in Chapter 4 when investigating the relationship between 
climate variability and agricultural impacts. 

Research question 2| Can large-scale climate variability be used to forecast 
flood losses?  

Building upon recommendations from Chapter 2, Chapter 3 examines the role 
of seasonally lagged and synchronous indices of climate variability on flood 
losses at the sub-regional European scale. This chapter investigates the 
relationship between five indices of climate variability - the El Niño Southern 
Oscillation, the North Atlantic Oscillation, the East Atlantic pattern, East 
Atlantic/West Russian pattern and the Scandinavian Pattern - and the 
probability of four classes of flood losses ocurring: Damaging, Low Damaging, 
Medium Damaging and High Damaging. As well as investigating the likelihood of 
such classes of flood losses occurring based on indices of climate variability, 
Chapter 3 assesses whether some of these losses can be predicted one season 
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ahead. To achieve this, a range of logistic models in combination with a Leave-
one out cross validation technique are applied. This analysis aims at providing a 
better understanding of the combined effect of the indices of climate variability 
on flood losses while at the same time assessing the predictive skill of such 
models and indices. 

Whilst in Chapter 3 the logistic regressions are unable to predict High Damaging 
floods based on synchronous indices of climate variability, it is shown that the 
indices can be used to predict classes of Damaging, Low Damaging and Medium 
Damaging flood events, mostly in at least 2 out of 4 seasons in all regions of 
Europe. This study also shows that some of the classes of flood losses can be 
predicted one season ahead because a lagged relationship may exist between 
the indices of climate variability and the flood losses in all European sub-
regions. It is observed that the probability of classes of flood losses may 
increase or decrease by up to ±100% in comparison to historical probabilities 
depending on the phase of the index of climate variability. The negative 
(positive) phase of the best performing index is often related to an increase 
(decrease) in the probability of Damaging and Low Damaging floods in 
comparison with the historical probability in southern and western Europe, and 
that the opposite is found for northern and eastern Europe. Furthermore, most 
of the models show improved probability of flood losses when the indices of 
climate variability are combined and in their extreme phases. For instance, the 
probability of Low Damaging flood events in southern Europe during winter 
months can increase when negative EAWR (EAWR = -1) and positive SOI (SOI = 
+1) are combined and synchronous (92%) relative to probabilities obtained 
from a simple logistic regression using only EAWR (EAWR = -1; 81%). 

In Chapter 3, some avenues for improvement are also suggested, such as 
exploring relationships between the five large-scale climate variability and 
impacts through techniques that primarily focus on predictions, such as 
supervised Machine Learning algorithms. This is further addressed in Chapter 4. 
Furthermore, to strengthen this analysis, it is suggested that elements of 
exposure, vulnerability and local weather variability should be included, which 
play an important role in the socio-economic impacts of floods and droughts. 
These recommendations are further explored in Chapters 4 and 5.   

Research question 3| Can large-scale climate variability be used to forecast 
agricultural production and support agricultural management and decision-
making? 

Chapter 4 analyses the multiple time-scale relationships between large-scale 
indices of climate variability and anomalies in crop production at the pan-
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European scale. This analysis is uses a supervised Machine Learning algorithm 
named “Fast-and-Frugal Trees” within each month of the growing season 
(during different vulnerable stages) of sugar beet. The role of five large-scale 
indices of climate variability - the El Niño Southern Oscillation, the North 
Atlantic Oscillation, the East Atlantic pattern, East Atlantic/West Russian pattern 
and the Scandinavian Pattern - are investigated, with the aim of identifying 
regions where anomalies in sugar beet production can be forecasted based on 
such indices. This chapter widely discusses how such impact-based forecasting 
information could potentially improve the management of the agricultural 
sector in Europe. 

The results in is Chapter 4 shows that by applying the Fast-and-Frugal Trees, 
high/low classes of sugar beet production could be predicted in 77% of the 
investigated regions, corresponding to 81% of total European sugar beet 
production. For nearly half of these regions, such impact-based information is 
available six or five months before the start of the sugar beet harvesting season, 
where approximately 44% of the mean annual sugar beet is produced. Chapter 
4 finds that winter and spring averages of the indices of atmospheric oscillation 
can be used as a first indicator of summer harvesting performance. The Fast-
and-Frugal Trees models perform more consistently in eastern and western 
Europe. Chapter 4 also argues that the Fast-and-Frugal Trees may not perform 
satisfactorily in some regions due to: (a) management activities, such as 
presence of irrigation, which may inhibit the impacts of unfavourable weather 
conditions; (b) lack of underlying physical relationships between sugar beet 
production and the investigated indices of climate variability; and (c) due to 
limitations in the dataset.  

It is suggested that testing the proposed method on other crop production 
databases and crop types can provide further insights into the strengths and 
limitations of the approach. Therefore in Chapter 5, these considerations are 
implemented further to explore the performance of Fast-and-Frugal trees 
(based on indices of climate variability and vegetation coverage) for predicting 
maize yields in Kenya. 

Research question 4| How can information about climate variability be used to 
increase the cost-effectiveness of ex-ante risk financing programmes?  

Chapter 5 evaluates the cost-effectiveness of ex-ante cash transfers during the 
growing season of maize leveraged by a novel impact-based forecasting model. 
It compares the costs of ex-ante cash transfers with the costs of ex-post cash 
transfers after harvesting in five districts in Kenya. First, a forecast model using 
Fast-and Frugal Trees is developed that unravels early warning relationships 
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between indices of climate variability (Net Precipitation and the El Niño 
Southern Oscillation), vegetation coverage (normalized difference vegetation 
index), and maize yields at multiple lead times before the maize harvesting 
season. The cost-effectiveness of ex-ante cash transfers during the growing 
season is evaluated prompted by the expected probabilities of low maize yield 
that are obtained from the Fast-and-Frugal trees models. These costs are 
compared with the costs of ex-post cash transfers after harvesting.  

Results show that the Fast-and-Frugal Trees models have skill to forecast low 
maize yields in all five districts, and that in most cases, models have predictive 
skill already six months before the start of the harvesting season. The model 
correctly forecasts “below yield threshold” 85% of the time, across different low 
yield percentiles, districts, and lead times. The models' performance improves 
towards the end of the growing season driven by a decrease of 29% in the 
probability of False Alarms. The Fast-and-Frugal Trees models improve with 
shorter lead times because information concerning climate variability and 
vegetation coverage during the final months of the growing season is added to 
the model. When assuming a perfect forecast (Hits = 100% and False 
Alarms = 0%), cash transfers can be most cost-effective ex-ante at a lead time of 
6 months. Moreover, when using actual forecasts based on the Fast-and-Frugal 
trees predictions, results demonstrate that ex-ante cash transfers can often be 
more cost-effective than ex-post cash transfers, especially for the more 
extreme yield deficits (yields that are equal or below the 15% or 20% percentile 
of the observed maize yield time series). The costs of ex-ante cash transfer for 
compensating farmers during years of extreme yield deficits can be, on average, 
29% and 14% lower than ex-post cash transfers. Consequently, early response 
can yield significant cost savings. 

Chapter 5 highlights that multiple challenges exist for operationalizing cash 
transfers based on indicators of droughts. For instance, taking adequate actions 
in response to early warnings of drought risk based on indices of climate 
variability requires an in-depth understanding of the potential impact and 
timing of a hazard. Further recommendations on how to reduce risks using 
impact-based forecasting and assessment are provided in Chapter 6. 

Research question 5| How can the reduction of disaster risks be achieved by 
improving our understanding and prediction of the impacts associated with 
large-scale climate variability? 

Globally, the El Niño Southern Oscillation (ENSO) is the most important mode of 
climate variability, and has been linked with changes in hydrometeorological 
extremes and corresponding socio-economic impacts at different scales. A good 



 

Synthesis | 147 

understanding of risks during ENSO extremes is key for adequate response. 
Chapter 6 has shown that ENSO may increase the risk of water scarcity and low 
crop yields globally, and change the probabilities of extreme rainfall, and coastal 
and river flooding. Moreover, climate forecasts can predict the El Niño Southern 
Oscillation months in advance, enabling stakeholders to take disaster risk 
reducing actions. Chapter 6 discusses some examples of organizations that 
already use ENSO forecasts for reducing risks are provided. For instance, an El 
Niño contingent insurance product has been developed for the region of Piura 
(Peru) to compensate firms for lost profits or extra costs likely to occur as a 
result of floods. Moreover, Chapter 6 acknowledges that some constrains to 
action still exist to respond to ENSO forecasts such as the uncertainties 
surrounding ENSO's influence on the likelihood of droughts or floods. 
Nevertheless, this chapter concludes that ex-ante information regarding the 
spatial configuration of risk leveraged by impact-based forecasts with long lead 
times, such as the ones developed in Chapter 2-5, could support a shift towards 
a more anticipatory and preventative risk management. 

This thesis demonstrates several opportunities to reduce the risk of disasters by 
responding to forecasts of the indices of climate variability. Chapter 2 highlights 
that the El Niño Southern Oscillation, the North Atlantic Oscillation, and the East 
Atlantic pattern can be forecasted with varying levels of skill and lead times, and 
that seasonal risk outlooks could potentially be developed based on forecasted 
values of the indices of climate variability. The findings of this study, in 
combination with such risk outlooks, could provide information on whether 
flood impacts in upcoming seasons are likely to be higher or lower than 
average, which could be useful for flood disaster preparedness. For example, 
the European Union's Solidarity Fund, holding €500 million per year to help 
member states finance disaster losses, is greatly affected by large-scale 
correlations in flood losses (Jongman et al., 2014). Taking into account some of 
the long-term forecasting of climate variability anomalies in the design and 
budgetary planning of international finance mechanisms could reduce the 
chance of such a fund facing unexpected pay-outs across large regions in 
Europe, and thereby reduce the chance of fund depletion.  

Furthermore, Chapter 3 argues that major floods can be driven by large-scale 
atmospheric oscillations, and as result such flood events may increase the 
pressure on trans-national risk reduction and risk transfer mechanisms due to 
the high interdependencies of flood hazard across European regions. The 
spatial-temporal information of the probability of flood losses, in combination 
with average costs of flood events, may be useful for decision-makers to guide 
flood preparedness actions. Some of the models presented in Chapter 3 may be 
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transformed into an impact-based flood forecasting system when a relationship 
between the indices of atmospheric oscillations and flood losses are found 
either one season ahead, or when the indices of atmospheric oscillation can be 
predicted at a seasonal lead time or longer. For instance, the ex-ante 
information regarding the spatial configuration of risk could support insurance 
or reinsurance companies in allocating and managing portfolios more efficiently 
in order to comply with the EU solvency requirements, which demands that 
(re)insurers have adequate reserves for 99.5% of potential loss events 
(European Parliament and Council, 2009).  

Findings of Chapter 4 could support agricultural stakeholders in implementing a 
large range of actions throughout the growing season based on the provided 
long lead time impact information. For instance, six months before harvesting, if 
climatic conditions indicate shortage in production, tactical measures can be 
taken to increase supplies as follows: (1) better preparation or further 
investment in responsive irrigation schemes as sugar beet is particularly 
sensitive to water deficits in early spring (Clarke et al., 1993; Romano et al., 
2012); (2) taking measures to prevent freeze damage to crops such as active 
methods (e.g. adding heat and covering crops) and passive methods (e.g. 
proper scheduling of planting within the safe freeze-free period) as night frost 
in spring can damage sugar beet and delay seed germination (Pidgeon et al., 
2001; Snyder & de Melo-Abreu, 2005); and (3) before planting, producers could 
decide to reduce their financial losses by purchasing appropriate crop insurance 
products against deviations from their long-term yields. Additional actions are 
proposed for shorter lead times that can strengthen the European agricultural 
climate resilience. 

Chapter 5 provides recommendations on ways to potentially increase the 
efficiency of existing cash transfer systems. Currently, the Kenya Hunger Safety 
Net Programme triggers two types of cash transfers (standard and emergency 
payments) based on a single satellite Vegetation Condition Index (VCI). The cash 
transfer do not depend on field assessment, and emergency payments are 
made monthly in any sub-county when the VCI hits the scale up threshold (from 
moderate to extreme drought), and payments are suspended when the 
threshold is no longer reached for that month  (National Drought Management 
Authority, 2016). The use of a single drought indicator may not provide a 
comprehensive assessment of drought impact, and can occasionally trigger 
payments in situations where drought conditions are not evolving (National 
Drought Management Authority, 2016). The National Drought Management 
Authority could potentially improve the reliability of cash transfers and 
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anticipate pay-outs by including other drought early warning indicators, such as 
the ones adopted in this investigation.  

This thesis advances the understanding on links between climate variability and 
weather-related impacts of both floods and droughts, which can be used for 
generating impact-based forecasting and triggering early action. The outcomes 
of this thesis highlighted some key challenges and topics that require further 
investigation in future research.  

7.3.1 Climate variability and impacts 

Improving our understanding of the impacts of climate variability requires more 
investigation on the dynamics of climate variability  

Despite an increased understanding of the dynamics and the improved 
“forecastability” of indices that represent climate variability, uncertainties 
regarding their physical mechanisms and expected outcomes still remain. 
Therefore, further research is required to enhance the understanding of the 
physical processes that cause climate variability, both for the current climate 
and under future climate scenarios. For instance, a recent study (Huang et al., 
2018) investigated NAO variability under various climate forcings, and 
concluded that the effects of uniform sea surface temperature warming and 
direct CO2 radiative forcing could enhance westerly winds at mid-high latitudes, 
which intensifies NAO variability. This study also suggests that changes in 
meridional temperature gradient and in westerly wind in response to changes 
in sea surface temperature patterns are not uniform among the models. This 
indicates that the responses of NAO to sea surface temperature alterations is 
still unclear (Huang et al., 2018). Furthermore, despite progress in 
understanding ENSO dynamics in the past decade, ENSO’s characteristics have 
been changing during the last millennium (Cobb et al., 2003;Trenberth & 
Stepaniak, 2001), which may be due to the combination of its natural variability 
and anthropogenic forcing (Yeh et al., 2018). Moreover, some climate models 
suggest that ENSO teleconnections will change because of anthropogenic 
forcing, while other research suggests that changes in ENSO teleconnections in 
a warmer world are still unclear (Cai et al., 2014, 2015; Collins et al., 2010; 
Dommenget & Yu, 2017). Consequently, reducing uncertainties in the forecasts 
of indices of climate variability is intrinsically aligned with a better 
understanding of its physical processes. 

Improving our understanding on the impacts of climate variability requires better 
data and a thorough investigation on the relationships between human and 
natural systems 
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Large-scale climate variability and hydrometeorological hazards only partly 
explain in flood and drought risk. This is because the severity of disasters and 
their consequent losses not only depends on the intensity and frequency of 
hazards but are strongly influenced by the mutual interactions between 
humans and the natural systems. Socioeconomic development plays a major 
role in flood and drought risk, and alters the relationship between 
hydrometeorological hazards and their resulting impacts (Jongman et al., 2015). 
While better and more granular flood and drought impact datasets are needed 
for better assessing links between climate variability and impacts, a more 
comprehensive understanding of the interactions between human responses to 
the natural system is also required for a more realistic representation of 
disaster risks. Recent studies have shown that flood and drought risks are 
shaped by a range of nonlinear and complex relationships between humans and 
the natural system, such as risk perception, adaptation decisions, trust in 
authorities and awareness (Aerts et al., 2018; Di Baldassarre et al., 2018; 
Veldkamp et al., 2017; Wens et al., 2019). Therefore, understanding trends in 
flood and drought impacts can only be partially explained by estimating 
hydrometeorological changes. Overcoming these limitations would enable a 
better understanding of how the variability in the climate may unfold into 
socioeconomic impacts, and therefore novel modelling approaches such Agent-
Based Modelling that include human responses to risks should be further 
developed in the future.   

7.3.2 Impact-based forecasting 

Impact-based forecasting can be enhanced by improving the forecasting skill and 
lead time of indices of climate variability  

Since seasonal forecasts only have moderate levels of skill in predicting 
hydrometeorological conditions, it is important to explore different approaches 
to use variables of seasonal forecasts with improved skill, such as those of large-
scale climate variability (Ceglar et al., 2017). For instance, improvements in 
seasonal forecasting systems have allowed skilful predictions of the winter NAO 
and ENSO to be extended to more than a year ahead (Dunstone et al., 2016; 
Gonzalez & Goddard, 2016), while EA summer and autumn anomalies have 
been hindcasted with a lead time of 1 to 2 months (Iglesias et al., 2014). This is 
leveraged by a substantial progress in understanding potential sources of 
predictability coupled with model improvements. Yet, producing a reliable 
forecast of the indices of large-scale climate variability is still challenging. For 
instance, in 2014 the National Oceanic and Atmospheric Administration Climate 
Prediction Center issued a forecast in early July that indicated close to 80% 
chance of a strong El Niño forming in that year during the Northern Hemisphere 
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fall. However, sea surface temperature anomalies began to decay, and seasonal 
forecasts became increasingly uncertain by the end of 2014 (McPhaden, 2015). 
Furthermore, NAO seasonal predictability is limited to winter and spring months 
only (Dunstone et al., 2016; Li, 2010), while EA predictability is limited to 
summer and autumn months (Iglesias et al., 2014; Wulff et al., 2017). Seasonal 
predictions of the EAWR and SCA are currently unavailable. Therefore, 
generating and extending the predictability of the indices of climate variability 
would allow for seasonal predictions of teleconnections and impacts, which 
could potentially be developed into impact-based forecasting. Therefore, 
improving the forecasting skill of indices of climate variability and making it 
available at longer lead times it is an important step to achieve impact-based 
forecasting. 

Impact-based forecasting can be harnessed by combining the forecast of indices 
of climate variability with socioeconomic impacts of floods and droughts 

Further value could be added to the forecasts of indices of climate variability by 
combining them with information on the resulting flood and drought losses, 
thereby enabling the seasonal forecasting of those socioeconomic impacts. 
Such seasonal outlooks could provide information on emerging flood and 
drought seasonal impacts, which could be useful for flood and drought risk 
preparedness. Ex-ante information regarding the spatial configuration of risk 
could support a more efficient allocation of financial resources and actions, and 
the development of disaster financing schemes in developed and developing 
countries that could alleviate the abrupt financial burden of disasters. 
Therefore, future research should focus on further understanding the link 
between indices of large-scale climate variability and the socioeconomic impact 
of floods and droughts, which would allow combining such information with 
skilful forecasts to develop seasonal flood and drought risk outlooks. Risk 
information with long lead times can support a shift towards a more 
anticipatory and preventative risk management, as urged by the Sendai 
Framework for Disaster Risk Reduction (UNISDR, 2015b). 

7.3.3 Early Action 

Leveraging early action requires exploring the benefits of acting early  

Despite advances in early warning systems, forecast information is rarely used 
for triggering and financing early actions. Scaling up early actions, and 
overcoming the institutional and financial barriers to actions based on 
forecasts, requires an understanding of the potential benefits associated with 
appropriate early interventions while avoiding impacts. Despite this need, 
assessments of the costs and benefits of ex-ante and ex-post actions are largely 
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missing in the literature. Therefore, more research should be performed to 
assess the incentives for early action, and to better guide the understanding of 
the benefits of acting upon emerging drought and flood risks in association with 
forecasting model uncertainties. Throughout this thesis, it was argued that 
providing timely finance prior to a disaster can be more cost-effective than 
investing in post-disaster expenditures. Such cost-effectiveness was shown 
despite model uncertainties and price variations in an exercise in which farmers 
could be compensated for expected failed yields during the growing season of 
maize. These findings suggest that early response could yield significant cost 
savings, and can potentially increase the effectiveness of existing early action 
systems. However, the primary limitation of this investigation was to assume 
that prices are solely dependent on the national supply of maize, when in reality 
prices are associated with a combination of factors including supply and 
demand in neighbouring regions and global price shocks (Brinkman et al., 2010). 
Therefore, the macro spatial scale dynamics of price variability, such as the risk 
of multiple breadbasket failures (Janetos et al., 2017), should be further 
investigated for a more realistic estimation of the cost-effectiveness of early 
actions. Furthermore, cost-effectiveness of early action analysis could be 
further performed for other (multi-)hazards. The relative importance of such 
investigations lies primarily in the fact that humanitarian needs are often 
heavily underfunded (UNOCHA, 2018), and therefore finding ways to improve 
the cost-effectiveness of existing early action budgets would allow for 
maximizing benefits while avoiding human suffering and losses. As suggested in 
this thesis, developing more proactive disaster preparedness and prevention 
could help buffer the impacts of future risks. 

Leveraging early action requires mainstreaming disaster risk reduction into flood 
and drought risk management and policies  

The indices of climate variability investigated in this thesis have been linked to 
socioeconomic impacts in large parts of the world, by increasing the likelihood 
of extreme events such as floods and droughts. Climate forecasts can predict 
some of these indices several months in advance, and therefore impact-based 
forecasts can be produced. Some governments and humanitarian organizations 
are increasingly taking precautionary measures to reduce the risk of disaster 
based on these forecasts. Consequently, there are more and more examples of 
good practices of actions taken to reduce the socioeconomic burden of extreme 
events based on impact-based forecasts, such as the pilots of the forecast-
based financing projects established by the Red Cross Red Crescent (Coughlan 
De Perez et al., 2015) and the Food and Agricultural Organization (FAO, 2019). 
Consequently, an enhanced understanding of current and future (multi-)risks, at 
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all scales, is needed to foster improvement in the management of hazards 
driven by climate variability, and to mobilize innovation and finance that 
enables risk-informed sustainable development. Multiple challenges can be 
observed for operationalizing forecast-based early action for droughts and 
floods. Taking actions in response to early warnings of drought and flood risks 
based on indices of climate variability requires an in-depth understanding of the 
potential impact, scale, aid-triggering thresholds, severity and timing of a 
disaster (Wilkinson et al., 2018). Given these challenges, communicating and 
mobilizing funds to mitigate climate variability-related impacts remains difficult, 
which includes translating uncertain early warning information into multiple 
and flexible early actions. However, there has been a growing interest from 
development agencies, governments and the humanitarian community in 
mainstreaming disaster risk reduction actions for sustainable development by 
tackling underlying risk factors before a disaster, even at the cost of “acting in 
vain”. The potential to act in vain based on forecasts, and the lack of measured 
benefits of early action, are important political disincentives to integrate 
forecast-based actions in international development financing and national DRR 
strategies (Wilkinson et al., 2018). Although “False Alarms” are often not 
appreciated, such early actions offer opportunity for building up risk awareness 
and can provide benefits even if a disaster does not materialise. Currently, 
there is a strong will to institutionalise predictable and faster early action in 
humanitarian responses and government risk-financing (Wilkinson et al., 2018). 
Developing standard operating procedures with an agreed set of actions, 
thresholds and funding will increase confidence and mainstream forecast-based 
actions. Therefore, further research should be carried out to identify and 
comprehend the underlying interests and incentives that are relevant to 
stakeholders if early warning early action is to become best practice. 
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Extreme phases of the El Niño Southern Oscillation (ENSO) show relationships 
with economic damages due to disasters worldwide. Climate forecasts can 
predict ENSO months in advance, enabling stakeholders to take disaster risk 
reducing actions. An understanding of risks during ENSO extremes is key for 
adequate response. Here, we review the effects of ENSO on disaster risks, 
including droughts and floods. We show that ENSO may increase the risk of 
water scarcity and low crop yields globally, and change the probabilities of 
extreme rainfall, and coastal and river flooding. We provide recommendations 
on how to reduce risks using ENSO forecasts. 
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The recent 2015-16 El Niño event was one of the strongest ever recorded. El 
Niño conditions began to emerge in mid-2014 and intensified throughout 2015. 
El Niño conditions contributed to severe droughts and water shortages in Africa 
for two consecutive years, and increased food insecurity and famine (Funk et 
al., 2019; Heino et al., 2018). Donors, such as the European Union, raised funds 
to more than €500 million to address the impacts related to the ensuing 
drought and water shortage crisis in East Africa (Francis, 2017). Simultaneously, 
the 2015-16 El Niño contributed to severe flooding in the northwest of Latin 
America, forcing the evacuation of more than 150,000 people in Paraguay, 
Argentina, Brazil and Uruguay (BBC News, 2015).  

El Niño conditions occur when there are unusually warm oceanic and 
atmospheric conditions in the tropical Pacific. This can cause the trade winds, 
that usually blow towards Indonesia and Australia, to slow down or even 
reverse direction, allowing the warmer water to spread east towards the South 
American coast (Funk et al., 2019). As opposed to El Niño, the so-called La Niña 
emerges when unusually cold oceanic and atmospheric conditions are observed 
in the eastern tropical Pacific. El Niño and La Niña events occur roughly every 
two to seven years. These oceanic and atmospheric variations are known as the 
El Niño Southern Oscillation (ENSO), which is the dominant driver of interannual 
variability in global climate conditions (McPhaden, 2015). ENSO can affect 
weather patterns worldwide through so-called “teleconnections” (Santoso, 
Mcphaden, & Cai, 2017). In turn, these changes in weather patterns can 
influence the frequency and severity of extreme hazards, including droughts 
and floods. The impacts of ENSO on floods and droughts are well-studied at 
local and regional scales, while increased attention has recently been placed on 
understanding of how ENSO impacts societies at the global scale (Emerton et 
al., 2017; Heino et al., 2018; Muis et al., 2018; Veldkamp et al., 2015; Ward et 
al., 2015).  

Over the past decades, the skill of ENSO predictions has improved considerably. 
The 2015-2016 event was predicted months in advance (Bureau Of 
Meteorology, 2017). In general,  ENSO events can now be predicted with 
reasonable skill at lead times up to 14 months (Gonzalez & Goddard, 2016). 
Reliable forecasts enable the prioritization of risk reduction efforts in the most 
affected regions ahead of extreme events, and allow for early warning and 
action by local governments and non-governmental organizations, such as the 
Red Cross and Red Crescent Climate (Coughlan De Perez et al., 2015), especially 
when there is a good understanding of the likelihood of societal impacts that 
may be influenced by ENSO.  
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Since such impact-based information with long lead times may also 
substantially support the shift towards more anticipatory and preventative risk 
management, as urged in several international frameworks such as the Sendai 
Framework for Disaster Risk Reduction (UNISDR, 2015b), in this article we 
summarize recent research on the global effects of ENSO on disaster risk. This is 
especially timely given that current forecasts give a 76% chance of El Niño 
conditions developing again in the boreal spring of 2019 (IRI, 2019). 

6.2.1 Drought and water scarcity  

The connection between ENSO events and rainfall deficits, droughts, and water 
scarcity is increasingly well understood (Dilley & Heyman, 1995). Connections 
between ENSO and low river flows exist in northern America (Ryu et al., 2010), 
Southeast Asia (Lü et al., 2011), Southern Africa (Richard et al., 2001), and 
Australia (Chiew et al., 1998). Worldwide, disasters triggered by droughts occur 
twice as often during the second year of an El Niño event than during other 
years, especially in Southern Africa and Southeast Asia (Richard et al., 2001). 
Regions where rainfall and hydrological extremes are influenced by ENSO (Dai & 
Wigley, 2000; Dettinger & Diaz, 2000) also show a connection between ENSO 
and annual total water availability or water scarcity conditions. In these areas, 
rainfall deficits during an ENSO event feed droughts, which can result in water 
scarcity events if consumptive demands outweigh the available water resources 
(Dilley & Heyman, 1995). In result, regional water scarcity conditions become 
more extreme under El Niño and La Niña phases for almost one-third of the 
global land area (Veldkamp et al., 2015). 

6.2.2 Food security and agricultural production, with cascading effects on 

livelihoods 

ENSO influences global agriculture in several ways, including changes in 
hydrometeorological conditions (Figure 6.1) (Guimarães Nobre et al., 2017; 
Ward et al., 2010) and climate extremes (Trenberth & Fasullo, 2012), which may 
affect crop yields (Heino et al., 2018) and export prices. 

The global mean yields of major crops, such as maize, rice, and wheat, are likely 
to be below normal during both El Niño and La Niña conditions (-4.0 to -0.2%). 
However, El Niño events are linked to increased soybeans yields (+2.9 to 
+3.5%), especially in the United States of America and Brazil, where most of the 
global soybean is currently produced (Iizumi, Luo, et al., 2014). Furthermore, a 
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recent study has found that ENSO may affect both negatively and positively 
crop productivity in 28% of global cropland area, inhabited by 1.5 billion people 
(Heino et al., 2018). 

ENSO can affect food security and agricultural production, with cascading 
effects on livelihoods and health. For instance, the rapid shift between El Niño 
and La Niña conditions in 2016 intensified the shortage of rainfall, driving major 
hydrological crises over Eastern and Southern Africa, where 29 million people 
were faced with food insecurity due to the combination of drought exacerbated 
conditions (Funk et al., 2019). Furthermore, recent work has shown that the 
2015–2016 El Niño event may have triggered a series of global disease 
outbreaks in areas affected by ENSO teleconnections (Anyamba et al., 2019). 

6.2.3 Extreme rainfall and river flooding  

El Niño or La Niña intensify extreme rainfall mostly in boreal winter, and least 
during summer seasons (Sun et al., 2015). The deviations from normal 
conditions are often asymmetric, which means that most parts of the world 
experience higher or lower extremes for either El Niño or La Niña conditions. 
Extreme rainfall during ENSO conditions can be up to 50% higher compared to 
neutral conditions. Extremes are more severe in the boreal winter during El 
Niño, mainly in central and southern North America, southeast and northeast 
China, and southeast South America, and during La Niña in western Pacific areas 
(Sun et al., 2015). 

ENSO exerts a significant influence on annual floods in river basins covering 
over a third of the world’s land surface (Ward et al., 2014). While, about one-
fifth of the global land surface is more likely to experience abnormally high river 
flow during El Niño conditions, especially in the tropics (Emerton et al., 2017). 
As with extreme precipitation, these deviations from normal conditions are 
often asymmetric between ENSO phases (Lee et al., 2018). ENSO also influences 
the duration of flooding, with flood duration appearing to be even more 
sensitive to ENSO than is the case for flood frequency (Ward, Kummu, & Lall, 
2016). In terms of economic damage, El Niño years are associated with 
anomalies in expected annual urban damage in 29% of the Earth’s land surface, 
with significantly higher urban damage for 10% and lower damage for 19%. 
During La Niña years, significant  anomalies are simulated across 23% of the 
Earth’s land surface, with higher damage for 10% and lower damage for 13% 
(Ward et al., 2014). 
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Figure 6.1 Typical changes in rainfall observed during (A) El Niño and (B) La Niña episodes. Areas 
in green or yellow are likely to become wetter or dryer than normal during the indicated months. 
Source: http://iri.columbia.edu/enso/ 

6.2.4 Coastal hazards  

ENSO events have been linked with increased probabilities of beach erosion and 
coastal flooding around the world. Two mechanisms cause this (Muis et al., 
2018): (1) warmer ocean temperatures and changes in ocean circulation can 
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induce an increase in mean sea level; and (2) perturbations of the tropical and 
subtropical atmospheric circulation influence storm activity around the world. 
Increases in mean sea level particularly affect the tropical Pacific (Muis et al., 
2018). El Niño and La Niña conditions result in changes of mean sea level of 
± 20-30 cm (Becker et al., 2012). During the five largest El Niño events between 
1979 and 2012, mean sea levels along the North American west coast were on 
average 0.11 m higher (Barnard et al., 2015). In regions with a large change in 
mean sea-level and a small tidal range, these variations in mean sea level can 
have a significant influence on the occurrence of extremes (Muis et al., 2018). 
ENSO events can also induce  changes in tropical cyclone activity (Saunders et 
al., 2000), as well as extra-tropical cyclone activity (Eichler & Higgins, 2006). 
Such changes in storm activity can have an impact on the occurrences of storm 
surge and waves. A recent study has shown that ENSO has a significant but 
small effect on the number of people potentially exposed to coastal flooding at 
the globally aggregated scale (Muis et al., 2018). 

6.3.1 Responding to ENSO forecasts 

The likelihood of extreme hazards can vary from year to year due to ENSO. As 
ENSO can be predicted with reasonable skill, individuals, organizations, and 
governments can make use of such ENSO forecasts to take actions that reduce 
the impacts of extreme hazards. In Figure 6.2, we show the global probabilities 
of below- and above-normal precipitation for the 2019 boreal spring season 
based on ENSO forecasts.  

Governments are increasingly interested in using seasonal forecasts of ENSO to 
reduce disaster risk. Peru provides a prime example. In the past, El Niño events 
have contributed to huge economic losses. For example, during the 1982-83 El 
Niño disaster losses exceeded 2 billion USD (Lagos & Buizer, 1992) and during 
the 1996-97 El Niño losses exceeded 3.5 billion USD (UNISDR, 2015a). This is 
because Peru’s main economic activities (e.g. fishing, agriculture and tourism), 
are heavily exposed to the effects of El Niño. In response to the forecast of a 
strong ENSO in 2015, the Peruvian government declared a 60-day state of 
emergency, and spent around 20 million USD for flood and drought prevention. 
This included building reservoirs in areas predicted to be affected by drought, 
dredging and deepening rivers in flood-prone areas, and providing agricultural 
insurance for farmers (Hillier & Magrath, 2016). In addition, an El Niño 
contingent insurance product has been developed for the region of Piura  to 
compensate firms for lost profits or extra costs likely to occur as a result of 
floods (Cavanaugh et al., 2010; Coughlan De Perez et al., 2015). Lastly, to 
reduce the impacts of heavy rains, the Peruvian Red Cross has defined a 
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comprehensive set of early actions based on ENSO forecasts,, which are 
triggered when an ENSO-based threshold is met (German Red Cross, 2016).  

 

 

Figure 6.2 This map shows the likelihood that total 3-month precipitation will be unusually high or 
low between March and May 2019. Source: http://iri.columbia.edu/enso/ 

Similar strategies are being implemented in Africa, where ENSO forecasts are 
used to assist agricultural producers to select crops most likely to be successful 
in the coming growing season (Tall, Jay, & Hansen, 2012). At the same time, 
crop insurance systems based on ENSO forecasts are becoming more 
established. An example is the African Risk Capacity, an index-based insurance 
mechanism for infrequent, severe drought events (African Risk Capacity, 2019). 
Early warning systems, such as the Famine Early Warning System, are providing 
outlooks that help governments and non-governmental organizations to 
foresee humanitarian crises (Funk et al., 2019) and better plan for mitigating 
the upcoming risks. 

6.3.2 Challenges 
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Despite an increased understanding of ENSO and improvements in ENSO 
forecast skill, its socioeconomic impacts continue to surprise the world 
(McPhaden, 2015). Several constrains to action still exist for those who wish to 
respond to ENSO forecasts. First, we need to improve our understanding of 
ENSO dynamics and likelihood. For instance, in 2014 the National Oceanic and 
Atmospheric Administration Climate Prediction Center issued a forecast in early 
July that indicated close to 80% chance of a strong El Niño forming in that year 
during the Northern Hemisphere fall. However, sea surface temperature 
anomalies began to decay, and seasonal forecasts became increasingly 
uncertain by the end of 2014 (McPhaden, 2015). Moreover, uncertainties 
surrounding ENSO’s influence on the likelihood of droughts or floods are high. 
Each ENSO event is unique and can have a different signature. For instance, 
during the strong 2015-16 El Niño, several countries took preparedness 
measures for expected flooding. While Peru experienced severe flooding, no 
floods were registered in other locations with an elevate probability of flooding, 
such as Japan (Emerton et al., 2017). Second, we need to develop a better 
understanding of how ENSO extremes may unfold into socioeconomic impacts.  
This is due to the fact that the severity of these disasters and their consequent 
losses not only depends on the intensity and frequency of hazards, but on the 
mutual interactions between social and physical systems (Di Baldassarre et al., 
2015). Third, we need to improve our understanding on the influence of climate 
change on ENSO dynamics given that the changing climate may also have an 
effect on the frequency and strength of ENSO events (Cai et al., 2014). Hence, it 
is important to enhance our knowledge of how ENSO may respond to climate 
change in the future. 

Given these challenges, communicating and mobilizing funds to mitigate ENSO-
related impacts remains difficult, which includes translating uncertain early 
warning information into multiple and flexible early actions. However, in 
response to the growing interest in forecasts from development agencies, 
governments and the humanitarian community (Tozier de la Poterie et al., 
2018), there has been an emerging literature on ways to ‘automatically’ trigger 
early action based on forecast systems, using predetermined thresholds. For 
instance in 2015, based on an El Niño forecast, funds were released through the 
World Food Program for Zimbabwe and Guatemala to help both countries to 
reduce the negative consequences of droughts (World Food Programme, 2016). 
Furthermore, since mid-2015, the Central Emergency Response Fund has 
allocated 117.5 million USD to 19 countries for early action in response to 
disasters associated with El Niño. Reflecting recent pledges and new funding 
requests of a total of 5 billion USD by twenty-three countries, the funding gap in 
2016 was almost 3.1 billion USD (UNOCHA, 2016b). Ex-ante information 
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regarding the spatial configuration of risk could support a more efficient 
allocation of financial resources and actions, and the development of disaster 
financing schemes that could alleviate the abrupt financial burden of disasters. 
For instance, a recent study showed that ex-ante cash transfers before a 
drought can be more cost-effective than ex-post compensations based on 
indicators of climate variability, including ENSO (Guimarães Nobre et al., 2019). 

ENSO events have been linked to high economic damages in large parts of the 
world, by increasing the likelihood of extreme events such as floods and 
droughts. Climate forecasts can predict ENSO several months in advance, and 
some governments and humanitarian organizations are increasingly taking 
precautionary measures to reduce disaster risks based on these forecasts. To 
take adequate action requires an understanding of the hotspots of risks during 
El Niño and La Niña events. There are more and more examples of good 
practices of actions taken to reduce the socioeconomic burden of extreme 
events based on ENSO forecasts, such as the ones carried in Peru. 
Consequently, an enhanced understanding of current and future risks, at all 
scales, is needed to foster improvement in the management of ENSO-related 
hazards, and to mobilize innovation and finance that enable risk-informed 
sustainable development. However, several constrains to action still exist for 
those who wish to respond to ENSO forecasts, such as the limited 
understanding of ENSO dynamics; the relationship between ENSO extremes and 
socioeconomic impacts; and the influence of climate change on future ENSO 
extremes. Nevertheless, we believe that ex-ante information regarding the 
spatial configuration of risk leveraged by impact-based forecasts with long lead 
times can support a shift towards a more anticipatory and preventative risk 
management, as urged by the Sendai Framework for Disaster Risk Reduction. 
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A variabilidade climática, como por exemplo o fenômeno El Niño-Oscilação Sul, 
desencadeia oscilações anuais de extremos hidrometeorológicos e 
climatológicos, por exemplo, inundações e secas. Todos os anos, esses 
extremos resultam em importantes perdas econômicas em todo o mundo. 
Alguns estudos sugerem progressos na redução da vulnerabilidade social e das 
perdas econômicas decorrentes de inundações nas últimas décadas. No 
entanto, para um efetivo gerenciamento de riscos, uma mudança substancial 
na gestão de desastres é necessária para a redução do risco de desastres (RRD). 
Portanto, um passo importante para alcançar a redução do risco está na 
compreensão de como a variabilidade climática pode resultar em impactos de 
enchentes e secas. 

O impacto de desastres pode ser reduzido quando informações confiáveis sobre 
a previsão de riscos estão disponíveis. Nos últimos anos, sistemas que guiam 
medidas para redução de risco foram criados. Esses sistemas aperfeiçoaram a 
capacidade de previsão de variáveis hidrometeorológicas e climatológicas, 
produzindo previsões de inundação e seca com maior precisão e em prazos 
mais longos. No entanto, ainda existe uma lacuna entre a identificação de 
eventos de risco e informações de impacto, como danos econômicos causados 
por eventos climáticos. Assim, um dos maiores desafios de pesquisa atualmente 
é a transição de “qual é a previsão do tempo?” para “o que o tempo fará?”. 
Informações de previsão que são projetadas para expressar os impactos 
esperados são conhecidas como “previsão baseada em impacto”. 
Recentemente, muitos estudos têm sido publicados descrevendo maneiras de 
adotar automaticamente ações preventivas para reduzir os impactos de 
eventos climáticos com base em sistemas de alerta antecipados. Nesses 
sistemas, as ações preventivas podem ser acionadas quando uma variável 
ultrapassa um certo limite. Por exemplo, os agricultores podem receber 
compensação monetária quando um sistema de alerta antecipado prevê 
déficits de precipitação abaixo de um certo limite crítico, usando índice de 
anomalia de chuvas. No entanto, informações de previsão de enchentes e secas 
permanecem incertas.Do mesmo modo, evidências científicas para os impactos 
benéficos da atuação antecipada com base nas informações de previsão ainda 
são limitadas. Assim, não é sabido como riscos hidrometeorológicos podem 
impactar a os meios de subsistência individuais e a economia. Além disso, as 
diversas partes interessadas muitas vezes não tomam as medidas apropriadas. 
Em conseqüência, grande maioria das informações procedentes de sistemas de 
alerta antecipado não são rotineiramente usadas como base para o 
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financiamento e desencadeamento de ações preventivas contra eventos 
climáticos. 

O principal objetivo desta tese é aprimorar o conhecimento sobre conexões 
entre a variabilidade climática e os impactos decorrentes de inundações e 
secas. Essa associação é investigada em escalas globais a regionais, e em 
diferentes intervalos de tempo, com o objetivo de alcançar uma previsão 
baseada em impacto que possa orientar a implementação de ações antecipadas 
de forma eficaz antes que uma possível seca ou inundação se materialize. 

Em primeiro lugar, usando uma escala pan-Europeia, analisa-se a influência 
espacial e temporal da variabilidade climática em eventos meteorológicos e 
inundações extremas. Isso é realizado investigando a El Niño-Oscilação Sul 
(ENOS), a Oscilação do Atlântico Norte (OAN) e o padrão Atlântico Leste (EA) 
durante suas fases neutras, positivas e negativas, para entender suas relações 
com quatro indicadores de inundação: Ocorrência de Precipitação Extrema, 
Intensidade de Precipitação Extrema, Ocorrência de Inundações e Dano de 
Inundações. Os resultados mostram que os quatro indicadores de inundação 
são fortemente associados com a variabilidade climática. Ambas as fases 
positiva e negativa da OAN e do EA estão associadas a precipitações extremas 
mais frequentes e intensas em grandes áreas da Europa, enquanto o efeito do 
ENOS na intensidade e frequência de precipitações extremas na Europa é muito 
menor. É demonstrado pela primeira vez que tanto as ocorrência de 
inundações como os danos causados por elas na Europa estão fortemente 
associados à variabilidade climática, especialmente no sul e no leste da Europa, 
sendo a associação mais forte observada para a OAN. 

Posteriormente, examinam-se as associações entre os índices de variabilidade 
climática em escalas sazonais (com defasamento e síncronos) e as perdas 
econômicas por inundações em sub-regiões europeias. É dada especial atenção 
à investigação da probabilidade de perdas econômicas decorrentes de cheias 
sazonais com base em índices de variabilidade climática, e à detecção destas 
perdas em escalas sazonais. Os resultados mostram que os índices de 
variabilidade climática podem ser usados para prever as classes de eventos de 
inundação (Danos, Baixo Danos e Médio Danos), principalmente em pelo menos 
2 de 4 estações em todas as sub-regiões da Europa. Além disso, demonstra-se 
que algumas das classes de danos por inundações podem ser previstas com 
antecedência de uma estação de tempo. Isso explica-se pelo fato de poder 
existir uma relação defasada entre os índices de variabilidade climática e os 
danos por inundação em todas as sub-regiões europeias. Observa-se que a 
probabilidade de ocorrência de danos por inundações pode aumentar ou 
diminuir em até ± 100% em comparação com probabilidades históricas. Os 
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resultados possibilitam uma melhor compreensão do efeito combinado da 
variabilidade climática sobre danos por inundações e refletem sobre como 
essas informações baseadas em impacto podem ser usadas para aperfeiçoar as 
práticas de gestão de risco de inundação. 

Além disso, esta tese identifica regiões onde anomalias na produção agrícola na 
Europa podem ser previstas com base nos índices de variabilidade climática 
usando uma técnica de Machine Learning  chamada “Fast-and-Frugal trees”. Os 
resultados mostram que, aplicando a técnica de Fast-and-Frugal trees, pode-se 
prever altas/ baixas classes de produção de beterraba em 77% das regiões 
investigadas, correspondendo a 81% da produção total de beterraba na Europa. 
Para quase metade destas regiões, essas informações baseadas no impacto 
estão disponíveis seis ou cinco meses antes do início da colheita da beterraba, 
onde aproximadamente 44% da beterraba média anual é produzida. Com base 
nessas constatações, esta tese discute como as informações de previsão 
baseadas no impacto podem melhorar amplamente a gestão do setor agrícola 
na Europa. Para fornecer mais informações sobre o vigor e as limitações da 
abordagem, o método proposto é posteriormente testado em outro banco de 
dados de produção de culturas e tipo de cultura. 

A técnica de Fast-and-Frugal trees também é aplicada a um estudo no Quênia 
(baseado em índices de variabilidade climática e cobertura de vegetação) para 
prever a produção de milho. Esta informação de alerta antecipado de baixa 
produção de milho é utilizada para avaliar a relação custo-eficácia de fornecer 
aos agricultores transferências de recursos antecipados, ao invés de compensar 
as perdas de rendimento após uma seca. Os resultados mostram que os 
modelos Fast-and-Frugal Trees têm habilidade para prever a baixa produção de 
milho nos cinco distritos quenianos. Na maioria dos casos, os modelos possuem 
capacidade de previsão seis meses antes do início da época de colheita. Embora 
não seja perfeito, o modelo prevê corretamente 85% das vezes os diferentes 
percentuais de baixa produção do milho nos distritos testados e nos diversos 
períodos de tempo. O desempenho dos modelos melhora no final do ciclo de 
crescimento, impulsionado por uma diminuição de 29% na probabilidade de 
alarmes falsos. Ao assumir uma previsão perfeita (sucesso = 100% e alarmes 
falsos = 0%), as transferências em recursos ex-ante podem ser mais custo-eficaz 
com 6 meses de antecedência. Além disso, ao usar as previsões reais com base 
em previsões de modelos de Fast-and-Frugal trees, os resultados demonstram 
que as transferências monetárias ex-ante podem ser mais eficazes em termos 
de custo do que as transferências tardias, especialmente para os déficits mais 
extremos. Múltiplos desafios para operacionalizar transferências de renda 
baseadas em indicadores de secas são identificados. Por exemplo, tomar ações 
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adequadas em resposta a alertas antecipado de riscos de seca baseados em 
índices de variabilidade climática requer uma compreensão profunda do 
impacto e do momento de risco. 

Apesar desses desafios, ao fornecer uma melhor compreensão dos riscos 
associados com a variabilidade climática, esta tese apresenta recomendações 
de políticas que mostram oportunidades para reduzir o risco de desastres. Esta 
tese apresenta exemplos de instituições que já utilizam as previsões do ENOS 
para reduzir riscos, mas também reconhece que ainda existem algumas 
restrições à ação antecipada para responder às previsões do ENOS. Portanto, 
conclui-se que informações antecipadas sobre configurações espaciais do risco 
de desastres, alavancadas por previsões baseadas no impacto e com longos 
prazos de precauções, podem servir de base para uma mudança na gestão de 
risco que tenha um foco antecipado e preventivo. 

Esta tese destaca alguns dos principais desafios e tópicos que requerem mais 
investigação em futuras pesquisas. Por exemplo, sugere-se que, para melhorar 
a compreensão dos impactos, é necessária uma pesquisa sobre a dinâmica da 
variabilidade climáticadesses eventos. Também propõe-se que, para melhorar a 
compreensão sobre os impactos da variabilidade climática, faz-se necessário 
melhores dados e uma investigação sobre as relações humanas e naturais. Além 
disso, esta tese indica que estudos futuros podem melhorar a previsão baseada 
no impacto, melhorando a habilidade de previsão com longos prazo de índices 
de variabilidade climática, e combinando a previsão de índices de variabilidade 
climática com impactos socioeconômicos de inundações e secas. Por fim, mais 
pesquisas podem ser realizadas para identificar os interesses e incentivos 
subjacentes que são relevantes para as partes interessadas na integração da 
redução de risco de desastres na gestão e políticas de risco de inundações e 
secas, em associação com a exploração dos benefícios das ações preventivas. 
Esta tese contribui para o avanço do entendimento sobre relações entre a 
variabilidade climática e os impactos relacionados ao clima, tanto de 
inundações quanto de secas. Resultados desta tese podem ser utilizados para 
gerar previsões baseadas em impactos e ações preventivas. 
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Klimaatvariabiliteit, zoals de El Niño-Southern Oscillation, zorgt voor jaarlijkse 
fluctuaties in hydro-meteorologische en klimatologische extremen. Elk jaar 
veroorzaken zulke extremen, zoals overstromingen of droogtes, wereldwijd 
voor hoge economische schades. Ondanks dat een aantal studies suggereren 
dat de kwetsbaarheid en financiële verliezen van overstromingen de laatste 
paar decennia afnemen, vergt rampenrisicovermindering (disaster risk 
reduction; DRR) nog steeds een substantiële verandering van het managen van 
rampen naar het managen van risico’s. Om DRR te bereiken is het daarom 
belangrijk om te begrijpen hoe klimaatvariabiliteit kan resulteren in impacts van 
overstromingen en droogtes. 

De impact van rampen kan worden verminderd wanneer betrouwbare, 
voorspelde risico informatie beschikbaar is om preventieve 
risicoverminderingsmaatregelen aan te sturen. De afgelopen jaren hebben deze 
systemen de kwaliteit van voorspellingen over hydro-meteorologische en 
klimatologische variabelen verbeterd, door voorspellingen over de omvang van 
overstromingen en droogtes met hogere precisie op langere tijdschalen dan 
voorheen te produceren. Er is echter nog steeds een gat in het vertalen van 
extreme gebeurtenissen naar impact informatie, zoals de schade van weer-
gerelateerde gebeurtenissen. Eén van de grootste uitdagingen is daarom de 
overgang van “wat voor een weer wordt het?“ naar “wat zal het weer doen?”. 
Voorspellingen die zijn ontworpen om de verwachte impact uit te drukken, 
worden “impact-based forecasting” genoemd. Recente literatuur beschrijft 
manieren om automatisch preventieve maatregelen, gebaseerd op vroege 
waarschuwingssystemen, te activeren om zo de impact van weer-gerelateerde 
gebeurtenissen te verminderen. In zulke systemen kunnen vroege acties 
worden geactiveerd wanneer een voorspelling een bepaalde drempelwaarde 
overstijgt. Boeren kunnen bijvoorbeeld van tevoren financieel gecompenseerd 
worden wanneer neerslagtekorten onder een bepaalde drempelwaarde 
voorspeld worden, gebruik makende van indicatoren van neerslaganomalieën. 
Echter, ondanks vooruitgang in overstromings- en droogtevoorspellingen, 
blijven bijbehorende onzekerheden van de voorspellingsinformatie groot, en is 
wetenschappelijk bewijs voor de gunstige impact van vroeg handelen 
gebaseerd op voorspellingen nog beperkt. Doordat men niet precies weet hoe 
hydro-meteorologische gebeurtenissen een impact kunnen hebben op mens 
hun leven, levensonderhoud en op de economie, treffen stakeholders vaak niet 
de juiste maatregelen. Als gevolg hiervan wordt het grote deel van vroege 
waarschuwingen niet routinematig gebruikt als een basis voor het financieren 
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en activeren van preventieve maatregelen tegen weer-gerelateerde 
gebeurtenissen.  

Het hoofddoel van deze scriptie is om het begrip van de verbanden tussen 
klimaatvariabiliteit en weer-gerelateerde impacts van zowel overstromingen als 
droogtes te verbeteren. Dit verband wordt onderzocht van globale tot regionale 
schaal en op verschillende tijdschalen, met als doel om een impact-based 
forecast te bereiken die effectief de implementatie van vroege handelingen kan 
leiden voordat een potentiele droogte of overstroming plaatsvindt.  

Als eerste worden de ruimtelijke en temporele invloeden van 
klimaatvariabiliteit op extreme meteorologische- en 
overstromingsgebeurtenissen op pan-Europese schaal geanalyseerd. Dit wordt 
gedaan door de El Niño Southern Oscillation (ENSO), de North Atlantic 
Oscillation (NAO) en de East Atlantic pattern (EA) te onderzoeken tijdens hun 
neutrale, positieve en negatieve fases, om zo hun relatie tot vier 
overstromingsindicatoren te begrijpen: het voorkomen van extreme neerslag, 
de intensiteit van extreme neerslag, het voorkomen van overstromingen en 
schade van overstromingen. Resultaten laten zien dat klimaatvariabiliteit sterke 
connecties heeft met de vier overstromingsindicatoren. Zowel de positieve als 
de negatieve fase van de NAO en EA worden in verband gebracht met meer 
frequente en intensere extreme neerslag over grote gebieden in Europa, terwijl 
de effecten van ENSO op de intensiteit en frequentie van extreme neerslag in 
Europa veel kleiner is. Voor de eerste keer wordt aangetoond dat de schade van 
overstromingen en het voorkomen van overstromingen in Europa sterk 
geassocieerd worden met klimaatvariabiliteit, met name in Zuid- en Oost-
Europa, waarbij de sterkste link geobserveerd wordt voor de NAO.  

Vervolgens wordt de rol van seizoensgebonden vertragingen en gelijktijdige 
indices van klimaatvariabiliteit op overstromingsverliezen op sub-regionale 
Europese schaal onderzocht. Speciale aandacht wordt gegeven aan het 
onderzoeken van de waarschijnlijkheid van seizoensgebonden 
overstromingsverliezen gebaseerd op indices van klimaatvariabiliteit, en om te 
detecteren of sommige van deze verliezen een seizoen eerder voorspeld 
kunnen worden. Resultaten laten zien dat de indices van klimaatvariabiliteit 
gebruikt kunnen worden om classificaties van schadelijke, laag schadelijke en 
medium schadelijke overstromingsgebeurtenissen te voorspelling, veelal in op 
zijn minst twee van de vier seizoenen in alle Europese deelregio’s. Bovendien 
wordt aangetoond dat de classificaties van overstromingsverliezen een seizoen 
eerder voorspeld kunnen worden omdat er een vertraagde relatie kan bestaan 
tussen de indices van klimaatvariabiliteit en de overstromingsverliezen in alle 
Europese deelregio’s. We zien dat de waarschijnlijkheid van het voorkomen van 
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overstromingsverliezen kan toe- of afnemen met tot wel ±100% in vergelijking 
met historische kansen. De resultaten bieden een beter begrip van het 
gecombineerde effect van klimaatvariabiliteit op overstromingsverliezen, en 
reflecteren op hoe zulke op impact gebaseerde informatie kan worden gebruikt 
om overstromingsrisicomanagement te verbeteren.  

Bovendien identificeert deze scriptie regio’s waarin anomalieën in Europese 
gewassenproductie kunnen worden voorspeld aan de hand van de indices van 
klimaatvariabiliteit, gebruik makend van een Machine Learning techniek 
genaamd “Fast-and-Frugal Trees”. Resultaten laten zien dat door Fast-and-
Frugal Trees toe te passen, hoge/lage klassen van suikerbietenproductie in 77% 
van de onderzochte regio’s kunnen worden voorspeld, overeenkomend met 
81% van de totale Europese suikerbietenproductie. Voor bijna de helft van deze 
regio’s is zulke op impact gebaseerde informatie zes of vijf maanden voor het 
begin van het suikerbietenoogst beschikbaar, wanneer ongeveer 44% van de 
gemiddelde jaarlijkse suikerbieten worden geproduceerd. Gebruikmakend van 
deze resultaten bediscussieert deze scriptie hoe impact-based forecasting het 
management van de agrarische sector in Europa sterk kan verbeteren. Om 
verdere inzichten in de sterke en zwakke punten van deze aanpak te 
verschaffen, wordt de voorgestelde methode vervolgens getest op andere 
datasets van gewassenproducties en typen gewassen.  

De Fast-and-Frugal Trees aanpak wordt ook toegepast op een case in Kenia 
(gebaseerd op indices van klimaatvariabiliteit en vegetatie dekking) om 
maïsoogsten te voorspellen. Dit vroege waarschuwingssysteem van lage 
maïsoogsten wordt gebruikt om de kostenefficiëntie te analyseren van het van 
tevoren uitbetalen van boeren in plaats van het compenseren van gederfde 
inkomsten na een droogte. Resultaten laten zien dat de Fast-and-Frugal Trees 
modellen vaardig zijn in het voorspellen van lage maïsoogsten in alle vijf 
Keniaanse districten. In de meeste gevallen hebben de modellen al zes 
maanden voor het begin van het oogstseizoen een voorspellende vaardigheid. 
Ondanks dat het niet perfect is, voorspelt het model 85% van de tijd correct de 
“lagere oogst drempelwaarde”, over verschillende percentielen, districten en 
looptijden van de opbrengsten. De modelprestaties verbeteren richting het 
einde van het groeiseizoen, gedreven door een afname van 29% in de kans op 
een False Alarm. Wanneer we een perfecte voorspelling aannemen (Hits=100% 
en False Alarms=0%), zijn geldtransacties zes maanden van tevoren het meest 
kosteneffectief. Bovenal, wanneer gebruik gemaakt wordt van de 
daadwerkelijke voorspellingen gebaseerd op de Fast-and-Frugal Trees 
voorspellingen, laten resultaten zien dat geldtransacties vooraf vaak meer 
kosteneffectief zijn dan geldtransacties achteraf, in het bijzonder voor de meer 



 298 

extreme oogsttekorten. Meerdere uitdagingen voor het operationaliseren van 
geldtransacties gebaseerd op indicatoren van droogtes worden geïdentificeerd. 
Zo heeft het ondernemen van gepaste maatregelen naar aanleiding van vroege 
waarschuwingen van droogte-risico’s gebaseerd op indices van 
klimaatvariabiliteit bijvoorbeeld een diepgaand begrip nodig van de potentiele 
impact en timing van een extreme gebeurtenis.  

Ondanks zulke uitdagingen, biedt deze scriptie beleidsaanbevelingen waarin we 
kansen laten zien om het risico op rampen te verminderen, door te reageren op 
voorspellingen van klimaatvariabiliteit, en door het bijbehorende risico beter te 
begrijpen. Het laat voorbeelden zien van organisaties die al gebruik maken van 
ENSO-voorspellingen om risico’s te verminderen, maar erkent ook dat een 
aantal beperkingen voor vroeg handelen met betrekking tot de ENSO-
voorspellingen nog bestaan. Ondanks dit concluderen we dat vooraf bekende 
informatie over de ruimtelijke configuratie van risico, bevorderd door impact-
based forecasting met lange looptijden zoals degene ontworpen in deze 
scriptie, een verschuiving richting een meer anticiperende en preventieve 
risicomanagement kan ondersteunen.  

Deze scriptie laat een aantal belangrijke uitdagingen en onderwerpen zien die in 
de toekomst verder onderzocht moeten worden. Zo wordt gesuggereerd dat 
onderzoek naar de dynamiek van klimaatvariabiliteit nodig is om het begrip van 
de impacts van klimaatvariabiliteit te verbeteren. Verder wordt ook voorgesteld 
om dit begrip van de impacts van klimaatvariabiliteit te verbeteren, betere data 
en een onderzoek naar de relatie tussen mensen en natuurlijke systemen nodig 
is. Bovendien laat deze scriptie zien dat toekomstig onderzoek naar impact-
based forecasting verbeterd kan worden door de voorspellingsvaardigheden en 
looptijden van indices van klimaatvariabiliteit te verbeteren, en door de 
voorspelling van de indices van klimaatvariabiliteit met de socio-economische 
impact van overstromingen en droogtes te combineren. Als laatste kan 
toekomstig onderzoek worden uitgevoerd om de onderliggende interesses en 
motieven die belangrijk zijn voor stakeholders om DRR te integreren in 
overstromings- en droogterisicomanagement te identificeren, in combinatie 
met het verkennen van de voordelen van vroeg handelen. Deze scriptie biedt 
vooruitgang in het begrip van de connecties van klimaatvariabiliteit en weer-
gerelateerde impacts van zowel overstromingen als droogtes, die gebruikt 
kunnen worden om impact-based forecasts te maken en vroegtijdige 
handelingen te activeren. 
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Supposing that everything goes well during my Ph.D. defense, I will be 31 years 
old by the time I close my student’s life cycle. 28 out of 31 years were within 
some sort of educational institution, of which 9 were spent abroad (Ireland, 
Germany, Denmark and the Netherlands). In these past 9 years, everyone who 
I’ve met, whether it was a friend, a colleague, a child has had a great influence 
in my life. On the other hand, 21 out 31 years, I spent in Brazil, and the person 
who supported me the most back then was my mom. Therefore, I would like to 
dedicate the first lines of this acknowledgement to thank her, the person 
behind this achievement. Before my brothers and me, my mom was the first 
from our family to attend university. My dream of pursuing this journey was 
also born due to the importance that she gave to academic studies, and I’m glad 
that she will be here to see me finishing my doctorate.  

Mãe, sei que você não entende bem o que aconteceu durante esses quatro 
anos, mas sim, o “curso” (ou doutorado) encerrou-se e devo isso 
principalmente a você. Através do seu esforço diário, você pode me 
proporcionar uma educação de qualidade mesmo tendo que colocar em 
segundo plano seus próprios interesses. Você é uma peça-chave nesse 
processo, e estou muito feliz em compartilhar deste momento com você. 

My deep gratitude to those who gave me the chance to start a Ph.D.: my 
supervisors Professor Philip Ward and Professor Jeroen Aerts. You chose me 
among 150 candidates, and even though we will never know whether I was the 
best candidate for this position, I sincerely think that we were a good match. I 
never thought that four years into investigating disasters would bring me so 
much “joy”. Philip, I look up to you in many levels: you are a respected 
researcher, a dedicated professor and an excellent beer drinker. I really 
appreciate your positive attitude, openness for new ideas and loud laughs. 
Jeroen, I can’t thank you enough for all of your support, guidance and 
leadership through these four years. Big thanks for inviting me to visit you in 
Santa Barbara during your sabbatical. I feel that this trip was a milestone in my 
Ph.D. studies. Philip and Jeroen, I could not have made a better choice. 

Special appreciation goes to the seven members of my promotion committee: 
Associate Professor Kees Boersma, Associate Professor Liz Stephens, Associate 
Professor Micha Werner, Dr. Peter Salamon, Professor Bart van den Hurk, 
Professor Maarten van Aalst and Associate Professor Dim Coumou. Your 
comments and feedback helped me shape this book. I highly value your efforts 
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to attend the ceremony, and the time taken to assess my dissertation. I look 
forward to future opportunities for collaboration. 

My Ph.D. studies was funded by the EU Horizon 2020 Improving Predictions and 
Management of Hydrological Extremes (IMPREX) project. This grant has allowed 
me to attend (several) courses, workshops, conferences and remarkable 
general assemblies. It was a great honour to work, learn, dance and sing with all 
project’s partners. Special thanks goes to all 18 members of IMPREX early 
career scientist crew for making the GAs extra fun. 

Throughout these four years, I had the pleasure of collaborating further with 
great institutions and researches. Many thanks to my external co-authors 
Bettina Baruth (EU Joint Research Centre), Brenden Jongman (World Bank), 
Matteo Giuliani (Politecnico di Milano), Johannes Hunink (FutureWater), Frank 
Davenport (UC Santa Barbara), Chris Funk (UC Santa Barbara) and Greg Husak 
(UC Santa Barbara). Without the experiences, encouragement and support from 
these peers, this book would not exist. 

I cannot imagine a better place for doing a Ph.D. than the IVM. Everybody 
knows that the research is great, but for me what makes a place really special is 
the people. I believe that the best part of working with such nice people like 
these fellows at IVM is that I didn’t feel like I was working at all. To the (former) 
IVM’s support staff - Marjolijn, Corry, Rita and the cleaning team - thank you for 
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Appendix A1 Indices of climate variability 

Negative (positive) ENSO phases are classified when the threshold of – (+) 0.5°C 
is met for a minimum of five consecutive overlapping 3-month periods. The 
“Neutral” phase is obtained for periods when these thresholds are not reached. 
Both the NAO and EA were classified using a ± 1σ. 

 

Figure A1 Identification of positive, negative and neutral phases of the indices of climate 
variability from 1950-2014. Dashed line illustrates the threshold level used to derive the classes. 
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Appendix A2 European sub-regions  

European sub-regions were defined using the classification of the United 
Nations Statistics Division. Countries following such categorization, but not 
displayed in the map, were excluded from the analysis because flood events 
were not registered there by the NatCatSERVICE database of Munich Re. 

 

Figure A2 European sub-regions classification by the United Nations Statistics Division. 
Classification available at: http://unstats.un.org/unsd/methods/m49/m49regin.htm 

 

http://unstats.un.org/unsd/methods/m49/m49regin.htm
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Appendix A3 Distribution of reported Flood Occurrence and Flood Damage 

To calculate Flood Damage we deflated the nominal flood damage recorded 
from 1980-2012 into 2010 US$ values, and converted these into Purchasing 
Power Parity (PPP) equivalent. PPP “represents the number of units of a 
country’s currency required to buy the same amount of goods and services in 
the domestic market as U.S. dollar would buy in the United State” (The World 
Bank, 2016b). This index simply compares prices in different countries to detect 
which countries currency are currently under- or overvalued. Therefore, for 
comparison purpose, flood damage figures in this study are in 2010 
international US dollars on PPP basis. 

In Figure A3.A we show the reported flood events and damage recorded in the 
Munich Re database per sub-region and season. For the 22 years’ time-series, 
1227 flood events were reported in total. Between 1980 and 2012, western 
Europe was the sub-region with the highest number of (reported) flood events. 
For eastern Europe, approximately 90% (235 out of 289) of the floods occurred 
in spring and summer, while events in southern Europe occurred mostly during 
autumn and winter. Northern and western Europe often experience floods 
during summer and autumn, reaching up to 64% and 65% of the total events, 
respectively.  

In terms of reported flood damage, southern and eastern Europe show the 
highest values. In southern Europe, most of the total reported damage occurs 
during autumn (Figure A3.B). Summer floods in eastern, western and northern 
Europe cause the highest economic damage there. 



 

Appendix | 159 

 

Figure A3 Distribution of (a) Flood Occurrence and (b) Flood Damage registered by the Munich Re 
database between 1980 and 2012 for each European sub-region and season. To calculate Flood 
Damage we deflated the flood damage recorded from 1980 to 2012 into 2010 US$ values, and 
converted them into Purchasing Power Parity (PPP), as described in section 2.2.2.2. 
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Appendix A4 Stablishing a normal value for Flood Occurrence and Flood Damage 

 

 

 

Figure A4.1 Comparison of methodologies to analyse the pan-European average percentage 
anomalies in Flood Occurrence and Flood Damage per season, during the positive and negatives 
phases of the different climate indices (compared to neutral). Results in (a) and (b) used a 5-years 
running mean, and in (c) to (d) the 32-years average. 
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Figure A4.2 Comparison of methodologies to analyse the average percentage anomalies in flood 
occurrence per season and sub-region within the positive and negative phases of the different 
climate indices (compared to neutral). Results in (a) - (d) used a 5-years running mean, and in (e) - 
(h) the 32-years average. 
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Figure A4.3 Comparison of methodologies to analyse the average percentage anomalies in flood 
damage per season and  sub-region within the positive and negative phases of the different 
climate indices (compared to neutral). Results from (a) to (d) used a 5-years running mean, and 
from (e) to (h) the 32-years average. 
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Appendix A5 Bootstrapping the percentage flood anomaly 

We tested the significance of the percentage anomalies using bootstrapping, 
which we describe it in five steps. For simplification, we give an example of how 
the bootstrap was applied to ENSO phases, however the same methodology 
was repeated for the NAO and EA: 

(1) From the 29 samples (from 1982 to 2010), we calculated the average 
anomaly in Flood Occurrence and Flood Damage between El Niño and neutral 
years and between La Niña and neutral years; 

(2) Then, we applied bootstrapping with replacement to obtain 10,000 
samples of length referent to the number of years of each phase in the original 
series. For example, for ENSO+ we randomly selected 9 values 10,000 times as 
there are 9 ENSO+ years in the 29 years;   

(3) For each ENSO phase, we calculated the average anomalies in Flood 
Occurrence and Flood Damage of these random series obtained in step 2. 
Therefore we extracted 10,000 random average anomalies  per ENSO phase; 

(4) Next, we calculated the difference for each of the 10,000 samples 
between ENSO- and ENSO neutral, and ENSO+ and ENSO neutral; 

(5) Lastly, we obtained values for the 5% and 95% (for the “Strong” class) 
and 10% and 90% (for the “Weak” class)  percentiles from the distribution of 
10,000 random samples, and compared these to the averages obtained in step 
1. 
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Appendix A6 Mean OER and IER per season and phase of the indices of climate 

variability  

 

 
 

Figure A6.1 Mean occurrence of extreme rainfall per season and phase of the indices of climate 

variability. 
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Figure A6.2 Mean intensity of extreme rainfall per season and phase of the indices of 
climate variability. 
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Appendix A7 Comparing the significance of the indicators   

    

Table A7 Qualitative summary of the effects of NAO, EA and ENSO on Flood Damage and Flood 
Occurrence. Arrows show the effect of NAO, EA and ENSO on Flood Damage where a significant 
effect is found on Flood Occurrence. “   ” describes significant high anomalies, while “    ” 
describes significant low anomalies (compared to neutral phases). Colours characterize the 
phases of the indices of climate variability. Blank spaces mean that no significant effect was found 
on the Flood Occurrence indicator for the specific season. 

 

Season Indicator South East West North Europe

Flood Occurrence

Flood Damage

Flood Occurrence

Flood Damage

Flood Occurrence

Flood Damage

Flood Occurrence

Flood Damage

NAO+ NAO- EA+ EA- ENSO+ ENSO- No Significance

        Decrease

Winter

Spring

Summer

Fall

                 Increase
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Appendix A8 Comparison to previous research   

In this section, we compare in more detail the findings of our research for each 

European sub-region with past studies. We particularly highlight past 

researches that dealt with the challenges of observing ENSO’s influence in 

Europe. 

A8.1 Southern Europe 

NAO during winter has a north–south dipole, and NAO negative phases are 
related to a higher intensity and recurrence of winter extreme rainfall in parts 
of southern Europe, which is in agreement with other studies (Casanueva et al., 
2014; Lopez-Bustins et al., 2008; Quadrelli et al., 2001; Rios-Cornejo et al., 
2015; Rodó et al., 1997). During spring, we found that the relationship with 
NAO and the occurrence and intensity of extreme rainfall is less strong, and EA+ 

(EA-) is linked to less (more) frequent and intense extreme rainfall over sparse 
areas in southern Europe, which agrees with previous research (Casanueva et 
al., 2014). In summer, we observed that the overall NAO pattern weakens 
comparatively with the winter season, since the NAO's action centres tend to 
retreat northward, which is also reported by others (Rios-Cornejo et al. 2015; 
Barnston & Livezey 1987). Positive phases of NAO and EA during summer are 
linked to less frequent and intense extreme rainfall in vast area of southern 
Europe. In autumn, we observe that during EA+ extremes are, in parts of Spain 
and Italy, significantly more intense, while more frequent in south-eastern 
Europe during both phases of ENSO.  

Southern Europe, especially the Iberian Peninsula, is especially susceptible to 
ocean-atmospheric oscillations that can lead to anomalies in flood occurrence. 
On the one hand, that is due to its geographical position, located between the 
tropical and middle latitudes (Casanueva et al., 2014). Additionally, southern 
countries such as Italy, Croatia, Bosnia and Herzegovina, Albania, Slovenia and 
Greece have some of the lowest protection standards against flooding in 
Europe. According to a modelling study by Scussolini et al. (2015), large portions 
of many of these countries have flood protection structures that are only 
capable of coping with flood events of up to a 20-year return period. 
Consequently, many locations in southern Europe are not well adapted to deal 
with extreme flood events of low probability and high impact; this has been the 
case in Italy and Spain, which have previously suffered major flash floods and 
river flood disasters (Barredo, 2007). 

A8.2 Eastern Europe 
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For winter, past studies suggested that the NAO+ and EA+ phases are linked to 
heavier precipitation over North-eastern areas, and a higher number of 
consecutive wet days (Casanueva et al., 2014; Krichak et al., 2014). The authors 
also pointed that the NAO- causes a reverse pattern, which is also in line with 
the results of our study. In spring, NAO- phases are linked to more frequent 
extreme rainfall, also observed by others (Krichak et al., 2014). In summer, NAO- 
is related to drier conditions in the Balkans. In addition, in autumn we observed 
less intense and frequent extreme rainfalls during both phases of NAO and EA+, 
which are also in line with past research (Simon O. Krichak et al., 2014).  Drier 
conditions over this region during this phase is also highlighted by others 
(Casanueva et al., 2014; López-Moreno & Vicente-Serrano, 2008). 

Eastern European countries compose one of the sub-regions with the lowest 
standards for flood protection in the continent, and the FLOPROS database by 
Scussolini et al. (2015) suggests that countries such as Romania, Moldova, 
Ukraine, Belarus and Hungary have an average protection level of 1/20-years 
(Scussolini et al., 2015). Such factors should be taken into account when 
analysing the positive anomalies associated with the different phases of the 
indices of climate variability in registered floods events and their respective 
damages. It suggests that eastern Europe is influenced by climate variability in 
terms of flood occurrence and flood damage. 

A8.3 Western Europe 

In western Europe, in terms of peak discharge, several previous studies have 
found low sensitivity of west and central European rivers to NAO. Previous 
investigation emphasize that these regions comprise a transition zone of the 
NAO effect, and consequently, precipitation and river discharge only correlate 
weakly to the NAO index, which is line with our findings (Bouwer et al., 2006). In 
addition, other research  indicate that NAO+ (NAO-) are associated with higher 
winter precipitation over northern (southern) Europe, while anomalies in 
rainfall in large western areas may be connected to other atmospheric indices 
such as the frequency of west circulation (FWC), and the north to south sea 
level pressure difference across the European continent (SLPD) (Bouwer et al., 
2008). In complement, authors indicated that winter floods on the Elbe and 
Oder river have no significant correlation with the NAO index (Mudelsee et al., 
2004).  However, more recent studies point that NAO and EA positive phases 
are strongly related to a higher intensity and recurrence of winter extreme 
rainfall in the Atlantic Basin of western Europe, which is also highlighted by our 
findings (Casanueva et al., 2014; Simon O. Krichak et al., 2014).  In summer and 
autumn NAO+ phases are related to drier conditions in large areas of western 
Europe (Casanueva et al., 2014). 
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A8.4 Northern Europe  

Winter precipitation extremes in northern Europe are greatly connected to 
NAO+ and EA+. Such climatic variations bring more frequent extremes and 
intense heavy rainfall in the Atlantic Basin of northern Europe for the season 
compared to the neutral phase (Casanueva et al., 2014), especially over areas of 
the Norwegian coast, which is in agreement with past research (Uvo, 2003). 
Other studies also highlighted that NAO+ phases cause heavier winter 
precipitation (Scaife et al., 2008) and increased consecutive wet days in the 
north of Europe (Casanueva et al., 2014). NAO+, EA+, and ENSO+ phases are 
related with more intense and frequent extremes during spring in Sweden. 
However, extreme precipitation during summer is mostly related to NAO- 
phases. This could be the result of changes in the spatial configuration of the 
NAO influence in summer compared to winter, as in summer the positive centre 
of the NAO index moves towards north-eastern areas (Bladé et al., 2012; 
Casanueva et al., 2014). 

Northern areas are under strong influence of climate oscillations, especially 
during winter and spring. However, higher anomalies of flood occurrence and 
flood damage are little perceived. The high levels of flood protection in 
northern Europe, as modelled and observed by Scussolini et al. (2015), may 
reduce the influence of climate variability in terms of flood occurrence and 
flood damage. 

A8.5 ENSO’s influence in Europe 

ENSO is the most important mode of global climate variability, and has been 
linked with interannual changes in rainfall in many parts of the world, especially 
in the tropics.  ENSO has a strong signal in rainfall at extratropical regions of 
North America and Australia, however ENSO’s influence in the Atlantic and 
Europe is not clear yet, and several past studies attempted to identify ENSO 
teleconnections in these regions (Scaife, 2010). 

The ENSO signal in Europe is not strong but may still be important under certain 
conditions, depending on how particularly strong is the ENSO event 
(Brönnimann, 2007). Past researches identified ENSO’s signal in rainfall in 
southern Europe (Frias et al., 2010; Rocha, 1999; Rodó et al., 1997). For 
instance, a recent study found that ENSO influences rainfall in the Iberian 
Peninsula mostly during  spring and autumn seasons  with opposite sign 
(Casanueva et al., 2014); others suggest that some of the effects undergo a 
seasonal modulation or are nonlinear or asymmetric (Brönnimann, 2007). 
Previous research linked ENSO+ to changes in the intensity of extreme rainfall in 
the Southern Europe (Casanueva et al., 2014; Mariotti et al., 2002; Shaman & 
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Tziperman, 2011; Sun et al., 2015), which is in agreement with our results. In 
our findings, the changes in the intensity of extreme rainfall linked to ENSO+ is 
mostly limited to Spain.  

 During spring and autumn, ENSO is linked with a dipole of vorticity anomalies in 
the exit region of the North Atlantic jet along the European coast, whose 
anomalies extend to the surface and alter onshore winds and moisture fluxes 
(Shaman, 2014). Consequently, onshore moisture advection appears to be a 
main driver of ENSO-related mean precipitation changes over western Europe 
(Shaman, 2014). However, in terms of ENSO’s influence on the intensity of 
extreme precipitation over western Europe, we observe only minor significant 
differences, which is in line with the results of a recent investigation (Sun et al., 
2015). In addition, ENSO also affects northern Europe during winter 
asymmetrically for both positive and negative phases. 

Furthermore, impacts of ENSO on climate may vary throughout the developing, 
mature or decaying its phases (Huang et al., 2012; Ronghui & Yifang, 1989; 
Wang & Gu, 2016; Zhang et al., 1999). Developing and decaying stages of El 
Niño and La Niña events show some common features (e.g., over eastern North 
America), but also significant differences in the pattern of observed and 
simulated anomalies, suggesting that the impacts of ENSO on the North 
Atlantic-European climate vary significantly between individual events (Mathieu 
et al., 2004). However, recent study suggests that discharges in the Danube 
River in Central Europe demonstrate same-signal response pattern throughout 
the developing, mature and decaying El Niño phases (Liang et al., 2016). 
Therefore, it is plausible that the results related to ENSO shown in Figures 2.2-
2.3 may differ if the developing/decaying phase of ENSO is considered for the 
seasons. 
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Appendix B1 Seasonal distribution of flood losses 

In the appendix Figure B1, we illustrate the seasonal distribution of flood events 

recorded in the 37 years’ time series per country, and the adopted UN sub-

regional division. The largest share of the total seasonal losses is attributed to 

southern Europe, where floods in fall account for 21% of all losses (appendix 

Figure B2). However, flood losses in western Europe account for 41% of all 

losses recorded between 1980 and 2016 (approximately 185 billion US$ 2016). 

In terms of annual distribution, summer is the season with the highest share of 

losses (37% of total), while in total winter is the season with the lowest share of 

losses (25 % of total).  

 

Figure B1 Flood events recorded during the period of 1980 - 2016 per season and sub-region. 
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Appendix B2 Distribution of flood losses 2016 per season and sub-region 

 

Figure B2 Distribution of flood losses recorded during the period of 1980 - 2016 per season and 
sub-region. 
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Appendix B3 Indices of atmospheric oscillations 

 

Figure B3 Time series of the 3-month average values of the five indices of atmospheric oscillations 
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Appendix B4 Measuring similarities among indices of atmospheric oscillations.  

In the appendix Figure B4 and B5, we display the measured auto- and cross-
correlation of the indices of atmospheric oscillations. We observe in Figure B4 
that at lag 3 (seasonal lag), the autocorrelation is positive and below 0.25 for 
the four northern atmospheric oscillations. For the SOI index, we use an 
average over NDJ months, and the SOI’s autocorrelation at lag 12 (one year) is 
slightly below zero. All the considered indices of atmospheric oscillations thus 
appear weakly auto correlated. In Figure B5, we show that the cross-correlation 
between the indices using a 3-month average at lag 0 is mostly low. 
Consequently, the low level of auto and cross-correlation between the indices 
of atmospheric oscillation should not negatively affect the performance of the 
logistic regressions. 

 

 

Figure B4 Autocorrelation coefficient of the five indices of atmospheric oscillations using a 3-
month average at different lags. 
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Appendix B5 Cross-correlation coefficient 

 

Figure B5 Cross-correlation coefficient of the five indices of atmospheric oscillations at lag 0 using 
a 3-month average. Insignificant cross-correlations are shown with an ‘X’ through the value (p-
value < 0.1) 
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Appendix B6 Probability of Damaging flood events based on synchronous 

oscillations 

 

Figure B6 Confidence interval of the percentage increase and decrease in the probability of 
Damaging flood events based on synchronous oscillations. 
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Appendix B7 Probability of Damaging flood events based on seasonally lagged 

oscillations. 

 

Figure B7 Confidence interval of the percentage increase and decrease in the probability of 
Damaging flood events based on seasonally lagged oscillations. 
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Appendix B8 Probability of Low Damaging flood events based on synchronous 

oscillations 

 

Figure B8 Confidence interval of the percentage increase and decrease in the probability of Low 
Damaging flood events based on synchronous oscillations. 
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Appendix B9 Probability of Low Damaging flood events based on seasonally 

lagged oscillations 

 

Figure B9 Confidence interval of the percentage increase and decrease in the probability of Low 
Damaging flood events based on seasonally lagged oscillations. 
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Appendix B10 Probability of Medium Damaging flood events based on 

synchronous oscillations 

 

Figure B10 Confidence interval of the percentage increase and decrease in the probability of 
Medium Damaging flood events based on synchronous oscillations. 
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Appendix B11 Probability of Medium Damaging flood events based on seasonally 

lagged oscillations 

 

Figure B11 Confidence interval of the percentage increase and decrease in the probability of 
Medium Damaging flood events based on seasonally lagged oscillations. 
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Appendix C1 Estimate of the sugar beet harvest area 

 

 

Figure C1 Estimated sugar beet area (in hectare) per grid cell (0.08° x 0.08°) obtained from the 
MIRCA 2000 project. For further description of dataset refer to previous studies (Portmann, 
Siebert, & Döll, 2010; Sacks et al., 2010). Dataset is available online at http://www.uni-
frankfurt.de/45218023/MIRCA?legacy_request=1 
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Appendix C2 Study case regions 

 

 

 
Figure C2 NUTS2 regions investigated in this study. 
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Appendix C3 Summary of statistics 

 

Table C3 Summary of statistics presenting mean, standard deviation and length of sugar beet 
production dataset for 207 NUTS2 regions investigated in this study from 1975-2013.   

NUTS2 

Mean Value 
Sugar Beet 
Production 

(in 1000 tons) 

Standard 
Deviation of 
Sugar Beet 
Production 

(in 1000 tons) 

Length 
of data 

NUTS2 

Mean Value 
Sugar Beet 
Production 

(in 1000 tons) 

Standard 
Deviation of 
Sugar Beet 
Production 

(in 1000 tons) 

Length 
of data 

AT11 276,28 276,28 39 FR91 600,65 600,65 37 

AT12 2047,30 2047,3 39 FR92 182,16 182,16 37 

AT13 22,47 22,47 39 FR93 4,85 4,85 37 

AT21 0,98 0,98 39 FR94 1621,94 1621,94 37 

AT22 14,26 14,26 39 HU10 98,99 98,99 27 

AT31 383,26 383,26 39 HU21 274,40 274,4 27 

BE10 2,77 2,77 39 HU22 600,86 600,86 27 

BE21 36,89 36,89 39 HU23 315,51 315,51 27 

BE22 394,58 394,58 39 HU31 151,64 151,64 27 

BE23 338,40 338,4 39 HU32 922,16 922,16 27 

BE24 507,99 507,99 39 HU33 489,58 489,58 27 

BE25 795,36 795,36 39 IE01 91,71 91,71 39 

BE33 756,37 756,37 39 IE02 1079,85 1079,85 39 

BE34 8,46 8,46 39 ITC1 349,30 349,3 39 

BE35 670,75 670,75 39 ITC4 1027,49 1027,49 39 

BG31 31,33 31,33 27 ITF1 253,15 253,15 39 

BG32 78,70 78,7 27 ITF2 112,30 112,3 39 

BG33 21,90 21,9 27 ITF3 61,68 61,68 39 

CZ01 23,99 23,99 27 ITF4 643,52 643,52 39 

CZ02 1020,14 1020,14 27 ITF5 114,44 114,44 39 

CZ03 237,45 237,45 27 ITF6 110,80 110,8 39 

CZ04 251,88 251,88 27 ITH1 1,62 1,62 39 
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CZ05 773,31 773,31 27 ITH2 7,08 7,08 39 

CZ06 795,80 795,8 27 ITH3 1817,47 1817,47 39 

CZ07 344,02 344,02 27 ITH4 200,11 200,11 39 

CZ08 179,23 179,23 27 ITH5 4073,35 4073,35 39 

DE11 755,29 755,29 39 ITI1 271,24 271,24 39 

DE12 277,68 277,68 39 ITI2 142,78 142,78 39 

DE13 28,01 28,01 39 ITI3 1139,66 1139,66 39 

DE14 63,45 63,45 39 ITI4 220,10 220,1 39 

DE21 531,53 531,53 39 LT00 840,75 840,75 27 

DE22 1197,99 1197,99 39 LV00 315,42 315,42 27 

DE23 330,27 330,27 39 NL11 798,15 798,15 39 

DE24 93,61 93,61 39 NL12 246,91 246,91 39 

DE25 355,81 355,81 39 NL13 751,28 751,28 39 

DE26 1083,94 1083,94 39 NL21 125,71 125,71 39 

DE27 451,22 451,22 39 NL22 243,42 243,42 39 

DE30 0,64 0,64 39 NL31 15,29 15,29 39 

DE40 702,26 702,26 39 NL32 450,96 450,96 39 

DE50 0,70 0,7 39 NL33 486,50 486,5 39 

DE60 2,20 2,2 39 NL34 939,97 939,97 39 

DE71 553,28 553,28 39 NL41 765,20 765,2 39 

DE72 79,93 79,93 39 NL42 646,99 646,99 39 

DE73 315,70 315,7 39 PL11 519,81 519,81 27 

DE80 1274,25 1274,25 39 PL12 1022,96 1022,96 27 

DE91 2360,38 2360,38 39 PL21 92,80 92,8 27 

DE92 1921,12 1921,12 39 PL22 159,68 159,68 27 

DE93 1373,65 1373,65 39 PL32 298,47 298,47 27 

DE94 154,78 154,78 39 PL33 421,40 421,4 27 

DEA1 1022,11 1022,11 39 PL34 214,15 214,15 27 

DEA2 2067,79 2067,79 39 PL41 2478,34 2478,34 27 

DEA3 85,05 85,05 39 PL42 646,76 646,76 27 



Appendix | 192 

DEA4 361,25 361,25 39 PL43 129,82 129,82 27 

DEA5 155,91 155,91 39 PL51 1311,76 1311,76 27 

DEB1 138,06 138,06 39 PL52 1001,29 1001,29 27 

DEB2 31,45 31,45 39 PL61 2293,47 2293,47 27 

DEB3 1012,11 1012,11 39 PL62 240,94 240,94 27 

DEC0 5,85 5,85 39 PL63 599,05 599,05 27 

DED2 302,06 302,06 39 PT16 9,91 9,91 37 

DED4 169,39 169,39 39 PT17 14,74 14,74 37 

DED5 404,66 404,66 39 PT18 111,06 111,06 37 

DEE0 2558,20 2558,2 39 PT20 16,50 16,5 39 

DEF0 753,51 753,51 39 RO12 422,81 422,81 27 

DEG0 623,89 623,89 39 RO21 673,22 673,22 27 

DK01 91,57 91,57 39 RO22 177,39 177,39 27 

DK02 872,27 872,27 39 RO31 117,94 117,94 27 

DK03 855,21 855,21 39 RO32 1,11 1,11 27 

DK04 814,13 814,13 39 RO41 37,41 37,41 27 

DK05 386,18 386,18 39 RO42 220,47 220,47 27 

EE00 1,54 1,54 26 SE21 206,24 206,24 30 

EL11 717,67 717,67 39 SE22 2102,53 2102,53 30 

EL12 767,65 767,65 39 SE23 53,02 53,02 30 

EL13 182,59 182,59 39 SK01 53,24 53,24 27 

EL14 427,69 427,69 39 SK02 1127,16 1127,16 27 

EL24 93,00 93 39 SK03 53,35 53,35 27 

ES21 144,25 144,25 39 SK04 71,69 71,69 27 

ES22 26,39 26,39 39 UKD1 9,82 9,82 39 

ES23 156,48 156,48 39 UKD3 3,57 3,57 39 

ES24 63,63 63,63 39 UKD4 12,41 12,41 39 

ES30 3,04 3,04 39 UKD6 6,46 6,46 39 

ES41 3749,21 3749,21 39 UKD7 1,26 1,26 39 

ES42 555,70 555,7 39 UKE1 276,69 276,69 39 



 

Appendix | 193 

ES43 99,26 99,26 39 UKE2 391,99 391,99 39 

ES61 1973,30 1973,3 39 UKE3 66,02 66,02 39 

ES62 62,04 62,04 39 UKE4 70,45 70,45 39 

FI19 290,77 290,77 30 UKF1 325,78 325,78 39 

FI1B 0,90 0,9 30 UKF2 533,68 533,68 39 

FI1C 289,65 289,65 30 UKF3 648,75 648,75 39 

FI1D 290,80 290,8 30 UKG1 380,14 380,14 39 

FI20 17,36 17,36 30 UKG2 243,24 243,24 39 

FR10 3001,08 3001,08 39 UKG3 24,30 24,3 39 

FR21 6641,02 6641,02 39 UKH1 3906,58 3906,58 39 

FR22 10810,33 10810,33 39 UKH2 364,88 364,88 39 

FR23 1717,46 1717,46 39 UKH3 663,21 663,21 39 

FR24 1953,61 1953,61 39 UKJ1 300,71 300,71 39 

FR25 546,24 546,24 39 UKJ3 6,89 6,89 39 

FR26 442,75 442,75 39 UKK1 42,98 42,98 39 

FR30 4378,33 4378,33 39 UKK2 8,63 8,63 39 

FR41 20,35 20,35 39 UKK3 3,69 3,69 39 

FR42 360,29 360,29 39 UKK4 6,87 6,87 39 

FR43 60,59 60,59 39 UKL1 2,27 2,27 39 

FR51 41,51 41,51 39 UKL2 11,21 11,21 39 

FR71 14,00 14 39 UKN0 0,62 0,62 39 

FR72 251,10 251,1 39         
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Appendix C4 Train-test split method 

We cross-validated and pruned the FFTs models using the train-test split 
method, which we describe below in five steps. Pruning is a technique in 
machine learning that reduces the size of decision trees by removing predictors 
that provide little decision power to the model.  

1. Set the maximum number of predictors levels equal to 5, and train the FFTs 
models in 70% of all data. 

2. Test the model in the other 30% remaining; 
3. Calculate the balanced accuracy of the tested model; 
4. Repeat step 1-3 four times adopting a maximum predictors levels equal to 

4, 3, 2 and 1, subsequently;  
5. Select the model and the pruning parameter (predictor’s levels) that 

maximizes the balanced accuracy of the FFTs models. 
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Appendix C5 The AUC index 

 

 

Figure C5 Representation of the AUC index calculated using the trapezoidal rule.  The AUC index 
measures how well the FFT model can distinguish between two classes (low/high). A random 
classification migrates towards the diagonal dashed line.  
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Appendix C6 Bootstrapping and assessing the significance of the AUC index 

We tested the significance of the AUC index at the NUTS2 level using a 
bootstrapping method, which we describe in 5 steps. The bootstrapping 
method is applied after we obtain the FFT model and the pruning parameter 
(described in appendix C8) that maximizes the balanced accuracy. We apply 
bootstrapping to test whether the AUC index of a random series is higher than 
AUC index obtained from the original series. Lastly, we assess the spatial 
significance of the results by applying a Field Significance test using the binomial 
distribution (Livezey & Chen, 1983). This test addresses the null hypothesis that 
the number of significant regions is different to the number of regions that one 
would expect by chance. 
 
1. First, we bootstrap with replacement to obtain 1,000 samples of binary high 

and low sugar beet production events of length referent to the number of 
years of each NUTS2 region. For example, for the NUTS2 region AT11 and 
each lead time, we randomly selected 39 values 1,000 times as there are 39 
years of sugar beet production available;  

 
2. Second, we split the random series into training (70%) and testing (30%) 

data, similarly as applied in the original series.  For example, for NUTS2 
region AT11 the 1,000 training data each have a length of 27 values, while 
the 1,000 testing data have each a length of 12 values; 

 
3. Third, for each NUTS2 region, lead time and testing data, we fitted our best 

performing FFT model. Next, we calculate for each NUTS2 region and lead 
time, 1,000 AUC indices of the tested models;  

 
4. Fourth, for each NUTS2 region and lead time,  we ranked the 1,000 AUC 

indices, and obtained the 90% percentile value (α = 10 %) from the 
distribution of 1,000 AUC indices. Lastly, we compared this value to the one 
obtained in the original series; 

 
5. Fifth, we assessed the large-scale significance of the results by applying a 

Field Significance test using the binomial distribution. The results that were 
found not to be highly significant (P < 0.001) are indicated in Figure 3.1 with 
an asterisk. In other words, regions that were found to be significant only 
due bootstrap test are indicated with an asterisk in Figure 3.1. 
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Appendix C7 Standard classification statistics for areas with predictive skill 
(AUC>0.7) 

 

Table C7.1 Standard classification statistics for best performing FFT at lead time 6. 

NUTS
2 ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR 
(%) 

HR 
(%) 

NPV 
(%) 

PPV 
(%) 

Cues 
Predic
tors 

NA 
Value

s 

AT13 0,75 33 17 67 83 71 80 
NAO;
SOI;E

A 
3 0 

AT21 0,80 0 40 100 60 100 78 

SOI;E
A;NA
O;EA
WR;S

CA 

5 0 

AT22 0,75 50 0 50 100 67 100 
EA;SC
A;NA

O 
3 0 

AT31 0,73 40 14 60 86 75 75 EA 1 0 

BE22 0,70 60 0 40 100 70 100 
SCA;E
A;EA
WR 

3 0 

BE34 1,00 0 0 100 100 100 100 

EAWR
;NAO;
SOI;E

A 

4 0 

CZ01 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ02 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ03 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ04 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ05 0,80 0 40 100 60 100 60 EAWR 1 39 
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CZ06 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ07 0,80 0 40 100 60 100 60 EAWR 1 39 

CZ08 0,80 0 40 100 60 100 60 EAWR 1 39 

DE14 0,80 0 40 100 60 100 78 
NAO;
SCA 

2 31 

DE22 0,71 0 57 100 43 100 56 

SCA;E
AWR;
SOI;N

AO 

4 31 

DE24 0,80 0 40 100 60 100 78 
NAO;
SCA 

2 31 

DE27 0,71 0 57 100 43 100 56 

SCA;E
AWR;
SOI;N

AO 

4 31 

DE50 0,78 11 33 89 67 67 89 
EAWR
;SCA;
NAO 

3 18 

DE72 0,75 0 50 100 50 100 50 
SCA;N
AO;EA

WR 
3 33 

DE94 0,70 0 60 100 40 100 70 NAO 1 32 

DEB2 0,70 0 60 100 40 100 70 NAO 1 31 

DEF0 0,70 60 0 40 100 70 100 
EAWR
;NAO;

EA 
3 9 

DEG0 0,76 20 29 80 71 83 67 EA 1 24 

FR23 0,86 0 29 100 71 100 71 

NAO;
SCA;E
AWR;

EA 

4 2 

FR25 0,75 0 50 100 50 100 67 
EA;EA
WR;S
OI;NA

4 2 
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O 

FR26 0,70 0 60 100 40 100 70 

SOI;E
A;SCA
;EAW
R;NA

O 

5 2 

HU23 0,75 25 25 75 75 75 75 

NAO;
SCA;S
OI;EA;
EAWR 

5 20 

HU31 0,75 25 25 75 75 75 75 
EA;NA
O;SCA 

3 20 

HU32 0,75 50 0 50 100 86 100 
NAO;
SOI;E

A 
3 20 

IE01 0,81 25 12 75 88 88 75 

NAO;
SCA;E
A;EA
WR;S

OI 

5 38 

IE02 0,81 25 12 75 88 88 75 

NAO;
SCA;E
A;EA
WR;S

OI 

5 38 

ITC4 0,70 50 10 50 90 90 50 
NAO;
SCA;S

OI 
3 6 

ITF1 0,83 20 14 80 86 86 80 
EAWR
;SCA 

2 6 

ITH1 0,83 20 14 80 86 86 80 

NAO;
SCA;E
A;EA
WR 

4 32 

ITH2 0,83 20 14 80 86 86 80 

NAO;
SCA;E
A;EA
WR 

4 32 

ITI1 0,80 0 40 100 60 100 33 
EAWR
;NAO;
SCA 

3 6 
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ITI4 0,70 50 10 50 90 90 50 
NAO;
SCA;S

OI 
3 6 

NL22 0,81 25 12 75 88 88 75 
EA;NA

O 
2 6 

NL33 0,75 50 0 50 100 80 100 
NAO;
EA;EA

WR 
3 1 

NL41 0,70 50 10 50 90 90 50 
EAWR
;NAO 

2 1 

NL42 0,86 0 29 100 71 100 71 

NAO;
EAWR
;SCA;

EA 

4 1 

PL33 1,00 0 0 100 100 100 100 

EAWR
;NAO;
SCA;E

A 

4 20 

PL34 0,75 50 0 50 100 86 100 
EA;SC

A 
2 20 

PL43 0,75 50 0 50 100 86 100 EA 1 20 

PL63 0,90 0 20 100 80 100 75 

SOI;E
AWR;
EA;NA

O 

4 20 

PT20 0,81 25 12 75 88 88 75 
EA;EA
WR;S

OI 
3 6 

RO21 0,79 43 0 57 100 25 100 

EAWR
;NAO;
SCA;S
OI;EA 

5 20 

RO32 0,75 0 50 100 50 100 86 
SCA;S

OI 
2 25 

RO41 0,75 0 50 100 50 100 86 
EA;SC

A 
2 24 

SE22 0,86 0 29 100 71 100 50 
NAO;
SCA;S

OI 
3 18 
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SK02 0,90 0 20 100 80 100 75 
EAWR
;NAO 

2 20 

SK03 0,75 50 0 50 100 86 100 

SOI;E
AWR;
NAO;
EA; 

4 20 

SK04 0,70 0 60 100 40 100 50 SOI 1 22 

 

  

 Table C7.2 Standard classification statistics for best performing FFT at lead time 5. 

 

NUTS
2 ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR 
(%) 

HR 
(%) 

NPV 
(%) 

PPV 
(%) 

Cues 
Predic
tors 

NA 
Value

s 

AT22 0,75 50 0 50 100 100 67 EA 1 0 

AT31 0,80 40 0 60 100 100 78 EA 1 0 

BE34 0,75 17 33 83 67 71 80 
SOI;E

A 
2 0 

DE13 0,75 50 0 50 100 100 67 NAO 1 31 

DE14 0,83 14 20 86 80 86 80 
EA;SO
I;NAO 

3 31 

DE21 0,88 25 0 75 100 100 89 
SCA;N

AO 
2 31 

DE24 0,83 14 20 86 80 86 80 
EA;SO
I;NAO 

3 31 

DE25 0,75 50 0 50 100 100 67 NAO 1 31 

DE40 0,81 0 38 100 62 57 100 
EA;SO
I;NAO 

3 39 

DE50 0,72 22 33 78 67 88 50 
NAO;
EA;EA
WR;S

4 18 
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OI 

DE71 0,72 33 22 67 78 50 88 
NAO;
SOI;E
AWR 

3 33 

DE73 0,72 33 22 67 78 50 88 
NAO;
EAWR 

2 33 

DE80 0,83 20 14 80 86 80 86 
NAO;

EA 
2 24 

DE91 0,81 25 12 75 88 75 88 
NAO;
EAWR 

2 32 

DE93 0,88 25 0 75 100 100 89 NAO 1 32 

DE94 0,83 14 20 86 80 86 80 
EA;SO
I;NAO 

3 32 

DEA3 0,75 50 0 50 100 100 67 NAO 1 31 

DEA4 0,88 25 0 75 100 100 89 
SCA;N

AO 
2 31 

DEA5 0,75 17 33 83 67 71 80 

EAWR
;SOI;S
CA;N
AO 

4 31 

DEB1 0,71 57 0 43 100 100 56 
SCA;N

AO 
2 31 

DEC0 0,81 0 38 100 62 57 100 
EA;SO
I;NAO 

3 39 

DED4 0,81 0 38 100 62 57 100 
EA;SO
I;NAO 

3 39 

DED5 0,81 0 38 100 62 57 100 
EA;SO
I;NAO 

3 39 

DEE0 0,81 0 38 100 62 57 100 
EA;SO
I;NAO 

3 39 

DEF0 0,73 40 14 60 86 75 75 EA 1 9 
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DEG0 0,80 40 0 60 100 100 78 
EA;SC
A;NA

O 
3 24 

FR10 0,75 50 0 50 100 100 67 EA 1 2 

FR22 0,75 50 0 50 100 100 67 EA 1 2 

FR23 0,79 0 43 100 57 62 100 NAO 1 2 

FR25 0,75 50 0 50 100 100 67 EA 1 2 

FR30 0,94 0 12 100 88 80 100 

NAO;
EA;EA
WR;S
CA;SO

I 

5 2 

FR51 0,75 50 0 50 100 100 67 EA 1 2 

HU33 0,75 50 0 50 100 100 86 EAWR 1 20 

IE01 0,75 25 25 75 75 60 86 
NAO;

EA 
2 38 

IE02 0,75 25 25 75 75 60 86 
NAO;

EA 
2 38 

ITF1 0,70 60 0 40 100 100 70 SOI 1 6 

ITF6 0,75 50 0 50 100 100 91 SCA 1 6 

ITH1 0,76 20 29 80 71 67 83 
NAO;
EA;EA

WR 
3 32 

ITH2 0,76 20 29 80 71 67 83 
NAO;
EA;EA
WR;; 

3 32 

NL22 0,94 0 12 100 88 80 100 

EA;NA
O;EA
WR;S
OI;SC

A 

5 6 
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NL42 0,73 40 14 60 86 75 75 
NAO;
EAWR 

2 1 

PL32 0,83 0 33 100 67 83 100 
EAWR
;SOI;E

A 
3 20 

PL33 0,80 0 40 100 60 60 100 EAWR 1 20 

PL43 0,83 0 33 100 67 50 100 
EA;EA

WR 
2 20 

PL61 0,75 50 0 50 100 100 67 
SOI;N

AO 
2 20 

SK02 0,80 0 40 100 60 60 100 
EA;EA
WR;S

OI 
3 20 

SK04 0,83 33 0 67 100 100 83 
SOI;E
A;SCA 

3 22 

 

Table C7.3 Standard classification statistics for best performing FFT at lead time 4. 

 

NUTS2 
ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR (%) HR (%) 
NPV 
(%) 

PPV 
(%) 

Cues 
Predic
tors 

NA 
Values 

AT12 0,76 29 20 71 80 83 67 
EA;NA

O 
2 0 

AT22 0,75 50 0 50 100 100 67 
EAWR

;EA 
2 0 

AT31 0,76 20 29 80 71 67 83 

EA;EA
WR;S
OI;SC

A 

4 0 

DE13 0,92 0 17 100 83 86 100 

EAWR
;SCA;S
OI;NA

O 

4 31 

DE25 0,92 0 17 100 83 86 100 

SCA;E
A;EA
WR;S
OI;NA

O 

5 31 
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DE80 0,76 20 29 80 71 67 83 

EA;SOI
;EAW
R;SCA;
NAO 

5 24 

FI20 0,75 33 17 67 83 67 83 
NAO;E
AWR 

2 20 

FR10 0,83 0 33 100 67 75 100 EA 1 2 

FR21 0,75 25 25 75 75 60 86 
SCA;E
AWR;

EA 
3 2 

FR23 0,73 40 14 60 86 75 75 

EA;EA
WR;S
OI;SC

A 

4 2 

FR30 0,81 0 38 100 62 57 100 
EAWR
;SCA;E

A 
3 2 

FR41 0,78 33 11 67 89 67 89 
EAWR
;NAO 

2 2 

FR92 0,75 50 0 50 100 100 78 
EAWR
;SOI;N
AO;EA 

4 5 

HU21 0,83 0 33 100 67 83 100 
EAWR
;SCA 

2 20 

HU23 0,75 50 0 50 100 100 67 
SCA;E
A;EA
WR 

3 20 

HU32 0,83 0 33 100 67 50 100 
SCA;S

OI 
2 20 

ITF4 0,75 17 33 83 67 71 80 

SCA;E
AWR;
EA;NA

O 

4 6 

ITI1 0,70 50 10 50 90 50 90 
EAWR
;SCA;S

OI 
3 6 

NL11 0,80 0 40 100 60 33 100 
SCA;N

AO 
2 1 
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NL13 0,73 14 40 86 60 75 75 NAO 1 1 

NL34 0,83 17 17 83 83 83 83 
SCA;N

AO 
2 1 

NL41 0,75 0 50 100 50 29 100 NAO 1 1 

PL32 0,83 0 33 100 67 83 100 
EAWR
;SOI;E

A 
3 20 

PL51 0,83 33 0 67 100 100 83 
EA;SC

A 
2 20 

RO31 0,70 60 0 40 100 100 50 
EA;EA

WR 
2 21 

 

Table C7.4 Standard classification statistics for best performing FFT at lead time 3. 

 

NUTS2 
ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR (%) HR (%) 
NPV 
(%) 

PPV 
(%) 

Cues 
Predic
tors 

NA 
Values 

BE21 0,75 17 33 83 67 71 80 

SCA;E
AWR;
EA;NA

O 

4 0 

BE22 0,76 20 29 80 71 67 83 EAWR 1 0 

BE23 0,75 17 33 83 67 71 80 

SCA;E
AWR;
EA;NA

O 

4 0 

BE25 0,75 0 50 100 50 67 100 

EA;NA
O;SCA
;SOI;E
AWR 

5 0 

BE34 0,75 50 0 50 100 100 67 

EA;NA
O;EA

WR;SC
A;SOI 

5 0 

DE13 0,75 0 50 100 50 67 100 
EAWR
;SCA 

2 31 



 

Appendix | 207 

DE14 0,73 14 40 86 60 75 75 EAWR 1 31 

DE22 0,73 40 14 60 86 75 75 
SCA;N
AO;SO

I 
3 31 

DE23 0,73 40 14 60 86 75 75 
SCA;S

OI 
2 31 

DE24 0,73 14 40 86 60 75 75 EAWR 1 31 

DE25 0,75 33 17 67 83 80 71 SCA 1 31 

DE27 0,73 40 14 60 86 75 75 
SCA;N
AO;SO

I 
3 31 

DE50 0,89 22 0 78 100 100 60 SOI 1 18 

DE91 0,75 50 0 50 100 100 80 
SCA;E
AWR 

2 32 

DE92 0,75 50 0 50 100 100 80 
SCA;E
AWR 

2 32 

DE94 0,73 14 40 86 60 75 75 EAWR 1 32 

DEA1 0,70 60 0 40 100 100 70 
SCA;S
OI;EA
WR 

3 31 

DEA2 0,70 60 0 40 100 100 70 
SCA;S
OI;EA
WR 

3 31 

DEA5 0,75 33 17 67 83 80 71 SOI 1 31 

DEB1 0,80 0 40 100 60 78 100 
SCA;E
AWR 

2 31 

DEB2 0,73 14 40 86 60 75 75 EAWR 1 31 

DEG0 0,70 60 0 40 100 100 70 
SCA;E

A 
2 24 
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EL11 0,75 25 25 75 75 60 86 SCA 1 16 

EL14 0,75 0 50 100 50 50 100 

SOI;EA
WR;E

A;NAO
;SCA 

5 11 

EL24 0,75 17 33 83 67 71 80 
SOI;EA
WR;E

A 
3 16 

ES22 0,81 38 0 62 100 100 57 
EA;SC
A;NAO

;SOI 
4 3 

FR24 0,71 0 57 100 43 56 100 SOI;EA 2 2 

FR71 0,70 50 10 50 90 50 90 
SOI;N

AO 
2 2 

FR92 0,88 25 0 75 100 100 88 
SOI;EA
;EAW

R 
3 5 

FR93 0,75 50 0 50 100 100 78 

EA;EA
WR;N
AO;SC

A 

4 5 

HU21 1,00 0 0 100 100 100 100 
EA;EA

WR 
2 20 

HU23 0,75 50 0 50 100 100 67 
NAO;E
A;EA
WR 

3 20 

IE01 0,94 0 12 100 88 80 100 SOI 1 38 

IE02 0,94 0 12 100 88 80 100 SOI 1 38 

ITF6 0,90 0 20 100 80 50 100 SOI 1 6 

ITH1 0,70 60 0 40 100 100 70 

NAO;E
A;EA

WR;SC
A;SOI 

5 32 

ITH2 0,70 60 0 40 100 100 70 
NAO;E
A;EA

WR;SC

5 32 
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A;SOI 

ITH5 0,72 33 22 67 78 50 88 

EA;NA
O;SCA
;EAW

R 

4 39 

ITI3 0,72 33 22 67 78 50 88 

EA;NA
O;SCA
;EAW

R 

4 39 

NL12 0,81 25 12 75 88 75 88 
EAWR
;SCA 

2 1 

NL13 0,79 43 0 57 100 100 62 
NAO;E
A;SCA;

SOI 
4 1 

NL21 0,75 25 25 75 75 86 60 NAO 1 6 

NL34 0,75 17 33 83 67 71 80 NAO 1 1 

PT18 0,70 60 0 40 100 100 67 
EA;SC
A;EA
WR 

3 25 

RO12 0,79 43 0 57 100 100 25 
EAWR
;SOI 

2 20 

RO21 0,86 29 0 71 100 100 33 

EAWR
;SOI;E
A;SCA;
NAO 

5 20 

RO41 0,83 33 0 67 100 100 50 EAWR 1 24 

UKD1 0,88 25 0 75 100 100 89 SOI 1 39 

UKD3 0,88 25 0 75 100 100 89 SOI 1 39 

UKD4 0,88 25 0 75 100 100 89 SOI 1 39 

UKD6 0,88 25 0 75 100 100 89 SOI 1 39 
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UKD7 0,88 25 0 75 100 100 89 SOI 1 39 

UKE1 0,88 25 0 75 100 100 89 SOI 1 39 

UKE2 0,88 25 0 75 100 100 89 SOI 1 39 

UKE3 0,88 25 0 75 100 100 89 SOI 1 39 

UKE4 0,88 25 0 75 100 100 89 SOI 1 39 

UKF1 0,88 25 0 75 100 100 89 SOI 1 39 

UKF2 0,88 25 0 75 100 100 89 SOI 1 39 

UKF3 0,88 25 0 75 100 100 89 SOI 1 39 

UKG1 0,88 25 0 75 100 100 89 SOI 1 39 

UKG2 0,88 25 0 75 100 100 89 SOI 1 39 

UKG3 0,88 25 0 75 100 100 89 SOI 1 39 

UKH1 0,88 25 0 75 100 100 89 SOI 1 39 

UKH2 0,88 25 0 75 100 100 89 SOI 1 39 

UKH3 0,88 25 0 75 100 100 89 SOI 1 39 

UKJ1 0,88 25 0 75 100 100 89 SOI 1 39 

UKJ3 0,88 25 0 75 100 100 89 SOI 1 39 

UKK1 0,88 25 0 75 100 100 89 SOI 1 39 
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UKK2 0,88 25 0 75 100 100 89 SOI 1 39 

UKK3 0,88 25 0 75 100 100 89 SOI 1 39 

UKK4 0,88 25 0 75 100 100 89 SOI 1 39 

UKL1 0,88 25 0 75 100 100 89 SOI 1 39 

UKL2 0,88 25 0 75 100 100 89 SOI 1 39 

UKN0 0,88 25 0 75 100 100 89 SOI 1 39 

 

Table C7.5 Standard classification statistics for best performing FFT at lead time 2. 

 

NUTS2 
ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR 
(%) 

HR 
(%) 

NPV (%) 
PPV 
(%) 

Cues 
Predic
tors 

NA 
Values 

AT12 0,80 0 40 100 60 78 100 
NAO;E
A;SCA 

3 0 

AT31 0,76 20 29 80 71 67 83 
EA;NA

O 
2 0 

BE21 0,75 0 50 100 50 67 100 
SOI;SC
A;EA;
NAO 

4 0 

BE22 0,79 0 43 100 57 62 100 
EA;EA

WR 
2 0 

BE23 0,92 0 17 100 83 86 100 

EAWR
;SOI;S
CA;EA;
NAO 

5 0 

BE25 0,75 50 0 50 100 100 67 

SCA;N
AO;EA
;EAW

R 

4 0 

BE33 0,76 20 29 80 71 67 83 
EA;EA

WR 
2 0 
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DE13 0,75 17 33 83 67 71 80 

EA;SOI
;EAW

R;NAO
;SCA 

5 31 

DE50 0,78 11 33 89 67 89 67 SOI 1 18 

DE60 0,80 0 40 100 60 78 100 SOI 1 17 

DE72 0,75 50 0 50 100 100 80 

SCA;N
AO;EA
WR;E
A;SOI 

5 33 

DE80 0,93 0 14 100 86 83 100 
EA;SOI
;EAW
R;SCA 

4 24 

DEF0 0,83 20 14 80 86 80 86 

EAWR
;SOI;S
CA;NA

O 

4 9 

DEG0 0,70 60 0 40 100 100 70 
EA;SOI
;SCA 

3 24 

DK02 0,75 25 25 75 75 86 60 

SCA;E
A;SOI;
EAWR
;NAO 

5 31 

EL13 0,83 0 33 100 67 75 100 EAWR 1 16 

EL24 0,83 0 33 100 67 75 100 EAWR 1 16 

ES22 0,75 25 25 75 75 86 60 

SOI;SC
A;EA;E
AWR;
NAO 

5 3 

ES42 0,81 25 12 75 88 75 88 SCA 1 3 

ES43 0,72 0 56 100 44 38 100 
EA;SOI
;SCA 

3 3 

ES61 0,80 40 0 60 100 100 78 
SCA;S
OI;NA

O 
3 3 
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ES62 0,78 33 11 67 89 67 89 SCA 1 4 

FI20 0,75 33 17 67 83 67 83 

EA;NA
O;SCA
;EAW

R 

4 20 

FR25 0,75 17 33 83 67 71 80 

EAWR
;SCA;E
A;SOI;
NAO 

5 2 

FR26 0,70 0 60 100 40 70 100 EA;SOI 2 2 

FR43 0,71 57 0 43 100 100 56 
SCA;E
A;EA
WR 

3 2 

FR51 0,75 17 33 83 67 71 80 

SCA;E
A;SOI;
EAWR
;NAO 

5 2 

FR92 0,75 50 0 50 100 100 78 
EAWR
;SOI 

2 5 

FR94 0,93 0 14 100 86 80 100 
SCA;S

OI 
2 5 

HU10 0,80 0 40 100 60 60 100 

SCA;S
OI;EA
WR;N

AO 

4 20 

HU21 0,80 40 0 60 100 100 60 
EA;SOI
;EAW

R 
3 20 

HU23 0,75 50 0 50 100 100 67 
EA;SC

A 
2 20 

HU33 0,75 50 0 50 100 100 86 
EA;NA
O;SOI;

SCA 
4 20 

ITF5 0,76 29 20 71 80 83 67 
SOI;EA

WR 
2 6 

ITF6 0,70 50 10 50 90 50 90 
EAWR
;SOI;E
A;NAO 

4 6 
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LV00 1,00 0 0 100 100 100 100 
EA;EA
WR;S

OI 
3 22 

NL22 0,94 0 12 100 88 80 100 
EAWR
;SOI 

2 6 

NL41 0,75 50 0 50 100 100 91 
SCA;E
A;NAO 

3 1 

PL42 1,00 0 0 100 100 100 100 

SOI;EA
WR;E

A;SCA;
NAO 

5 20 

PL61 0,75 0 50 100 50 67 100 
EA;EA

WR 
2 20 

PL63 0,73 33 20 67 80 67 80 SOI 1 20 

RO12 0,79 43 0 57 100 100 25 EAWR 1 20 

RO21 0,79 43 0 57 100 100 25 EAWR 1 20 

RO22 0,75 0 50 100 50 86 100 

EAWR
;EA;SO
I;SCA;
NAO 

5 22 

RO31 0,90 20 0 80 100 100 75 EAWR 1 21 

RO32 0,83 33 0 67 100 100 50 
EA;EA

WR 
2 25 

RO41 0,92 17 0 83 100 100 67 EAWR 1 24 

RO42 0,90 20 0 80 100 100 75 EAWR 1 20 

SK02 0,73 33 20 67 80 67 80 
EA;SOI
;SCA;E
AWR 

4 20 
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Table C7.6 Standard classification statistics for best performing FFT at lead time 1. 

 

NUTS2 
ID 

AUC 
FAR 
(%) 

MS 
(%) 

CR 
(%) 

HR 
(%) 

NPV (%) 
PPV 
(%) 

Cues 
Predic
tors 

NA 
Values 

AT31 0,71 0 57 100 43 56 100 

EA;EA
WR;S
OI;SC

A;NAO 

5 0 

BE10 0,70 50 10 50 90 50 90 

EAWR
;EA;N
AO;SC
A;SOI 

5 3 

BE21 0,83 0 33 100 67 75 100 
NAO;E
A;SOI 

3 0 

BE23 0,83 0 33 100 67 75 100 EA;SOI 2 0 

BE25 0,92 17 0 83 100 100 86 

NAO;S
OI;EA;
SCA;E
AWR 

5 0 

DE13 0,75 50 0 50 100 100 67 
EA;NA
O;SCA 

3 31 

DE21 0,75 50 0 50 100 100 80 

EA;EA
WR;N
AO;SC

A 

4 31 

DE50 0,72 22 33 78 67 88 50 SOI 1 18 

DE80 0,76 20 29 80 71 67 83 
NAO;E

A 
2 24 

DE93 0,75 50 0 50 100 100 80 

SCA;E
A;EA
WR;N

AO 

4 32 

DEA3 0,75 50 0 50 100 100 67 
EA;NA
O;SCA 

3 31 

DEA4 0,75 50 0 50 100 100 80 
EA;SC
A;EA
WR;N

5 31 
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AO;SO
I 

ES22 0,81 38 0 62 100 100 57 

SCA;E
A;EA
WR;S
OI;NA

O 

5 3 

ES61 0,79 0 43 100 57 62 100 

EA;EA
WR;N
AO;SC
A;SOI 

5 3 

FI1B 0,86 0 29 100 71 50 100 
EA;EA
WR;N

AO 
3 39 

FI1C 0,86 0 29 100 71 50 100 
EA;EA
WR;N

AO 
3 39 

FI1D 0,86 0 29 100 71 50 100 
EA;EA
WR;N

AO 
3 39 

FR43 0,90 0 20 100 80 88 100 

NAO;E
A;SCA;
SOI;EA

WR 

5 2 

IE01 0,88 0 25 100 75 67 100 

SCA;S
OI;EA
WR;E

A;NAO 

5 38 

IE02 0,88 0 25 100 75 67 100 

SCA;S
OI;EA
WR;E

A;NAO 

5 38 

NL22 0,75 50 0 50 100 100 80 

EA;EA
WR;S
OI;NA

O 

4 6 

PL22 0,75 50 0 50 100 100 67 
NAO;S
CA;SO

I 
3 20 

PL34 0,92 0 17 100 83 67 100 
EA;SC
A;SOI;
EAWR 

4 20 

PL62 0,70 60 0 40 100 100 50 NAO 1 20 
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RO21 0,86 29 0 71 100 100 33 

EA;SC
A;SOI;
EAWR
;NAO 

5 20 

RO22 1,00 0 0 100 100 100 100 

EA;SC
A;EA
WR;S
OI;NA

O 

5 22 

RO42 0,83 0 33 100 67 83 100 

SOI;EA
;EAW
R;SCA;
NAO 

5 20 
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Appendix C8 Spatial distribution of the sugar beet production predictors 

 

Figure C8 Spatial distribution of the indices of climate variability that were used as predictors by 
the FFT model for regions with significant AUC>0.7 at six lead times. Regions without predictive 
skill (AUC<0.7) are shown in grey, and the number at the bottom of each map the amount of 
times that each index was used as predictors. 

 

 

  



 

Appendix | 219 

Appendix C9 Spatial distribution of the sugar beet production 

  

 

Figure C9 Distribution of the mean sugar beet production (in 1000 tons) per NUTS2 region in the 
investigated areas. 
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Appendix C10 Spatial distribution of number of predictors  

 

 

Figure C10 Spatial distribution of number of indices of climate variability that were used as 
predictors by the FFT model for regions with significant AUC>0.7 at six lead times. NUTS2 regions 
in grey represent the areas investigated. The maps were overlaid in descending order from 
longest to shortest lead time. 
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Appendix D1 Maize yield and respective percentiles per district 

 

 

Figure D1 Time series of Maize yield per district. From bottom-up in the plots, dashed lines 
represent maize yields percentiles 15% or Y15%, 20% or Y20%, 25% or Y25%, 30% or Y30%, 35% or 
Y35% and 40% or Y40%, respectively. Green line represents the mean Human Energy Requirement 
threshold (3,000 kcal/cap/day ≈ 1.5 ton/he/household/year). 
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Appendix D2 Example of a Fast-and-Frugal Tree (FFT) model for maize yield Y15%. 

 

 

Figure D2 Example of an FFT model at Lead Time 6 that predicts maize yield percentile Y15% in 
Laikipia. This output shows standard classification statistics, chosen predictors and their 

thresholds. 
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Appendix D3 The ROC index 

 

 

Figure D3 Representation of the Receiver operating characteristic (ROC) curve calculated using 
the trapezoidal rule. The ROC curve is a graphical plot that illustrates the performance of a binary 
classifier system, and the area under the curve of the ROC index measures how well the FFT 
model can distinguish between two classes (low/high). A random classification migrates towards 
the diagonal dashed line. 
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Appendix D4  Leave-one-out cross validation 

We cross-validated and pruned the FFT models using the Leave-one-out cross 
validation method, which we describe below in five steps. Pruning is a 
technique in machine learning that reduces the size of decision trees by 
removing predictors that provide little decision power to the model.  

1. Set the maximum number of predictors levels equal to 5, and train the FFT 
model using N-1 samples, leaving one out. 

2. Test the model in the sample left out; 
3. Repeat this N times and calculate the weighted accuracy of the tested 

model; 
4. Repeat step 1-3 four times adopting a predictors level equal to 4, 3, 2 and 1, 

subsequently;  
5. Select the model and the pruning parameter (predictor’s level) that 

maximizes the weighted accuracy of the FFT model. 
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Appendix D5 Descriptive statistics 

Table D5 Definition of standard classification statistics 

Standard 
Classification 

Statistics 
Definition Abbreviation Formula 

Hits 

Probability of a “True Yield 
Below Threshold” (TB) over 
the total samples of “Yield 

Below Threshold” (YB) 

H  

Correct 
Rejections 

Probability of a “True Yield 
Above Threshold” (TA) 

over the total samples of 
“Yield Above Threshold” 

(YA) 

CR 
 

False Alarms 
Probability of a false “Yield 

Below Threshold” 
 

FA 
 

1 - CR 

Misses 
Probability of a false “Yield 

Above Threshold” 
 

MS 
 

1 - HR 

Weighted 
Accuracy 

Weighted average of hit 
rate and correct rejection 
dictated by a sensitivity 
weighting parameter w 

 
WACC 

  

 

 

 

 

 

 

 

 

 

  

(
TB

YB
) × 100 

(
TA

YA
) × 100 

H

H +  MS
 ×  w + 

CR

CR +  FA
 × (1 − w) 
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Appendix D6  Maize price averages: observed and assumed linear models  

 

 

Figure D6.1 Linear model representing a significant (p-value < 0.05) relationship between deflated 
Nairobi prices in September and observed annual maize yields in a) Baringo and b) Narok.  
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Figure D6.2 Time series of deflated monthly maize price average in Nairobi. In this study for the 
districts of Laikipia, Nyandarua and West Pokot. We consider prices and yield to have negative 
relationship, therefore, when one increases the other decreases, and vice-versa. In September, 
which represents the starting of the harvesting season, we consider prices (Ps) to vary relative to 
the maize yield being investigated (Yp) . For instance, when maize yield Y15%, price is at its 85th 
percentile observed in September, therefore relationship follows Ps =-1 Yp +100. Such assumption 
was adopted due to insignificant linear relationship (p-value > 0.05) between deflated Nairobi 
prices in September and observed maize yield in Laikipia, Nyandaura and West Pokot. 
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Appendix D7 Sensitivity analysis of maize price variations for districts of 
Laikipia, Nyandarua and West Pokot 

 
 

 
Figure D7.1 Sensitivity analysis of maize price variations testing two moderate (A1 and B1) rates of 

change in Ps (price) as Yp (maize yield percentile) changes. Additionally, we display the results of 
the total expected cost of cash transfer per district, lead time and maize yield percentile 

simulating a perfect forecast. 
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Figure D7.2 Sensitivity analysis of maize price variations testing two conservative rates of change 
in Ps (price) as Yp (maize yield percentile) changes. Additionally, we display the results of the total 
expected cost of cash transfer per district, lead time and maize yield percentile simulating a 
perfect forecast. 
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Appendix D8 Spatial distribution of the probabilities of Hits and False 
Alarms 

 

Figure D8.1  Performance of the tested FFT models in predicting true low maize yield events 
(Hits), for different maize yield percentiles and lead times. Sensitivity weighting parameter is 
w=0.75. 



Appendix | 234 

 

 

Figure D8.2  Performance of the tested FFT models in predicting false low maize yield events 
(False Alarms), for different maize yield percentiles and lead times. Sensitivity weighting 
parameter is w=0.75. 
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Appendix D9 Overview of Weighted Accuracy (WACC) and Receiver 
operating characteristic (ROC) indices 

 

 

Figure D9 Representation of the performance of the ROC and WACC indicators for each district, 
lead time and maize yield percentile level. FFT model sensitivity weighting parameter equals 
w=0.75. 
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Appendix D10 Sensitivity analysis of FFT model and maize price variations 

 

 

 

Figure D10.1 Performance of the tested FFT models in predicting true maize low yield events 
(Hits), and false maize low yield events (False Alarms) per district, percentile and lead time. Yellow 
bars represent the probabilities of False Alarms, and green dashed lines the probabilities of Hits. 
Different levels of low maize yields are highlighted in shades of grey. Dashed black line is drawn at 
the 50% probability. Sensitivity weighting parameter w=0.50.  
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Figure D10.2 Total expected cost of cash transfer per district, lead time and maize yield percentile 
calculated based on FFT model results (using a weighting parameter of w=0.50). Red dots show all 
lead times before harvesting (starts in September) for which expected cost of cash transfer is 
lower than the expected cost of cash transfer after harvesting (CBHm < CAH); black dots show the 
opposite. The most cost effective lead time is highlighted in grey. Boxes are blank when the maize 
yield percentile for the specific district is higher than the mean human energy requirement (3,000 
kcal/day/person), and therefore no cash transfer is required.  
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Figure D10.3 Sensitivity analysis of total expected cost of cash transfer testing moderate rates (A.1 
and B.1) of change in Ps (price) for change in Yp (maize yield), per district, lead time, and maize 
yield percentile. Red dots in A.2 and B.2 highlight all lead times before harvesting when expected 
ex-ante costs of cash transfer are lower than the expected ex-post costs of cash transfer (CBHm < 
CAH); black dots show the opposite. The most cost effective lead time is highlighted in grey. 
Boxes are blank when the maize yield percentile for the specific district is higher than the mean 
human energy requirement, and therefore cash transfer is not triggered. Results are shown only 
for models with ROC>0.5. FFT model sensitivity weight equals 0.5 
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Figure D10.4 Sensitivity analysis of total expected cost of cash transfer testing conservative rates 
(C1 and D1) of change in Ps (price) for change in Yp (maize yield), per district, lead time, and 
maize yield percentile. Red dots in C2 and D2 highlight all lead times before harvesting when 
expected ex-ante costs of cash transfer are lower than the expected ex-post costs of cash transfer 
(CBHm < CAH); black dots show the opposite. The most cost effective lead time is highlighted in 
grey. Boxes are blank when the maize yield percentile for the specific district is higher than the 
mean human energy requirement, and therefore cash transfer is not triggered. Results are shown 
only for models with ROC>0.5. FFT model sensitivity weight equals 0.5 
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Appendix D11 Best performing predictors of maize yields 

Table  D11 Definition of thresholds per district, maize yield percentile level and lead time 

District 

Maize 
Yield 

Percentile 
(%) 

Lead 
Time 

Number of 
predictors 

Predictors Threshold WACC AUC 

Baringo 15 1 1 NP4August 369,83 0,89 0,78 

Baringo 15 2 5 

NDVIJune;N
P3July;NP5

May;NP6Ma
y;NP1June 

0,51;295,4
9;335,46;

355,91;84,
69 

0,79 0,79 

Baringo 15 3 5 

NDVIJune;N
P5May;NP6
May;NP6Jun
e;NP1June 

0,51;335,4
6;355,91;

285,34;84,
69 

0,79 0,77 

Baringo 15 4 4 
NP1May;NP
4May;NP5M
ay;NP6May 

77,39;234,
72;335,46

;355,91 
0,60 0,60 

Baringo 15 5 1 NDVI3April 1,3 0,62 0,63 

Baringo 20 1 2 
NP4August;

NP3July 
369,83;29

5,49 
0,92 0,84 

Baringo 20 2 4 
NP2July;NP3
July;NP1Jun
e;NP2June 

154,08;29
5,49;62,02

;150,46 
0,79 0,73 

Baringo 20 3 2 
NP1June;NP

2June 
62,02;150,

46 
0,55 0,53 

Baringo 20 4 4 

NP4May;NP
3May;NP6M
ay;NDVI4Ma

y 

252,47;24
7,48;355,9

1;1,99 
0,70 0,55 

Baringo 25 6 1 
NDVI3Marc

h 
1,18 0,43 0,58 

Baringo 25 1 5 

NP6July;NP5
June;NP4Ma
y;NP2June;

NP6June 

389,19;35
7,15;252,4
7;150,46;

285,34 

0,58 0,54 
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Baringo 25 2 3 
NP6July;NP5
June;NP4Ma

y 

389,19;35
7,15;252,4

7 
0,74 0,73 

Baringo 25 3 4 

NP5June;NP
4May;NDVIJ
une;NP2Jun

e 

357,15;25
2,47;0,51;

150,46 
0,75 0,63 

Baringo 25 4 2 
NP4May;NP

3May 
252,47;24

7,48 
0,74 0,73 

Baringo 25 5 2 
NP6April;ND

VI4April 
284,33;1,8

9 
0,72 0,56 

Baringo 30 1 1 NP6June 453,14 0,85 0,70 

Baringo 30 2 2 
NP6June;NP

4May 
453,14;34

3,93 
0,85 0,70 

Baringo 30 3 1 NP6June 453,14 0,78 0,65 

Baringo 30 4 1 NP4May 343,93 0,78 0,65 

Baringo 30 5 2 
NP6April;ND

VI4April 
356,05;1,8

9 
0,67 0,54 

Baringo 30 6 2 
NDVI4Marc
h;NDVI3Mar

ch 
1,83;1,31 0,74 0,59 

Baringo 35 1 2 
NDVI6May;
NDVI4May 

2,82;1,99 0,78 0,65 

Baringo 35 2 2 
NDVI6May;
NDVI4May 

2,82;1,99 0,77 0,62 

Baringo 35 3 1 NDVI6May 2,82 0,69 0,55 

Baringo 35 4 1 NDVI6May 2,82 0,75 0,60 

Baringo 35 5 1 NDVI4April 1,89 0,75 0,60 

Baringo 35 6 1 
NDVI4Marc

h 
1,83 0,75 0,60 

Baringo 40 1 4 NP5July;NP6
July;NDVI6J

577,42;57
4,55;2,99;

0,85 0,69 
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uly;NDVI5Ju
ne 

2,5 

Baringo 40 2 3 
NP5July;NP6
July;NDVI6J

uly 

577,42;57
4,55;2,99 

0,70 0,54 

Baringo 40 4 2 
NDVI6May;

NP3May 
2,82;247,4

8 
0,71 0,57 

Baringo 40 6 2 
NDVI2Marc
h;NP5March 

0,89;228,1
7 

0,64 0,50 

Laikipia 15 1 4 

ONIMarch;N
P3July;ONIA
pril;NDVI6M

arch 

0,2;119,83
;0,3;2,53 

0,67 0,74 

Laikipia 15 2 4 

ONIMarch;N
P3July;ONIA
pril;NDVI6M

arch 

0,2;119,83
;0,3;2,53 

0,78 0,75 

Laikipia 15 3 4 

ONIMarch;N
P1June;ONI
April;NDVI6

March 

0,2;28,67;
0,3;2,53 

0,63 0,65 

Laikipia 15 4 1 ONIMarch 0,2 0,72 0,64 

Laikipia 15 5 1 ONIMarch 0,2 0,72 0,64 

Laikipia 15 6 1 ONIMarch 0,2 0,72 0,64 

Laikipia 20 1 2 
NP2July;ND
VI6March 

75,54;2,53 0,88 0,88 

Laikipia 20 2 1 NP2July 75,54 0,85 0,83 

Laikipia 20 3 4 

NDVI6Marc
h;NP1June;
NDVI5Marc
h;NP5March 

2,53;28,67
;2,1;174,5

8 
0,68 0,60 

Laikipia 20 4 1 
NDVI6Marc

h 
2,53 0,85 0,71 

Laikipia 20 5 1 
NDVI6Marc

h 
2,53 0,85 0,71 
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Laikipia 20 6 1 
NDVI6Marc

h 
2,53 0,85 0,71 

Laikipia 25 1 2 
NP2July;ND
VI6March 

75,54;2,53 0,88 0,88 

Laikipia 25 2 1 NP2July 75,54 0,85 0,83 

Laikipia 25 3 4 

NDVI6Marc
h;NP1June;
NDVI5Marc
h;NP5March 

2,53;28,67
;2,1;174,5

8 
0,68 0,60 

Laikipia 25 4 1 
NDVI6Marc

h 
2,53 0,85 0,71 

Laikipia 25 5 1 
NDVI6Marc

h 
2,53 0,85 0,71 

Laikipia 25 6 1 
NDVI6Marc

h 
2,53 0,85 0,71 

Laikipia 30 1 1 NP2July 75,54 0,89 0,88 

Laikipia 30 2 1 NP2July 75,54 0,89 0,88 

Laikipia 30 4 1 NP5March 279,72 0,80 0,59 

Laikipia 30 5 1 NP5March 279,72 0,80 0,59 

Laikipia 30 6 3 
ONIMarch;N
P5March;N
DVI5March 

282,03 0,80 0,59 

Laikipia 35 1 2 
NP2July;NP1

June 
75,54;28,6

7 
0,79 0,77 

Laikipia 35 2 2 
NP2July;NP3

July 
75,54;140,

83 
0,87 0,84 

Laikipia 35 3 1 NP1June 28,67 0,80 0,79 

Laikipia 35 4 1 NP5March 279,72 0,80 0,60 

Laikipia 35 5 1 NP5March 279,72 0,80 0,60 
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Laikipia 35 6 1 NP5March 279,72 0,80 0,60 

Laikipia 40 1 2 
NP2July;NP1

June 
78,94;28,6

7 
0,68 0,66 

Laikipia 40 2 2 
NP2July;NP1

June 
78,94;28,6

7 
0,89 0,86 

Laikipia 40 3 2 
NP1June;NP

5March 
28,67;279,

72 
0,86 0,87 

Laikipia 40 4 1 NP5March 279,72 0,80 0,61 

Laikipia 40 5 1 NP5March 279,72 0,80 0,61 

Laikipia 40 6 1 NP5March 279,72 0,80 0,61 

Narok 15 1 5 

NP6April;NP
6June;NP5

May;NP6Ma
y;NP6July 

480,78;56
7,76;498,7
2;569,76;

538,26 

0,85 0,85 

Narok 15 2 5 

NP6April;NP
6June;NP5

May;NP6Ma
y;NP6July 

480,78;56
7,76;498,7
2;569,76;

538,26 

0,84 0,83 

Narok 15 3 2 
NP6April;NP

6June 
480,78;56

7,76 
0,83 0,81 

Narok 15 4 2 
NP6April;NP

5May 
480,78;49

8,72 
0,64 0,56 

Narok 15 5 5 

NP6April;NP
5March;NP5
April;NP4Ap
ril;NDVI2Apr

il 

480,78;35
0,64;428,6
7;423,86;

1,2 

0,65 0,58 

Narok 15 6 3 
NP5March;
NP4March;
NDVIMarch 

350,64;22
0,04;0,52 

0,58 0,59 

Narok 20 1 2 
NDVI5June;
NDVI3May 

2,93;1,83 0,85 0,85 

Narok 20 2 2 
NDVI5June;
NDVI3May 

2,93;1,83 0,84 0,83 
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Narok 20 3 2 
NDVI5June;
NDVI3May 

2,93;1,83 0,83 0,81 

Narok 20 4 1 NDVI3May 1,83 0,64 0,56 

Narok 20 5 2 
NDVI4April;
NDVI6April 

2,39;3,4 0,65 0,58 

Narok 25 1 2 
NDVI5June;
NDVI3May 

2,93;1,83 0,58 0,59 

Narok 25 2 1 NDVI5June 2,93 0,72 0,69 

Narok 25 3 1 NDVI5June 2,93 0,71 0,67 

Narok 25 4 2 
NDVI3May;
NDVI4May 

1,83;2,41 0,68 0,60 

Narok 25 5 2 
NDVI4April;
NDVI3Marc

h 
2,39;1,79 0,69 0,63 

Narok 25 6 2 
NDVI3Marc
h;NP5March 

1,79;454,3 0,73 0,71 

Narok 30 1 1 NDVI3June 1,88 0,72 0,69 

Narok 30 2 1 NDVI3June 1,88 0,69 0,65 

Narok 30 3 1 NDVI3June 1,88 0,71 0,60 

Narok 30 5 2 
NP2March;

ONIApril 
162;-0,3 0,71 0,60 

Narok 30 6 1 NP2March 162 0,65 0,58 

Narok 35 1 1 NDVI3June 1,88 0,69 0,65 

Narok 35 2 1 NDVI3June 1,88 0,71 0,60 

Narok 35 3 1 NDVI3June 1,88 0,71 0,60 

Narok 35 5 2 
NP2March;

ONIApril 
162;-0,3 0,65 0,58 



Appendix | 246 

Narok 35 6 1 NP2March 162 0,74 0,77 

Narok 40 1 5 

NP6May;NP
6April;NP4

March;NDVI
4June;NP5A

pril 

478,26;56
7,36;370,1
4;2,5;640,

31 

0,82 0,64 

Narok 40 5 4 

NP2March;
ONIApril;NP
6April;NP4

March 

162;-
0,2;567,36

;370,14 
0,78 0,63 

Narok 40 6 3 
NP2March;
NP5March;
ONIMarch 

162;454,3
;-0,2 

0,73 0,60 

Nyanda
ura 

15 1 2 
NP6August;

NP5July 
591,36;51

0,26 
0,70 0,77 

Nyanda
ura 

15 2 2 
NP5July;NP6

July 
510,26;51

3,87 
0,76 0,71 

Nyanda
ura 

15 3 5 

NP5June;NP
4June;NP6A
pril;NDVI5Ju
ne;NDVIJun

e 

426,17;37
5,57;488,4
6;3,07;0,6

5 

0,73 0,66 

Nyanda
ura 

15 4 5 

NP4May;NP
1May;NP3M
ay;NP6April;
NDVI5May 

365,04;10
7,32;341,3
8;488,46;

3,07 

0,73 0,66 

Nyanda
ura 

15 5 3 
NP1April;NP
6April;NP3A

pril 

124,93;48
8,46;223,7 

0,73 0,66 

Nyanda
ura 

15 6 2 
NP5March;
NP6March 

280,67;36
4,17 

0,71 0,62 

Nyanda
ura 

20 1 2 
NP6August;

NP5July 
591,36;51

0,26 
0,61 0,61 

Nyanda
ura 

20 2 2 
NP5July;NP6

July 
510,26;51

3,87 
0,55 0,53 

Nyanda
ura 

20 3 5 

NP5June;NP
4June;NP6A
pril;NDVI5Ju
ne;NDVIJun

426,17;37
5,57;488,4
6;3,07;0,6

5 

0,65 0,58 
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e 

Nyanda
ura 

20 4 5 

NP4May;NP
1May;NP3M
ay;NP6April;
NDVI5May 

365,04;10
7,32;341,3
8;488,46;

3,07 

0,65 0,58 

Nyanda
ura 

20 5 3 
NP1April;NP
6April;NP3A

pril 

124,93;48
8,46;223,7 

0,65 0,58 

Nyanda
ura 

20 6 2 
NP5March;
NP6March 

280,67;36
4,17 

0,76 0,67 

Nyanda
ura 

25 1 1 NP2August 174,97 0,59 0,56 

Nyanda
ura 

25 2 4 

NP5July;ND
VI5June;ND
VI5May;ND

VI6June 

510,26;3,0
7;3,07;3,7

3 
0,72 0,69 

Nyanda
ura 

25 3 1 NDVI5June 3,07 0,72 0,69 

Nyanda
ura 

25 4 5 

NP2May;ND
VI5May;NP3
May;NDVI4
May;NDVI3

May 

180,86;3,0
7;256,72;
2,44;1,84 

0,78 0,69 

Nyanda
ura 

25 5 2 
NP1April;NP

6April 
124,93;48

8,46 
0,77 0,67 

Nyanda
ura 

25 6 2 
NDVI3Marc
h;NDVI2Mar

ch 
1,86;1,21 0,84 0,69 

Nyanda
ura 

30 1 4 

NP2August;
NDVI5June;
NP1May;NP

5May 

176,11;3,1
1;137,12;

490,61 
0,81 0,62 

Nyanda
ura 

30 2 1 NDVI5June 3,11 0,81 0,62 

Nyanda
ura 

30 3 1 NDVI5June 3,11 0,81 0,62 

Nyanda
ura 

30 6 1 
NDVI5Marc

h 
3,12 0,78 0,65 
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Nyanda
ura 

35 1 4 

NP2August;
NDVI5June;
NP1May;NP

5May 

176,11;3,1
1;137,12;

490,61 
0,76 0,69 

Nyanda
ura 

35 2 1 NDVI5June 3,11 0,81 0,62 

Nyanda
ura 

35 3 1 NDVI5June 3,11 0,81 0,62 

Nyanda
ura 

35 6 1 
NDVI5Marc

h 
3,12 0,81 0,62 

Nyanda
ura 

40 1 2 
NP1August;
NP2August 

97,51;176,
11 

0,78 0,65 

Nyanda
ura 

40 2 3 
NP1July;ND
VI3April;NP5

July 

70,6;1,71;
526,31 

0,76 0,69 

Nyanda
ura 

40 3 3 
NDVI3April;
NDVI2April;

NP4June 

1,71;1,1;3
75,57 

0,73 0,61 

Nyanda
ura 

40 4 2 
NDVI3April;
NDVI3May 

1,71;1,77 0,76 0,59 

Nyanda
ura 

40 5 4 

NDVI4April;
NDVI3April;
NDVI2April;

ONIApril 

2,42;1,71;
1,1;-0,6 

0,70 0,55 

West 
Pokot 

15 1 1 NDVI2April 0,87 0,79 0,77 

West 
Pokot 

15 2 1 NDVI2April 0,87 0,79 0,77 

West 
Pokot 

15 3 1 NDVI2April 0,87 0,79 0,77 

West 
Pokot 

15 4 1 NDVI2April 0,87 0,79 0,77 

West 
Pokot 

15 5 1 NDVI2April 0,87 0,79 0,77 

West 
Pokot 

15 6 4 

NP3March;
NDVIMarch;
NP5March;
NDVI2Marc

85,96;0,41
;164,43;0,

86 
0,69 0,59 
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h 

West 
Pokot 

20 1 5 

NDVI6Augus
t;NP2July;N
DVI3May;N
DVI5July;ND

VI5April 

2,91;125,1
7;1,44;2,4

6;2,26 
0,85 0,85 

West 
Pokot 

20 2 5 

NP2July;ND
VI3May;ND
VI5July;NDV
I5April;NP5

March 

125,17;1,4
4;2,46;2,2
6;164,43 

0,81 0,77 

West 
Pokot 

20 3 5 

NDVI3May;
NDVI5April;
NP5March;
NP1May;ND

VI6May 

1,44;2,26;
164,43;68,

58;2,78 
0,97 0,94 

West 
Pokot 

20 4 5 

NDVI3May;
NDVI5April;
NP5March;
NP1May;ND

VI6May 

1,44;2,26;
164,43;68,

58;2,78 
0,97 0,94 

West 
Pokot 

20 5 3 
NDVI5April;
NP5March;
NDVI4April 

2,26;164,4
3;1,81 

0,78 0,71 

West 
Pokot 

20 6 2 
NP5March;
NP6March 

164,43;26
0,4 

0,85 0,70 

West 
Pokot 

25 1 4 

ONIAugust;
NDVI5April;
NP5March;
NDVI6May 

0,1;2,26;1
64,43;2,78 

0,71 0,67 

West 
Pokot 

25 2 5 

NDVI5April;
NP5March;
NDVI6May;
NDVI4April;
NDVI5June 

2,26;164,4
3;2,78;1,8

1;2,4 
0,81 0,75 

West 
Pokot 

25 3 5 

NDVI5April;
NP5March;
NDVI6May;
NDVI4April;
NDVI5June 

2,26;164,4
3;2,78;1,8

1;2,4 
0,81 0,75 
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West 
Pokot 

25 4 5 

NDVI5April;
NP5March;
NDVI6May;
NDVI4April;
NDVI4May 

2,26;164,4
3;2,78;1,8

1;1,88 
0,81 0,75 

West 
Pokot 

25 5 3 
NDVI5April;
NP5March;
NDVI4April 

2,26;164,4
3;1,81 

0,80 0,73 

West 
Pokot 

25 6 2 
NP5March;
NP6March 

164,43;26
0,4 

0,86 0,73 

West 
Pokot 

30 1 1 NP5March 164,43 0,86 0,73 

West 
Pokot 

30 2 1 NP5March 164,43 0,86 0,73 

West 
Pokot 

30 3 1 NP5March 164,43 0,86 0,73 

West 
Pokot 

30 4 1 NP5March 164,43 0,86 0,73 

West 
Pokot 

30 5 1 NP5March 164,43 0,86 0,73 

West 
Pokot 

30 6 4 

NP5March;
NP6March;
NDVI3Marc
h;NDVI4Mar

ch 

164,43;26
0,4;1,39;1,

92 
0,90 0,80 

West 
Pokot 

35 1 2 
NP5March;
NDVI5April 

172,09;2,2
6 

0,82 0,74 

West 
Pokot 

35 2 1 NP5March 172,09 0,80 0,69 

West 
Pokot 

35 3 1 NP5March 172,09 0,80 0,69 

West 
Pokot 

35 4 1 NP5March 172,09 0,80 0,69 

West 
Pokot 

35 5 1 NP5March 172,09 0,80 0,69 

West 
Pokot 

35 6 1 NP5March 172,09 0,87 0,74 
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West 
Pokot 

40 1 3 
NDVI5April;
NP5March;
NDVI6May 

2,26;189,6
7;2,78 

0,75 0,66 

West 
Pokot 

40 2 2 
NDVI5April;
NP5March 

2,26;189,6
7 

0,73 0,61 

West 
Pokot 

40 3 2 
NDVI5April;
NP5March 

2,26;189,6
7 

0,73 0,61 

West 
Pokot 

40 4 2 
NDVI5April;
NP5March 

2,26;189,6
7 

0,73 0,61 

West 
Pokot 

40 5 3 
NDVI5April;
NP5March;
NDVI4April 

2,26;189,6
7;1,81 

0,77 0,62 

West 
Pokot 

40 6 4 

NP5March;
NDVI3Marc
h;NP6March
;NDVI4Marc

h 

189,67;1,3
;268,12;1,

92 
0,80 0,67 
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