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1 Introduction

1.1 Background

Hydrological extremes regularly occur in all regions of the world and as such are
globally relevant phemomena with large impacts on society (Kundzewicz and Kacz-
marek, 2000). Floods and drought are the most severe hydrological extremes, in
terms of their societal impact and potential economic damage. Both extremes are the
opposite of one another, where floods are caused by excessive water availability and
drought is known as decreased water availability. A flood is caused by above normal
streamflow, leading to inundation of areas which are normally not covered by water
(European Union, 2007b; Davie, 2008). Drought is defined as below normal water
availability (Wilhite, 2000; Tallaksen and Van Lanen, 2004; Mishra and Singh, 2010;
Sheffield and Wood, 2011). While drought can occur in all parts of the hydrologi-
cal cycle (precipitation, soil moisture, groundwater or streamflow), flood is mainly
restricted to abnormal (high) levels in streamflow.

Floods and drought are amongst the most costly natural disasters, due to their often
large spatial extent and high societal impact. Six of the ten most costly natural
disasters of 2013 were either caused directly by these hydrological extremes or enduced
by the extreme events, leading to an estimated damage of $77.2 billion for floods and
$18 billion for drought events (Aon Benfield, 2014). The drought in the summer of
2003 over Europe caused around 70.000 fatalities, flooding in Vietnam in August 1971
caused 100.000 fatalities in one single event (Aon Benfield, 2014).

The high numbers of economical and human losses indicate the importance of accurate
monitoring, forecasting and projection of high impact hydrological driven natural
disasters. This is even more urgent for regions where resilience to natural disasters
is low and where these events can have a multi-year impact on the economy of the
region. In addition to prevention measures, there is a need for accurate alert systems
that can help with decision making and early warning of hydrological extremes.

Decision support systems often suffer from high uncertainty from different sources,
for instance in meteorological forcing or model parameterization. For accurate model
simulations and forecasts of hydrological extremes it is important to reduce the un-
certainty from all sources as much as possible. This will improve the predictions and
will also result in an increased reliability of decision support systems. Increased re-
liability in combination with successfull forecasts while making the best possible use
of various available data, will eventually lead to increased confidence in simulations
of hydrological extremes.
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The aim of this thesis is to assess the different sources of uncertainty in model simula-
tions of hydrological extremes. Uncertainty in observations, model parameterization,
model states and other components are dealt with at scales ranging from large-scale
river basins to global scale hydrology. This introduction will describe the different
time scales on which models are applied, the type of observational data available, the
types of uncertainty in model simulations and will provide and a detailed description
of the objectives of this thesis.

1.2 Simulation, reanalysis, monitoring, forecasting and
projection of extremes

Hydrological extremes are often monitored and modelled with computer models that
aim at accurately representing the current hydrological conditions. Additionally, these
hydrological models are used to produce simulations, reanalysis products, provide
forecasts, and make projections of future hydrological conditions (Beven and Young,
2013, example of timescales in Figure 1.1). Different levels of complexity are found
for hydrological models, ranging from black box models, simple models consisting of a
chain of conceptual buckets (linear reservoirs) to fully 3D models that describe water
storage at multiple scales. The different hydrological timescales are described below
and in Figure 1.1 their relative order can be found.

Hydrological simulations are defined as simulations of historic hydrological conditions.
Typically historical hydrological simulations do not cover recent hydrological events
of less than a month or week ago. Hydrological simulations are created with hydro-
logical models that use observed meteorological forcing (e.g. precipitation, potential
evaporation, temperature) and in more advanced simulations also components like
water abstractions or other water losses in the catchment. Hydrological simulation of
historic conditions is the most common application of hydrological models and used
in numerous studies.

When historical hydrological simulations are combined with historical observations
in a Bayesian framework to improve model simulations, this is called hydrological
reanalysis. The aim of a reanalysis product is providing the most realistic simulation
of the complete hydrological cycle, based on observations in this cycle. Reanalysis of
past hydrological conditions is an important tool to understand the hydrological sys-
tem (Van Dijk et al., 2014). For example, hydrological models can be benchmarked
with a reanalysis dataset. Their capability to reproduce historic hydrological con-
ditions provides valuable information on the quality of the hydrological simulations.
An advantage of reanalysis products is that they provide an overview of the complete
hydrological cycle and not only of one component of the hydrological cycle.

Monitoring and forecasting are defined as the most realistic simulation and short-term
forecast of the current and near future state of the hydrological cycle based on near-
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Figure 1.1 Different simulation periods used in hydrological modelling shown for a syn-
thetic example. The hypothetical approximate number of observations available (black
line) and the model simulation uncertainty (dashed line) are indicated in the top panel.
The larger the spread in the synthetic model simulation, the higher the uncertainty in the
hydrological simulations.

real time observations and model simulations. At the national and provincial level
numerous hydrological models exist for monitoring real-time conditions and forecast-
ing of small scale events. However, at the continental and global scale the number of
operational hydrological systems is still limited. An example of a continental flood
forecasting system is the European Flood Awareness System (EFAS, Thielen et al.,
2009), developed by the European Commission Joint Research Centre (EU-JRC). At
the continental scale the university of Maryland developed the Global Flood Mon-
itoring System (GFMS) to monitor flood conditions from 50◦S to 50◦N (Wu et al.,
2012). In a recent attempt to improve flood awareness, EU-JRC developed the Global
Flood Awareness System (GloFAS) together with the European Centre for Medium-
Range Weather Forecasts (ECMWF). The ultimate goal of GloFAS is to provide
global flood forecasts with a 45 day lead time. Although GloFAS is still under de-
velopment, it was able to predict recent floods in Pakistan (August 2013) and Sudan
(September 2013) with a two week lead time. Recently more research has focussed
on the development of drought monitoring and forecasting systems, both continen-
tally and globally (Mishra and Singh, 2010). Examples are the effort of Princeton
University to develop the African Drought Monitor, which allows for monitoring and
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Table 1.1 Comparison between ground-based observations and observations from remote
sensing.

Temporal Spatial Spatial Record Product
resolution support coverage length Uncertainty

Ground-based High Small Small Long Low
Satellite Medium Large Large Short High

forecasting of drought events in Africa with a 7 day lead time (Sheffield et al., 2014),
and the European Drought Observatory (EDO) developed by EU-JRC, monitoring
and forecasting droughts 14 days ahead. Although these are systems that allow for
monitoring of drought conditions, the current forecast lead time of 7-14 days provides
local authorities with a limited response time.

Simulations of the hydrological cycle for the next decade to century and estimates of
potential changes in these periods are defined as hydrological projections. The impact
of climate change on hydrological extremes has been of major interest in recent years
(e.g. Bates et al., 2008; Feyen and Dankers, 2009; Dai, 2011; Sheffield and Wood,
2011; Seneviratne et al., 2012; Hirabayashi et al., 2013; Prudhomme et al., 2014).
This is caused by the severe socio-economic impact related to changes in hydrological
extremes. These projections are often based on simulations from Global Hydrological
Models (GHMs) forced with results of General Circulation Models (GCMs, Senevi-
ratne et al., 2012; Warszawski et al., 2014). Although these projections are highly
uncertain, they do provide insight in possible changes in the hydrological regime and
more important changes in hydrological extremes. The uncertainty reduces with new
generation GCM simulations, however, uncertainties in GHMs still make projections
highly uncertain (Prudhomme et al., 2014).

1.3 Observations

For accurate simulations of hydrological extremes at the global scale, it is important
to have high quality observations (Wood et al., 2011). Input data varies from meteo-
rological forcing to soil texture maps used to derive soil parameters. These inputs
originate from multiple sources, varying from lab experiments, ground based mea-
surements, airborne surveys to observations by satellites. However, it is important to
stress that the spatial and temporal support of these observation types varies strongly
(Table 1.1). In general, ground-based observations are deemed reliable, but their dis-
advantage is that they suffer from a very low spatial support, a small spatial coverage,
and various types of measurement errors. Additionally, the density of ground-based
observations is not equally distributed across the globe, see for example discharge
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Figure 1.2 Time series of number of discharge (bars) and satellite observations (line).
Number of discharge observations is obtained from the Global Runoff Data Centre (GRDC)
and the number of earth observing satellites is obtained from the Earth observing programs
of both National Aeronautics and Space Administration (NASA) and European Space
Agency (ESA). The strong decline in data availability after 2000-2004 is mainly caused
by a failure/delay of authorities to report (timely) to GRDC, the decline since 1980 is the
real trend in discharge observations availability.

observations in Figure 1.2. In recent years the number of ground-based observations
has steadily decreased, resulting in an even lower spatial coverage of ground-based
observations (Figure 1.2). This is not only true for discharge observations, but it
is a general trend found in ground-based observations (e.g. Lorenz and Kunstmann,
2012).

The decrease in ground-based observations is compensated by an increase in the
amount of data available through satellite observations (Figure 1.2). These space-
borne observations of different hydrological variables have large potential for hydro-
logical monitoring. Examples are monitoring of precipitation (Kummerow et al., 2001;
Huffman et al., 2010), top soil moisture (Wagner et al., 1999; Owe et al., 2008; Kerr
et al., 2012) and land surface temperature (Holmes et al., 2009). A disadvantage of
satellite observations is that they often provide raw, uncalibrated relative data or land
surface parameters, which require ground-truth or other types of validation. Due to
the large difference in spatial support of ground-based and satellite observations com-
parison between these products is often hampered. Nonetheless, satellite observations
show a high potential to improve global coverage of important hydrological variables
for monitoring the hydrological system. Additionally, they can improve hydrological
simulations of the terrestrial water cycle.
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1.4 Vagueness in terminology

A problem for simulation of hydrological extremes, is the definition of a hydrological
extreme. It is difficult to forecast a hydrological extreme, when multiple definitions
are used for different impacts in both nature and society. In flood monitoring and
forecasting, thresholds (exceedance levels) are often used to describe which conditions
are normal and which conditions are not. Different alert levels of the discharge are
used to warn the general public of upcoming threats. Difficulties arise when the
thresholds are not known due to limited local data. An often used solution is to make
use of long-term simulations of a hydrological model, to assess what discharge values
can be considered normal and what should be called exceptional.

For drought monitoring and forecasting it is even more difficult to find below normal
water availability (Tallaksen and Van Lanen, 2004; Mishra and Singh, 2010; Sheffield
and Wood, 2011). Due to the fact that drought occurs in all parts of the hydro-
logical cycle, multiple definitions of drought exist. Additionally, drought should not
be confused with water scarcity, which is insufficient water availability to meet local
water demands (Tallaksen and Van Lanen, 2004; European Union, 2007a). Numer-
ous indicators exist to define drought conditions, which all focus on different parts
of the hydrological cycle (e.g. Keyantash and Dracup, 2002; Wanders et al., 2010).
The extensive inventory reported by Wanders et al. (2010) indicates that some of
the vagueness is also created by scientists and policy makers, by creating additional
drought indicators for every impact. The World Meteorological Organisation (WMO)
suggests the Standardized Precipitation Index (SPI) as the indicator to classify global
drought (World Meteorological Organization, 2009). However, this neglects the di-
versity of drought events in the hydrological cycle. This example shows the clear need
to make the definition of drought dependent on the impact under study.

1.5 Uncertainty in simulations of hydrological extremes

Uncertainty in hydrological modelling can play an important role in simulations, re-
analysis, monitoring, forecasting or projection of hydrological extremes. Uncertainty
in hydrological simulations is caused by uncertainty in meteorological forcing, initial
conditions, parameterization, boundary conditions and model structure (e.g. Liu and
Gupta, 2007, Figure 1.3). Reducing the model uncertainty will lead to improved
hydrological simulations, which is highly desirable for monitoring of extremes or hy-
drological simulations in general. Here the different components that can add to the
uncertainty in hydrological simulations are discussed, starting with meteorological
forcing, followed by initial conditions, model parameterization and boundary condi-
tions and concluding with the uncertainty as a result of assumptions about the model
structure.
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Figure 1.3 Types of uncertainty and vagueness addressed in this thesis. The capital letters
refer to uncertainty for particular time periods, i.e. Historic (Simulation/Reanalysis, H),
Monitoring (M), Forecasting (F) and Projection (P). Time periods for which uncertainty
is discussed and reduced in this thesis are indicated by a dark grey box and white boxes
indicate unadressed types of uncertainty.

1.5.1 Meteorological forcing

Meteorological forcing is important for most hydrological simulations, since the hydro-
logical cycle is driven by precipitation and loss of water via evaporation. Uncertainty
in meteorological forcing data can have significant impact on hydrological simulations
(Fekete et al., 2004).

Precipitation is historically measured with rain gauges, however, the quality of these
gauges varies strongly with time and with location. Uncertainty of over 10% as a result
of undercatch due to wind effects is not unlikely (Groisman et al., 1991; Groisman
and Legates, 1994). In recent years rain radar and other techniques have contributed
to the increased availability of precipitation data at the global scale. However, the
uncertainty in the precipitation estimates is still considerable.

Evaporation observations are sparse, since it is difficult to obtain observations of this
flux from field data or remote sensing. Field observations suffer from low spatial
support, which makes it difficult to obtain accurate area averaged values of this im-
portant variable. Daily satellite observations of evaporation suffer from a low spatial
resolution, which makes it difficult to estimate sub-daily variations in evaporation
rates at field scales. Monthly satellite-based evaporation products do not suffer from
this low spatial resolution, but do lack the high temporal resolution and hence have
reduced applicability in hydrological applications. Additionally, in most hydrological
models the potential evaporation rate is transformed to the actual evaporation rate
as a function of the available water and vegetation cover. This transformation from
potential to actual evaporation introduces more uncertainties.
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An approach to reduce this forcing uncertainty is to include additional observations
of variables that are influenced by these processes. For example, soil moisture is di-
rectly impacted by precipitation, resulting in an increase in soil moisture content, and
evaporation, in turn resulting in a decrease in soil moisture content. Observations of
changes in soil moisture can thus be used to infer precipitation and actual evaporation
rates. Additionally, a water balance approach (assuming no storage changes) can be
used to estimate the ratio between inputs (precipitation) and outputs (evaporation
and discharge). However, this method suffers from the fact that a longer time period
is required for the calculation in order to neglect changes in the catchment storage.

1.5.2 Initial conditions

Simulation uncertainty caused by incorrect initial conditions is mainly important for
forecasting of hydrological extremes. The impact of uncertainties in initial conditions
can be up to several days for flood events, while for slower reacting drought events
this impact can be several months (Wood and Lettenmaier, 2008). Incorrect esti-
mates of the initial conditions will lead to incorrect estimates of the storage in the
different components of the hydrological cycle (e.g. interception, soil moisture and
groundwater), which will in turn result in incorrect simulation of the fluxes between
storages. The traditional way to deal with incorrect initial conditions is to use a spin-
up period to compute a dynamic equilibrium state of the hydrological cycle, leading
to more balanced model simulations with lower uncertainty. Another approach is to
use a data assimilation framework that combines observations and model simulations
to estimate a initial state of the hydrological cycle. Data-assimilation has the advan-
tage that shorter spin-up periods are required to correctly estimate storages in the
hydrological cycle, due to the fact that observations are used to constrain the intial
states.

1.5.3 Boundary conditions

Most models simulate a closed catchment assuming no water flow across the water
divide, or without human influences. However, for most catchments one or both of
these assumptions are not valid, which results in a mismatch between the simulated
water availability and the observed water availability. Boundary flows are especially
important in smaller catchments where the exact location of the boundary is often ill
defined and the relative impact of the boundary fluxes is large compared to the other
fluxes (e.g. precipitation and discharge). Small mismatches between actual hydro-
logical boundaries and the simulation boundary could result in significant simulation
errors. Another important uncertainty is introduced by human impacts on the hy-
drology. This can either be via dams, water abstractions or as a result of transport
of water across catchment boundaries. While most hydrological models neglect both
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these effects, it can introduce large uncertainties, depending on the scale and the
degree of human activity in the catchment.

1.5.4 Parameterization

Model parameterization directly affects the process description in the model and
thereby has a large impact on the hydrological simulations. Parameters can be de-
rived from observations (e.g. soil type) or derived from tables that transfer observed
characteristics to parameter values (e.g. saturated hydrological conductivity as a
function of soil type). To reduce the uncertainty in model parameterization, mod-
els are calibrated against a set of observations or state variables. A large variety
of calibration algorithms exist, e.g. the Generalized Likelihood Uncertainty Estima-
tion (GLUE, Beven and Binley, 1992), DiffeRential Evolution Adaptive Metropolis
(DREAM, Vrugt et al., 2008).

However, calibration of hydrological models is a complicated process and will never
lead to a perfect result, due to the fact that models will remain a simplication of
the real process (model structural error; see hereafter). Depending on the complexity
of the model and the number of parameters, equifinality could occur, where several
completely different parameter sets will result in a similar performance (Beven, 2006).

1.5.5 Model structure

Although often ignored and underestimated, the impact of model structure (i.e. the
way in which a model simulates water flow through a catchment and the assumption
made in the model) on hydrological simulations is significant (Kavetski and Fenicia,
2011). The uncertainty in hydrological projections is even more influenced by differ-
ences amongst models than differences amongst forcing datasets (Prudhomme et al.,
2014). It is difficult to reduce this form of uncertainty since it requires a variety of
models to be run simultaneously. Models are often selected because the user has ex-
perience with a particular model or prefers a particular model for other reasons. The
model selection is also influenced by the trade-off between model calculation time and
model complexity. Some Bayesian techniques exist to optimize the model structure;
however, they have a high computational demand and are therefore not often applied.

1.6 Objectives and approach

Reducing uncertainty in hydrological simulations of hydrological extremes is of major
importance to reduce socio-economic impacts of these extremes. This is particularly
the case in large river basins, where the impact of these events can be devastating for
large areas, resulting in high numbers of fatalities and economic damage at national
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or even international level. As described above, numerous techniques exist to reduce
the uncertainty in model simulations of hydrological processes in general and more
specific of hydrological extremes. For example, Bayesian data assimilation methods
provide a framework to reduce uncertainty in large scale hydrological models by com-
bining model simulations and observations. Moreover, with an increasing number of
observations from satellites, new opportunities arise to improve simulations of the
terrestrial water cycle at large sales. Additionally, the impact of correct definitions
for hydrological extremes has not been properly studied yet. It is important to agree
upon a common terminology which can be used for hydrological simulations and
analyses of hydrological extremes.

From the realization that uncertainty and vagueness play a decisive role in using model
simulations of hydrologic extremes for disaster management, three research gaps in
the current large scale simulations of hydrological extremes are identified that form
the basis for the work presented in this thesis: (1) Satellite based observational data is
underutilized and uncertainty in hydrological simulation could be reduced to improve
parameterization of large-scale hydrological models; (2) A common terminology for
hydrological extremes that allows for changes in the climate dynamics is lacking;
(3) Quantification of the impact of climate change and human influence on future
hydrological extremes.

The overall objective of this thesis is:

To reduce uncertainty in simulations, reanalysis, monitoring, forecasting and
projections of hydrological extremes for large river basins.

To pursue this objective, the research presented in this thesis will attempt to answer
the following specific research questions:

1. Is it possible to reduce uncertainty in model simulations and forecasts
with ground-based and remote sensing observations?
With the increasing availability of remote sensing data, these observations could
be a valuable source for hydrological modelling. Currently only a limited num-
ber of earth-observing systems is used in hydrological modelling. To increase
the potential benefit from remote sensing observations it is important to have
an understanding of the uncertainty in the remote sensing observations and
the spatial and temporal error structure of these observations. In Chapter 2
the uncertainty of these remotely sensed soil moisture observations is evaluated
over Spain and the temporal and spatial error structure of the observations is
studied.

An important input of hydrological models is precipitation, because it is the
driving force behind the hydrology for most of these models. However, in large
regions of the world the quality and availability of these data are limited due
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to a limited number of ground-based observations. Especially in regions like
Africa these limitations apply. Precipitation observed by satellites provides a
solution to improve real-time hydrological monitoring in sparsely-gauged re-
gions. Since many applications require a short latency between the observation
and the availability of the data to the hydrological community, many satellite-
based near real-time precipitation products have been developed. Typically, the
uncertainty in these real-time products is larger than found in the reprocessed
products that include ground-based observations of precipitation. However,
these reprocessed products have a latency of over a week, which makes them
unsuitable for real-time applications. To reduce the uncertainty in real-time
satellite estimates of precipitation, other real-time observations of land surface
variables (that are impacted by precipitation) could be used to reduce real-
time retrieval uncertainty. In Chapter 3 both soil moisture and land surface
temperature satellite retrievals are used to reduce the uncertainty of satellite
precipitation.

For applications that focus on hydrological reanalysis simulations on the global
scale, this latency is not an issue. Typically, ground-based or reanalysis pre-
cipitation datasets are used as an input for this application, because they have
global coverage and typically cover a longer time period than found for satellite
precipitation retrievals (first mission in 1997). Still large uncertainties exist in
both datasets due to the limited number of rain gauges in some regions and
the uncertainty in rain gauge observations (e.g. undercatch). To reduce the
uncertainty in these long-term precipitation records, additional ground-based
observations could be used to correct for errors. Discharge observations could
be used to quantify the uncertainty, since they provide an integral observation
of the water balance over a catchment and hence can be used to infer precipita-
tion. In Chapter 4 a global discharge dataset is used to quantify uncertainties
in precipitation and to create a reanalysis simulation of global hydrology. Ad-
ditionally, parameterization of the hydrological model is improved with the use
of a Bayesian framework.

The impact of model errors in hydrological simulations should be minimal,
compared to the uncertainties obtained from the forcing data. A way to reduce
simulation uncertainty is the calibration of hydrological models with observa-
tions. In many situations discharge data can be used. However, in areas where
this type of data is not available, satellite observations of for instance soil mois-
ture could provide valuable information regarding hydrological processes. In
Chapter 5 satellite soil moisture observations as obtained from space-borne
microwave sensors are used to calibrate a hydrological model in a Bayesian
framework and simulations are compared to simulations calibrated based on
ground-based discharge observations.

The information on the temporal and spatial error structures of satellite soil
moisture observations and improved parameterization of hydrological models
could improve operational flood forecasting. Since the initial conditions are
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better estimated with the extra information from additional observations, this
could potentially lead to better forecasts. Improved parameterization will lead
to more realistic simulations of the hydrological response to precipitation events.
In Chapter 6 the potential of microwave satellite observations of soil moisture
and discharge observations is evaluated for operational flood forecasting in the
Upper-Danube catchment.

2. Is it possible to reduce the vagueness in hydrological drought termi-
nology?
For monitoring, forecasting and projections of hydrological extremes it is of
great importance to have a clear definition of the natural hazard under study.
While for flooding this definition is often agreed upon, the definition of hy-
drological drought is still under debate by the hydrological community. Often
meteorological extremes are used as a proxy to study hydrological extremes,
while others use observations of discharge to study the same phenomena. In
Chapter 7 the correlation and similarity between different drought indicators
is studied and evaluated on the global scale.

With a changing climate the hydrological climatology will change, which in turn
will result in a changed perception of hydrological extremes for both humans and
nature. Studies that do not take account of these changes will only study the
impact of changes in the hydrology with respect to the current climate. While
these changes may be significant, the perception of hydrological extremes will
also change in the 21st century. An alternative approach would be to adjust
the definition of hydrological drought, and hydrological extremes in general,
with respect to a changing climate. In Chapter 8 the impact of this changing
definition of hydrological drought is studied for the 21st century at a global
scale.

3. What is the uncertainty associated with the human and climate im-
pact on projections of hydrological drought?
Most studies focus on changes in drought for the 21st century at a global scale,
without disentangling the different components that impact these changes. To
get a better understanding on the factors (e.g. climate change, catchment char-
acteristics, increased human water abstractions) that influence changes in future
hydrological drought it is important to have a more controlled experimental de-
sign. In this way the individual impact of climatic changes could be studied,
while the feedback with the catchment is identical for all simulations. In Chap-
ter 9 a synthetic catchment design is used to study the impact of changes in
the climatology on hydrological drought for different climatic regions with a set
of simulations from GCMs.

Most GHMs do not incorporate simulations of human water abstractions and
reservoir operations. However, these boundary conditions can be of significant
importance for the changes in future hydrological extremes. Models that include
these human impacts allow one to study the relative impact of human influence

12



on changes in hydrological extremes. In Chapter 10 the combined impact of
human and climate change on hydrological drought is studied and compared
with hydrological drought only impacted by changes in the climatology.

1.7 Innovation and relevance

This work provides a first overview of the use of satellite soil moisture observations
to address uncertainties in both meteorological input, model parameterization and
flood forecasting initial conditions in hydrological models. The spatial error structure
of three well-known satellite soil-moisture products is carefully evaluated and used to
improve the potential benefit from these satellite data. This in turn improves flood
forecasting skills of a large-scale hydrological model.

This is the first time discharge observations are used to simultaneously estimate model
parameters and create a reanalysis product in a Bayesian framework. This results
in a closed water balance reanalysis product at the global scale, which has not been
achieved before.

Retrieval uncertainty in satellite precipitation is reduced with soil moisture and land
surface temperature satellite observations, resulting in an improved real-time satellite
product. The impact of land surface temperature observations is significant, which
has not been shown before.

The concept of drought is re-evaluated, and by using a novel approach to charac-
terize drought under climate change it is shown that the impact of drought largely
depends on the drought perception. Additionally, it is shown that the magnitude of
the drought impacts is strongly determined by the methodology that is applied to
characterize the drought. This highlights the need for better, less vague, definitions
of drought in hydrology.

Finally, it is shown that changes in climatology and human influences have a signifi-
cant impact on future hydrological drought. These impacts are higher than previously
assumed and have a significant impact on the uncertainties in hydrological drought
projections.
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Part I

Ground-based and satellite
observations to reduce uncertainty in

hydrological simulations





2 Observation uncertainty of
satellite soil moisture products

This chapter is based on:
Wanders, N., Karssenberg, D., Bierkens, M. F. P., Parinussa, R. M., de
Jeu, R. A. M., van Dam, J. C., de Jong, S. M., (2012), Observation uncer-
tainty of satellite soil moisture products determined with physically-based modeling,
Remote Sensing of Environment, 127, 341-356, doi:10.1016/j.rse.2012.09.004.

Abstract

Accurate estimates of soil moisture as initial conditions to hydrological models are expected

to greatly increase the accuracy of flood and drought predictions. As in-situ soil moisture

observations are scarce, satellite-based estimates are a suitable alternative. The validation

of remotely sensed soil moisture products is generally hampered by the difference in spatial

support of in-situ observations and satellite footprints. Unsaturated zone modelling may

serve as a valuable validation tool because it could bridge the gap of different spatial sup-

ports. A stochastic, distributed unsaturated zone model (SWAP) was used in which the

spatial support was matched to these of the satellite soil moisture retrievals. A comparison

between point observations and the SWAP model was performed to enhance understanding

of the model and to assure that the SWAP model could be used with confidence for other

locations in Spain. A time series analysis was performed to compare surface soil moisture

from the SWAP model to surface soil moisture retrievals from three different microwave

sensors, including AMSR-E, SMOS and ASCAT. Results suggest that temporal dynamics

are best captured by AMSR-E and ASCAT resulting in an averaged correlation coefficient of

0.68 and 0.71, respectively. SMOS shows the capability of capturing the long-term trends,

however on short time scales the soil moisture signal was not captured as well as by the

other sensors, resulting in an averaged correlation coefficient of 0.42. Root mean square

errors for the three sensors were found to be very similar (±0.05 m3m−3). The satellite

uncertainty is spatially correlated and distinct spatial patterns are found over Spain.

2.1 Introduction

Soil moisture is an important variable in many applications and environmental stud-
ies, such as numerical weather prediction (Drusch, 2007), global change modelling
(Henderson-Sellers, 1996), predicting surface runoff (Brocca et al., 2010), drought
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monitoring (Sheffield and Wood, 2007) and modelling evaporation (Miralles et al.,
2011). In small catchments (≤ 700 km2) soil moisture assimilation has been shown
to improve discharge simulation (Brocca et al., 2010); the impact in larger scale river
basins remains unknown. At this large scale, ground based soil moisture measure-
ments are relatively scarce and therefore lack sufficient spatial density to be accurately
up-scaled to improve flood forecasting for large river basins. Soil moisture is highly
variable in space and time and thus a high spatial and temporal resolution of ob-
servations is required to retrieve good estimates of the actual soil moisture content
(Western et al., 2002).

A possible solution to obtain spatially averaged soil moisture for large river basins
is the use of soil moisture retrievals from spaceborne sensors measuring in the mi-
crowave frequencies. For several years passive and active microwave observations have
been used for the retrieval of soil moisture from the Earth’s surface. The current Soil
Moisture and Ocean Salinity (SMOS) mission observes the Earth’s surface in the
L-band (1.41 GHz) frequency (Wigneron et al., 1995), because such low frequency
observations are most sensitive to soil moisture. SMOS is the first dedicated satel-
lite observing soil moisture from space and was launched in November 2009. In the
past, several passive microwave sensors, such as the Advanced Microwave Scanning
Radiometer-EOS (AMSR-E), have been used to retrieve soil moisture using multi-
channel observations obtained at higher microwave frequencies (e.g. Njoku et al.,
2003; Owe et al., 2008). AMSR-E, onboard NASA’s Aqua satellite was launched in
2002 and was recently (October 2011) switched off due to rotation problems with
its antenna. Also, several active microwave sensors, such as the Advanced Scat-
terometer (ASCAT) onboard ESA’s MetOp satellite, were used for the same purpose.
Backscatter measurements at three different azimuth angles are converted to surface
soil moisture (Naeimi et al., 2009). Microwave observations are largely unaffected by
solar illumination and cloud cover, but can be influenced by topography and active
precipitation. Additionally, several studies (De Jeu et al., 2008; Dorigo et al., 2010;
Parinussa et al., 2011) showed a decreasing quality of soil moisture retrievals with
increasing vegetation density.

Microwave remote sensing provides areal (625 − 2500 km2) averaged soil moisture
content with a high temporal resolution (revisit time 1-3 days), which could be used
for large scale hydrological applications (Walker and Houser, 2004). However, in
operational hydrological modelling (e.g. data assimilation schemes) it is important
to provide a good estimate of the uncertainty of the remotely sensed soil moisture
product (Crow and Ryu, 2009). Some studies successfully used remotely sensed soil
moisture in assimilation schemes showing the potential use of them to improve dis-
charge simulations (e.g. Brocca et al., 2010; Draper et al., 2011). These studies used
a single satellite product and made often arbitrary assumptions on the uncertainties
in retrieved soil moisture. Also, spatio-temporal variation in uncertainty is mostly
neglected. However, to make optimal use of (multiple) remotely sensed soil mois-
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ture products in assimilation schemes, it is essential to determine the magnitude and
spatial structure of the uncertainties of each product (Van Leeuwen, 2009).

One approach to determine the uncertainty of satellite soil moisture products is to use
ground based observations. Unfortunately, this approach is generally hampered by a
lack of ground based observation networks with sufficient spatial density (low cover-
age) to allow for accurate upscaling to the resolution of satellite based soil moisture
retrievals (Scipal et al., 2008). Recently, in-situ observations became more readily
available (Dorigo et al., 2011) resulting in several studies (e.g. Miralles et al., 2010)
providing meaningful information about the differences in spatial resolution between
in situ and remotely sensed soil moisture products. Evaluation results from these
more traditional in situ validation were performed by e.g. Walker and Houser (2004);
Wagner et al. (2007); Albergel et al. (2012). However, these studies did not take into
account the difference in spatial resolution of in-situ observations and remotely sensed
soil moisture. In these studies, it is assumed that the in-situ observation provides a
valid value for the footprint scale modelled soil moisture while this assumption might
not always be valid (Crow et al., 2012). Additionally, there is only a small number of
in-situ soil moisture networks available with enough coverage to accurately up-scale
in-situ observations to the spatial resolution of microwave products. For this reason
several evaluation techniques (Crow and Zhan, 2007; Scipal et al., 2008; Dorigo et al.,
2010; Crow et al., 2010) have been proposed which circumvent the need for extensive
ground-based soil moisture observations.

An additional approach to validate remotely sensed soil moisture is process-based
unsaturated zone modelling. An advantage of a physically-based unsaturated zone
models is their capability to represent spatio-temporal variation in meteorological
forcing, soil parameters and unsaturated zone processes (Finke et al., 1996; De Lannoy
et al., 2006). This enables a validation at the spatial resolution of the microwave
soil moisture products (625 − 2500 km2). Matching the spatial scales of remotely
sensed soil moisture products and unsaturated zone models is essential to enable the
calculations of the uncertainty of the remote sensing product itself (Bierkens et al.,
2000). In this study, the physically based Soil Water Atmosphere Plant model (SWAP,
Van Dam, 2000; Kroes et al., 2008) was applied, which was successfully used in various
studies (e.g. Singh et al., 2006; Baroni et al., 2010). The SWAP model integrates local
information (e.g. meteorological stations, soil data) with high spatial resolution (km-
scale) remotely sensed imagery (e.g. , Leaf Area Index). Combining information from
these different sources allows for up-scaling (also referred to as aggregating) of the
high spatial resolution unsaturated zone model to match the spatial resolution of the
remotely sensed soil moisture product. The SWAPmodel uses a high-resolution multi-
layer approach in the vertical to deal with the different observation characteristics of
the different satellite products, resulting in simulated soil moisture content at several
depths, including the top-layer.

The assessment of uncertainty in modelled soil moisture is mostly unknown because
uncertainties are not known at the satellite scale and errors made by the hydrological
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model are ascribed as satellite error. In reality the model uncertainty could be very
large and satellite uncertainty is highly overestimated, because model calibration
is often done at locations with a single measurement per model grid point of 64 −
2500 km2. In previous studies the assessment of uncertainty in modelled soil moisture
was most of the time unknown because the magnitude and spatial structure of the
error was not known. To deal with this problem, model uncertainties and uncertainties
of the input parameters are considered in this study when up-scaling the SWAP model
to satellite footprint scale.

The aim of this study is to accurately up-scale the high-resolution unsaturated zone
model in order to provide a detailed assessment of the uncertainty of the satellite
derived soil moisture product at the correct spatial and temporal support. To achieve
this aim, the performance of the SWAP model was evaluated at different spatial scales
and finally up-scaled to match the coarse resolution satellite soil moisture products.
To deal with the unique observation depths of the different microwave systems a
high-resolution multi-layer model simulation of SWAP was used. The SWAP model
was validated for the REMEDHUS soil moisture network in Spain to investigate if
the model could be applied in other regions of Spain for satellite validation, assuming
the model could be used without further modifications. Thereafter, soil moisture was
modelled for 79 locations in Spain and compared to timeseries of remotely sensed
soil moisture product (AMSR-E, SMOS and ASCAT) and the magnitude and spatial
structure of the uncertainties was determined.

2.2 Material and Methods

2.2.1 Satellite data

Three satellites that measure soil moisture are used for this inter-comparison study,
namely SMOS, ASCAT and AMSR-E (Table 2.1). The SMOS satellite was launched
on 2 November 2009 and the data for the level 2A soil moisture product have been
available since January 2010 (Kerr et al., 2010). SMOS is the first dedicated soil
moisture satellite and uses fully polarized passive microwave signals at 1.41 GHz
(L-band) observed at multiple angles. SMOS is developed to measure soil moisture
content with a target accuracy (standard error) of 0.04 m3m−3 (Kerr et al., 2001).
The overpass time at the equator is 6:00 AM/PM, with a maximum revisit time of
3 days at equatorial latitudes. In this study only morning overpasses have been used,
because between midnight and early morning, the soil moisture has an equilibrium
state and is not influenced by bare-soil evapotranspiration. The spatial resolution of
SMOS is 35-50 km depending on the incidence angle and the deviation from the satel-
lite ground track. The innovative observation technique and algorithms of SMOS are
still relatively new and the retrieval algorithm is under constant development. Radio
frequency interference (RFI) at L-band has been reported over large parts of Europe
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Table 2.1 General sensor properties relevant for this study.

SMOS ASCAT AMSR-E

Frequency (GHz) 1.41 5.3 6.9
Microwave type Passive Active Passive
Spatial resolution (km) 35-50 25 36-54
Max revisit time (days) 3 3 3
Observation depth (cm) 0-5 0-2 0-2
Descending overpass (h) 6:00 PM 9:30 AM 1:30 AM

and Asia, which may impact its soil moisture retrieval (Anterrieu, 2011). RFI will
affects SMOS soil moisture retrievals and especially for Europe the observations in
the first half of 2010 are partly contaminated by RFI. In this study RFI influenced
observations have been removed by filtering the data. SMOS retrievals with an RFI
flag raised have been removed from the analysis as were retrievals with a large re-
trieval uncertainty (DQX ≥ 0.04 m3m−3). SMOS data are obtained from ESA and
reprocessed data (Level 2 processor v501) from 2012 have been used for the entire
evaluation period. For more detailed information about the SMOS algorithm and the
level 2 product the reader is referred to Kerr et al. (2012).

AMSR-E is a multi-frequency (6 bands from 6.9 to 89.0 GHz) passive microwave
radiometer and was the first widely used sensor for soil moisture retrievals. AMSR-E
is in a sun synchronous orbit with local equator overpass times at 01:30 AM/PM.
Several algorithms estimating surface soil moisture from AMSR-E observations exist
(e.g. Njoku et al., 2003; Owe et al., 2008). All these algorithms use a combination of
observations in several frequencies and/or polarizations, and some use auxiliary data.
One of the algorithms using exclusively satellite observations is the Land Parameter
Retrieval Model (LPRM) developed by scientists at NASA and the VU Amsterdam
(VUA). This model uses a simple radiative transfer equation to retrieve soil moisture
and vegetation optical depth from horizontal and vertical polarized brightness tem-
peratures by partitioning the observed signal into its respective soil and vegetation
emission components (e.g. De Jeu and Owe, 2003; Meesters et al., 2005). LPRM soil
moisture products have been extensively validated against in situ observations (e.g.
Wagner et al., 2007; De Jeu et al., 2008; Draper et al., 2009), models (e.g. Loew
et al., 2009; Crow et al., 2010; Bisselink et al., 2011) and other satellite products
(Wagner et al., 2007; Dorigo et al., 2010). These studies show that LPRM soil mois-
ture captures a large part of the temporal variability (as shown by the correlation
coefficient), which was confirmed by Crow et al. (2010) using a completely different
approach and using soil moisture anomalies rather than absolute values. This skill
was the main driver to select LPRM soil moisture retrievals for this study. AMSR-E
makes both day- and night-time observations. In existing studies only night-time
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observations were used as it was shown that soil moisture retrievals based on these
are more reliable than those based on day-time observations (De Jeu et al., 2008).

Unlike SMOS and AMSR-E, ASCAT uses active microwave technology at a frequency
of 5.3 GHz (C-band) to determine the soil moisture content (Wagner et al., 1999;
Naeimi et al., 2009). ASCAT uses a change detection method in which the changes
in the amount of backscatter are linearly related to changes in soil moisture content
and vegetation cover (Naeimi et al., 2009). Data is provided as relative soil moisture
content, with respect to the wettest and driest soil moisture conditions measured
during the lifetime of ASCAT (Wagner et al., 1999). The spatial resolution of ASCAT
is around 25 km and the temporal resolution equals a revisit time of 3 days at 9:30
AM/PM around equatorial latitudes. Only descending passes of ASCAT (9:30 AM)
have been used. Reprocessed ASCAT data were obtained from the TU Wien archive.

All satellite soil moisture level 2 products are evaluated on an equal area Discrete
Global Grid product (DGG). For the SMOS and ASCAT soil moisture product a
DGG is available (Bartalis et al., 2006a), while for the AMSR-E product this DGG
is not available. Therefore, the AMSR-E data was projected on the DGG of SMOS
using the nearest neighbour approach because both satellites have roughly the same
spatial resolution. The DGG of ASCAT uses equally spaced areas of 12.5 km while
the other DGG uses a slightly lower resolution of 15 km between points.

ASCAT data, which are by default expressed as values between 0 and 100 (-), indi-
cating very dry and very wet conditions, respectively, was converted to the dynamic
range of the model. Although the passive microwave satellite missions, SMOS and
AMSR-E, give absolute soil moisture values inm3m−3, all satellite data was converted
using the same approach, to enable a comparison of the absolute errors of satellites.
The new satellite values θs,new in m3m−3 used here are calculated by:

θs,new =
θs − θs,5
θs,95 − θs,5

(θm,95 − θm,5) + θm,5 (2.1)

where θs are the observed satellite soil moisture values (m3m−3 or -), θ95 and θ5
are the 95th and 5th percentiles of satellite soil moisture values per DGG location
respectively (m3m−3 or -), θm,95 and θm,5 are the 95th and 5th percentiles of modelled
soil moisture values for the same DGG location (m3m−3). Unlike cumulative density
function (CDF) matching (e.g. Liu et al., 2011b; Brocca et al., 2011) this approach
has the advantage that the shape of the probability density function of each product
remains the same and temporal dynamics as well as temporal statistics like correlation
are not influenced.

For the retrieval of near surface soil moisture frozen soils and RFI hamper soil mois-
ture observations. Frozen soils hamper the soil moisture retrieval due to changes in
the dielectric constant when water freezes. Therefore, retrievals done with an air tem-
perature below 4◦C were excluded from the analysis. For AMSR-E these observations
are excluded by the LRPM algorithm because AMSR-E is capable of measuring the
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Figure 2.1 Locations of 22 soil moisture observation points and soil texture information
derived from the JRC European soil texture map (Van Liedekerke et al., 2006) for the
REMEDHUS site in Spain.

soil surface temperature. RFI distorts the incoming signal and the microwave signals
measured by the satellites. Although the retrievals of all satellites suffer from RFI
presence, SMOS appears to have the most RFI-related problems (Kerr et al., 2012).
From the second part of 2010, the influence of RFI has, however, significantly been
reduced for most countries in Europe, including Spain.

2.2.2 In-situ soil moisture measurement and meteorological data

The validation of the three remotely sensed near surface soil moisture products was
carried out for the mainland of Spain. Spain was selected because of the presence of
the REMEDHUS soil moisture network providing data for the period 2006-2011 at a
high temporal resolution for a relatively large number of sampling locations (Mart́ınez-
Fernández and Ceballos, 2003; Sánchez et al., 2010). From the International Soil
Moisture Network (Dorigo et al., 2011), in-situ soil moisture content is available at a
depth of 5 cm for 22 locations (Figure 2.1). An additional advantage of Spain is the
availability of a high number of meteorological stations distributed throughout Spain.

Data from 79 meteorological sites in Spain (Figure 2.2) obtained from the Spanish
meteorological service (AEMET), were used for the evaluation of the three remotely
sensed soil moisture products. These meteorological sites have meteorological data for
the period January 2009-July 2011 including precipitation and the variables required
to estimate Penman-Monteith reference evapotranspiration. It is also assumed that
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Figure 2.2 Soil map of Spain overlaid with meteorological sites (crosses) and model areas
used for comparison with satellite soil moisture (squares); open water is excluded from the
simulation.

up to a maximum distance of 35 km ground observations provide a good estimate
of the precipitation and evapotranspiration for soil moisture modelling. The inter-
ception was calculated with the 8-day composite of the Leaf Area Index (LAI) from
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, provided at
1 × 1 km spatial resolution (Myneni et al., 2003). To determine Van Genuchten
soil parameters for each simulation the European Commision - Joint Research Centre
European soil texture map with a resolution of 1 × 1 km was used (Van Liedek-
erke et al., 2006). Joint probability distributions of the Van Genuchten soil physical
parameters (Van Genuchten, 1980) per soil texture class were obtained from Meyer
et al. (1997). With these joint distributions, spatial variability within each soil tex-
ture class is introduced such that the correlation between Van Genuchten parameters
is preserved.

2.2.3 SWAP model set-up

SWAP is a physically-based model simulating flow processes in the unsaturated zone
(Van Dam, 2000; Kroes et al., 2008). A short overview of the most important concepts
and assumptions is given below. Soil water flow in the SWAP model is calculated
with the Richards equation (Richards, 1931):

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z

)
+ 1

]
− S (2.2)

where θ is volumetric soil moisture content (m3m−3), h pressure head (m), z the
elevation (m, positive upwards), t time (d), S a sink of the system (m d−1) which
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accounts for external losses like transpiration and evaporation and K(θ) the conduc-
tivity (m d−1) as a function of water content (θ). The SWAP model uses an implicit,
backward, finite difference scheme to solve the Richards equation. The Mualem-Van
Genuchten relations are used to determine the hydraulic properties of the soil. The
soil water content, θ, (m3m−3) is modelled by:

θ(h) = θr +
(θs − θr)

[1 + |αh|n]1−1/n
(2.3)

where, h is the pressure head (m), θr, θs are the residual and saturated soil mois-
ture content (m3m−3), respectively, and α (-) and n (-) are the shape parameters
(Van Genuchten, 1980). The parameters of Equation 2.3 are derived from the soil
texture map. The model runs with an hourly timestep and is composed of 28 vertical
layers representing the soil up to a depth of 150 cm below the soil surface (Figure
2.3). The first 10 cm was simulated using 10 layers of 1 cm, followed by 8 layers
of 5 cm, followed by 10 layers of 10 cm. This high vertical resolution of soil layers
was used in order to have a detailed estimate of the soil moisture content at different
penetration depths of the radar signal. A free drainage bottom boundary condition is
applied to the model. Soil water uptake by roots is assumed to be evenly distributed
up to a depth of 70 cm, to simulate an average vegetation. Daily potential evapotran-
spiration was calculated with the Penman-Monteith equation following Allen et al.
(2006) which requires air pressure, wind speed, air humidity and daily temperature
(maximum, mean, minimum) from meteorological stations. The potential fluxes of
transpiration and evaporation are modelled as a function of the LAI. The actual
transpiration flux is calculated as described by Feddes et al. (1988). The actual evap-
oration flux is the minimum of the potential evaporation, the maximum soil water
flux and the maximum evaporation flux according to Black et al. (1969). Intercep-
tion of precipitation was calculated following Von Hoyningen-Hüne (1983) with an
maximum interception capacity of 0.25 mm LAI−1.

In this study a model was used which is normally applied to field scale unsaturated
zone modelling instead of large scale applications. Lateral flow might be very impor-
tant on the field scale (Harter and Hopmans, 2004), but is negligible at the support
of satellites and is thus assumed zero. The effect of irrigation in Spain is assumed to
be small since throughout Spain less than 10% of the land is irrigated (Siebert et al.,
2007).

2.2.4 Evaluation of model performance and sensitivity analysis

The uncertainty of modelled soil moisture is assessed, using a Monte Carlo approach
by perturbing the following input data and parameters of SWAP: precipitation (P ),
evapotranspiration (E), LAI and soil properties. Since P , E, LAI and soil physical
parameters are found to have the largest influence on the simulation of near surface
soil moisture (Finke et al., 1996; De Lannoy et al., 2006) other parameters were kept
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Figure 2.3 SWAP model set-up, precipitation (P ), evaporation (E), throughfall from veg-
etation (Pth), transpiration from leaves (Ei), overland flow (Qov) and bottom out flux (Qs).
Model layers are indicated by the dotted horizontal lines.

constant and are assumed to have a negligible effect on the uncertainty of modelled
soil moisture. The structural error was not taken into account either since it was
assumed to be subordinate to errors in the model forcing and parameters.

Three error models were used to add uncertainty to the input data and parameters of
the SWAP model (Table 2.2). In the Continuous Spatial Uncertainty Model (CSUM),
variogram models and observations were used to create realizations of meteorological
variables conditioned to observed values at the meteorological stations, Pobs(x, t). For
precipitation (P (x, t), mm) it is assumed that:

P (x, t) = Z(x, t)2 (2.4)

where Z(x, t) is a Gaussian distribution variable with spatial index x (Schuurmans
et al., 2007). The spatial correlation of Z(x, t) (mm0.5) is given by a linear variogram:

γ(lag) = (sill − nugget)
lag

range
+ nugget (2.5)

where γ(lag) is the variance as a function of the lag lag (m), the sill sill (mm), the
nugget nugget (mm), and the range range (m), of the variogram. The variogram was
computed with observations from all 79 stations over a period of 2.5 years without
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Table 2.2 Description of variables and used uncertainty model for each perturbed param-
eter of the SWAP model. Error models given are the Discrete Local Uncertainty Model
(DLUM), Continuous Spatial Uncertainty Model (CSUM) and Continuous Local Uncer-
tainty Model (CLUM).

Var Description Source Error model

θs Saturated soil moisture Meyer et al. (1997) DLUM
θr Residual soil moisture Meyer et al. (1997) DLUM
K(θ) Unsaturated conductivity Meyer et al. (1997) DLUM
n Van Genuchten n-parameter Meyer et al. (1997) DLUM
α Van Genuchten α-parameter Meyer et al. (1997) DLUM
P Precipitation Meteo station CSUM
E Evapotranspiration Meteo station CSUM
LAI Leaf Area Index MODIS satellite CLUM

making any distinction between the different seasons or different spatial scale of the
precipitation events. Since the required data to create variogram models for indi-
vidual precipitation events is not available it was decided to use a single variogram
model. With this variogram a Gaussian random simulation conditioned to the obser-
vations Pobs(t) (mm), was performed, obtaining realizations of maps of precipitation,
P (t) (mm), for each day of the simulation. Following the same approach a variogram
model was fitted to the Penman-Monteith reference evapotranspiration calculated at
the station locations. Evapotranspiration was not transformed and was assumed to
have a Gaussian distribution with a linear variogram (Equation 2.5). This model was
used to simulate possible fields of evapotranspiration for the reference locations, in
order to assess the effects of evapotranspiration uncertainty.

The Continuous Local Uncertainty Model (CLUM) is used to introduce uncertainty
in LAI values and is given by:

LAIn(t) = LAIo(t) ·X(µ, σ) (2.6)

where LAIn is a random variable (m2m−2), LAIo is the observed MODIS LAI value
(m2m−2), X(µ, σ) is a Gaussian random variable with mean, µ, and standard devia-
tion, σ. In this study µ (-) is set to 1 and σ (-) was based on a study from Yang et al.
(2006) and is set to 0.1 introducing random error in the LAI used for the calculations
of the SWAP model.

The Discrete Local Uncertainty Model (DLUM) is applied for the soil physical param-
eters and uses local properties to add uncertainty to parameters. With the DLUM
the soil texture of a location is conditionally changed for 20% of the locations. Since
errors in soil texture maps are not uncommon (Hengl and Toomanian, 2006) this 20%
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error was introduced to account for the effect of misclassification. Realizations of soil
texture were created by randomly changing the soil texture of cells. In creating a
realization, for each cell, the probability of a newly selected soil class (c) is calculated
as:

Pr(c) =
nSc,i

N − nSc,j

(2.7)

where nSc,i and nSc,j are the relative occurrences of the perturbed and observed soil
texture over Spain, respectively, and N is the total number of pixels on the 1× 1 km
soil texture map. If a misclassification occurs, the soil texture is changed and will not
be ascribed to j again, resulting in newly assigned texture classes.

The predictive QQ-plot as described by Laio and Tamea (2007) was used to determine
if the model uncertainties and combined uncertainty of the input data could explain
the variation between different points of the REMEDHUS network. The predictive
QQ-plot is a measure to check whether the obtained Monte Carlo simulation results
in a probability density function (PDF) that corresponds to the PDF of the model
prediction errors. In the predictive QQ-plot the probability integral transforms to:

zi =

∫ xi

−∞
f(x)dx (2.8)

where f(xi) is the PDF of model outputs obtained from the uncertainty analysis
(Monte Carlo simulation), xi is the value at observation location i and zi the asso-
ciated cumulative probability. Thus, zi gives the probability of the observed values
with respect to the distribution of predicted values from the Monte Carlo simulation.
The zi values are plotted against their cumulative density function, Ranki(xi), which
is produced from the observation rank rank(xi):

Ranki(xi) =
rank(xi)

n+ 1
(2.9)

where n is the total number of xi values. When the zi plotted against the Ranki
are on the 1:1 line, the PDF from the uncertainty analysis correctly represents the
prediction errors and the predictions are unbiased. The non-parametric Kolmogorov-
Smirnov test (KS-test) is used to evaluate whether the results are within the 95%
confidence interval of the 1:1 line. More details of the predictive QQ-plot are given
in Laio and Tamea (2007).

The performance of the SWAP model at the REMEDHUS site was evaluated using
the Pearson correlation:

r =

∑N
t=1(θo(t)− µo)(θm(t)− µm)

(N − 1)σo · σm (2.10)

where θo is the observed soil moisture (m3m−3), θm is the modelled soil moisture
(m3m−3), µo is the average observed soil moisture over the entire simulation period
(m3m−3), µm is the average modelled soil moisture over the entire simulation period
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(m3m−3), σo and σm are respectively the standard deviation of the observed and
modelled soil moisture (m3m−3) and N is the total number of time steps in the
analysis. σo is calculated from the average observed soil moisture over the simulation
period. The Root Mean Square Error (RMSE) is given by:

RMSE =

√∑N
t=1(θm(t)− θo(t))2

N
(2.11)

with N , the total number of observations. r for the evaluation of the remotely sensed
soil moisture over Spain is calculated by:

r =

∑N
t=1(θm(t)− µm)(θs(t)− µs)

(N − 1)σm · σs (2.12)

where θs(t) is the satellite soil moisture (m3m−3), θm(t) is the modelled soil moisture
(m3m−3), µs is the average satellite soil moisture over the entire simulation period
(m3m−3), σm and σs are respectively the standard deviation of the modelled and
satellite soil moisture (m3m−3) andN is the total number of time steps in the analysis.
The model bias, biasm (m3m−3) is given by:

biasm = µo − µm (2.13)

where µo and µm, respectively, are the average observed and modelled soil moisture
over the entire simulation period (m3m−3), where a negative value indicates an un-
derestimation of the soil moisture. The REMEDHUS site was not used for calibration
of the model, only to evaluate the model and to determine the errors in the modelled
soil moisture and input data. Soil moisture was simulated for the entire period from
2006-2010. In total 2000 simulations were done with perturbed parameters and input
data for the REMEDHUS site in order to accurately capture the full probability den-
sity functions of all parameters and input data. This high number of simulations also
allowed to accurately calculate the model uncertainty and study the model sensitivity
to the full range of possible parameters sets.

For all selected 79 meteorological stations, a Monte Carlo approach (150 realizations)
was used to determine the overall modelled uncertainty at satellite footprint scale.
Soil moisture around the meteorological site was simulated for a 0.5◦× 0.5◦ area cen-
tered around the location of the meteorological station. Larger simulation areas would
require the use of interpolation techniques to derive values between stations which
could result in large uncertainties leading to high model uncertainties. The compar-
ison between SWAP and different satellite products was made on the scale of the
specific satellite DGG by upscaling SWAP to the DGG resolution (≈ 150− 225 km2)
by taking the arithmetic mean of the model simulations over the satellite footprint
area and penetration depth. The comparison between the model and different satel-
lites is done at the overpass time of the satellite with a maximum temporal mismatch
of 30 minutes due to the one hour simulation time steps. The correlation, random
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error and biases between satellite and the mean of the Monte-Carlo simulations were
used as performance indicator of the satellite soil moisture for each location. The
correlation R for the evaluation of the remotely sensed soil moisture is calculated
using Equation 2.12.
The satellite soil moisture is considered as a random variable composed of three terms:

Θs(t) = Θr(t) + εs − biass (2.14)

where Θs(t) is a random variable (m3m−3) representing the satellite soil moisture,
Θr(t) is the real soil moisture (m3m−3), εs is the random error of satellite soil moisture
(m3m−3) and biass is the systematic error of the satellite soil moisture (m3m−3). The
satellite soil moisture bias (biass) compared to the model is calculated by:

biass = µs − µm (2.15)

where µs is the average satellite soil moisture over the entire simulation period
(m3m−3). In this study it is assumed that the biass remains constant over time.
The modelled soil moisture is considered as a random variable given by:

Θr(t) = Θm(t) + εm (2.16)

where Θm(t) is a random variable (m3m−3) representing the modelled soil moisture
and εm is the random error of modelled soil moisture (m3m−3). The satellite error
over time is computed with:

εs(t) = θs(t)− θm(t)− εm(t) + biass (2.17)

where εs(t) is the satellite error as a function of time (m3m−3) and εm(t) is the model
error over time (m3m−3), where it is assumed that εm(t) = θr(t)− θm(t). In addition
the satellite standard error is calculated as:

σ̂εs =

√∑N
t=1(θs(t)− θm(t)− biass)2

N
− σ̂εm (2.18)

where σ̂εs is the standard deviation of the random satellite error (εs) over the time
period 1...N and σ̂εm is the standard deviation of εm (obtained from the Monte Carlo
analysis). It is assumed that there is no correlation between the errors of the model
and satellite and therefore the covariance is omitted in Equation 2.18.

The calculated σ̂εs (Equation 2.18) values for each location are related to geographi-
cal and climatological properties of all 79 meteorological stations, in order to create a
better understanding of the satellite performance as function of these environmental
variables and possible error sources. Previous studies stated that several external
factors may have a negative influence on soil moisture mapping performance, namely
topography (Engman and Chauhan, 1995), dense vegetation (Njoku and Li, 1999;
De Jeu et al., 2008; Parinussa et al., 2011), soil moisture wetness conditions (Troch
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et al., 1996) and land-sea contamination (Njoku and Kong, 1977; Owe et al., 2008).
The effect of these external factors on the mapping performance of microwave satel-
lites was tested using the SWAP model simulations over Spain. External factors
evaluated include the gradient (Grad), calculated as the average slope (%) over the
support of the satellite and distance to the sea (Sea), calculated as the shortest dis-
tance between the location and the coast (km). To calculate these values the Digital
Elevation Model of Spain, acquired by the Shuttle Radar Topography Mission, was
used on a 30 meter resolution. The average soil moisture content (µm, m

3m−3) and
standard deviation of soil moisture content (σm, m

3m−3) over time were calculated
per location. Additionally the impact of the Leaf Area Index (LAI(t), m2m−2) and
the time dependent soil moisture content (θ(t), m3m−3) on the satellite error was
evaluated. Their influence is evaluated on the time dependent satellite error εs(t),
where (t) indicates the variation of error over time.

The spatial pattern of correlation (r) and standard error (σ̂εs) over Spain were studied
for the three satellite products. Additionally, the spatial correlation between errors
(εs(t)) was investigated in order to determine if errors are randomly distributed or
correlated in both space and also time. A variogram was calculated to determine to
what distance errors are correlated (Cressie, 1993); changes in these patterns through
seasons are not taken into account.

2.3 Results

2.3.1 SWAP model validation with in-situ observations

The obtained semi-variogram models of the square root of precipitation and Penman-
Monteith reference evaporation from the meteorological observations are shown in
Figure 2.4. The precipitation semi-variogram models obtained in this study show
a great resemblance with those calculated for medium and large extent precipita-
tion events (Schuurmans et al., 2007). It is assumed that these variogram models
are valid to produce a realistic simulation of precipitation and reference evaporation
uncertainty over Spain.

Modelled soil moisture at 5 cm depth was validated against in-situ measurements to
examine if the SWAP model is capable of producing correct near-surface soil mois-
ture simulations. Results show that mean modelled soil moisture by SWAP is in good
agreement with the mean observed soil moisture values of the REMEDHUS network
2010 (Figure 2.5). A high correlation (r = 0.878) is found between the SWAP model
mean and mean of observations, while the root mean square error (RMSE) is low
(0.025 m3m−3). A small positive biasm of 0.01 m3m−3 (Equation 2.13) exists be-
tween model mean and the observations which is mainly caused by overestimated soil
moisture values in May and June. This behaviour is probably caused by an under-
estimation of evapotranspiration and only seen at the REMEDHUS site in 2010. It
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Figure 2.4 Semi-variograms of the square root of observed precipitation (mm0.5) and
Penman-Monteith reference evaporation (mm) for the period January 2009 - June 2011
over Spain based on observations of 79 meteorological stations.

Figure 2.5 Comparison between the average SWAP modelled soil moisture at the REMED-
HUS network and the average of the in-situ observations of the REMEDHUS network for
the year 2010.
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Figure 2.6 Predictive QQ-plot for validation of the observations of the REMEDHUS net-
work (Equation 2.8) against the SWAP model (Equation 2.9) for the period 2006-2010. The
95% confidence interval of the Kolmogorov-Smirnov (KS) test is indicated as well as the 1:1
line.

was not found in other years. From the results of the REMEDHUS site it was found
that the Van Genuchten pore-size distribution parameter (n,−) should not exceed
2.55, which indicates very coarse sand. Higher values (e.g. coarse gravel) could lead
to unrealistic soil moisture simulations at REMEDHUS and in some situations could
lead to model instability. The model was also evaluated by comparing the full PDF of
the model and the 22 observations at the REMEDHUS network with the predictive
QQ-plot (Equation 2.8 and 2.9). The predictive QQ-plot (Figure 2.6) shows that
the modelled soil moisture is within the 95%-confidence interval of the KS-test. The
biasm of 0.01 m3m−3 calculated with Equation 2.13 was also found in the predictive
QQ-plot. The SWAP model slightly overestimates the amount of low soil moisture
values compared to the observations as seen from a small deviation below 0.2 m3m−3

soil moisture content. This deviation is however not significant as shown by the
KS-test.

From Figure 2.5 and 2.6, as well as from the high r, low RMSE and low bias, it is
concluded that the overall performance of the SWAP model as well as the estimated
uncertainty of the input data and parameters is of good quality for a proper simulation
of observed soil moisture at 5 cm depth. The predictive QQ-plot shows that variation
within and between soil units is well captured by the model at the REMEDHUS
network. Without taking into account the structural error of the SWAP model, the
simulations of soil moisture show a good agreement with the observations at a the
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Figure 2.7 Three example time series for AMSR-E, SMOS and ASCAT (grey dots) com-
pared with the satellite support averaged SWAP soil moisture (black line), including 95%
confidence interval (grey), N is the number of satellite soil moisture retrievals for one loca-
tion in North West Spain (42.9◦ N, 2.7◦ W).

scale of the satellite footprint (Figure 2.5) as well as with local observation points of
the REMEDHUS network (Figure 2.6). Given the obtained results the SWAP model
is used with confidence in other areas in Spain.

2.3.2 Remotely sensed soil moisture inter-comparison over Spain

The locations of the 79 reference stations, including the area modelled around each
station (up to 35 km) were used as reference locations in this study (Figure 2.2). At
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Table 2.3 Summary statistics of evaluation of three microwave satellites over Spain. The
correlation (r, Equation 2.12), satellite standard error (σ̂εs, Equation 2.18) and bias (biass,
Equation 2.15) are calculated between the satellite soil moisture product and SWAP mod-
elled soil moisture.

AMSR-E SMOS ASCAT

Number evaluated DGGs (-) 438 440 680
Correlation (-) 0.682 0.420 0.713
Satellite standard error (m3m−3) 0.049 0.057 0.051
Bias (m3m−3) 0.018 -0.014 -0.019

each reference location, a different number of satellite retrievals is available depending
on the resolution of the Digital Global Grid (DGG) and the positioning of the reference
location on the DGG of each satellite (Table 2.3). In general, the number of ASCAT
DGG points per reference location is higher due to the higher density of the DGG
(≈ 12.5 to 15 km). As an example, Figure 2.7 presents time series of soil moisture
retrievals from the different satellites in Northwest Spain (42.9◦N, 2.7◦W). Note that
the values of θm(t) differ between satellites due to the different spatial resolutions of
the data in both vertical and horizontal scales (see Table 2.1). More example time
series for all satellites are given in Appendix A.

For AMSR-E the trend of high soil moisture values in winter and low soil moisture
values in summer is captured very well resulting in low satellite errors. Individual
rainfall events are all captured and some noisy values are observed at the end of
summer. In general, AMSR-E is very well capable of capturing the soil moisture
dynamics.

The SMOS soil moisture retrievals capture the long-term dynamics while short-term
dynamics are quite poorly captured. Observations are somewhat noisy and scarce,
especially in the beginning of the evaluation period. Although a rigorous filtering is
performed there might still be some RFI disturbances which are not correctly flagged
or detected. Successful retrievals show an underestimation of the soil moisture content
and some unexpected peaks are present. These peaks are probably caused by an
inaccurate assumption about the constant penetration depth during or shortly after
precipitation events. In the second half of the evaluation period the performance
of SMOS increases and precipitation events are captured more accurately. Also the
number of retrievals is increased with exception of the period February 2011 when
SMOS encountered technical problems with one of the arms of the satellite.

ASCAT shows a good correspondence with the modelled data, except for some small
deviations in dry periods. The soil moisture response to precipitation events is cap-
tured well, resulting in high correlations (Table 2.3). A general characteristic of
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Figure 2.8 Year-round correlation and satellite standard errors for all Digital Global Grid
(DGG) satellite locations compared with SWAP model simulations for the period January
2010 - June 2011 (each point is one DGG location).

ASCAT soil moisture at this location is the tendency to show some deviations in
summer from soil moisture calculated by the SWAP model, when soil moisture con-
ditions are drier. This could be the result of volume scattering at low soil moisture
values (Dorigo et al., 2010).

The correlation (r, Equation 2.12) and satellite product standard error (σ̂εs, Equation
2.18) were used for the evaluation of all 79 reference locations and results are given in
Figure 2.8 and Table 2.3. ASCAT and AMSR-E both have a high r with the SWAP
model simulation at all the DGG locations, while the r of SMOS is considerably lower.
The high r values found for ASCAT and AMSR-E can be explained by the capability
of both satellites to represent the short term soil moisture dynamics (Figure 2.7). r
values of 0.8 are exceeded for 12% and 17% of the DGG locations for respectively
AMSR-E and ASCAT, while SMOS does not have r values above 0.8. The average σ̂εs
of both AMSR-E and ASCAT is slightly lower in comparison with SMOS. However,
none of the satellites satisfies the 0.04 m3m−3 accuracy set as a target for newly
launched soil moisture missions like SMOS (Kerr et al., 2001; Walker and Houser,
2004). ASCAT shows for 167 DGG locations a σ̂εs below 0.04 m3m−3, while for
SMOS and AMSR-E satellite error values are only occasionally below this criterion
(Figure 2.8). An inverse relation exists between the r and the σ̂εs, in which a high
r corresponds to a low σ̂εs. After the transformation was applied (Equation 2.1)
a small negative biass (Equation 2.15) remains for SMOS and ASCAT (Table 2.3).
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Figure 2.9 Correlation, r, (top) and satellite standard error, σ̂εs, (bottom) for the three
satellite soil moisture products for the period January 2010 - June 2011 over Spain. Meteo-
rological stations are indicated by crosses.

Furthermore, although satellite soil moisture time series are given for specific DGG
points, the spatial support may slightly change over time.

A spatial evaluation of the r and σ̂εs values for all satellite products is shown in
Figure 2.9. The correlation values are highest in the Southwestern part of Spain
for all three satellite products and lowest in the North-Eastern locations for SMOS
and ASCAT. AMSR-E shows low r values in the Northwest and high r values in the
South and interior of Spain. Values for σ̂εs are lowest in Northern and central Spain
with some high to very high values for AMSR-E and SMOS in the North-Western
locations due to the proximity of the sea in combination with increased vegetation
and topography. The spatial patterns of σ̂εs for both AMSR-E and ASCAT show a
great resemblance to the patterns found with triple collocation by Dorigo et al. (2010).
The low r of ASCAT in the dry Eastern parts of Spain are most likely caused by the
volume scattering effect in dry soils (Bartalis et al., 2006b). Satellite products were
compared and correlations between the different products as well as the anomalies
were determined. The highest satellite correlations were found between AMSR-E and
ASCAT (r = 0.536), while correlations of SMOS with AMSR-E (r = 0.376) and with
ASCAT (r = 0.364) are significantly lower. The correlation between AMSR-E and
ASCAT is highest in the North-Western and Southern parts of Spain. These regions
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Figure 2.10 Correlation between satellite soil moisture products (top, r) and correlation
between the satellite product errors (bottom, εs(t)) of different satellite products for the
period January 2010 - June 2011 over Spain. Meteorological stations are indicated by
crosses.

are also the areas where individual correlations with the SWAP model are highest for
both satellites. The spatial patterns of the correlation between satellite products and
correlations in εs are shown in Figure 2.10.

r values computed for ASCAT are higher than those found by Parrens et al. (2012) for
France, while correlations found for SMOS are slightly lower. Correlations computed
for AMSR-E are higher than in a recent inter-comparison study with observed in-situ
data from Brocca et al. (2011) over Europe; the r values found for ASCAT are in
the same range. An older study from Rüdiger et al. (2009) over France found similar
r values as in this study for ASCAT. For AMSR-E, r values found in this study
are higher, which is caused by the use of an improved version of the LPRM model.
Comparison between in-situ data and both ASCAT and SMOS by Albergel et al.
(2012) found lower r values for ASCAT and higher values for SMOS than obtained
in this study.

In general, AMSR-E and ASCAT show the highest correlation for most DGG locations
and capture the temporal soil moisture dynamics very well. The trend in the σ̂εs found
in this study is similar to other studies (e.g. Brocca et al., 2011; Parrens et al., 2012;
Albergel et al., 2012). However, a direct comparison is hampered by the fact that
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Figure 2.11 Satellite standard error of satellite soil moisture for different factors in com-
parison with SWAP model for the period January 2010 - June 2011 over Spain. The satellite
error σ̂εs (Equation 2.18) is given for: the gradient (Grad), distance to the sea (Sea), stan-
dard deviation (σm) and µm. For the Leaf Area Index (LAI(t)) and actual content (θ(t))
the bin-average time dependent satellite error εs(t) (Equation 2.17) is shown.

these studies did not incorporate model errors. Our approach accounts for model
uncertainty and therefore gives a more correct estimation of the σ̂εs of satellite soil
moisture products and the performance of space-borne sensors.

2.3.3 Satellite error characterization

The effect of several external factors on the satellite standard error (σ̂εs) is evaluated
over Spain for all reference locations. The average slope of the location (Grad) is
found to have negligible influence on the σ̂εs (Figure 2.11), leading to the conclusion
that gradients at the reference locations in Spain are too small to have a negative
impact on σ̂εs. However, with an increase in the distance to the sea (Sea), σ̂εs for
AMSR-E and SMOS decrease. Above a distance of 100 to 150 km the influence of the
sea is absent. An increase in the Leaf Area Index (LAI(t)) over time does influence
the time dependent satellite error (εs, Equation 2.17) in a negative way, εs increases
with an increase in vegetation. The performance of SMOS is most affected by the
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Figure 2.12 Semi-variograms of the bin-average time dependent satellite product error
(εs(t)) calculated for three satellite soil moisture products and the SWAP model, from all
DGG locations for the period January 2010 - June 2011 over Spain.

average standard deviation of soil moisture (σm), where SMOS might have difficulties
with highly dynamic soil moisture due to the high signal to noise ratio compared
to AMSR-E and ASCAT. Over the entire modelling period (Jan 2010 - Jun 2011),
the average soil moisture content (µm) does not significantly influence the satellite
performance, while the actual soil moisture content (θ(t)) does have a large influence
on the temporal performance of ASCAT. Both passive microwave satellites show a
small increase in the εs for θ(t) between 0.1 - 0.2 m3m−3 and decrease thereafter.
ASCAT shows an unambiguous increase in the εs with increasing θ(t). This could be
the result of the strong response of ASCAT to precipitation events, while this response
is less profound for AMSR-E and SMOS (Figure 2.7). Correlations were most affected
by changes in the average footprint soil moisture content (µm) and the distance to
the sea (Sea) of all external factors under study (not shown). In this study no strong
relationship is found between the σ̂εs and the Grad. Based on previous studies (e.g.
Engman and Chauhan, 1995) it was expected that the satellite performance was
related to these properties. A relationship was found for Sea, LAI(t), σm, µm and
θ(t) with σ̂εs. This finding is confirmed by other studies (e.g. Njoku and Kong, 1977;
Troch et al., 1996; Njoku and Li, 1999; De Jeu et al., 2008; Owe et al., 2008; Parinussa
et al., 2011).

Finally, the error for all the remotely sensed soil moisture products is spatially corre-
lated. Ranges of the variogram of correlation are between 100 - 220 km, for the three
satellites products (Figure 2.12). The correlation ranges, sill and nugget of the vari-
ogram are almost equal for all satellite products indicating that soil moisture errors
have an almost identical spatial error pattern for AMSR-E, SMOS and ASCAT.
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2.4 Conclusions

The soil moisture mapping accuracy of three satellite sensors was evaluated in this
study. Satellites used in this study are passive microwave satellites AMSR-E and
SMOS and the active microwave satellite ASCAT. Satellite soil moisture products
were compared with the physically-based high resolution SWAP model. Soil moisture
was modelled at a high vertical and horizontal resolution and averaged over the sup-
port of each satellite. A validation of the high-resolution SWAP model was performed
on the REMEDHUS network situated in Spain. The mean modelled soil moisture
from SWAP has a high correlation (r = 0.878) and low RMSE (0.025m3m−3) with
the median of observations at the REMEDHUS site. From the predictive QQ-plot it
was concluded that the SWAP model was able to capture the full probability density
function in both space and time for this site. The uncertainty added to meteorological
input data as well as soil physical model parameters was enough to account for local
variations in soil moisture values between observation points. From this validation at
the REMEDHUS site it was concluded that the SWAP model can be used to simulate
soil moisture with confidence over other areas of Spain.

The SWAP model was used to model the soil moisture content in Spain around
79 meteorological stations up to a distance of 35 km for the period January 2010 to
June 2011. Satellite data was linearly transformed to match the dynamic range of the
model to enable a valid comparison between satellite derived and modelled soil mois-
ture. The AMSR-E data have a good correlation (r = 0.685) with modelled SWAP
soil moisture at the satellite support and the general yearly soil moisture trend is cap-
tured well. The short-term temporal dynamics and individual precipitation events
are captured very well by AMSR-E, which results in a high correlation. SMOS shows
a fair correlation with the SWAP model (r = 0.420). The majority of precipitation
events is captured, but in general soil moisture is underestimated compared to the
model. However, it should be noted that the observation technique and algorithms
of SMOS are still relatively new and improvements on the retrieval algorithm and
flagging of RFI are constantly made leading to improved soil moisture retrievals. Of
all products ASCAT showed the highest correlation with the SWAP model over Spain
(r = 0.713), which is mainly caused by the fact that precipitation events are captured
very accurately. However, in summer the soil moisture values of ASCAT showed some
noise. Correlations found in this study are in agreement with previous studies based
on the comparison between satellite soil moisture and observational or modelled soil
moisture data.

The error was expressed by using the satellite standard error (σ̂εs), which also ac-
counts for the model uncertainty. Therefore, σ̂εs is not overestimated as a result of
a large model uncertainty. Average σ̂εs found were 0.049, 0.057, 0.051 m3m−3 for
AMSR-E, SMOS and ASCAT respectively, which is above the σ̂εs 0.04 m

3m−3. Pre-
vious studies often lack a detailed assessment of the model uncertainty, resulting in
an overestimation of σ̂εs. In this study the model uncertainty was assessed in great
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detail, resulting in lower σ̂εs values and thus a lower satellite product error compared
to other studies. From this comparison it is concluded that for an accurate estimation
of σ̂εs, a detailed assessment has to be made of the observation or model uncertainty
in order not to overestimate the satellite product error. All three satellites have a bias
ranging between -0.018 m3m−3 and 0.019 m3m−3 of which AMSR-E has the highest
positive bias and ASCAT the lowest negative bias.

Additionally, a spatial comparison showed that all products show the highest correla-
tion in the areas in the South West of Spain, which have a low average soil moisture
content. The effects of land-sea contamination were found for AMSR-E and SMOS.
Vegetation, soil moisture dynamics, average soil moisture content and the actual soil
moisture content do have an impact on the satellite performance, where an increase of
these factors negatively influences σ̂εs. SMOS shows an increase in σ̂εs leading to the
conclusion that SMOS has difficulties in accurately measuring soil moisture in highly
dynamic soil moisture regimes. The performance of ASCAT was more correlated to
actual soil moisture content, while there was no clear increase in σ̂εs for AMSR-E and
SMOS. Semi-variogram models of the errors of all satellite soil moisture products for
the entire simulation period show a spatial correlation in the error up to a distance
of 150 km.

In general AMSR-E and ASCAT currently produce the best soil moisture time series.
However, all three satellite products contain valuable information about the near-
surface soil moisture over Spain.
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3 Correction of real-time satellite
precipitation

This chapter is based on:
Wanders, N., Pan, M., Wood, E. F. (2015), Correction of real-time satellite pre-
cipitation with multi-sensor satellite observations of land surface variables, Remote
Sensing of Environment, 160, 206-221, doi:10.1016/j.rse.2015.01.016.

Abstract

Precipitation is an important hydro-meteorological variable, and is a primary driver of the

water cycle. In large parts of the world, real-time ground-based observations of precipita-

tion are sparse and satellite-derived precipitation products are the only information source.

Changes in satellite-derived SM and LST are used to reduce uncertainties in TMPA-RT. The

VIC model was used to model the response of LST and SM on precipitation, and a particle

filter was used to update TMPA-RT. Observations from AMSR-E (LPRM and LSMEM),

ASCAT, SMOS and LST from AMSR-E were assimilated to correct TMPA-RT over the

continental United States. Assimilation of satellite-based SM observations alone reduced

the false detection of precipitation (by 85.4%) and the uncertainty in the retrieved rainfall

volumes (5%). However, a higher number of observed rainfall events were not detected after

assimilation (34%), compared to the original TMPA-RT (46%). Noise in the retrieved SM

changes resulted in a relatively low potential to reduce uncertainties. Assimilation of LST

observations alone increased the rainfall detection rate (by 51%), and annual precipitation

totals were closer to ground-based precipitation observations. Combined assimilation of

both satellite SM and LST, did not significantly reduce the uncertainties compared to the

original TMPA-RT, because of the influence of satellite SM compared to the LST estimates.

However, in central United States improvements were found after combined assimilation of

SM and LST observations. This study shows the potential for reducing the uncertainties in

TMPA-RT estimates over sparsely gauged areas.

3.1 Introduction

Precipitation is an important hydro-meteorological variable, which has a large impact
on the global energy and water cycle and thus on weather, climatology, hydrology
and ecosystems. Obtaining accurate ground-based measurements of precipitation is
difficult, due to the high spatial and temporal variability of precipitation (McCollum

43



and Krajewski, 1998; Tustison et al., 2001). Real-time ground-based observations
of precipitation with sufficient accuracy and availability are even sparser. However,
real-time observations of precipitation are important for real-time monitoring and
forecasting of floods and drought (Hong et al., 2007; Hossain and Huffman, 2008;
Su et al., 2008; Gebremichael and Hossain, 2010; Pan et al., 2010). Satellite-based
precipitation products like the real-time Tropical Rainfall Measuring Mission Multi-
satellite Precipitation Analysis products (TMPA-RT, Huffman et al., 2007, 2010),
Climate Prediction Center MORPHing product (CMORPH, Joyce et al., 2004), and
Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks ( PERSIANN, Hsu et al., 1999; Sorooshian et al., 2000), provide a solution
to obtain real-time precipitation data for many sparsely gauged regions in the world.
TMPA-RT gives the 3-hourly precipitation between 50◦N and 50◦S through combing
rainfall estimates from microwave sensors (Kummerow et al., 1996; Olson et al., 1999;
Kummerow et al., 2001) and infrared imageries (Joyce et al., 2001). Precipitation
products like TMPA-RT usually suffer from the fact that they depend on satellite
retrievals for their observations and thus require a satellite overpass. TMPA-RT
products are derived from satellite overpasses in a 3-hour window (Huffman et al.,
2007) and not all precipitation events are captured, since some precipitation events
may have a smaller temporal scale than 3 hours. This is especially true for highly
dynamic events (e.g. convective rainfall events), which occur in tens of minutes
and could vanish in a similar time period. Some of these events can be missed by
the TMPA-RT, while they can have a significant impact on the land-surface and
the related processes. Although convective precipitation events might have a small
spatial scale, they can have a large contribution to the annual precipitation totals (e.g.
Laurent et al., 1998; Blamey and Reason, 2012). Especially in summer conditions with
unstable atmospheric boundary layers, these events occur regularly and will impact
the land-surface. Also, various other types of errors also occur in satellite precipitation
products (Villarini and Krajewski, 2007; Sapiano and Arkin, 2009).

To correct for the problem of missed precipitation events and uncertainties in rainfall
totals, TMPA is post-processed and corrected with ground-based observations (Huff-
man et al., 2010). This correction is not possible for the real-time version of TMPA
which is used by real-time applications, which require observations of no less than a
couple of hours after sensing.

The observations of several other land surface variables are available in near real
time and they can potentially be used to help reduce the uncertainty in satellite
precipitation. For example, soil moisture (SM) observations could provide valuable
information on the spatial pattern of precipitation. An additional advantage is the
fact that the wetting of the surface soil moisture could be detected for longer time
periods (up to several days) and could be used to estimate the precipitation volume.
The change in soil wetness at larger scales can be detected by space-born microwave
sensors. Change detection in soil moisture is occasionally hampered when pre-storm
soil moisture content is close to saturation or fully saturated. In these conditions

44



additional precipitation will not result in increased soil wetness, hence no change
in soil moisture can be detected. Several studies showed the potential to reduce
precipitation uncertainties using soil moisture retrievals from a single sensor (Crow
and Bolten, 2007; Pellarin et al., 2008; Crow et al., 2009, 2011; Brocca et al., 2013;
Pellarin et al., 2013; Brocca et al., 2014).

To partly overcome the limitation of soil moisture retrievals we propose the use of
observations of land-surface temperatures (LST) are used to detect areas with pre-
cipitation amounts exceeding the storage capacity of the unsaturated zone. With
increased water storage the soil temperatures will decrease, since more energy is re-
quired to warm the earth surface. This change could be detected in satellite-derived
land-surface temperature based on microwave retrievals from the higher frequencies
(Holmes et al., 2009).

The objectives of this paper are to study the potential of remotely sensed observations
of land surface variables to correct for uncertainties in satellite-derived precipitation.
More specific, do multi-sensor remotely sensed soil moisture retrievals and land sur-
face temperature observations have the potential to correct real-time satellite based
precipitation estimates? Additionally, the effect of the correction of precipitation is
studied for both soil moisture and land surface temperature changes and the potential
gain obtained by either of these sources.

To fulfill these objectives, TMPA-RT was perturbed and used to force a land-surface
model. Changes in modeled soil moisture content and land surface temperature are
compared with observations from satellites. The optimal realization was selected
using a particle filter based approach to update TMPA-RT to a newly corrected real-
time precipitation estimate. Although the potential gain of this approach may be
large in poorly gauged regions like the continent of Africa, ground based observations
with a high spatial and temporal resolution for validation are lacking. Therefore,
the analysis was performed over the Continental United States (CONUS) to enable a
comparison between the TMPA-RT, corrected estimates and a high quality ground-
based observational precipitation dataset. The precipitation data from Northern Land
Data Assimilation System project phase 2 (NLDAS-2; Xia et al., 2012) was used as
best estimate of the precipitation over the Continental United States.

Changes in modeled soil moisture and land surface temperature were compared to
observed precipitation to test the sensitivity of these observations to precipitation.
Observations of satellite-derived soil moisture and land surface temperature have been
assimilated to corrected precipitation and results were compared to ground-based
observations of NLDAS-2 for the period 2010-2011. Uncertainties were evaluated and
compared to the uncertainties of the original uncorrected TMPA-RT.
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3.2 Material and Methods

3.2.1 Study area

CONUS was used as study area, covering the mainland of the United States and
excluding Hawaii and Alaska. High quality ground-based observations are available
for CONUS making it a suitable area for evaluation of the potential improvements
of assimilation of satellite-derived SM and LST. However, observations of land sur-
face parameters are in some areas hampered by the topography and dense vegetation
(Rocky Mountains, Appalachian Mountains and dense forest in the East). It is as-
sumed that potential gains will only be larger for areas with less complex terrain
properties and low rain gauge densities, e.g. the Sahel in Africa, than gains obtained
over CONUS.

Meteorological forcing data from NLDAS-2 (Xia et al., 2012) are used to force the land
surface model, which are available on an hourly time step with a spatial resolution of
0.125◦ (aggregated to 3-hourly and 0.25◦ to match TMPA-RT resolution) for the entire
CONUS. The precipitation fields in NLDAS-2 combine the estimates from radars and
ground gauges (NOAA Stage IV product) and as well as regional reanalysis (for gap
filling). The NLDAS-2 precipitation is treated as the best ground truth and use it
for validation purposes.

3.2.2 Land-surface model

The VIC model (version 4.0.5) is used to simulate the hydrological responses of the
land surface to precipitation for the period 2010-2011. VIC is a spatially distributed
grid-based Land Surface Model that simulates the response of soil moisture, land
surface temperature and other land surface variables at the land surface-atmosphere
interface (Liang et al., 1994, 1996). Subgrid-scale variability in soil properties is
represented by a spatially varying infiltration capacity such that the spatial variability
in soil properties at scales smaller than the grid is represented statistically. Movement
of moisture between the soil layers is modeled as gravity drainage, and the unsaturated
hydraulic conductivity is a function of the degree of saturation of the soil. The VIC
model solves the full energy balance to obtain land surface temperature.

VIC is used with a three hourly time step to allow a better comparison between
VIC and the different satellite products. The model was forced with meteorological
forcing from NLDAS-2 (aggregated to 3-hourly time step and 0.25◦ resolution) over
CONUS. The meteorological forcing fields being used from NLDAS-2 consist of air
temperature, vapor pressure, atmospheric pressure, wind and downward shortwave
and longwave radiation.
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3.2.3 Remotely sensed precipitation

The real-time Tropical Rainfall Measuring Mission Multi-satellite Precipitation Anal-
ysis products (TMPA-RT, Huffman et al., 2007) were used a baseline precipitation
product. TMPA-RT (3B42RT) relies on multi-channel microwave and infrared ob-
servations to estimate precipitation rates. TMPA-RT is available from 50◦S to 50◦N
with a 3-hourly time step and a spatial resolution of 0.25◦.

3.2.4 Remotely sensed soil moisture and land surface temperature

Remotely sensed soil moisture and land surface temperature data from three satellite
sensors are used to reduce uncertainties in satellite precipitation, namely AMSR-E,
SMOS and ASCAT. Changes between consecutive overpasses have been used to infer
the occurrence and amount of precipitation events (Table 3.1). For all observations
the descending and ascending overpasses have been separated.

AMSR-E is a multi-frequency passive microwave radiometer and is a widely used
sensor for soil moisture retrievals. In this study, two AMSR-E retrieval algorithms
have been used to estimating surface soil moisture. The first algorithm is the Land
Parameter Retrieval Model (LPRM), which is a widely used algorithm for soil mois-
ture retrievals from AMSR-E (Owe et al., 2008; De Jeu et al., 2008). The second
AMSR-E algorithm is a revised version of the Land Surface Microwave Emission
Model (LSMEM, Drusch et al., 2001, 2004; Gao et al., 2004) developed by Pan et al.
(2014). The LSMEM algorithm differs from the LRPM algorithm in the way the soil
moisture and vegetation optical depths are retrieved simultaneously and iteratively
instead of using a static relationship between the optical depth and the mean po-
larization difference index (MPDI). LSMEM has been validated against observations
over continental United States and showed promising results (Pan et al., 2014).

SMOS is a dedicated soil moisture satellite using passive microwave signals at 1.4GHz
(L-band) observed at multiple angles (Kerr et al., 2012). SMOS retrievals which
are potentially contaminated with Radio Frequency Interference (RFI) have been
removed.

Observations in de active microwave frequency at 5.3 GHz (C-band) from ASCAT
have been used to determine the soil moisture content (Wagner et al., 1999; Naeimi
et al., 2009). ASCAT uses a change detection method (Naeimi et al., 2009) and data
is provided relative to the soil moisture content of the wettest (field capacity) and
driest (wilting point) soil moisture conditions measured (Wagner et al., 1999).

Land surface temperatures have been derived from ASMR-E 37 GHz (Ka-band) pas-
sive microwave observations (Holmes et al., 2009). The advantage of microwave re-
trievals of surface temperatures compared to infrared observations is their all-weather
capability. When precipitation events occur, the sky is often cloud covered before and
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Table 3.1 Satellite sensor retrieval algorithm properties and their average coverage of con-
secutive overpasses over the period 2010-2011.

AMSR-E AMSR-E ASCAT SMOS AMSR-E
LPRM LSMEM LST

Frequency (GHz) 6.9 10.7 5.3 1.41 37
Microwave type Passive Passive Active Passive Passive
Observation depth (cm) 0-2 0-2 0-2 0-5 0-1
Descending overpass (h) 1:30 AM 1:30 AM 9:30 AM 6:00 PM 1:30 AM
Coverage consecutive overpasses 64% 62% 78% 45% 75%

after the rain event, limiting the potential for land surface temperature observations.
Moreover, obtaining two consecutive overpasses is hard when satellite retrievals do
not possess all-weather capability. Therefore, microwave land surface temperature
observations have been used to reduce precipitation uncertainties in this study.

All satellite products have been projected on a 0.25◦ grid. A gridded soil moisture
product at this spatial scale is available for SMOS and ASCAT. All satellite data were
matched to the modeled climatology from the land surface model. Using cumulative
density function matching (CDF-matching), the probability density functions (PDF)
of all retrieved soil moisture time series and land surface temperature time series
have been corrected to match the PDF of the modeled soil moisture and temperature
(Reichle and Koster, 2004). This removed potential biases which could negatively
impact the results of the assimilation. The CDF matching was performed for each
0.25◦ grid location and overpass type (descending, ascending) separately.

Frozen soils, snow accumulation and RFI hamper the soil moisture retrieval due to
changes in the dielectric constant when water freezes. Therefore, retrievals done with
1) an air temperature below 4◦ C, 2) simulated snow accumulation and 3) the pres-
ence of RFI, were not used to update the precipitation estimates. For all satellites
both ascending and descending retrievals have been used. However, they are seen as
separate observations since the physical properties of ascending and descending re-
trievals could be significantly different and combining them would result in erroneous
time series. Additionally, the overpass times are exactly matched to the modeled soil
moisture and land surface temperatures to avoid temporal mismatches which could
negatively impact the assimilation and correction of satellite-derived precipitation.
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3.2.5 Particle Filter based filtering

In this study, a particle filter based approach is used to estimate the optimal in-
put for the land surface model to obtain observed changes in soil moisture and land
surface temperature. The particle filter is a Monte Carlo based approach used to
adjust model inputs, model structures and model states (Doucet et al., 2000; Aru-
lampalam et al., 2002; Moradkhani et al., 2005; Van Leeuwen, 2009). It is suitable
for non-linear models and makes no assumptions on the prior and posterior distribu-
tion of the model states. This property of the particle filter makes it more suitable
for this study compared to ensemble based data assimilation approaches whose opti-
mality and performance depend on the linearity between input and output variables
and having Gaussian distributed errors, for example, the Ensemble Kalman Filter
(EnKF, Evensen, 2003; Reichle, 2008). Particle filter works by preferentially weight-
ing the Monte Carlo samples according to their closeness toward observations while
an ensemble filter adds additive adjustments to them. Precipitation is a highly non-
Gaussian and non-negative variable, so preferential weighting will work much better
than adding adjustments without the worry of negative values.

The land-surface model VIC is used to transform precipitation and other meteoro-
logical variables into changes of soil moisture content and land-surface temperatures.
The forward model of VIC is given by:

xi(t+ 1) = f(x(t), Fi(t)), (3.1)

where x(t) is the initial model state, xi(t+1) is the model state after each realization
i and Fi(t) is the meteorological forcing for each realization. For all simulations the
initial conditions are identical for each particle (total number of particles = N) and
obtained from the base run of the land surface model forced by observed precipitation
and other meteorological variables. However, the meteorological forcing (Fi(t)) in the
forward model differs per realization leading to different realizations of the model
states xi(t + 1). Precipitation is perturbed from the original TMPA-RT product
to generate the different particles. To generate possible precipitation particles for
3 hourly observations at a particular location, observations were randomly selected
from a sampling area of 1.75◦ x 1.75◦ around the selected location. Additionally,
precipitation observations are sampled from the sampling area for the actual time
±3 hour (Figure 3.1). The values within the sampling area are not weighted and are
randomly sampled. Since no detailed information is available on the likelihood of each
sample and interpolation is used to obtain some of the observations, a uniform priori
distribution of the weights was used for the particles. A multiplicative error is added
to the randomly resampled precipitation which is given by lnN(µ = 0, σ = 0.5).
Other meteorological forcing was not perturbed and identical for each particle. This
resampling approach will result in N realizations of the precipitation resulting in
xn realizations of the model states (soil moisture and land surface temperature).
Changes in these realizations were compared to the observed changes by remotely
sensed observations to determine the most likely rainfall, given the observations and
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the initial conditions x(t). The posterior probability of the state of each particle (i)
is calculated by:

P (xi|y) = P (Fi|y) = e
(y−xi)

2

−2σ2 , (3.2)

where y is the change in remotely sensed observation, xi the modeled change in
the corresponding model state and σ the uncertainty in the observed changes. The
individual posterior probability of each particle for the different observations is used
to reduce uncertainties in the TMPA-RT when single sensor assimilation is performed.
When a multi-sensor assimilation is performed available weights for each observation
are combined by:

P (xi|Y ) =
Nr∑
j=1

P (xi|yj), (3.3)

where NY is the total number of observations from ascending and descending over-
passes of AMSR-E, SMOS and ASCAT and y are the individual observations from
each sensor. The posterior probability of each observation is not multiplied, because
some individual values of P (x|y) are zero (even with high retrieval uncertainty values)
due to erroneous satellite retrievals. These erroneous retrievals will lead to a P (x|Y )
value of zero for all particles, thereby reducing the information of all other observa-
tions. This could for example happen in a case where erroneous satellite observations
with relatively low uncertainty are used and none of the particles is likely to repre-
sent this erroneous observation. In this situation multiplication of the weights would
lead to a zero probability due to the erroneous observations, while other observations
might be perfectly represented. To prevent this, values of P (x|y) were aggregated to
P (x|Y ) improving the assimilation potential of multi sensor retrievals.

The particle filter based assimilation approach is run for every sample location sepa-
rately since the land surface model is not sensitive to changes in adjacent cells. This
will significantly reduce the number of required particles. Since precipitation fields are
different for each realization, this is the only variable that is updated. The realization
with the highest posterior probability (i.e. maximum a posteriori) and the median
of the accumulated posterior probability were selected and the matching precipita-
tion for these realizations was used as best estimate for the corrected precipitation
(Figure 3.1). Uncertainties in the obtained retrievals are estimated from the uncer-
tainties given by each algorithm. Uncertainties in the changes in satellite-derived soil
moisture and land surface temperature are derived by:

σ =
√
2σ2

retrieval, (3.4)

where σretrieval is the retrieval uncertainty. In single sensor assimilation the impact
of σretrieval is non-existing for the highest probability, since the particle closest to the
observation will always be selected (BestPrec). This is a result of the assumption
that all particles have the same a priori likelihood. This is not the case for the
median sample, where the impact of σretrieval results in a different cumulative posterior
distribution (MedPrec).
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Figure 3.1 Theoretical example of precipitation update with 250 realizations. a) Observa-
tions of satellite retrieved soil moisture for Western United States. The red square indicates
the sampling area of 1.75◦x 1.75◦ with a retrieval for every three hours (vertical axis). The
location for the precipitation correction is in the center of the red square, precipitation
observations are sampled from the sampling area for the actual time ± 3 hour. b) The
resampled precipitation values including a random multiplicative error for each sample, i.e.
the prior particles. c) Soil moisture changes derived from the land surface model using the
precipitation samples. Values are averaged over each bin. The real observed soil moisture
change is indicated by the dashed horizontal line. d) The posterior probability of each pre-
cipitation sample producing the observed changes in soil moisture and the selection of the
sample with the highest probability (BestPrec) and the median of the cumulative posterior
probability (MedPrec).

A synthetic experiment was performed to test if the proposed framework could be
used to reduce uncertainties in precipitation forcing with synthetic true soil moisture
and land surface temperature changes.
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3.2.6 Sensitivity analysis

To better understand how precipitation will result in changes in surface SM and LST
in the VIC model and assess how much information SM/LST can provide about pre-
cipitation, a sensitivity analysis was performed. Here VIC is forced by precipitation
from NLDAS-2. Changes in the state variables have been correlated with the amount
of precipitation that is observed. When the changes in soil moisture content are cor-
related to the amount of precipitation, this indicates that the model is sensitive to
precipitation and that observations of changes in soil moisture can be used to invert
precipitation amounts. However, the correlation is limited by the saturation of the
surface soil moisture during some events. This saturation effect together with the
added noise from evapotranspiration will result in a relationship between precipita-
tion and soil moisture which is non-trivial but where precipitation normally would
result in increased soil moisture. Theoretically this will result in a positive correlation
between precipitation and soil moisture.

For land surface temperature a similar relation should exist within the land surface
model, to enable any benefit from updating with land surface temperatures. However,
the correlation between land surface temperature and precipitation is negative since
the rain water is usually cooler than the soil and a wet soil would require more
energy to warm than a dry soil. This will result in lower land surface temperatures
after a precipitation event. Additionally, higher precipitation totals will result in
higher energy demand to warm the land surface. Therefore, the high precipitation
amounts with fully saturated surface soil moisture could still be detected using land
surface temperature. However, the relationship between land surface temperature
and precipitation is further complicated by changes in air temperatures between days.
Since air temperature largely impacts the land surface temperature, this could add
noise to the relation between precipitation and land surface temperature.

The changes in satellite observations have been tested for sensitivity by calculat-
ing their correlation with observed precipitation. However, the observations from
satellites are independent of the observed precipitation data, because none of the
ground-based precipitation observations are used for the satellite retrievals. Hence,
this will result in lower and less significant correlations. An additional problem occurs
from the fact that satellite overpasses should be on consecutive days to enable the
computation of the changes in the variable. When the period between overpasses is
longer than 24 hours, the relation is less significant and will therefore not be used.
Satellite observations have also been correlated with TMPA-RT precipitation to see
where the relations are strongest and where the potential to update the TMPA-RT
product is the highest compared to the NLDAS-2 precipitation. When high correla-
tions exist between NLDAS-2 and the remotely sensed observations, there is a high
potential to correct TMPA-RT. This would be more difficult for weak correlations
due to the less significant relationship between changes in the observed variable and
precipitation.
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Table 3.2 Scenarios under study for correction of original TMPA-RT, including the descrip-
tion of the data and the satellite observations used to reduce uncertainties in TMPA-RT.

Scenario Description Satellite observations

SM + LST All data LPRM, LSMEM, ASCAT, SMOS, AMSR-E LST
SM Soil moisture data LPRM, LSMEM, ASCAT, SMOS
LST Land surface temperature AMSR-E LST
SM-LPRM LPRM soil moisture LPRM
SM-LSMEM LSMEM soil moisture LSMEM
SM-ASCAT ASCAT soil moisture ASCAT
SM-SMOS SMOS soil moisture SMOS

Changes in daily observations have been compared to the accumulated precipitation
over that time period. For the satellite retrievals the difference between two overpasses
is calculated and correlated to the accumulated precipitation over the same period.
This ensures that no temporal mismatch will occur between the precipitation and
the changes in either soil moisture or land surface temperature. Additionally, the
correlations have been tested for significance using a Mann-Kendall test (p-value <
0.05).

3.2.7 Scenarios

A synthetic experiment has been performed to test the capability of the framework
to correct for errors in precipitation. NLDAS-2 precipitation was used to generate
changes in SM and LST (synthetic observations). Thereafter, these observed changes
were used to correct perturbed NLDAS-2 precipitation over a 3-month period (June
August 2010). The sample size was varied up to 500 particles to estimate the optimal
number of samples required. Additionally, the synthetic experiment was used to
evaluate the performance of the assimilation framework for three scenarios (first three
scenarios Table 3.2). Instead of satellite observations the synthetic observations were
used to correct the precipitation.

Seven scenarios have been tested in this study to estimate the impact of changes in
SM and LST retrievals to reduce the uncertainty in TMPA-RT precipitation (Ta-
ble 3.2). For every scenario, the initial conditions are obtained from a simulation of
the land surface model forced with NLDAS-2 precipitation. Thereafter, the model
uses the perturbed precipitation fields to simulate changes in soil moisture and land
surface temperature. These changes are compared with a set of satellite observations
depending on the scenario under study. The model framework is described in more
detail in the flowchart given in Figure 3.2.
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Figure 3.2 Flowchart of the updating procedure and the assimilation for observations to
reduce uncertainties in satellite.

3.2.8 Evaluation

All scenarios have been evaluated based on the Probability Of Detection (POD),
False Alarm Rate (FAR), Relative Annual Precipitation Bias (RAPB) and the Brier
Score (BS, Brier, 1950). The POD is calculated by:

POD = P (Psat > lim|Pobs > lim), (3.5)

where the likelihood of having a rain event above threshold lim in both the obser-
vations (Pobs > lim) and in the satellite retrieval (Psat > lim) is calculated, which
means that the higher the likelihood, the better the retrieval. The thresholds for rain
events were set on 0 mm and 2 mm, to study the sensitivity of the FAR and POD
to the rain threshold. The 2 mm threshold has been applied by Crow et al. (2011) to
account for overestimation of rain gauge precipitation in low intensity precipitation
events. The percentage of missed rain events is calculated by 1− POD, which gives
an indication of the potential improvements in the retrieval. The FAR indicates the
likelihood of having a rain event in the satellite observation while the ground-based
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observation was dry. The FAR is given by:

FAR = P (Psat > lim|Pobs ≤ lim), (3.6)

where the likelihood of having a rain event in the satellite product and dry conditions
in the observations (Pobs ≤ lim) is calculated. A low FAR indicates a high retrieval
quality, especially when low FAR is combined with a high POD.

The RAPB is the error in retrieved annual precipitation relative to observed annual
precipitation and given by:

RAPB =

∑T
t=1(Psat − Pobs)∑T

t=1 Pobs

, (3.7)

where Psat indicates the retrieved precipitation and Pobs is the observed precipitation.
A RAPB close to zero indicates no bias in the satellite precipitation, while positive
values indicate too high annual precipitation totals in the satellite observations and
negative values are too low annual precipitation totals.

To test the accuracy of the product in terms of rainfall detection the Brier score was
calculated by:

BS =
1

T

T∑
t=1

(sgn(Psat)− sgn(Pobs)), (3.8)

where sgn(Psat) and sgn(Pobs) are binary values indicating rain event (1) or no rain
event (0) for retrieval and observation, respectively. For theBS the same precipitation
event thresholds (0 mm and 2 mm) are applied as were used for the POD and FAR.
All the evaluation criteria were used to analyze the uncertainties in the obtained
precipitation products and the original TMPA-RT.

3.3 Results

3.3.1 Sensitivity to precipitation

Simulations from the land surface model VIC have been correlated to changes in
precipitation and it was shown that changes in VIC SM and LST are sensitive to pre-
cipitation (Figure 3.3). Changes in SM show a high sensitivity to precipitation, while
changes in LST were less sensitive to precipitation. This could partly be explained by
changes in air temperature that impact LST, while positive changes in SM can only
be ascribed to precipitation. Overall it was concluded that with accurate observations
of the changes in SM and LST should be possible to improve the precipitation pattern
and magnitude.

The correlation between SM and LST changes and the observed precipitation has
been studied (Figure 3.4). Changes in satellite observations from consecutive satellite
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Figure 3.3 Correlation between NLDAS-2 precipitation and changes in modeled surface
soil moisture and land surface temperature. Correlations are only calculated for days with
rain.

overpasses, from different sensors were correlated to the precipitation amount between
these overpasses. It is shown that changes in soil moisture from AMSR-E are highly
correlated to precipitation especially over central CONUS. In general the LSMEM
retrieval algorithm shows a higher correlation with precipitation, although AMSR-E
retrieval algorithms show higher correlations than the other soil moisture products.
Changes in ASCAT soil moisture in general suffer from a low number of consecutive
overpasses at lower latitudes, reducing the potential for these retrievals to improve
precipitation patterns. Descending SMOS overpasses suffer from non-significant cor-
relations between changes in soil moisture and precipitation, due to a low number
of consecutive retrievals. However, the ascending overpass shows high correlation for
central CONUS. A similar pattern as for AMSR-E retrievals is obtained, although
the spatial consistency of the pattern is lower for SMOS. The changes in land sur-
face temperature show high correlations with precipitation for Eastern CONUS, while
correlations in the Western part of CONUS are mostly non-significant.

Finally sensitivity between TMPA-RT and changes in satellite SM and LST was stud-
ied. In general correlation between TMPA-RT and the different satellite observations
are lower than correlations between NLDAS-2 and these observations (Figure 3.5).
This would support the hypothesis that uncertainty in TMPA-RT could be corrected
with observations from other remote sensing products. The highest correlations are
again found for the AMSR-E for central CONUS, while ASCAT and SMOS retrievals
suffer from lower correlations and non-significant correlations. The correlations with
changes in land surface temperature are still found for South-Eastern CONUS, how-
ever, these correlations are lower than when compared to NLDAS-2.

From this sensitivity analysis it is concluded that the changes in VIC SM and LST are
sensitive to precipitation. Changes in satellite based retrievals of SM and LST are
sensitive to ground-based observations of precipitation from NLDAS-2. Therefore,
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Figure 3.4 Correlation between NLDAS-2 precipitation and changes in satellite-based ob-
servations of surface soil moisture (top 4 rows) and land surface temperature (lower row).
Correlations are only calculated for days with rain and consecutive satellite overpasses.
Non-significant correlations are given in light colours, while dark colours indicate signifi-
cant correlations.
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Table 3.3 Performance of the particle filter based assimilation procedure to retrieve pre-
cipitation occurrence based on synthetic observations of soil moisture (SM) and land surface
temperature (LST). The skill scores given are derived from the synthetic experiment for the
period June 2010 – August 2010. Performance has been given for the median of the pos-
terior probability (MedPrec) and the maximum probability (BestPrec) sampling method
(Figure 3.2).

Scenario POD FAR BS

SM + LST (MedPrec) 0.932 0.178 0.114
SM (MedPrec) 0.926 0.178 0.115
LST (MedPrec) 0.932 0.179 0.114
SM + LST (BestPrec) 0.880 0.007 0.072
SM (BestPrec) 0.879 0.020 0.078
LST (BestPrec) 0.894 0.034 0.075

satellite retrieved SM and LST could be used to improve satellite based estimates of
precipitation.

3.3.2 Synthetic experiment

A synthetic experiment was done to test the capability of the assimilation approach
to adjust for errors in precipitation. It was found that the assimilation framework
is capable to correct for errors in precipitation (Table 3.3). In general the MedPrec
sampling has a higher POD and a very high FAR, which will in turn result in a
high BS. The BestPrec sampling is more balance, although some skill is lost for the
POD. The LST scenario shows the highest POD, while the combined assimilation
of SM and LST results in the lowest FAR and BS. The limited POD of mainly SM
assimilation is caused by the saturation problem, where pre-storm soil moisture is
already saturated so no changes are detected. The detection of very low rainfall rates
(< 0.1 mm) is also difficult due to their low impact on the changes in LST and SM.

A total number 250 particles is deemed ideal for the assimilation procedure. The
POD, FAR and BS do not change significantly for more than 250 particles, while
the computation demand doubles. The BestPrec sampling method has been selected
to be used for optimal performance. The MedPrec sampling has an overall low skill
and the high FAR makes the MedPrec sampling less reliable. Although the POD
of the BestPrec is slightly lower, the BestPrec sampling is deemed superior due to
the high skill of the FAR and BS and is therefore used in this study.
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Figure 3.5 Correlation between TMPA-RT precipitation and changes in satellite-based
observations of surface soil moisture (top 4 rows) and land surface temperature (lower row).
Correlations are only calculated for days with rain and consecutive satellite overpasses.
Non-significant correlations are given in light colours, while dark colours indicate significant
correlations.
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Figure 3.6 Assimilation example of satellite based observations to reduce uncertainties in
TMPA-RT for 2 June 2011. Top left indicates the ground-based observations of precip-
itation from NLDAS-2 (truth), TMPA-RT indicates the original TMPA-RT product and
corrected precipitation of three different assimilation scenarios is given. SM+LST includes
all available data, SM includes only all soil moisture observations and LST includes only
observations of land surface temperature. The middle and lower rows indicate the changes
in observed soil moisture (SM) and land surface temperature (LST) from different sensors
for different trajectories. The colour scale differs, depending on the variable under study.

3.3.3 Real experiments

The particle filter has been used to update the TMPA-RT product for 2010-2011 based
on changes in observations of SM and LST derived from remote sensing. It is shown
that both variables have the potential to correct for errors in precipitation retrievals
and these variables are sensitive in the land surface model. Assimilation of observa-
tions is only possible at locations with consecutive satellite overpasses of AMSR-E,
ASCAT or SMOS, since the difference between observations from two consecutive
days is used in the assimilation procedure. This will result in a reduced number of
observations, especially for the lower latitudes, where consecutive overpasses are less
frequent due to their polar orbiting trajectory. Figure 3.6 gives an example of all
available satellite observations for one day (2 June 2011). The ground-based precip-
itation observations from NLDAS-2, TMPA-RT and the corrected TMPA-RT after
assimilation are also included. From Figure 3.6 it is clear that uncertainties exist be-
tween TMPA-RT and NLDAS-2, for this specific day especially over central CONUS.
After assimilation of SM the precipitation is significantly reduced, however, a dry
bias occurs. The SM assimilation causes a significantly drier precipitation simulation
than the NLDAS-2. The large area of rain present in TMPA-RT that is not present in
NLDAS-2 is reduced by SM assimilation, so the false detection of rain in TMPA-RT
is reduced. This is most likely due to the saturation effect that limits the benefits of
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soil moisture assimilation and the limited information over wet soil where the rainfall
amounts are underestimated.

The LST assimilation leads to significantly reduced uncertainties over central CONUS
and after assimilation the product is almost identical to NLDAS-2. Precipitation
along the coast is still underestimated, which is partly caused by the method used
to generate the particle. The initialization of the particles is largely dependent on
the original TMPA-RT and does not allow for rain to be created at long distances
from retrieved TMPA-RT. Where no LST observations are present (e.g. Eastern
part of New Mexico) the original TMPA-RT is not improved and uncertainties are
not reduced. When both SM and LST changes are assimilated the data availability
increases, however, the dry SM bias partly returns.

From Figure 3.6 it is shown that some changes in SM show unexpected problems
compared to the observed precipitation (e.g. AMSR-E in Arizona). Noise in the
retrievals resulted in a noise pattern of changes in SM which cannot be explained by
the observed precipitation. The pattern of LST changes is more stable, which might
potentially influence the assimilation.

The obtained results give confidence to apply the methodology to the entire time
period. Additionally, single sensor assimilation scenarios are added to the analysis.

3.3.4 Performance of different assimilation scenarios

Precipitation from TMPA-RT was corrected by the assimilation of remotely sensed
SM and LST observations for the period 2010-2011. The obtained uncertainties of
TMPA-RT and the correction after assimilation are given in Table 3.4. The POD
only improved when LST is used for the detection of rain, while the assimilation of SM
deteriorates the POD. This implies that retrieved changes in satellite LST contain
more information on the precipitation occurrence, than found for satellite-derived SM
changes. The combination of LST and SM shows an intermediate performance, where
POD is still reduced due to the high number of SM observations compared to LST
observation. Single sensor satellite retrieved SM changes will result in lower PODs
compared to TMPA-RT, however, PODs are higher than the combined SM scenario.
This is partly due to the lower number of observations for assimilation compared to
the SM scenario.

The FAR of TMPA-RT is reduced with the assimilation of both SM and LST, where
even the assimilation of single sensor satellite SM resulted in an improvement in the
FAR. It is concluded that TMPA-RT in general has too many rain days compared
to the observations and this characteristic is corrected by the assimilation of land
surface variables.
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Figure 3.7 Skill scores of TMPA-RT and TMPA-RT after assimilation of soil moisture, land
surface temperature or both. Skill scores are calculated based on comparison with ground-
based precipitation from NLDAS-2 with a 0 mm rain threshold to distinguish between a
rain event and dry conditions.

The BS is a lumped measure of the number of correctly observed rain and dry days.
The TMPA-RTBS for a 0mm event threshold is only reduced when either a combined
assimilation of satellite LST and SM changes is done or only LST changes are used.
With a higher threshold of 2 mm the BS is in all scenarios reduced to lower values,
indicating higher skill. This indicates that assimilation of SM changes has a positive
impact for medium and high intensity rain events that exceed the 2 mm threshold.

The Spearman correlation is found to improve for all scenarios indicating that as-
similation of additional satellite observations has a positive impact on the ranked
probability. The best results are obtained after the assimilation of LST changes,
which shows the highest Spearman correlation after assimilation.

The negative impact of the assimilation of SM changes in POD and the BS (0 mm
threshold) is a result of a dry bias found in the SM assimilation. Figure 3.7 also
shows an on average dry correction of TMPA-RT, which is also found over the two
year assimilation period. This results in low POD and FAR values, since the product
is in general dry biased, which will reduce the skill to detect rain and will enhance
the skill to predict dry days.
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Table 3.4 Skill scores of TMPA-RT and TMPA-RT after different assimilation scenar-
ios. Skill scores are calculated based on comparison with ground-based precipitation from
NLDAS-2 with a 0 mm rain threshold.

POD FAR BS Spearman Percentage
0 mm 2 mm 0 mm 2 mm 0 mm 2 mm Correlation available (%)

TMPA-RT 0.456 0.573 0.092 0.072 0.316 0.186 0.555 100
SM + LST 0.378 0.353 0.010 0.017 0.314 0.123 0.615 95.7
SM 0.336 0.307 0.013 0.017 0.337 0.126 0.576 94.7
LST 0.505 0.590 0.033 0.049 0.262 0.152 0.676 75.5
SM-LPRM 0.382 0.409 0.042 0.036 0.328 0.145 0.559 64.3
SM-LSMEM 0.388 0.439 0.042 0.038 0.325 0.144 0.566 61.6
SM-ASCAT 0.384 0.423 0.041 0.034 0.326 0.143 0.565 77.9
SM-SMOS 0.398 0.466 0.060 0.048 0.329 0.158 0.545 44.6

3.3.5 Seasonal impact of assimilation

The quality of the TMPA-RT product varies throughout the year as is the impact of
different assimilation scenarios (Tables 3.5 and 3.6). The skill of TMPA-RT is lowest
for the winter, while the other seasons show in general much higher skill. For the
winter season all skill scores show an improvement after the assimilation of remotely
sensed SM or LST changes. The LST has a year-round positive impact on the skill of
the precipitation detection. PODs are increased, especially for the winter and spring.
BS is always reduced with a very high skill for the spring and autumn.

For the assimilation of SM and SM+LST the skill decreased for the summer and
autumn with an exception for the FAR, which is always lower compared to TMPA-
RT. These results show that even when the overall year-round skill is reduced by the
assimilation of satellite SM changes a positive impact was found for winter and spring.
The assimilation of summer SM changes negatively impacts precipitation retrievals
in terms of skill and POD.

3.3.6 Spatial impact of assimilation

The quality of the the assimilation was evaluated spatially to assess where the po-
tential gain of the assimilation of satellite-derived changes in SM and LST was the
largest (Figure 3.7). TMPA-RT shows high POD throughout CONUS, however, the
FAR is very high for the area in and around the Rocky Mountains. The RAPB
shows a dry bias along the West coast and a wet bias in and on the Eastern border
of the Rocky Mountains. BS was highest for the South West, where the FAR is low
and POD is high.
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Table 3.5 Skill scores of TMPA-RT and TMPA-RT after different assimilation scenarios
for different seasons. Skill scores are calculated based on comparison with ground-based
precipitation from NLDAS-2 with a 0 mm rain threshold to distinguish between a rain
event and dry conditions.

POD FAR BS
DJFMAM JJA SON DJFMAM JJA SON DJFMAM JJA SON

TMPA-RT 0.34 0.47 0.52 0.46 0.09 0.11 0.09 0.09 0.37 0.32 0.30 0.29
SM + LST 0.38 0.45 0.35 0.34 0.02 0.01 0.00 0.01 0.31 0.28 0.35 0.29
SM 0.34 0.42 0.29 0.31 0.03 0.01 0.00 0.01 0.34 0.30 0.38 0.31
LST 0.42 0.56 0.53 0.49 0.03 0.03 0.02 0.05 0.30 0.24 0.26 0.25

It was found that the assimilation of SM changes does negatively impact the POD
and BS. Exceptions are found West of the Rocky Mountains, where the assimilation
does not negatively impact the skill or even improve the skill. The same is found for
the East coast, where especially in the North the skill score is increased. The FAR
is positively impacted through CONUS, while the RAPB clearly shows the dry bias
in the SM assimilation.

Assimilation of changes in LST does improve the POD, FAR, BS and the RAPB
through CONUS. No distinct spatial patterns are found, while annual precipitation
biases are strongly reduced compared to TMPA-RT. The highest positive impact of
assimilation of LST is found for the North-West where precipitation totals are high.

Combined assimilation of SM an LST changes will show intermediate results between
separate assimilation of SM and LST. The FAR is further reduced compared to SM
assimilation; however, the POD remains lower than for the assimilation of only LST.

3.4 Discussion

3.4.1 Impact of event threshold

The 0 mm (Table 3.5) and 2 mm (Table 3.6) event thresholds show similar patterns
concerning the seasonality of the performance. In general skill scores show a better
performance throughout the season with a 2 mm threshold; which was previously
also found for the year round performance (Table 3.4). The performance of the LST
scenarios is not superior in terms of the BS compared to the other scenarios, which
was also confirmed in Table 3.4.

64



Figure 3.8 Skill scores of TMPA-RT and TMPA-RT after assimilation of soil moisture, land
surface temperature or both. Skill scores are calculated based on comparison with ground-
based precipitation from NLDAS-2 with a 2 mm rain threshold to distinguish between a
rain event and dry conditions. Please note different colour scales compared to Figure 3.7.

Table 3.6 Skill scores of TMPA-RT and TMPA-RT after different assimilation scenarios
for different seasons. Skill scores are calculated based on comparison with ground-based
precipitation from NLDAS-2 with a 2 mm rain threshold to distinguish between a rain
event and dry conditions.

POD FAR BS
DJFMAM JJA SON DJFMAM JJA SON DJFMAM JJA SON

TMPA-RT 0.49 0.52 0.62 0.62 0.08 0.06 0.08 0.07 0.19 0.19 0.20 0.17
SM + LST 0.44 0.34 0.31 0.35 0.04 0.01 0.01 0.01 0.14 0.13 0.13 0.10
SM 0.41 0.30 0.26 0.32 0.04 0.01 0.01 0.01 0.14 0.13 0.13 0.10
LST 0.55 0.57 0.59 0.63 0.06 0.04 0.05 0.05 0.15 0.15 0.16 0.14

As is shown in Table 3.4 the higher (2 mm) event threshold has a positive impact on
the BS, which is also found in the spatial analysis. The POD for medium to high
intensity rain events is increased for TMPA-RT and the LST scenario (Figure 3.8).
In the FAR no significant changes in spatial patterns were found compared to the
lower event threshold. The BS of the original uncorrected TMPA-RT is lower for the
2 mm threshold, and improvements are found for all the assimilation scenarios. This
indicates that there is a positive impact after removing small rain events, where the
scenarios that include SM data show a better performance when only medium and
high intensity rain events are considered.

3.4.2 Soil moisture observations

As a result of the obvious relationship between changes in SM and precipitation, it was
expected that observations of changes in SM should lead to an improved probability
of rain fall detection (POD). Surprisingly, in this study this improved POD was not
found for a large part of CONUS (Figure 3.7). From the synthetic experiment it was
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found that the potential is high if the observed changes are accurate, so the problem
is mainly caused by uncertainty and noise in the satellite retrievals.

Changes in SM were studied and it was found that the retrieved changes show great
uncertainty and noise in the retrievals. From the example retrieval shown in Fig-
ure 3.6, it was found that for the South-Western swath of AMSR-E the pattern is
not consistent. Although from the observed precipitation it is shown that this area
should be dry, the changes in satellite retrieved SM do not show an unambiguous dry
pattern. This problem is found for all sensors and for the entire assimilation period
(Figures 3.9 and 3.10). Another example is given by Figure 3.11 where soil mois-
ture retrievals often indicate a rainfall event when nothing is observed for a number
of days. These higher frequency noise components (found in both space and time)
will reduce the potential for reducing uncertainties in satellite precipitation observa-
tions. Additionally, these noise components in the SM retrieval produce inconsistent
patterns in SM changes, when compared with observed precipitation (Figure 3.6).
Although the data has been filtered to remove potential erroneous SM retrievals,
noisy patterns remain visible. Most likely the majority of the satellite retrieval noise
will be attributed to SM since the retrieval algorithms assume error-free radiometer-
level brightness temperatures and try to estimate the SM signal from many other
components in the scene, some of which are not well represented in the algorithms
(e.g. landscape heterogeneity, wet lands, scattered pockets of trees and urban areas).
The retrievals are not constrained to previous SM retrievals either which increase the
degrees of freedom (and hence potential for noise) in the SM retrieval.

Furthermore, it is found that the changes in soil moisture simulated by the model and
observed by the satellite have a different dynamic range (Figure 3.12). This indicates
that changes in the satellite SM are more abrupt than the model response to similar
events. The number of times a positive SM change is found for satellite-derived SM
is significantly larger than for the model simulated SM. When a positive increase in
SM is associated with precipitation, this indicates that satellite retrievals overesti-
mate the percentage of rainy days by 20% compared to model simulated percentage
of rain days. This could clearly impact the potential of these satellite observations to
successfully retrieve rain events that are missed by TMPA-RT. If the particle gener-
ation of the data assimilation approach was not restricted to the original TMPA-RT
this would lead to significant problems, with an overestimation of the number of rain
events. Apart from the differences in the dynamic range of the SM changes, it was
also found that satellite-derived SM changes show high noise levels for dry SM con-
ditions. When the SM state is dry, satellite retrievals tend to show a strong increase
in satellite SM changes relative to the current state, while model simulations do not
suggest this pattern. This indicates that in dry conditions the satellite SM retrieval
is hampered and the resulting satellite-derived SM changes are affected by a high
retrieval noise. A potential solution for some of these problems is to correct the dif-
ference between modeled and observed soil moisture changes through CDF matching
to match observed to modeled SM increments. Although it is recognized that this
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Figure 3.9 Calculated skill scores of TMPA-RT and TMPA-RT after assimilation of single
sensor retrievals of soil moisture. Skill scores are calculated based on comparison with
ground-based precipitation from NLDAS-2.

Figure 3.10 Difference in Brier scores between the original TMPA-RT and TMPA-RT after
assimilation of soil moisture retrievals from all available sensors or single sensor retrievals
of soil moisture.
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could be a potential solution to some of the problems related to the assimilation
of SM changes, this would require too much tuning of the observations. Resolving
the problem of the mismatch of the SM changes in an effective and realistic manner
requires additional research that is beyond the scope of this paper.

The findings on precipitation correction with SM observations from this study are
contradictory to the studies of Crow and Bolten (2007); Pellarin et al. (2008); Crow
et al. (2009, 2011); Brocca et al. (2013); Pellarin et al. (2013); Brocca et al. (2014),
where improvements were found for some regions. Results from this study differ in
the way observations are used and the spatial and temporal resolutions of the rainfall
correction. In contrast with Pellarin et al. (2008, 2013), this study uses processed
brightness temperatures from AMSR-E and the retrievals of SM changes that come
from the LPRM and LSMEM algorithms, instead of a direct assimilation of brightness
temperature. Brocca et al. (2013) use the Soil Water Index, which is a temporally
smoothed soil moisture product derived from ASCAT (at 1◦ resolution) and perfor-
mance are evaluated over 5 day aggregation periods. Brocca et al. (2014) use the soil
moisture retrievals of ASCAT, AMSR-E and SMOS; however, a 5 day aggregation
period is applied to improve the number of consecutive satellite observations. The
studies of Crow et al. (2009, 2011) use 2-10 day average satellite-derived soil mois-
ture increments at a coarser 1◦ spatial resolution. Moreover, Crow et al. (2009) use
a 12 hour time shift to capture the necessary delay between precipitation and soil
moisture increments and conclude that 3 day rainfall accumulation periods are ap-
proximately the finest temporal scale at which precipitation corrections are possible
with satellite soil moisture from AMSR-E. All of these studies use some form of space
or time aggregation (which reduces retrieval noise) or use the unprocessed brightness
temperatures, which are not affected by noise attribute to the soil moisture retrieval
algorithms. This suggests that satellite soil moisture retrievals are not suitable to
correct satellite precipitation at the 0.25◦ resolution at the fine temporal resolution
used in this study and should be spatially upscaled to improve the signal to noise
ratio and hence contain more valuable information. Additionally, noise filtering tech-
niques could be applied to reduce the retrieval noise (e.g. low pass filters). However,
the downside of these types of techniques is that they require knowledge on future
observations and are therefore difficult to apply for real-time satellite retrievals.

A second problem for the assimilation of SM changes is the difference in the penetra-
tion depth of the different sensors and the difference between the model soil moisture
depth (0.1m top model layer) and the penetration depth (about 0.01 m for X-band
AMSR-E). This problem should only have an impact on the actual rainfall retrieval
and the effect should be less on the probability of rain detection, where SM change
will only be stronger for shallower penetration depths.

Although microwave SM retrievals are known to suffer from impacts of vegetation
(Parinussa et al., 2011) and topography (Engman and Chauhan, 1995) no clear pat-
terns are found in this study. The pattern shown in Figure 3.4 and Figure 3.11 was
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found all across CONUS and does not seem to be impacted by any land surface
characteristics.

3.4.3 Temperature observations

In this study only changes in LST from one microwave satellite sensor have been used
in the assimilation. Addition of more satellite retrieved LST products could result
in a further reduction of the uncertainties in satellite precipitation. Since the LST
assimilation already shows a large impact on the quality of the correction, including
more sensors could have a significant impact on the reduction of the uncertainty in
the satellite precipitation.

An option for additional LST observations would be LST retrievals from thermal
infrared sensors (e.g. MODIS, Wan, 2008). However, thermal infrared retrievals are
hampered by cloud contamination leading to a lower certainty in the retrieved LST
values. Therefore, the assimilation of additional microwave retrievals (from Ka-band)
could lead to a further reduction of the uncertainties in satellite based precipitation.
Microwave LST retrievals are available from Special Sensor Microwave and Imager
(SSMI), Tropical Rainfall Measuring Mission Microwave Imager (TMI), AMSR-E
and AMSR-2. The orbits and spatial resolutions of these sensors are not identical.
However, they could be of significant importance to further reduce uncertainties of
satellite-derived precipitation.

3.4.4 Model and ground-based precipitation

In this study, the VIC model was implemented to transform the precipitation into
changes in SM and LST. This could impact the results since the response is model
specific and related to changes in land surface variables. However, VIC is capable
to solve the full water and energy balance, leading to improved simulation of the
land surface temperature. For this assimilation approach it is required that the Land
Surface model is capable to solve the energy balance because otherwise it will not
give accurate simulations of the LST changes.

Furthermore, the Northern Land Data Assimilation System phase 2 (NLDAS-2) was
used as reference dataset for the quality of the assimilation. Although all ground-
based observations are known to possess biases and errors, the uncertainties in the
dataset will be smaller than the uncertainties found in the satellite retrieved precipita-
tion. The results could slightly change with the use of other reference datasets. How-
ever, the difference between the ground-based observational precipitation datasets is
negligible compared to the uncertainties in TMPA-RT.
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Figure 3.11 Observed (points) and modeled (line) changes in soil moisture (top panel) and
land surface temperatures (bottom panel), combined with the daily precipitation (bars) for
a location in Kansas State (100◦W, 38◦N). Changes in observed soil moisture and land
surface temperatures are derived from consecutive satellite overpasses. Values are displayed
at a daily time step, which could result in some temporal mismatch. Ascending (A) and
Descending (D) overpasses are given separately.
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Figure 3.12 Modelled and satellite-derived changes in soil moisture after CDF matching
of the original retrievals. Dashed lines indicate the probability of no or negative changes in
the soil moisture state.

3.5 Conclusion

A particle filter based assimilation framework was implemented to reduce the uncer-
tainties in satellite derived precipitation from TMPA-RT, by assimilating satellite-
derived SM and LST changes over CONUS. Observations from four satellite SM
algorithm and one LST algorithms have been assimilated for the period 2010-2011.

It was found that changes in SM and LST, derived from microwave remote sens-
ing, were sensitive to ground-based precipitation observations from NLDAS-2. Ad-
ditionally, the VIC model showed a high sensitivity of changes in SM and LST to
precipitation.

The synthetic assimilation experiment showed the capability of the assimilation frame-
work to reduce uncertainties in perturbed precipitation compared to the original ob-
served precipitation. It was found that changes in synthetic observations of SM or
LST could be used to improve both precipitation rates and occurrence with high
accuracy. Combined assimilation of synthetic SM and LST changes showed an even
higher potential to reduce uncertainties.

The assimilation framework was used to reduce uncertainties in TMPA-RT. It was
found that assimilation of satellite-derived SM changes only increased the uncertain-
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ties in the TMPA-RT compared to NLDAS-2 observations. This is mainly caused by
noise in the retrieved SM, both in space and time. Here a better understanding of
the SM error behaviors and the underlying physical mechanism is needed in order
to develop a smarter and better performing SM assimilation procedure in the future.
Assimilation of changes in LST significantly reduced the uncertainties within TMPA-
RT, where especially the POD had increased from 0.45 to 0.50 on average. The false
detection of rain was reduced after assimilation of SM, LST, or the combined assim-
ilation of SM and LST. The highest impact of assimilation was found for winter and
spring conditions. SM assimilation resulted in a dry bias, whereas LST assimilation
resulted in more accurate annual precipitation volumes compared to TMPA-RT.

This study shows the potential of improving TMPA-RT with other satellite-based
observations. TMPA-RT is now widely used for hydrological modeling, monitoring
and flood and drought forecasting over sparsely gauged basins (e.g. Africa). In
these types of applications, our findings could have significant implications and help
improve hydrological monitoring and forecasting skills in these regions.
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4 Calibration of a global
hydrological model

This chapter is based on:
Wanders, N., Sutanudjaja, E. H., van Beek, L. P. H., Bierkens, M. F. P.
(2014), The PCR-GLOBWB global hydrological reanalysis product, Journal of Ad-
vances in Modeling Earth Systems, submitted.

Abstract

The goal of the present work is to produce a multi-decadal “terrestrial hydrological re-

analysis” dataset with retrospective and updated hydrological states and fluxes that are

constrained with available in-situ river discharge measurements. By embedding the global

hydrological model PCR-GLOBWB in an Ensemble Kalman Filter framework, the model

parameters were calibrated based on 1495 time series of discharge observations from the

GRDC. The calibrated parameters are related to the snow module, runoff-infiltration and

unsaturated zone processes, as well as pre-factors to correct forcing precipitation fields for

local topographic and orographic effects. The calibration covers the period 1960-2010 and

the obtained posterior distributions are used to create a global hydrological reanalysis that

is evaluated against 6475 discharge stations using the long-term GRDC dataset. Results

show that the model parameters can be calibrated successfully. Corrections to the rain-

fall fields are considerable, where topography has the largest impact on the precipitation

corrections. Globally the precipitation is reduced by 9.2% to 9.9×103 km3 y−1, indicating
that the original CRU TS3.21 estimate is too wet. After calibration the RMSE is reduced

by 10% on average, leading to improved discharge simulations, especially under base flow

situations. The final outcome is the first ensemble hydrological reanalysis product that

is consistent with discharge observations, has a closed water balance (for all 48 ensemble

members) and provides estimates on the uncertainty in all fluxes and storage components

of the terrestrial water cycle. The new reanalysis product will be valuable for studies into

atmospheric moisture recycling and the global water cycle, in general.

4.1 Introduction

Water plays a crucial role in Earth’s climate, its ecosystems and its human popu-
lation. Precipitation and evaporation directly interact with the climate, while the
environment and human population are directly impacted by the total water avail-
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ability in different storages components (e.g. snow, soil moisture, surface water or
groundwater).

The impact of the terrestrial water cycle on humans and nature makes it crucial to
fully understand the relationship between the different water stores and fluxes. With
respect to sustainable water use and climate induced changes in water availability,
it is important to have high quality estimates of the different components of the
water cycle. Trend studies of the water cycle can indicate unsustainable situations
or indicate changes in hydroclimatological conditions. Moreover, the different fluxes
and stores of the terrestrial water cycle constitute important boundary conditions
for ocean and atmospheric modelling, for the design of flood defence measures and
reservoirs and for assessing human water availability.

This shows the importance of having accurate knowledge on the storage and fluxes of
the terrestrial water cycle. However, the estimates of the storage and fluxes are rather
different amongst studies and remain uncertain (e.g. Dirmeyer et al., 1999; Oki and
Kanae, 2006; Trenberth et al., 2007, 2011). Most studies lack uncertainty estimates
and the range of estimates is broad, i.e. they either consist of a deterministic single
model simulation (e.g. Oki and Kanae, 2006; Trenberth et al., 2007, 2011) or are
based on observations (Kinter and Shukla, 1990). Although they have the advantage
that they provide estimates of uncertainty, the existing multi-model estimates are
hampered by the fact that they do not take into account observational data and
depend solemnly on model simulations (e.g. Dirmeyer et al., 1999; Haddeland et al.,
2011). Dirmeyer et al. (1999) expresses the need for a land surface data assimilation
scheme to improve the existing estimates and reduce the existing uncertainty.

In contrast to previous work, Rodell et al. (2014) used a solemnly observational
based approach and an observation integrated model approach to quantify fluxes in
the global water cycle for the period 2000-2010. Rodell et al. (2014) used a large
set of satellite observations to close the water balance and also provided uncertainty
estimates derived from the discrepancy between different observational datasets and
satellite retrieval uncertainty. The observation integrated model approach used by
Rodell et al. (2014) is based on a post processing optimization approach, where model
simulations are constrained by observations to reduce uncertainty in flux estimates.
An advantage of the applied post-processing approach is that it respects the mass
balance equations and does not introduce errors in the water balance as a result of
the optimization. The uncertainties in the flux and storage estimates are reduced
after optimization. Although the work of Rodell et al. (2014) clearly advances the
estimates of global water fluxes it does not use the observational data to constrain
initial model simulation.

Pan et al. (2011) used a similar approach as Rodell et al. (2014), where additional
observations were used to correct model simulations in a post-processing routine for
32 major river basins. As stated by Pan et al. (2011), the post-processing approach
should lead to a perfect closure of the water balance. The approach is limited in
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a sense that observed information is only used as post-processing for selected river
basins, while it is not used to improve model performance or initial storage estimates
at the global scale.

Van Dijk et al. (2014) used a Bayesian approach to reduce uncertainty in model sim-
ulations based on observations from the Gravity Recovery And Climate Experiment
(GRACE). GRACE observations are directly assimilated into the model simulations,
leading to improved estimates of the water storage. This Bayesian approach does lead
to problems in the water balance closure, because it introduces and removes water
from the storage based on the GRACE observations. Although Van Dijk et al. (2014)
did not look at fluxes in the global water cycle, they do produce a reanalysis product
for hydrology based on these observation integrated simulations. As mentioned be-
fore, the water balance is not closed, which limits the applicability of the reanalysis
product for studies related to multiple components of the hydrological cycle and the
underlying fluxes.

The objective of this study is to create an observation-integrated hydrological reanaly-
sis dataset with a closed water balance. To fulfil this objective the global hydrological
model PCR-GLOBWB (Van Beek et al., 2011) and a land surface data assimilation
scheme (Ensemble Kalman Filter) were used to integrate discharge observations into
the model simulations. The final outcome of this study will be the first ensemble
hydrological reanalysis product that is consistent with discharge observations, has
a closed water balance (for every ensemble member) and provides estimates on the
uncertainty in all fluxes and storage components of the terrestrial water cycle.

4.2 Material and Methods

4.2.1 Model description

The state-of-the-art global hydrological and water resources model PCR-GLOBWB
was used to simulate spatial and temporal continuous fields of discharge and stor-
age in rivers, lakes, and wetlands at a 0.5◦ spatial resolution (Van Beek et al., 2011;
Wada et al., 2014). In brief, the model simulates for each grid cell and for each time
step (daily) the water storage in two vertically stacked soil layers and an underlying
groundwater layer. At the top a canopy with interception storage and a snow cover
may be present. Snow accumulation and melt are temperature driven and modelled
according to the snow module of the HBV model (Bergström, 1995). The model
computes the water exchange between the soil layers, and between the top layer and
the atmosphere (rainfall, evaporation and snowmelt). The third layer represents the
deeper part of the soil that is exempt from any direct influence of vegetation, and
constitutes a groundwater reservoir fed by active recharge. The groundwater store
is explicitly parameterized and represented with a linear reservoir model (Kraijenhof
van de Leur, 1962). Sub-grid variability is considered by including separately short
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and tall natural vegetation, open water (lakes, floodplains and wetlands), soil type
distribution (FAO Digital Soil Map of the World), and the fractional area of saturated
soil calculated by the Improved ARNO scheme (Hagemann and Gates, 2003) as well
as the spatio-temporal distribution of groundwater depth based on the groundwater
storage and the surface elevations as represented by the 1 km by 1 km Hydro1k data
set (https://lta.cr.usgs.gov/HYDRO1K/, Verdin and Greenlee, 1996). Simulated spe-
cific runoff from the two soil layers (direct runoff and interflow) and the underlying
groundwater layer (base flow) is routed along the river network based on the Sim-
ulated Topological Networks (STN30, Vörösmarty et al., 2000a) using the method
of characteristic distances (Wada et al., 2014). Reservoirs and water abstraction is
included in PCR-GLOBWB simulations, where the water abstraction can come from
surface or groundwater (De Graaf et al., 2014). The groundwater abstraction can
be divided into fossil and renewable groundwater, where the fossil groundwater is
abstracted from deep groundwater aquifers that are not replenished. The abstraction
rates are dynamic over time and dependent on the irrigation and none-irrigation (e.g.
domestic, industry) water demand.

4.2.2 Forcing data

The required forcing data for PCR-GLOBWB consist of daily precipitation, tem-
perature and reference potential evapotranspiration. As the original forcing data
for this study, the monthly CRU TS 3.21 dataset (Harris et al., 2014) was used in
combination with the daily fields of ECMWF ERA-40 (Uppala et al., 2005) and
ECMWF ERA-Interim re-analysis products (Dee et al., 2011). Both ECMWF re-
analysis datasets were used to downscale the monthly values of CRU TS3.21 to daily
values. For downscaling in the period 1960-1978, ERA-40 (available since 1957) was
used, while ERA-Interim (available since 1979) was used for downscaling in the the
period 1979–2010. For an extensive explanation about the methodology used for this
downscaling, the reader is referred to Van Beek (2008) and Sutanudjaja et al. (2011).
In addition to this downscaling, a precipitation correction was also included based on
the method of Fiedler and Döll (2007) as snow under-catch errors in a precipitation
field gauge-based product of CRU TS3.21 can be large during the cold season at high
latitudes.

4.2.3 Discharge data

To evaluate the performance of the PCR-GLOBWB model, discharge observations
from the Global Runoff Data Centre (GRDC) were used. Stations were matched to the
PCR-GLOBWB grid representation to compare simulated and observed discharge for
the period 1960-2010. Discharge stations were selected when over 5 years of monthly
data is available, the difference in catchment size between model and observation is
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less then 10% and the station quality is sufficient according to the GRDC. These
criteria resulted in a total of 6475 stations with an average record length of 28 years.

For the calibration a subset of the discharge stations from the GRDC was used, based
on the quality estimate of the observations. The GRDC quality estimate was used to
remove erroneous stations, thereafter the difference in catchment size between model
and observation is less then 5%. This resulted in a total of 1495 reliable stations that
cover 49% of the global catchments and provide observations throughout the period
1960-2010. The average data availability was 1000 stations for any given month in
the simulation period.

4.2.4 Data assimilation framework

The Ensemble Kalman Filter (EnKF) is a Monte Carlo based data assimilation
and model calibration approach, and especially suited for high dimensional systems
(Evensen, 1994; Burgers et al., 1998; Evensen, 2003, 2009). The mode uncertainties
in the EnKF are derived from the multiple ensemble members of the Monte Carlo
approach. A basic assumption in the EnKF is that with enough ensemble members
the ensemble spread can be used to approach the full model uncertainty of the simu-
lation. Especially for distrubtions with large tails it is important that the number of
ensemble members is sufficient to capture the full distribution. The EnKF does not
require a separate model for the propogation of the model error covariance matrix,
because it is computed from the ensemble spread. These properties make the EnKF
highly suitable for complex spatially distributed models, with long calculation times
and a large number of calibration parameters or state variables, like PCR-GLOBWB.
The forward PCR-GLOBWB model is given by:

Ψ(t+ 1) = f(Ψ(t), F (t), p) (4.1)

where Ψ(t) is the state of the model at time t, F (t) the model forcing at time t (e.g.
precipitation, evaporation and temperature) and p are the model parameters (e.g.
saturated conductivity, routing or groundwater parameters). The EnKF is applied
on each monthly time step using the monthly discharge observations. The general
form of the EnKF is given by Evensen (2003). It can be formalized by the model
forecast (Ψf ), given by:

Ψf = (ψf
1 , ..., ψ

f
nens) (4.2)

where ψf
1 , ..., ψ

f
nens are the individual model forecasts. The state error covariance

matrix of the model is directly calculated from the ensemble spread using:

P f = (Ψf −Ψt)(Ψf −Ψt)T (4.3)

where Ψt is the true model state. Since the true state is not known it is assumed
that:

P f ≈ P f
e = (Ψf −Ψf )(Ψf −Ψf )T (4.4)
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where Ψf represents the ensemble average and it is assumed that the ensemble of
model predictions is unbiased. The observations matrix, Y contains the observations
and is given by:

Y = HΨt + ε (4.5)

where H is used to transform Ψt to the observations and ε the random error in the
observations. ε is random noise with a zero mean and a standard deviation given by
R, the measurement error covariance. This leads to the general form of the EnKF:

Ψa = Ψf + P fHT (HP fHT +R)−1(Y −HΨf ) (4.6)

With the help of state-augmentation, the EnKF also allows model parameters to be
estimated with each update. Since there are no observations of the parameters, only
the matrix Ψf and measurement operator are extended to enable the parameters
of Table 4.1 to be estimated. This results in updated parameters in Ψa which are
perturbed by multiplicative white noise with a standard deviation of 0.01, to prevent
ensemble deterioration. The perturbations are given by:

Ln(p′t) = Ln(p) +W (0, 0.01) (4.7)

where p′t are the perturbed parameters andW (0, 0.01) is white noise with a mean of 0
and standard deviation of 0.01 (-). These new parameters are then used to propagate
the model to the next update moment using Equation 4.1.

4.2.5 Implementation of Ensemble Kalman Filter

As input for the calibration discharge observations were used to correct the model
parameters. At the end of each month the difference between model simulated and
observed discharge was used in Equation 4.6 to improve the estimates of the param-
eters. No model states were updated, since this would induce water balance errors.
The prior distribution of the calibration parameters (Table 4.1) was created by:

p′(n) = p0 ∗W (µp, σp) (4.8)

where p′(n) is the prior parameterization for ensemble member (n), p0 is the original
PCR-GLOBWB parameter value andW (µp, σp) is derived from a normal distribution
with a mean of 1 and standard deviation σp. For all parameters a global prefactor was
applied to not over-parameterize the system, which will make it unsolvable with the
limited set of discharge observations (≈ 600000). When parameters are estimated
for every location individually this would lead to ≈ 200000 parameters, whereas a
basin dependent parameterization could result in an unnatural shifts in parameter
values between adjacent locations. For the model parameters (Ksat, DDF , n) the
prior estimates were generated with µp = 1.0 and σp = 0.1. The precipitation was
corrected using three time-dependent precipitation correction factors (c) that are
given by:

P ′(t) = P (t) ∗ (1 + cuphill(t) + cdownhill(t) ∗+cpath(t)) (4.9)
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where cuphill(t), cdownhill(t), cpath(t) are the correction factors applied to the original
precipitation based on up and downhill wind direction and average slope of the terrain
along the travel path of the precipitation. The precipitation correction factors are
given by:

cuphill(t) = αuphill ∗max(cos(π ∗ Asp− udir(t))

180
), 0.0) (4.10)

cdownhill(t) = αdownhill ∗min(cos(π ∗ Asp− udir(t))

180
), 0.0) (4.11)

cpath(t) = αpath ∗ z

Dist(t)
(4.12)

where α∗ is the calibration pre-factor (time-independent) that is calibrated based on
the observations, Asp the aspect of the slope in the terrain (◦), udir(t) the dominant
directionality of the wind for time t (derived from ERA40 and ERA-interim), z the
terrain height and Dist(t) the cloud travelling distance. For the initial values of α
µp = 0.0 and σp = 0.01 were used.

It has been frequently reported that precipitation products in mountainous regions
suffer from lack of ground-based stations and have poor quality (e.g. Adam and Let-
tenmaier, 2003; Hijmans et al., 2005). These are the regions where the highest impact
can be expected from the newly introduced correction factor. The impact of verti-
cal movement of clouds will result in an increased specific humidity and therefore in
generation of precipitation (windward conditions) or a drying of the air (leeward con-
ditions). Hence cuphill and cdownhill have been introduced to correct for these effects,
which are not captured by the small number of precipitation stations in mountainous
regions. This orographic effect is strongest at the first encounter of moist air or with
strong topographic terrain. However, the impact may reduce after the air has passed
multiple ranges of hills or mountains. This is based on the assumption that most
evaporation is generated over the ocean and transported onto the land. When air
with a high specific humidity has travelled a long distance (over land) the air is more
likely to have a lower specific humidity (due to losses as precipitation) and the impact
of vertical movement on precipitation generation will be lower. cpath accounts for this
process and corrects for these distance effects. Although these correction factors could
be made more sophisticated, it is preferred to have simple single aspect correction
factors that allow for a global time and wind direction dependent precipitation cor-
rection. This will reduce the number of parameters to be calibrated and results in a
more robust model calibration. The obtained parameters and precipitation correction
factors were evaluated based on the ratio between the obtained value and the spread
between the realizations using the Coefficient of Variation (COV ). This will provide
information on the signal to noise ratio on the newly obtained parameterization. Pa-
rameters with a low COV could be deemed certain, while a high COV (especially
above 1) will indicate highly uncertain parameter retrievals. The latter is the result
of poor identifiability of the parameter, which in turn results either from the fact that
the model is insensitive to the parameter, or from the lack of proper observations to
estimate its true value.
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For the assimilation of the discharge data with the Ensemble Kalman Filter (EnKF),
spatial information on the measurements error covariance (R, Equation 4.6) is re-
quired. The structure of R was determined using the data quality information pro-
vided by GRDC. Discharge observations can be divided into 3 categories, namely,
daily, monthly and climatology. Since the model performance is evaluated at the end
of every month, monthly aggregated values were used for the assimilation scheme.
Daily values were aggregated to monthly values, monthly values were used as is and
the same was done for the monthly observation climatology. A holistic error model
was used to determine the observation errors for each station. A 20% error was as-
sumed for monthly aggregated daily discharge observations, where missing values are
penalized with 1% per missing day (information provided by GRDC). When only
the monthly discharge climatology was provided an error of 40% was imposed on the
observation or the standard deviation provided by the GRDC. The error covariance
between the discharge observations was set to zero since it was assumed that errors
in the observations are independent, even when they are located in the same basin.

Preliminary tests showed that a total of 48 ensemble members was sufficient to obtain
statistically stable parameter solutions. With the total of 48 ensemble members, the
EnKF was applied to update state variables and identify parameters (Table 4.1) of the
hydrological model PCR-GLOBWB. The initial model states were determined based
on a fifty-year open loop simulation of PCR-GLOBWB. A fifty year period was used
to ensure that the deep groundwater simulations would no longer be influenced by
the initial conditions. A three-step approach was subsequently used to calibrate the
hydrological model and ensure a stable, fully calibrated set of parameters. A initial
calibration of 50 years (1960-2010) was performed, the obtained parameterization
was used for a second calibration for the same 50 years and third calibration for
the same period. The obtained parameterization after 150 years of calibration was
used as the input for an open-loop validation simulation on which the model was
validated and compared to a simulation with the standard parameterization with the
same initial conditions (baseline).

The new PCR-GLOBWB parameterization and simulated monthly discharges were
evaluated at 6475 stations from GRDC and compared to the baseline simulation. The
model performance was evaluated in terms of correlation (r), Nash-Sutcliffe efficiency
(NS, Nash and Sutcliffe, 1970), Root Mean Squared Error (RMSE), bias and Mean
Absolute Error (MAE).

4.2.6 Reanalysis product

The calibrated parameters and precipitation correction factor were used in the open-
loop validation simulation to create a hydrological reanalysis product for the pe-
riod 1960-2010. This reanalysis product is the output of the validation simulation
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Figure 4.1 Time series of calibrated parameters, during the calibration periods. All periods
use 1495 discharge observation locations for the period 1960-2010. The posterior parameters
after the first calibration are used as prior for the second period and so on.

performed and contains (via the parameterization and precipitation correction) the
information of all discharge observations used in the calibration procedure.

4.3 Results

4.3.1 Parameter estimation

Calibration of PCR-GLOBWB with discharge observations for the period 1960-2010
results in an adjusted parameterization of all model parameters and newly found
precipitation correction factors (Table 4.1 and Figure 4.1). It was found that after
calibration the model shows a slower response to precipitation as a result of a strongly
increased Ksat (less surface runoff, more infiltration), decreased DDF (slower snow
melt) and increased n (more channel roughness). This indicates that the original
model parameterization showed too strong a response to precipitation, given the
observed discharge.

The precipitation correction factors show that a reduction in the original CRU TS 3.21
precipitation forcing is required to show consistency with the observed discharge to-
tals. According to the observations the adjustments in the original CRU forcing
for orographic effects are too strong for inland mountain ranges. The observations
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Table 4.1 Calibration parameters and the range of their prior and posterior normal distri-
butions. Upper half of the table gives the model parameters and bottom half the precipi-
tation correction factors.

Parameter description Prior Calibrated
µ σ µ σ COV

Ksat Multiplier of unsaturated conductivity 1.0 0.1 4.355 0.135 0.031
DDF Snowmelt rate 1.0 0.1 0.932 0.028 0.030
n Manning´s roughness coefficient 1.0 0.1 1.076 0.022 0.021

αuphill Uphill precipitation 1.0 0.03 -0.004 0.00020.057
αdownhill Downhill precipitation 1.0 0.03 -0.062 0.004 0.070
αpath Travel distance precipitation 1.0 0.03 -0.172 0.005 0.028

(and resulting calibrated correction factors) show that mountainous areas that are far
inland do not enforce the same topographic effect as near-coastal mountain ranges
(αpath). Moreover, precipitation on the leeward side of mountain ranges is overesti-
mated leading to overestimation of discharge in these regions. It is also shown that
the precipitation estimates for windward facing mountains are more accurate and
hardly any correction is required compared to the original CRU forcing data.

4.3.2 Performance in selected river basins

To illustrate the impact of the precipitation correction and the calibration of the
model parameters, 6 river basins have been selected to show results in more detail
(Figure 4.2). It is shown that the calibration approach mainly corrects the overesti-
mation of the discharge in some rivers (e.g. Congo, Rhine, Volta). This correction
of the initial overestimation in the baseline results in a reduction of the simulation
bias and an increase in the NS. On the other hand, r is slightly lower than for the
baseline, since the temporal dynamics are slightly underestimated. However, not for
all systems r is reduced as a result of calibration as can be seen for the Volta River.
Due to the calibration of n and Ksat, the simulation of the seasonal peak in this river
is significantly improved compared to the baseline. The baseline showed a significant
overestimation of the length of the recession curve and an underestimation of the
height of the seasonal discharge. A similar pattern in the recession curve is found
for the Lena River, where the recession after the snowmelt season is more accurately
modelled compared to the baseline. This behaviour could be related to the increased
Ksat value that allows an increased infiltration speed, leading to faster runoff gen-
eration. Rivers in the United States and Europe (e.g. Rhine, Danube, Mississippi)
are less impacted by the calibration and precipitation correction; r for these rivers
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Figure 4.2 Time series of river discharge for selected rivers for the period 1960-2010.

only show a minor improvement, however the bias, RMSE and MAE do decrease
compared to the baseline. For the Congo River a significant improvement is found
for all evaluation matrices. For example, the bias for the baseline (24020 m3s−1)
was strongly reduced after calibration (13075 m3s−1) and the same was found for the
RMSE (26709 to 16806 m3s−1). Less so was the impact on the NS and r, where
both indicated a small improvement after calibration. The selected river basins show
that the impact of the EnKF optimization is most dominant in the snow-dominated
and tropical regions.

4.3.3 Global discharge performance

The global average results show that the calibrated simulations outperform the base-
line scenario for most skill scores with the exception of r (median baseline = 0.54,
calibrated = 0.51, Figure 4.3). The NS is improved from -0.62 to -0.46, which is still
negative and largely related to biases in the simulation (Figure 4.3). These biases
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Figure 4.3 Cumulative density functions for 5 skill scores based on comparison between
simulated discharge and observations of 6475 stations from GRDC. Rows show skills scores
classified by catchment size (D) in km2. Vertical lines indicate the skill score median for
the baseline and calibrated discharge simulations.

have been reduced after calibration from 65.8 to 13.6 mm y−1, while the RMSE is
reduced from 479 to 452 mm y−1 and the MAE is reduced from 349 to 316 mm y−1.
These results indicate that major improvements have been made by adjusting the
model forcing to closely match the water that discharges into the ocean. Biases are
close to zero indicating that, although spatial mismatches do exist, the global esti-
mates are more accurate than when using existing forcing data sets.
A strong improvement by calibration was found in the smaller catchments (≤ 25000 km2,
second row Figure 4.3), where the NS was increased and the other skill scores were
decreased. The median r was always reduced even for these small catchments, while
the other skill scores suggest that the calibration mainly results in a reduction of the
absolute difference between simulation and observations.

The largest improvements, also in terms of temporal dynamics, are found for the
smallest catchments (≤ 10000 km2, not shown). The size of these catchments is
smaller or equal to the average size of a grid cell in the PCR-GLOBWB discretiza-
tion (≈ 3000 km2). This suggests that compared to the baseline scenario the new
parameterization and precipitation corrections lead to significant improvements in
the sub-grid simulations, mainly in poorly gauged basins.

84



Figure 4.4 Annual average precipitation correction for the period 1960–2010 after calibra-
tion with discharge observations (black points).

The observed improvements in mainly the bias, RMSE and MAE can be attributed
to the calibration framework that is used in this study. The EnKF will reduce the
error between the observations (Y ) and simulation forecast (Ψf , Equation 4.6) based
on the absolute difference between the two. Therefore, it is not surprising that the
skill scores that evaluate the absolute performance in terms of (mm y−1) show the
largest improvements (RMSE, MAE and bias). The calibration will also affect the
temporal signal and therefore the r and NS, although the objective function of the
EnKF does not optimize the temporal consistency between observations and model
simulation. Therefore, it is not surprising that the r is reduced, while NS is often
improved since a large part of the score is impacted by the bias between simulation
and observations.

4.3.4 Precipitation correction

In general the annual precipitation is reduced after the calibration with the dis-
charge observations (Figure 4.4). The global annual precipitation is found to be
97.5±0.5×103 km3 y−1, with an inter-annual variability of 5.1×103 km3 y−1. This
indicates a global reduction of 9.9×103 km3 y−1 based on the GRDC discharge ob-
servations compared to the original estimate of 107.4 ×103 km3 y−1. This reduction
suggests that in the current forcing data the overestimation of precipitation is signif-
icant, which strongly impacts the simulated discharge.
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Figure 4.5 Mean annual fluxes (1.000 km3 y−1) of the global terrestrial water cycle. Main
flux estimates are given in bold (Precipitation, Evaporation, Non-renewable groundwater
abstraction, Runoff) and decompositions of these fluxes can be found in the boxes. The
legend for the boxes can be found in the topright corner. Note that the decomposition of the
Runoff lacks open water evaporation, surface water abstractions and changes in reservoir
and lake storage.

4.3.5 The terrestrial water cycle

Figure 4.5 shows the annual water budget for the calibrated simulation for the pe-
riod 1960-2010. Both the inter-annual variability and the uncertainty in the annual
mean of the 48 ensemble members can be seen. The water balance error for the
PCR-GLOBWB simulation after calibration is 0.3%, which can be fully attributed to
changes in the storage and numerical errors in the computer simulation (e.g. rounding
errors).

The evapotranspiration is found to be 61.5±0.15×103 km3 y−1, which indicates no
change compared to the baseline scenario (Table 4.2). The inter-annual variability
is 2.5×103 km3 y−1 and mostly dominated by the transpiration component of the
evapotranspiration (Figure 4.5). After calibration the fossil groundwater abstraction
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Table 4.2 Average annual fluxes in the terrestrial water cycle derived for the baseline and
calibrated scenario, for the period 1960-2010. Included are the absolute and percentile
differences between the two simulations. All fluxes are given in 103 km3 y−1.

Flux Baseline Calibrated Difference
Absolute Relative (%)

Precipitation 107.4 97.5 9.9 -9.2%
Evapotranspiration 61.5 61.5 0.0 0.0%
Runoff 46.4 36.5 -9.9 -21.3%
Ground water abstraction 0.3 0.8 0.5 167%

is increased to 0.8±0.05×103 km3 y−1, which indicates a strong increase of 167%
compared to the baseline scenario. This is mainly caused by the fact that the fossil
groundwater abstraction is controlled by the evaporative demand that cannot be met,
given the soil moisture status and water availability within the simulated grid cell.
Because less water is available (in soil moisture and rivers) from precipitation, some
of this is partly compensated by increased abstraction of fossil groundwater.

Finally, the runoff is strongly decreased (-21.3%, to 36.5±0.8×103 km3 y−1) com-
pared to the baseline scenario (46.4×103 km3 y−1). This decrease was already found
in the results for the selected river basins and induced by the strong precipita-
tion reduction at the global scale. The global runoff ratio (Runoff/Precipitation)
is found to reduce from 0.43 to 0.37, where the baseflow gives the highest contribu-
tion (28.9±0.9×103 km3 y−1, 79%) to the total runoff estimates. The inter-annual
variability of the discharge is relatively large (4.2×103 km3 y−1), when compared to
the other fluxes.

4.4 Discussion and Conclusion

In this study the first ensemble hydrological reanalysis product that is consistent with
discharge observations, has a closed water balance (for each ensemble member) and
provides estimates on the uncertainty in all fluxes and storage components of the
terrestrial water cycle is presented. The global hydrological model PCR-GLOBWB
was calibrated with an Ensemble Kalman Filter (EnKF) and discharge observations
from 1495 stations. The calibrated ensemble was used to simulate the terrestrial
water cycle for the period 1960-2010.
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4.4.1 Model calibration

The obtained results from this study clearly show that there is a potential to calibrate
Global Hydrological Models (GHMs) with observational data. Although calibration
is often hampered by the high dimensionality of GHMs, here the first EnKF GHM
calibration is provided. The framework provided will allow for other GHMs to be
calibrated with observations (e.g. discharge or satellite observations) and improve
global hydrological modelling in general. The implementation of the EnKF calibration
respects the closure of the water balance, which is important for many hydrological
studies.

Traditionally, most calibration and validation studies focus on the observations in
the Northern hemisphere and more specific Europe and the United States. Although
(discharge) observations are available for other regions the quality is often deemed less
or the model calibration is hampered by shorter discharge time series. As can been
seen in Figure 4.4, the data availability is indeed higher for the Northern hemisphere,
however some valuable observations are available in other regions. The applied cal-
ibration framework in this study allows us to include these observations and assign
an appropriate (higher) error estimate to the data. With this framework even the
lower quality observations are taken into account, although their relative importance
on the calibration is lower. Nonetheless, the largest improvements in the global dis-
charge simulations can be found in the snow-dominated and tropical regions. The
baseline model simulations in these regions were of low quality compared to rivers in
the temperate climate regions, where data availability and quality are high. However,
after calibration the error in the simulated discharge in these regions is significantly
reduced as a result of more realistic discharge simulations (Figure 4.2).

The applied calibration framework can be extended with additional observations for
other components of the hydrological cycle (e.g. remotely sensed estimates of storage,
soil moisture or snow cover). This could lead to an improved model parameterization
of PCR-GLOBWB and might result in a better simulation of the terrestrial water
cycle. The proposed advances are mainly hampered by the computational demand,
an issue that should be resolved within the near-future as more computational power
becomes available for hydrological applications.

4.4.2 Fluxes estimates

One of the main conclusions from our study is that the original CRU TS 3.21 precip-
itation dataset overestimates the terrestrial precipitation fluxes by 9.2%. This result
is obtained after model calibration based on discharge observations from the Global
Runoff Data Centre, implying that the discharge observations approach suggest that
the original CRU precipitation estimates are too wet. When the newly obtained
estimate of annual global runoff (36.5× 103 km3 y−1) is compared to previous stud-
ies, the differences are small (e.g. Vörösmarty et al., 2000b; Oki et al., 2001; Dai
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and Trenberth, 2002; Döll et al., 2003). On the other hand, our estimate is higher
than found by Oki and Kanae (2006); Haddeland et al. (2011); Rodell et al. (2014).
However, it must be mentioned that Haddeland et al. (2011) report that, especially
for the tropical regions, a large overestimation is observed for most model driven
runoff estimates. Our calibration framework removes most of the observed bias in
the tropical regions (e.g. Congo, Volta, Figure 4.2), resulting in lower annual global
runoff estimates. Antartica is not included in this study, which also explains some
of the differences between the estimates of this study and the work by Rodell et al.
(2014). Furthermore, a 12% (±12 × 103 km3 y−1) difference amongst precipitation
forcing datasets was found by Fekete et al. (2004). These forcing datasets are often
used for studies related to the fluxes in the terrestrial water cycle and may be one of
the biggest sources of uncertainty in the current estimates (e.g. Adam and Letten-
maier, 2003). The precipitation estimate uncertainty has a significant impact on the
resulting estimate of the annual runoff. Therefore, the calibration of precipitation
correction factors is a valid way to reduce the uncertainty in precipitation and result-
ing runoff estimates, provided that correct estimates are available for the discharge
observations.

Another assumption is that only the precipitation is directly corrected in the calibra-
tion framework, while the potential evaporation estimates are not directly adjusted.
The uncertainty in the evapotranspiration is reduced by the model parameters, since
they control (together with the potential evaporation) the evaporative flux into the
atmosphere. Since the evaporative flux is significantly smaller than the precipitation
and is also impacted by other factors, the calibration of model parameters was used
to constrain these fluxes. Moreover, Ksat (saturated conductivity) already captures
the complex feedbacks between soil moisture availability, evaporation and infiltration.
This disregards the need to adjust the potential evaporation and hence reduces the
dimensionality of the parameter estimation problem.

The final assumption is that the model is capable at correctly reproducing the runoff
generation as a result of the provided precipitation. Because water abstractions are
present in the model simulations, the reduction that was found in the total pre-
cipitation estimate is not introduced to correct absence of water abstraction in the
model. Additionally, it can be shown from comparison between PCR-GLOBWB
model simulations and observations that the runoff generation processes are correctly
implemented in the model. Previous work by Van Beek et al. (2011) and Wada et al.
(2013), showed that PCR-GLOBWB is capable of realistically reproducing monthly
discharge estimates in large scale river basins. The validation provided in this work
shows that this performance can be enhanced by the calibration of model parameters,
leading to a further reduction of the global RMSE, bias and MAE.

However, previous studies (e.g. Haddeland et al., 2011) have shown that differences
between global hydrological models can be considerable. In this study only one global
model has been used. As a consequence, the uncertainty estimates from the ensemble
do not include model error and probably underestimate the actual uncertainty. This
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explains the somewhat smaller uncertainty bands compared to multi-model global
water balance estimates (Haddeland et al., 2011; Rodell et al., 2014). A next step
should therefore consist of repeting the calibration with multiple global hydrological
models, obtaining multimodel multi-ensemble estimates.

Despite the fact that only one global model was used, it is conclude that, when
the obtained fluxes estimates are compared with other studies, the applied approach
results in realistic simulations of the terrestrial water cycle. The improvements found
in the discharge simulations suggest that the correction of precipitation fields is a
valid approach to improve modelling of the terrestrial water cycle in general.

4.4.3 Reanalysis product

The improved simulation performance of PCR-GLOBWB and the fact that an ob-
servation integrated model approach was used to simulate the terrestrial water cycle,
provide confidence in the new flux estimates. The multi-ensemble simulations of the
terrestrial water cycle provide new insight in the uncertainty of the flux estimates.
Furthermore the long time period (1960-2010) over which PCR-GLOBWB is cali-
brated and later used to simulate the water cycle, provides more knowledge on the
inter-annual variability and makes it suitable for studies into trends and variability of
the terrestrial water cycle. The ensemble mean of the 50 year simulation of all model
states is provided as well as the simulations derived from every ensemble member.
Hereby providing the first ensemble hydrological reanalysis product that is consistent
with discharge observations, has a closed water balance (for every ensemble member)
and provides estimates on the uncertainty in all fluxes and storage components in the
terrestrial water cycle. This product will hopefully bring an advance in the broader
field of hydrology and related research fields that are dependent on accurate esti-
mates of the components of the terrestrial water cycle (e.g. land use changes, water
availability, reservoir design, flood protection studies).
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5 The benefits of satellite soil
moisture in parameter
identification

This chapter is based on:
Wanders, N., Bierkens, M. F. P., de Jong, S. M., de Roo, A., Karssen-
berg, D. (2014), The benefits of using remotely sensed soil moisture in parameter
identification of large-scale hydrological models, Water Resources Research, 50 (8),
6874-6891, doi:10.1002/2013WR014639.

Abstract

Large-scale hydrological models are nowadays mostly calibrated using observed discharge.

As a result, a large part of the hydrological system, in particular the unsaturated zone,

remains uncalibrated. Soil moisture observations from satellites have the potential to fill

this gap. Here the added value of remotely sensed soil moisture in calibration of large-

scale hydrological models was evaluated by addressing two research questions: 1) Which

parameters of hydrological models can be identified by calibration with remotely sensed

soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved

calibration of hydrological models compared to calibration based only on discharge observa-

tions, such that this leads to improved simulations of soil moisture content and discharge?

A dual state and parameter ensemble Kalman filter is used to calibrate the hydrological

model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely

sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Calibration with discharge

data improves the estimation of groundwater and routing parameters. Calibration with only

remotely sensed soil moisture results in an accurate identification of parameters related to

land surface processes. For the Upper Danube upstream area up to 40000 km2, calibration

on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for

discharge simulations, compared to calibration on discharge alone. The conclusion is that

remotely sensed soil moisture holds potential for calibration of hydrological models, lead-

ing to a better simulation of soil moisture content throughout the catchment and a better

simulation of discharge in upstream areas.
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5.1 Introduction

Soil moisture plays a crucial role in the hydrological cycle, modulating evapotranspi-
ration, overland flow and groundwater replenishment. As a consequence, an accurate
simulation of discharge with hydrological models requires good quality estimates of
soil moisture content. Especially in situations with a precipitation amount close to
the storage capacity of the unsaturated zone, the soil moisture content has a large
impact on whether overland flow will occur and the amount of overland flow gener-
ated (Merz and Plate, 1997; Penna et al., 2011). However, soil moisture content is
highly variable in time and space (Western et al., 2002) and ground-observations are
still limited (Dorigo et al., 2011).

Remotely sensed soil moisture provides observations with a high temporal resolution
and a large spatial extent. Satellite soil moisture observations are therefore increas-
ingly used for calibration of hydrological models and the identification of parameters
related to land-surface processes (e.g. Santanello et al., 2007; Montzka et al., 2011;
Sutanudjaja et al., 2013). Moreover, in areas with a low coverage of precipitation
measurements, remotely sensed soil moisture can give valuable information on the
spatial distribution and the intensity of precipitation events (Crow and Ryu, 2009).
Thus, when used in real-time, remotely sensed soil moisture observations have the po-
tential to increase flood forecasting accuracy (Komma et al., 2008; Hendricks Franssen
et al., 2011).

Due to the large data volumes, coarse spatial resolution and its complicated error
structure, the use of near real-time remotely sensed soil moisture has not yet been
fully explored by hydrologists. In numerical weather forecasting and unsaturated
zone modelling, the assimilation of remotely sensed soil moisture for hydrological and
atmospheric simulations has showed promising results (e.g. Pauwels et al., 2001; Re-
ichle et al., 2002; Scipal et al., 2008; Bolten et al., 2010; Brocca et al., 2010; Liu et al.,
2011a; Dharssi et al., 2011; Draper et al., 2011; Brocca et al., 2012; Draper et al.,
2012; De Rosnay et al., 2013). For large-scale catchments, Draper et al. (2011) as-
similated remotely sensed soil moisture from the Advanced Scatterometer (ASCAT)
over France to improve discharge simulations. It was concluded that the assimila-
tion of soil moisture mainly corrected for biases in precipitation or incorrect model
climatology. Several studies used in-situ observations of soil moisture or synthetic
simulations of remotely sensed soil moisture to show that using these observations in
model calibration could significantly change the parameter values of the model (e.g.
Aubert et al., 2003; Santanello et al., 2007; Lü et al., 2011; Montzka et al., 2011).
These studies were performed in catchments smaller or slightly larger than the typ-
ical resolution of microwave satellites (626-2500 km2), and therefore do not allow to
evaluate the added value of remotely sensed soil moisture for model calibration over
a range of spatial scales and especially scales larger than the spatial resolution of the
sensors. A recent study over a larger spatial domain by Sutanudjaja et al. (2014),
used a brute force calibration of a large-scale hydrological model for the Rhine and
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Meuse river basin using data from the ERS scatterometer. It was shown that, using
remotely sensed soil moisture, the parameters related to the percolation through the
unsaturated zone could be improved to yield a better simulation of the soil moisture
content. However, discharge simulations were not improved.

The aim of this study is to investigate the benefits of multi-sensor remotely sensed soil
moisture observations in parameter identification in large-scale hydrological models
using detailed error estimates on satellite soil moisture observations. To achieve this
aim, this research focuses on two main research questions: (i) Which parameters of
hydrological models can be identified by calibration with remotely sensed soil mois-
ture? (ii) Does calibration with remotely sensed soil moisture lead to an improved
calibration of hydrological models compared to approaches that calibrate only with
discharge, such that this leads to improved simulations of soil moisture content and
discharge? To address these questions, the LISFLOOD (Van Der Knijff et al., 2010)
large-scale hydrological model is used to simulate discharge and soil moisture for the
Upper Danube catchment, which contains parts of Austria, Germany and the Czech
Republic. LISFLOOD is the underlying model used in the European Flood Aware-
ness System (EFAS) and is used in operational flood forecasting in Europe (Thielen
et al., 2009; Bartholmes et al., 2009). The model is calibrated in this study using
remotely sensed soil moisture observations from the Advanced Microwave Scanning
Radiometer-EOS (AMSR-E), Soil Moisture and Ocean Salinity (SMOS) and ASCAT
and discharge observations for the period 2010-2011. Also combinations of calibra-
tion on discharge and all satellites sensors are performed, to study the added value of
the remotely sensed soil moisture when discharge observations are readily available.
Error structures for the different sensors and their error cross covariance are retrieved
from Chapter 2. The impact of the new calibration on the soil moisture simulations is
studied and a validation on multiple discharge locations is performed. Compared to
previous work, our study contains the following new elements: (i) It is the first time
that real remotely-sensed data are used for calibration of a large-scale distributed hy-
drological model. (ii) The use of multiple sensors is new, which allows to compare the
relative benefit of the different products, also compared to using discharge only. (iii)
Using a probabilistic data assimilation framework for calibration and state estimation
is new, in particular taking into account the full retrieval error structure and cross
covariance between multiple sensors. The latter enables optimal weighting between
their different information sources, potentially leading to improved calibration.

5.2 Material and Methods

5.2.1 Study area

In this study, the Upper Danube catchment up to Bratislava (catchment size 135 ×
103 km2, Figure 5.1) is used for the calibration (state updating and parameter iden-
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tification) of the LISFLOOD model. The border of the Upper Danube consists of
the Alps in the south and the catchment contains the northern part of Austria, the
southern part of Germany, the south-eastern part of the Czech Republic and western
Slovakia. Elevations range from 150 - 3150 m.a.s.l.. The soil mostly consists of loamy
sediments and approximately 35 % of the area is covered with forest. In the catch-
ment, daily discharge observations for 23 locations are available through the Global
Runoff Data Centre (GRDC) over 2000-2011.

Meteorological input was obtained from high density interpolated ground data from
various national meteorological services made available by the Joint Research Centre
(Ntegeka et al., 2013). The data was interpolated with an Inverse Distance Weighting
(IDW, Shepard, 1968)) approach instead of kriging, since this could generate errors if
not well controlled in a real-time spatial interpolation. Time series of approximately
200 meteorological stations were used to create the spatially interpolated meteoro-
logical variables. The total precipitation over the period 2001-2011 in the catchment
is approximately 920 mm y−1 and total actual evapotranspiration is approximately
630mm y−1. The runoff ratio of the catchment is 0.31, where a total of approximately
290 mm y−1 leaves the catchment as discharge at Bratislava, of which approximately
22 mm y−1 on average is generated as surface runoff. Moreover, in the mountainous
areas this amount of surface runoff is in general much higher than in the lower areas
near the main stream of the Danube.

5.2.2 Hydrological model

The hydrological model LISFLOOD (Van Der Knijff et al., 2010) was used for the
calibration and validation of soil moisture and discharge simulations. LISFLOOD is
a hydrological rainfall-runoff-routing model running in the PCRaster modelling envi-
ronment (Wesseling et al., 1996; Karssenberg et al., 2010). LISFLOOD is used in the
operational EFAS of the European Commission for medium range flood forecasting
of large river basins in Europe (Thielen et al., 2009; Bartholmes et al., 2009). The
meteorological forcing of LISFLOOD consists of daily precipitation, daily potential
evapotranspiration and the average daily temperature. The model originally consists
of a vegetation layer, two layers for the unsaturated zone, one fast responding and
one slow responding linear groundwater reservoir and a channel network for discharge
routing (Figure 5.2). The kinematic wave equation is used for discharge routing using
an hourly time step for both surface runoff to the channel network and routing within
the channel network.

For this study, a number of modifications have been made to the LISFLOOD model.
To enable a more detailed modelling approach of the soil moisture in the topsoil,
two additional unsaturated zone layers have been added to the original LISFLOOD
model, which also enables direct comparison and assimilation of each of the satellite
products. The upper two layers are 2 and 3 cm thick, respectively, and the third
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Figure 5.1 Digital elevation map of the Upper Danube catchment, colours indicate ele-
vation (m), indicated in black is the river network, square symbols indicate locations for
calibration on discharge observations, circles indicate locations for validation on discharge
observations. The large square near the outlet (right) is the location used for calibration if
only one discharge time series is used.

layer represents the remaining part of the rooting depth (first three layers together
are hence referred to as the topsoil, Figure 5.2). The root zone is simulated using
the first three layers of the unsaturated zone and evapotranspiration occurs from
these layers. The evaporation for a particular layer is limited if soil moisture is below
critical soil moisture conditions, in which case more water is extracted from the other
soil moisture layers to compensate for the reduced evaporation. Critical soil moisture
conditions are calculated from the local soil properties (Van Liedekerke et al., 2006).
The abstraction per layer is linearly related to the total storage capacity of the layer.
Thick layers will thus have a larger contribution to the evapotranspiration compared
to thinner layers. When the entire root zone is below critical soil moisture conditions,
the evaporation is limited for the entire topsoil and actual evapotranspiration will be
lower than potential evapotranspiration. Bare soil evapotranspiration will occur only
from the first layer of 2 cm. Via capillary rise replenishment of the root zone can occur
from the subsoil. The amount of capillary rise depends on the difference in hydraulic
head of two layers and the average conductivity of the layers. Sub-daily time steps
are included to enable a stable performance of the soil moisture simulation, where
the number of sub-daily time steps is dependent on the amount of infiltration and
water storage in the unsaturated zone. For a more detailed description of the original
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Table 5.1 Calibration parameters and the range of their prior normal distributions, the
bottom half is only calibrated using discharge observations. Tuz and Tlz are divided into
three different zones namely, steep, intermediate and flat areas. More details can be found
in Section 5.2.2.

Parameter description unit prior

SnCoef Snowmelt rate mm d−1 0.1-10
KSat1 Multiplier of unsaturated conductivity topsoil - 0.9 - 15
KSat2 Multiplier of unsaturated conductivity subsoil - 0.9 - 22
cpref Empirical shape parameter preferential macro-pore flow mm 0.1 - 2.3
bxin Xinanjiang shape parameter related to saturation degree - 0.05 - 0.7

Tuz Linear reservoir constant upper groundwater d 1.5 - 40
Tlz Linear reservoir constant lower groundwater d 500 - 2500
GWperc Maximum percolation rate, upper to lower groundwater mm d−1 0.3 - 1.8
ChanN2 Multiplier on surface roughness for surface runoff - 0.1 - 7.2
CalMan Multiplier on channel Manning´s roughness coefficient - 0.1 - 2.0

LISFLOOD model and a full description of the equations, the reader is referred to
Van Der Knijff et al. (2010).

The parameters calibrated are given in Table 5.1, combined with the range of the
prior normal distribution before calibration. The same set of parameters is used to
calibrate EFAS and a sensitivity analysis for each of these parameters has been per-
formed for every new version of the LISFLOOD model (Van Der Knijff et al., 2010).
Thus, the same set of parameters was subject to calibration in this study. The mean
of the prior normal distribution for the model parameters is determined by the orig-
inal LISFLOOD calibrated parameters. Since the distribution of parameter errors
is unknown, a normal distribution with a standard deviation of 20% of the mean
parameter value is used to generate ensemble member realizations for the Ensemble
Kalman Filter. Realizations outside of the possible parameter range (e.g. negative
saturated hydraulic conductivity) are rejected and replaced by new realizations. The
prior distribution is used to determine the baseline scenario to which the other sce-
narios are compared and evaluated. For the reservoir constant of upper and lower
groundwater (Tuz, Tlz), three spatially distributed values are identified in the calibra-
tion because groundwater response throughout the catchment may be significantly
different. Therefore, the catchment is divided into three groundwater regions: loca-
tions with a terrain gradient of ≥ 15% are classified as steep, areas with a gradient
between 5 and 15% are classified as intermediate and areas with gradients ≤ 5%
are classified as the flat areas. The division in groundwater regions is made since in
the mountainous (steep) areas aquifers are shallow and groundwater response will be
faster compared to the flat lowland areas.
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Figure 5.2 LISFLOOD model set-up, precipitation (P ), evaporation (E), snowmelt coef-
ficient (SnCoef), Xinanjiang shape parameter (bxin), saturated conductivity of the topsoil
(KSat1), saturated conductivity of the subsoil (KSat2), empirical shape parameter pref-
erential macro-pores flow (cpref ), recharge from the unsaturated zone to the groundwater
(Rch), maximum percolation rate from upper to lower groundwater (GWprec), reservoir con-
stant upper groundwater (Tuz), reservoir constant lower groundwater (Tlz), surface runoff
roughness coefficient (ChanN2), Channel Manning´s roughness coefficient (CalMan).
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5.2.3 Data

Satellite data

Remotely sensed soil moisture data from three satellites is used, namely SMOS, AS-
CAT and AMSR-E (Table 5.2). SMOS is the first dedicated soil moisture satellite
using fully polarized passive microwave signals at 1.41 GHz (L-band) observed at mul-
tiple angles (Kerr et al., 2012). The observation depth of SMOS is up to 5 cm with
a spatial resolution of 35 - 50 km depending on the incident angle and the deviation
from the satellite ground track. SMOS retrievals which are potentially contaminated
with Radio Frequency Interference (RFI) have been removed.

AMSR-E is a multi-frequency passive microwave radiometer (6.9 GHz, C-band) and
is used for soil moisture retrievals. The spatial resolution of AMSR-E is between
36 and 54 km with an observation depth of 2 cm and a revisit time of 3 days. Several
algorithms estimating surface soil moisture from AMSR-E observations exist (e.g.
Njoku et al., 2003; Owe et al., 2008; Pan et al., 2014). The Land Parameter Retrieval
Model (LPRM), which was used for this study and the LPRM soil moisture products
have been validated against in situ observations (e.g. Wagner et al., 2007; De Jeu
et al., 2008; Draper et al., 2009), models (e.g. Loew et al., 2009; Crow et al., 2010;
Bisselink et al., 2011) and other satellite products (e.g. Wagner et al., 2007; Dorigo
et al., 2010).

ASCAT uses active microwave at a frequency of 5.3 GHz (C-band) to determine
the soil moisture content (Wagner et al., 1999; Naeimi et al., 2009). ASCAT uses a
change detection method (Naeimi et al., 2009) and data is provided relative to the soil
moisture content of the wettest (field capacity) and driest (wilting point) measured
conditions (Wagner et al., 1999). The spatial resolution of ASCAT is around 25 km,
the observation depth is 2 cm and the temporal resolution equals a revisit time of
3 days.

All satellite soil moisture products are used on an equal area Discrete Global Grid
product (DGG). For the SMOS and ASCAT soil moisture retrieval time series, a DGG
is available. AMSR-E data was projected on the DGG of SMOS using the nearest
neighbour approach. The DGG of ASCAT has a resolution of 12.5 km, while the the
SMOS DGG uses a slightly lower resolution of 15 km.

Although the passive microwave satellite missions, SMOS and AMSR-E, give abso-
lute soil moisture values in m3 m−3, all satellite data were converted to relative soil
moisture. The relative soil moisture values are calculated compared to the model cli-
matology, to remove systematic biases between observations and model simulations.
The converted satellite values θs,new in m3 m−3 used for calibration are calculated by:

θs,new =
θs − θs,5
θs,95 − θs,5

(θFC − θWP ) + θWP (5.1)
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Table 5.2 General sensor properties relevant for this study. Satellite errors are derived
from Chapter 2.

SMOS ASCAT AMSR-E

Frequency (GHz) 1.41 5.3 6.9
Microwave type Passive Active Passive
Spatial resolution (km) 35-50 25 36-54
Max revisit time (days) 3 3 3
Observation depth (cm) 0-5 0-2 0-2
Descending overpass (h) 6:00 PM 9:30 AM 1:30 AM
Observation error (m3 m−3) 0.057 0.051 0.049
Number of observations (-) 92000 223000 81000

where θs are the observed satellite soil moisture values (m3m−3 or -), θs,95 and θs,5
are the 95th and 5th percentiles of satellite soil moisture values per DGG location
respectively (m3m−3 or -), θFC and θWP are field capacity and wilting point of the
modelled soil moisture values (m3m−3). The average model values, θFC and θWP , are
calculated using the model average over the support unit of the satellite retrieval.

Frozen soils, snow accumulation and RFI hamper the soil moisture retrieval due to
changes in the dielectric constant when water freezes. Therefore, retrievals done with
(1) an air temperature below 4◦C, (2) simulated snow accumulation and (3) the
presence of RFI (mainly for SMOS), (4) a retrieval uncertainty for SMOS (DQX)
of ≥ 0.04 m3m−3, were not used in the calibration. Retrievals under one of the
above conditions will be unreliable and would lead to incorrect calibration of the
hydrological model. The temperature data was derived from the observed data and
snow conditions were derived from the model simulation.

5.3 Cross-variograms of errors in remotely sensed soil moisture
products

To calculate the spatial correlation between the satellite errors of different sensors
cross-variograms of the errors have been calculated using the data from Chapter 2.
The semivariance of the measurements is calculated by computing the distance be-
tween two individual observations. The fitted cross-variogram is used to derive the
semivariance for these observations. This procedure is repeated for all possible com-
binations of the satellite observations. Cross-variograms of the error show that the
error for the different satellite products is correlated up to a maximum distance of
150 km (Figure 5.3).
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Figure 5.3 Cross-variograms of the bin-average time dependent satellite product error
calculated for three satellite soil moisture products and a unsaturated zone model, for the
period January 2010 - June 2011 over Spain derived from Chapter 2.

Discharge data

The Upper Danube catchment contains 23 locations where daily discharge observa-
tions are available. Time series of discharge are available from January 2000 until
December 2011. Using a split sample approach the model parameters are calibrated
using 7 stations and validated against 16 stations which are situated throughout the
catchment of the Upper Danube (Figure 5.1). Calibration and validation stations are
selected such that they are equally distributed over the catchment and are situated
in both small streams and the main stream of the Upper Danube.

5.3.1 Data assimilation

The Ensemble Kalman Filter (EnKF) is a Monte Carlo based approach which is
highly suitable for data assimilation and model calibration in high dimensional sys-
tems (Evensen, 1994; Burgers et al., 1998; Evensen, 2003, 2009), like the LISFLOOD
model. Due to the Monte Carlo approach the model uncertainties in the EnKF can
be calculated from the ensemble spread. In order to reduce calculation time, it is as-
sumed that the ensemble spread is sufficiently large to simulate the true uncertainty
of the simulation. When the ensemble size is too low, the tails of the distribution
are most likely not simulated correctly and ensemble uncertainty is underestimated.
An advantage of the EnKF is that it does not require propagation of the error co-
variance matrix as the standard Kalman Filter would require. This eliminates the
need for a complex forward error model which needs to be run parallel to the model
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simulations. Compared to the 4DVAR (Le Dimet and Talagrand, 1986) assimilation
technique, the advantage is that there is no need for an adjoint state model to invert
the model state into the period before assimilation. In contrast to the particle filter
(Van Leeuwen, 2009), the EnKF can be used with a lower number of members, be-
cause the risk of particle collapse and ensemble deterioration is not as high as for the
particle filter. These properties of the EnKF make it highly suitable for complex spa-
tially distributed models, with long calculation times, a large number of calibration
parameters and state variables. The EnKF has been successfully applied for flood
forecasting with assimilation of discharge observations (e.g. Weerts and El Serafy,
2006; Clark et al., 2008; Komma et al., 2008; Camporese et al., 2009; Pauwels and
De Lannoy, 2009; Mendoza et al., 2012; Rakovec et al., 2012; McMillan et al., 2013).
Additionally, the current EnKF set-up can be used to do forecasts in an operational
flood forecasting framework, without changing the model set-up and preserving the
model uncertainties as was done in Chapter 6.

With a total of 300 ensemble members, the EnKF is applied to update state vari-
ables and identify parameters (Figure 5.4 and Table 5.1) of the hydrological model
LISFLOOD (Figure 5.2). The perturbation of each parameter has been described in
Section 5.2.2, while the initial model states are determined based on a ten-year open
loop simulation of LISFLOOD with the perturbed parameters. A ten year period is
used to ensure that the deep groundwater simulations would no longer be influenced
by the initial conditions. The forward LISFLOOD model is given by:

Ψ(t+ 1) = f(Ψ(t), F (t), p) (5.2)

where Ψ(t) is the state of the model at time t, F (t) the model forcing at time t
(e.g. precipitation and evaporation) and p are the model parameters. The EnKF is
applied on each daily time step using observations from remote sensing (AMSR-E,
SMOS and ASCAT) and discharge observations. The general form of the EnKF is
given by Evensen (2003). It can be formalized by the model forecast (Ψf ), given by:

Ψf = (ψf
1 , ..., ψ

f
nens) (5.3)

where ψf
1 , ..., ψ

f
nens are the individual model forecasts, for each of the nens ensemble

members. Ψf is a nstate× nens matrix where nstate is the number of model states.
The state error covariance matrix of the model is directly calculated from the spread
between the different ensemble members using:

P f = (Ψf −Ψt)(Ψf −Ψt)T (5.4)

where Ψt is the true model state nstate × nens matrix. Since the true state is not
known it is assumed that:

P f ≈ P f
e = (Ψf −Ψf )(Ψf −Ψf )T (5.5)

where Ψf represents the ensemble average and it is assumed that the ensemble of
model predictions is unbiased. The observations matrix, Y , is a nobs× nens matrix
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containing the observations, where nobs is the number of observations. Y is given by:

Y = HΨt + ε (5.6)

whereH is a nobs×nstate transforming Ψt to the observations and ε the random error
in the observations. ε is random noise with a zero mean and an standard deviation
given by R, the measurement error covariance (nobs×nobs matrix). In this study, H
ensures a spatial match between the satellite observations and modelled soil moisture
from the model. This leads to the general form of the EnKF:

Ψa = Ψf + P fHT (HP fHT +R)−1(Y −HΨf ) (5.7)

Apart from state-augmentation, the EnKF also allows model parameters of the LIS-
FLOOD model to be estimated in the same update moment. Since there are no
observations of the parameters, matrix Y remains the same. However, the matrix Ψf

and measurement operator are extended with 14 rows to enable the parameters of
Table 5.1 to be estimated at the update moment. This results in updated parameters
in Ψa which are perturbed with white noise with a standard deviation of 0.01, to
prevent ensemble collapse. The perturbations are given by:

Ln(p′t) = Ln(p) +W (0, 0.01) (5.8)

where p′t are the perturbed parameters and W (0, 0.01) is white noise with a mean of
0 and standard deviation of 0.01 (-).

A relaxation factor β of 0.7 is used for the parameter updating, to prevent strong
updates of Ψa as a result of erroneous measurements which could result in non-feasible
updates of parameters. Additionally, a β of 0.7 ensures that observations at the end
of the calibration still can impact the parameter calibration. If no relaxation factor is
applied, the estimated uncertainty of the model predictions (P f ) is small compared
to R and no updates would occur anymore at the end of the calibration period.
This is particularly important because some observations get more abundant over
time due to an improvement in the algorithms of the remotely sensed soil moisture.
Especially in a scenario where multiple observations are used (e.g. discharge and
multiple satellites) this will ensure that all observations contribute to the calibration.
A β of 0.7 was selected as the best value, to ensure convergence of the parameters
and allows all sensors to be used in the parameter estimation. The introduction of β
results in a modified form of Equation 5.7 for parameter updating:

Ψa
p = βΨf

p + (1− β)P fHT (HP fHT +R)−1(Y −HΨf
p) (5.9)

where Ψa
p and Ψf

p are the parameter analysis and parameter forecast, respectively.
This theoretical framework has been successfully applied in other studies to estimate
both state and parameters (e.g. Tong et al., 2012).

Due to small sample sizes and a small number of observations, spurious correlations
could occur. This would result in update of parameters that have no physical relation
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with the observations. To avoid the effects of these unwanted updates of parameters,
the covariance between the observations and these parameters is set to zero. This
is done for the parameters at the bottom half of Table 5.1. Given the relations
defined in the model structure, it is not possible that the satellite observations contain
information on the values of these parameters.

The soil moisture and discharge observations are used to correct the states in the
model using Equation 5.7. The soil moisture observations are directly used in the
data assimilation system to correct the soil moisture content of the different layers.
The error covariance between the different soil layers is calculated from Equation
5.5. Discharge observations are used to correct the groundwater states. Since the
discharge observations are strongly related to the groundwater, they contain a large
amount of information on the groundwater storage and can be used to correct the
groundwater simulations. Other advantages of the correction of the groundwater
is that the update will have a larger impact on discharge simulations for the next
timestep, while updating the river water levels will only result in an improvement in
the discharge simulation for a short period (up to 6 days maximum for the Upper
Danube).

For the assimilation of the satellite data with the Ensemble Kalman Filter (EnKF),
spatial information on the measurements error covariance (R, Equation 5.7) is re-
quired. The structure of R is determined using the data of Chapter 2 over Spain as
obtained using high resolution modelling of the unsaturated zone. From this study,
the relative errors of each satellite product were determined as well as the spatial
correlation of the errors of the satellites. Because Chapter 2 did not include the spa-
tial correlation between the satellite errors of different sensors, the cross-variograms
between sensors were additionally calculated using the same dataset (Appendix 5.3).
The error covariance between the discharge observations is set to zero while the error
for the discharge observations is assumed to be 30% of the discharge (e.g. Di Bal-
dassarre and Montanari, 2009). It is also assumed that there is no error covariance
between the satellite observations and discharge observations.

5.3.2 Scenarios

To test if the Ensemble Kalman Filter calibration framework is capable to calibrate
known parameters and reproduce these results with different prior distributions, a
synthetic dataset was used for a calibration experiment. Using known parameters,
a synthetic dataset was produced and used as synthetic observations for parameter
estimation and state updates. Both discharge and synthetic satellite observations
are reproduced with the synthetic experiment. The framework was tested with the
assimilation of one synthetic discharge observation in combination with multi-sensor
synthetic soil moisture observations for a period of two years. The errors assumed
for the synthetic observations are identical to those of the real observations. For the
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Figure 5.4 Flowchart of data assimilation scheme.
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synthetic discharge a 30% error and an error of 0.05 m3m−3 for all of the synthetic
ASCAT, AMSR an SMOS observations are assumed. ASCAT and AMSR-E synthetic
observations are created from the 0-2 cm soil moisture layer, while SMOS synthetic
observations are generated from the average of the two first soil moisture layers (0-
5 cm). A total of 300 ensemble members is used for the synthetic experiment, which
is identical to the number used for the calibration of other scenarios. It was tested
whether calibrated parameters are found to be identical to the parameter set used to
create the synthetic dataset.

After the synthetic experiment, a sensitivity analysis was performed on the LIS-
FLOOD model to enable better interpretation of the results. This sensitivity exper-
iment is complementary to the normal sensitivity analysis of LISFLOOD, which is
described by Van Der Knijff et al. (2010). Since the LISFLOOD was modified for the
assimilation of remotely sensed soil moisture, this new sensitivity analysis is required.
All parameters (Table 5.1) were modified by taking the 90% and 110% of the prior
mean. The discharge and soil moisture dynamics as well as the absolute levels of these
variables have been related to all calibration parameters of the model. The variance
is computed for each of these variables to estimate the dynamic behaviour, while the
absolute levels are computed by taking the long term mean.

After these initial experiments, observations of three microwave satellites and seven
discharge time series were used to estimate the parameters of the LISFLOOD model
for the Upper Danube area using the Ensemble Kalman Filter. Different calibration
scenarios were tested, each using different observations or combinations of observa-
tions. This is done to obtain understanding of the influence of the observations on
the retrieved parameters and their capacity to estimate the parameters. A detailed
description of the calibrated parameters, updated state variables, total number of
observations and the total number of scenarios can be found in Table 5.3. The cali-
bration scenarios included are:

1. One satellite soil moisture product, either ASCAT, AMSR-E or SMOS.

2. Discharge observations, either one or seven locations (Figure 5.1).

3. Discharge observations (one or seven locations) and one satellite soil moisture
product.

4. Discharge observations (one or seven locations) and all satellite products.

The individual scenarios were calibrated for a two year period (2010-2011). This
period was chosen because of the availability of all three microwave soil moisture
satellite products. When all three satellite products are used, ASCAT and AMSR-E
are directly compared to 0-2 cm simulated soil moisture and SMOS is compared to
the weighted-average of the two first simulated soil moisture layers (0-2 and 2-5 cm).
The updates of the two soil moisture layers are dependent on the specific uncertainty
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of the satellite observation and the uncertainty in the modelled soil moisture. The
satellite observations are directly compared to the simulated soil moisture at their
specific penetration depth to reduce errors in the assimilation.

The calibrated parameters found at the end of the calibration period for the different
scenarios were used to simulate discharge for the period 2000-2009 as a validation
of the model. All 300 members from the ensemble found by calibration were used
in the validation to determine the uncertainty in the simulated discharge and soil
moisture. No assimilation of observations was performed during the validation, to
only validate the performance of the calibrated model without data assimilation.
From this ensemble, the ensemble mean discharge and soil moisture were calculated
and compared with the observed discharge and soil moisture. The performance of
the soil moisture simulations was evaluated with time series of AMSR-E (2002-2009)
and ASCAT (2007-2009). These time periods were selected because these data are
not used during the calibration of the LISFLOOD model and are therefore considered
to be independent, although it is acknowledged that independent observations would
have been better. The performance of the calibration scenarios was also compared
with a simulation using the prior distributions of parameters (baseline scenario).

In the validation, the Root Mean Square Error (RMSE) of the discharge and soil
moisture simulations was calculated by:

RMSE =

√∑T
t=1(Zmod(t)− Zobs(t))2

T
(5.10)

where Zmod is the modelled ensemble mean discharge or soil moisture and Zobs is
the observed discharge or soil moisture, T is the total number of observations (-),
approximately 3.600 for discharge and between 81.000 and 396.000 for the satellite
observations (dependent on the scenario). To enable comparison between discharge
time series of different stations, the RMSE of a station is standardized on the average
discharge of the station (Qobs) using:

SRMSE =
RMSE

Qobs

(5.11)

where SRMSE is the Normalized Root Mean Square Error (-) of the discharge loca-
tion and Qobs is the average observed discharge (m3s−1).

5.4 Results

5.4.1 Calibration on synthetic dataset and sensitivity analysis

The synthetic calibration experiment was repeated six times using 300 ensemble mem-
bers and different realizations of the prior distribution showing consistent results for
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Table 5.3 Detailed description of the calibration scenarios. Scenario names indicate the
assimilated data, the number of observations are divided between remotely sensed soil
moisture observations. Calibrated parameters are either soil parameters (Soil), including
SnCoef , KSat1, KSat2, cpref and bxin. Finally, the updated state variables are given,
where Topsoil indicates the first two layers of the LISFLOOD model and GW both ground
water reservoirs of the LISFLOOD model.

Scenario Number of observations Calibrated Updated
Soil moisture Discharge parameters state variables

No assimilation 0 0 None None

ASCAT 81000 0 Soil Topsoil
AMSR-E 223000 0 Soil Topsoil
SMOS 92000 0 Soil Topsoil
All satellites 396000 0 Soil Topsoil

1 discharge station 0 730 All Topsoil & GW
7 discharge stations 0 5000 All Topsoil & GW

ASCAT + 1 discharge station 81000 730 All Topsoil & GW
AMSR-E + 1 discharge station 223000 730 All Topsoil & GW
SMOS + 1 discharge station 92000 730 All Topsoil & GW
All satellites + 1 discharge station 390000 730 All Topsoil & GW

ASCAT + 7 discharge stations 81000 5000 All Topsoil & GW
AMSR-E + 7 discharge stations 223000 5000 All Topsoil & GW
SMOS + 7 discharge stations 92000 5000 All Topsoil & GW
All satellites + 7 discharge stations 396000 5000 All Topsoil & GW

every repetition. Parameters used to produce the synthetic data set were within the
95% confidence interval of the calibrated parameter distributions (Figure 5.5), with
the exception of GWperc. This is caused by the low sensitivity of the model to changes
in this parameter compared to changes in Tlz. The synthetic discharge could be re-
produced with a SRMSE of 0.06 at the outlet of the Upper Danube. From these
results, it is concluded that the EnKF calibration framework shows a consistent per-
formance and could be used with confidence to calibrate scenarios based on satellite
and discharge observations. The framework can be used with confidence to calibrate
large-scale hydrological models and distributed land-surface models in general.

The results of the sensitivity analysis are presented in Table 5.4 and show that the
soil moisture is very sensitive to, in decreasing order of importance, cpref , bxin, KSat1,
SnCoef and KSat2. The parameters in the bottom half of Table 5.1 do not have
any impact on the soil moisture simulation and hence it is justified to assume no

107



Table 5.4 The dependency of mean soil moisture (Θ), variance in soil moisture (var(Θ)),
mean discharge (Q) and the variance in discharge (var(Q)) to changes in individual param-
eters (∆α).

∆Θ
∆α

∆var(Θ)
∆α

∆Q
∆α

∆var(Q)
∆α

SnCoef 265 0.040 2638 -0.001
KSat1 -415 0.142 -14068 -0.030
KSat2 3 0.001 1 0.002
cpref 1835 -0.087 -8891 0.103
bxin 1600 -0.163 13419 0.090

Tuz 0.0 0.0 484 0.064
Tlz 0.0 0.0 9115 0.001
GWperc 0.0 0.0 -2649 0.069
ChanN2 0.0 0.0 -6 -0.008
CalMan 0.0 0.0 -11 0.032

correlation between these parameters and soil moisture observations during the data
assimilation.

The discharge dynamics and total discharge volumes are sensitive to changes in all
parameters (Table 5.1). The largest sensitivity of the total runoff is toKSat1, bxin, Tlz,
cpref , GWprec and SnCoef (in decreasing order of importance). Part of the impact of
the parameters related to overland flow is caused by the contribution of surface runoff
to the total discharge. Additionally, the evapotranspiration rate largely determines
the total discharge volume of the catchment. Evapotranspiration is controlled by the
infiltration rate of soil moisture through the unsaturated zone and hence is strongly
related to bxin and KSat1. Discharge dynamics are sensitive to cpref , bxin, GWperc,
Tuz, CalMan, KSat1, ChanN2 and KSat2.

5.4.2 Parameter identification

The calibrated parameters for all calibration scenarios show that including more dis-
charge and soil moisture observations, leads to decreased spread in the calibrated
parameters (Figure 5.6). Including multiple discharge observation time series instead
of one leads to a better identification of parameters (Figure 5.6) as is expected from
the increased amount of information given to the calibration framework.

When both discharge and soil moisture observations are used for the parameter es-
timation and state updates of the LISFLOOD model, parameters related to land
surface processes, e.g. saturated hydraulic conductivity, are better identified, result-
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Figure 5.5 The calibrated parameter distributions for the synthetic experiment used in
the simulation of discharge in the LISFLOOD model. In black the parameter set used to
create the synthetic dataset is shown, grey indicates the calibrated parameter set based
on the synthetic data. With the exception of GWperc all parameters are within the 95%
confidence interval of their true values used to generate the synthetic data. Description of
the parameters is given in Table 5.1.
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ing in posterior parameter distributions with a low uncertainty (Figure 5.6). The
uncertainty of surface parameters calibrated with only discharge observations is sig-
nificantly higher compared to the calibration with both soil moisture and discharge
observations. This confirms that discharge observations contain less information on
processes related to the unsaturated zone than soil moisture observations and are
more informative regarding processes in the groundwater system and channel rout-
ing. Satellite observations will contribute to the calibration and contain information
on land-surface processes that cannot be inferred from discharge observations. When
soil moisture observations are added to the calibration, some small changes can be
found in the groundwater parameters. This is related to the fact that some parame-
ters impact both discharge and soil moisture simulations (e.g KSat1 and bxin). When
these parameters are modified, also other parameters impacting discharge should be
modified to compensate for changes in the input from the soil moisture, to correctly
simulate the discharge in the catchment.

The uncertainty found in calibrated parameters by calibration with ASCAT is lower
than with AMSR-E or SMOS soil moisture (not shown), which could be caused by
the smaller error in the ASCAT soil moisture product used in the data assimilation
system (Chapter 2) or higher spatial resolution of the ASCAT product. For this
study, it was assumed that the error structure of Chapter 2 is identical to the error
structure of the microwave remote sensing observations for the Upper Danube, which
could also impact the results. Additionally, the number of observations used for the
calibration with ASCAT is also significantly higher than for calibration with either
AMSR-E or SMOS (Table 5.2). This result is not dependent on the addition of
discharge observations. More research in required to see if this result is also valid for
other areas and independent of model structure and calibration framework.

5.4.3 Discharge simulation

Time series for the validation of the discharge at the outlet of the Upper Danube show
that without the EnKF data assimilation, the discharge is on average underestimated
for both peak flows and baseflow (Figure 5.7). In all calibration scenarios, the esti-
mation of discharge is improved compared to the no calibration scenario; especially
the base flow has increased to levels more similar to those observed during low flow
periods. Depending on the different satellites used for the calibration, the SRMSE
is decreased by ≈ 10% compared to no calibration (Figure 5.8 and 5.9). The im-
provement in discharge simulation is the largest for AMSR-E and lower for ASCAT
and SMOS. Although parameter uncertainties are smaller for ASCAT, calibration
did not necessarily lead to better discharge simulations. For SMOS, the performance
could be hampered by the relatively large number of missing data (masked). This
is due to RFI, which has a big impact on the data quality of SMOS in this region
(Dall’Amico et al., 2012). The error of SMOS satellite retrievals used in this study is
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Figure 5.6 The calibrated parameter distributions for three different calibration scenarios
and the prior parameter estimations used in the simulation of discharge in the LISFLOOD
model. Prior is based on expert knowledge and used as prior for the other scenarios, 1 is
calibration on one discharge station close to the outlet (Fig 5.1), 7 is calibration based on
7 stations distributed across the catchment and 7 + sat is calibration based on 7 discharge
stations and remotely sensed soil moisture by three microwave satellite sensors (SMOS,
AMSR-E and ASCAT). Description of the parameters is given in Table 5.1.
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Figure 5.7 Time series of ensemble mean discharge at the outlet of the Upper Danube
Catchment, for multiple calibration scenarios: observed indicates the observed discharge
time series. Calibration scenarios are: No calibration, a simulation using the prior distri-
bution of parameters based on expert knowledge, 1 station is calibration on one discharge
station (Fig 5.1), 7 stations is calibration based on 7 stations and 7 station + satellites
is calibration based on 7 discharge stations and remotely sensed soil moisture by three
microwave satellite sensors (SMOS, AMSR-E and ASCAT).

also relatively large compared to the other two satellites, which in combination with a
reduced number of observations leads to a decreased performance in the calibration.

For the simulation of discharge at the catchment outlet, the calibration on only one
station shows a lower SRMSE (Equation 5.11) compared to calibration on more
discharge observations, or calibration on both discharge and satellite observations
(Figure 5.8). This is caused by the fact that the discharge location used for calibration
on only one station is situated close to the catchment outlet (large square in Figure
5.1). Therefore, calibration parameters are only adjusted to give the best simulation
of the discharge at the outlet as possible, while other calibration scenarios also aim at
satisfying other calibration criteria. The average SRMSE for all validation locations
(Figure 5.1) is reduced when the LISFLOOD model is calibrated using seven discharge
observations compared to only calibration on one discharge observation (Figure 5.9).
This decrease is found for all scenarios that include seven discharge locations, with
or without the addition of satellite observations. This leads to the conclusion that
increasing the number of discharge locations will not necessarily increase the accuracy
of discharge simulations at the outlet. However, it will result in a better simulation of
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the distribution of runoff and thereby improve overall discharge simulation throughout
the catchment. Overall, the discharge simulation for the validation period is improved
by ≈ 15% compared to calibration only on discharge at the outlet, as shown by a
decrease in the SRMSE (Figure 5.9).

Throughout the catchment, the calibration with remote sensed soil moisture improved
discharge simulation in the upstream part of the catchment (t-test at the 95% con-
fidence level). However, no catchment above 40000 km2 showed any significantly
improved discharge simulation as a result of calibration on one or multiple sources of
remotely sensed soil moisture. Calibrations with seven discharge locations and either
ASCAT, AMSR-E, SMOS or a combination of satellites is compared to a scenario with
only calibration on seven discharge locations (Figure 5.10). Only locations where the
discharge is decreased or increased by more than 5% are shown. From this spatial
comparison it is concluded that discharge simulations are improved in the upstream
areas when soil moisture is added to the calibration.

Compared to calibration with only discharge, calibration with discharge and satellite
data does improve discharge simulations for smaller catchments. From these results,
it is concluded that adding satellite data to the calibration will mostly improve the
overall discharge results in situations when no discharge data are available for cal-
ibration. In these situations, satellite observations lead to small improvements of
discharge simulations.

5.4.4 Soil moisture simulation

Soil moisture simulation of the LISFLOOD model after calibration on discharge or
satellite observations is compared with time series of AMSR-E (2002-2009) and AS-
CAT (2007-2009). After calibration an improvement is found compared to the soil
moisture simulation with the prior distribution. Compared to observed AMSR-E
and ASCAT data, the average RMSE is reduced from 0.24 (prior distribution) to
0.058 m3m−3 after calibration on multi-sensor satellite observations. However, no
difference could be found between the different scenarios, using one or multiple satel-
lite products. When the scenarios are compared spatially some distinct patterns
are found. The improvements for calibration with ASCAT and AMSR-E are mainly
found in the mountainous areas as can be seen in Figure 5.10. This could be related
to the relatively poor model simulation of the unsaturated zone in these regions in
the scenario without calibration, leading to a large improvement. Additionally, in
these regions the observation error of ASCAT and AMSR-E is lower than for SMOS
(Chapter 2). The combination of these two factors leads to large improvements in
mountainous areas, which would normally not be expected because of the low quality
of remotely sensed soil moisture retrievals in these areas. Calibration on SMOS data
only improves soil moisture in the lowland regions, which could be related to the in-
creased observation depth of the SMOS satellite compared to the other sensors. If all
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Figure 5.8 Cross table with the Normalized Root Mean Square Error of the ensemble
mean discharge at the outlet of the Upper Danube catchment using 15 different calibration
scenarios. Columns indicate calibration without using discharge, 1 discharge location close
to the outlet or 7 discharge locations distributed throughout the catchment. Rows indicate
calibration on soil moisture, without using any data or using either data from the ASCAT,
AMSR-E or SMOS satellite or a combination of all three sensors (All satellites).

satellite data are used at the same time to calibrate the LISFLOOD model, simulated
soil moisture patterns are improved for large parts of the catchment, without favour-
ing specific regions. This is caused by the fact that single satellite improvements are
compensated by other sensors and a more widespread improvement is the result.

As all parameters are spatially lumped (with exception of Tuz and Tlz), calibration
will result in improvements for some areas, while the simulation deteriorates for other
regions of the Upper Danube. Due to the large number of parameters, it is not feasible
to include a calibration of spatially distributed parameters with the given number of
ensemble members, i.e. this would lead to numerical problems for the calibration
framework and unidentifiable model parameterizations.

5.5 Discussion and Conclusion

The LISFLOOD hydrological model was calibrated for the Upper Danube catchment
using discharge observations and remotely sensed soil moisture from three different
space-borne sensors. An Ensemble Kalman Filter with augmented state was used to
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Figure 5.9 Cross table with the average Normalized Root Mean Square Error of the ensem-
ble mean discharge at all validation locations of the Upper Danube catchment (Fig 5.1) using
15 different calibration scenarios. Columns indicate calibration without using discharge, 1
discharge location close to the outlet or 7 discharge locations distributed throughout the
catchment. Rows indicate calibration on soil moisture, without using any data or using
either data from the ASCAT, AMSR-E or SMOS satellite or a combination of all three
sensors (All satellites).

estimate parameters of the LISFLOOD model for a period of two years (2010-2011).
In total 10 model parameters were calibrated and used for a validation over a period
of 10 years (2000-2009).

The Ensemble Kalman Filter was successfully used to calibrate the model on a syn-
thetic dataset with known parameters and state variables. All parameters could be
successfully identified using synthetic observations of discharge and satellite soil mois-
ture. It is concluded that the Ensemble Kalman Filter can be used with confidence to
calibrate spatially distributed hydrological models and estimate both state variables
and parameters.

Parameters of the LISFLOOD model were identified with reduced uncertainty when
soil moisture data was assimilated into the hydrological model. Especially parameters
related to land-surface processes showed a strong decrease in parameter uncertainty
compared to calibration without soil moisture data. Parameters related to groundwa-
ter and routing were better calibrated using one or multiple discharge observations.
When more discharge observations were introduced to the calibration framework, un-
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Figure 5.10 Comparison between calibration on 7 discharge locations and calibration based
on these discharge locations and remotely sensed soil moisture. Colours indicate the im-
provement in the soil moisture simulations for the validation period, circles indicate whether
any improvement is found for the ensemble mean discharge simulation, size of the circle in-
dicates the relative improvement in the discharge simulations and blank circles are locations
with a less than 5% change compared to the calibration on 7 discharge locations. ASCAT
is a comparison between the calibration on only discharge and discharge combined with
remotely sensed soil moisture observations from ASCAT (similar for AMSR-E and SMOS).
All satellites show a comparison between the calibration on only discharge and discharge
combined with all three remotely sensed soil moisture observations.

certainties in parameters, uncertainties in groundwater and routing parameters were
reduced.

The use of remotely sensed soil moisture significantly improved the model perfor-
mance compared to parameters estimated with expert knowledge. However, the re-
sults of this study show that the contribution of remotely sensed soil moisture to
the improvement of discharge is limited for large catchments. No catchment above
40000 km2 showed any improved discharge simulations as a result of calibration on
one or multiple sources of remotely sensed soil moisture.

On average small improvements in soil moisture simulations were found for all sce-
narios that included soil moisture assimilation. Soil moisture simulations are mostly
improved for ASCAT and AMSR-E in areas with large relief, where the relative im-
portance of fast runoff processes is larger compared to the topographically flat areas.
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SMOS showed a different pattern, with improvements in soil moisture simulation
mainly observed in flat areas, and SMOS showed relatively smaller improvements
in soil moisture simulations. When all three sensors were combined, locally improve-
ments were more averaged out, while on average, simulations of soil moisture through-
out the catchment were improved. Compared to soil moisture simulation with the
prior distribution of parameters, all calibration scenarios with remotely sensed soil
moisture significantly improved soil moisture simulations.

Compared to calibration with only discharge, calibration with addition of satellite
data does improve discharge simulations for smaller catchments. In contrast to Lee
et al. (2011), in this study only an improvement was found for discharge simulations
in small sized catchments. This small improvement in upstream discharge is also in
line with work of Brocca et al. (2010). However, Brocca et al. (2010) and Lee et al.
(2011) both used assimilation of soil moisture during the validation period, which
could lead to different results. Sutanudjaja et al. (2014) calibrated a hydrological
model on soil moisture observations, and also found minor improvements in discharge
simulations for a large catchment.

It is concluded that remotely sensed soil moisture improves the calibration of the
LISFLOOD hydrological model for small catchments, while for larger catchments,
above 40000 km2, this increase in model performance is negligible due to the large
relative importance of groundwater and channel routing.

Increasing the number of discharge observations, will improve catchment average dis-
charge simulations, which confirms previous work by Rakovec et al. (2012). Moreover,
the error in the discharge simulation at the outlet will not decrease by adding more
discharge observations, which is mainly caused by the fact that it is easier to fit a
single discharge time series than discharge series at multiple locations simultaneously.
This finding is contradictory to Rakovec et al. (2012), which might be the result of a
larger catchment size in this study. This larger catchment will result in significantly
longer travel times of the water, interference of man-made structure and additionally,
a larger grid resolution of the hydrological model. All these factors could cause the
difference between this study and work of Rakovec et al. (2012).

The addition of soil moisture in the calibration further improves discharge simulations
in the upstream areas of the Upper Danube. Additionally the soil moisture simulation
is improved for large parts of the catchment. This leads to the conclusion that a more
realistic portrayal of the catchment’s hydrology (i.e. being right for the right reason)
will thus be achieved by using multiple discharge time series and remotely sensed soil
moisture in model calibration.

A point of attention is the availability of discharge and precipitation data for this
catchment. The precipitation network in this catchment is very dense, leading to
low uncertainties in interpolated precipitation for the Upper Danube. As suggested
by Crow and Ryu (2009), remotely sensed soil moisture could be used to correct for
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uncertainties in precipitation or other meteorological forcing data. Thus, the assim-
ilation of remotely sensed soil moisture for parameter estimation in more sparsely
gauged regions could potentially result in larger improvements in discharge and soil
moisture simulations than observed in this study.
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6 Remotely sensed soil moisture for
improving flood forecasting

This chapter is based on:
Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., and Bierkens,
M. F. P. (2014), The suitability of remotely sensed soil moisture for improving op-
erational flood forecasting, Hydrology and Earth System Sciences, 18, 2343-2357,
doi:10.5194/hess-18-2343-2014.

Abstract

The added value of assimilated remotely sensed soil moisture for the European Flood Aware-

ness System (EFAS) was evaluated and its potential to improve the prediction of the timing

and height of the flood peaks and low flows. EFAS is an operational flood forecasting system

for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions

with lead times up to 10 days. For this study, satellite-derived soil moisture from AS-

CAT, AMSR-E and SMOS is assimilated into the LISFLOOD model for the Upper Danube

basin and results are compared to assimilation of discharge observations only. To assimilate

soil moisture and discharge data into the hydrological model, an Ensemble Kalman Filter

(EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite

products is included to ensure increase performance of the EnKF. For the validation, addi-

tional discharge observations, not used in the EnKF, are used as an independent validation

dataset. Our results show that the accuracy of flood forecasts is increased when more dis-

charge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble mean

is reduced by 35%. The additional inclusion of satellite data results in a further increase

of the performance: forecasts of base flows are better and the uncertainty in the overall

discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are pre-

dicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows

a performance increase of 5-10% on average, compared to assimilation of discharge only.

When soil moisture data is used, the timing errors in the flood predictions are decreased,

especially for shorter lead times, and imminent floods can be forecasted with more skill.

The number of false flood alerts is reduced when more observational data is assimilated

into the system. The added values of the satellite data is largest when these observations

are assimilated in combination with distributed discharge observations. These results show

the potential of remotely sensed soil moisture observations to improve near-real time flood

forecasting in large catchments.
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6.1 Introduction

Floods are extreme hydrological events caused by excessive water availability and may
cause large economical, societal and natural damage. One example is the summer
2013 flood in central Europe producing historical high water levels in large parts of
the Danube and Elbe catchments, causing a total estimated economic loss of 23 bil-
lion Euro (Aon Benfield, 2013). Due to their increasing impact on society, forecasting
of these extreme events has become more important to increase preparedness and
improve the response to and prevention of floods. This requires an increasing need
to develop accurate and reliable flood forecasting systems. National forecasting sys-
tems have been developed in for example England (National Flood Forecasting Sys-
tem), Germany (Hochwasservorhersagezentral), Netherlands, Germany and Switzer-
land (FEWS-Rhine & Meuse), Czech Republic (CHMI-IWSS), Sweden (SMHI) and
most other countries in Europe. For transboundary river basins, national forecast-
ing systems are often lacking skill and transboundary forecasting systems are pre-
ferred. To fulfil this need, the European Commission developed the European Flood
Awareness System (EFAS) for flood forecasting up to a lead times of 10 days for the
European continent (Thielen et al., 2009). Additionally, EFAS will contribute to un-
derstanding of flood events on a transboundary scale and will support international
crisis management at the European level.

Flood forecasts are made for multiple basins, using distributed hydrological modelling.
Systems like EFAS are highly dependent on the meteorological forcing provided as
well as the pre-storm initial conditions of the catchment (Nester et al., 2012; Alfieri
et al., 2013). To improve estimates of initial conditions data assimilation techniques
have the potential to update incorrect model states with observational data to obtain
the best possible estimate of the current status of the hydrological system. Discharge
data is often used in these data assimilation frameworks, because it contains the
integrated information of all other hydrological states (e.g. Vrugt et al., 2006; Clark
et al., 2008; Rakovec et al., 2012). However, it is difficult to obtain these measurements
in real-time in a way they can be used in EFAS. Observations might not be available
in real-time, quality control cannot be done in real-time or local data providers are
unfortunately not willing to share the information. Measurements of hydrological
states other than discharge are rarely used for estimating the model’s initial state
while these may be of considerable value. In particular, measurements of the pre-
storm soil moisture conditions could potentially improve flood forecasting systems,
since initial soil moisture conditions are expected to have a large impact on the flood
peaks during a storm event. The soil moisture content determines the amount of water
which can still be stored in the unsaturated zone or percolate to the saturated zone
and thereby influences the precipitation required to generate overland flow. However,
field observations at continental scale are not available due to the limited number of
observational networks and their low spatial support. Remotely sensed soil moisture
retrievals from the microwave domain could potentially fill the need for soil moisture
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observations at the large spatial scales. Observations are globally available and revisit
times per sensor are between 1 and 3 days depending on latitude. An additional
advantage is that the data is available within 3 hours after observed and the satellites
have a global coverage, while single discharge observations are only valid for the
catchment scale.

Multiple studies have used remotely sensed soil moisture to improve discharge sim-
ulations in small catchments (≤ 1000 km2) and to correct for errors in pre-storm
soil moisture conditions (Pauwels et al., 2001; Scipal et al., 2008; Brocca et al., 2010;
Chen et al., 2011; Brocca et al., 2012; Matgen et al., 2012). These studies show that
assimilation of these data improved the simulation of flood events and especially the
height of the flood peak. For large-scale catchments, Draper et al. (2011) assimi-
lated remotely sensed soil moisture from ASCAT over France to improve discharge
simulations. It was concluded that the assimilation of soil moisture mainly corrected
for biases in precipitation or incorrect model climatology. However, the potential to
improve flood forecasts was not studied at the large-scale. The previously mentioned
studies mainly focussed on the potential gain for flood forecasting, when only observa-
tions from a single sensor are assimilated. This potential can be increased by making
use of soil moisture retrieved by multiple sensors, thereby increasing the quality and
quantity of the observations. However, the added value of combined assimilation of
data from multiple sensors for operational flood forecasting at large-scale remains
unknown. Moreover, it is equally important to take into account that assimilation of
remotely sensed soil moisture can lead to significant difference in the parametrization
of the hydrological model (e.g. Santanello et al., 2007; Sutanudjaja et al., 2014) and
this will also impact the potential gain from the assimilation of observations of other
hydrological variables. Additionally the added value of the remotely sensed soil mois-
ture compared to the assimilation of discharge observations has not been studied so
far. Therefore, more research is required, especially in large-scale catchments using
conjunctively multi-sensor remotely sensed soil moisture observations and discharge
data.

The aim of this study is to determine the benefits of the assimilation of multi-sensor
soil moisture observations in operational flood forecasting systems in large scale catch-
ments. To achieve this aim, this research focuses on three main research questions:
(i) Does the assimilation of remotely sensed soil moisture lead to increased forecasting
skills in terms of forecast uncertainty and forecast bias compared to assimilation of
discharge observations? (ii) Does the assimilation of remotely sensed soil moisture
increase the lead times at which floods can be accurately predicted? (iii) Is it pos-
sible to reduce the number of false flood alerts with the use of remotely sensed soil
moisture? These research questions are answered using the EFAS model setup, which
enables a proper validation of the results in the context of a real operational system.
Results of assimilating remotely sensed soil moisture are compared with assimilation
of discharge data only. Also, the impact of the number of discharge observations and
the benefit of the assimilation of remotely sensed soil moisture for a model calibrated
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on discharge are investigated. These analyses enable a more detailed evaluation of
the potential gain of the assimilation of remotely sensed soil moisture for operational
flood forecasting. As a test-basin the Upper Danube catchment is selected which
is one of the largest catchments in Europe containing a large number of locations
with time series of discharge. Satellite data from three microwave sensors (ASCAT,
AMSR-E and SMOS) is used in the assimilation framework to increase the number of
observations and the potential benefits of these observations for the flood prediction.

6.2 Material and Methods

6.2.1 Study area

The study area is the Upper Danube catchment upstream of Bratislava (catchment
size 135 · 103 km2, Figure 6.1). The border of the Upper Danube is formed by the
Alps in the South and the catchment contains the northern part of Austria, the
southern part of Germany, the South-eastern part of the Czech Republic and western
Slovakia. Elevations range from 150 - 3150 m above sea level. In the catchment,
daily discharge observations for 23 locations are available through the Global Runoff
Data Centre (GRDC), which enable validation and assimilation (Figure 6.1). With
a split-sample approach discharge observations used for assimilation will not be used
for validation to assure an independent validation of the improvements in the flood
forecasting after the assimilation.

6.2.2 European Flood Awareness System

The European Flood Awareness System was developed in 2003 by the European
Commission at the Joint Research Centre in Ispra and is being improved since. In 2012
EFAS became an operational service aiming to provide flood forecasts up to 10 days in
advance over the European continent (www.efas.eu). At the core of the EFAS system
is the hydrological model LISFLOOD which was originally developed by De Roo et al.
(2000), later improved by Van Der Knijff et al. (2010) and running in the PCRaster
modelling environment (Wesseling et al., 1996; Karssenberg et al., 2010). LISFLOOD
was specifically developed for discharge simulations of large scale river basins. The
model consists of a vegetation layer, two layers to simulate the unsaturated zone, two
linear reservoirs to represent fast and slow responding groundwater systems and a
channel network for discharge routing.

In this study, the original two-layer representation of the unsaturated zone (De Roo
et al., 2000; Van Der Knijff et al., 2010) was replaced by a new unsaturated zone
model component that uses four layers (Figure 6.2). This enables a more detailed
representation of the soil moisture in the topsoil and results in modelled soil moisture
that is directly comparable to the soil moisture observations retrieved from remotely
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Figure 6.1 Digital elevation map of the Upper Danube catchment, colours indicate ele-
vation (m), indicated in black is the river network, square symbols indicate locations for
calibration on discharge observations, circles indicate locations for validation on discharge
observations. The large square near the outlet (right) is the location used for calibration if
only one discharge time series is used (Q1 and Q1sat).

sensed soil moisture. The layers have been added in the topsoil and possess a depth
equal to the typical penetration depth of microwave sensors. The new model set-up
consists of unsaturated zone layers of 2 and 3 cm thick, respectively, the third layer
represents the remaining part of the rooting depth (the topsoil, Figure 6.2). The
root zone is simulated using the topsoil and evapotranspiration occurs from these
layers. The evaporation for a particular layer is limited if soil moisture is below
critical soil moisture conditions, in which case more water is extracted from the other
soil moisture layers to compensate for the reduced evaporation. The abstraction per
layer is linearly related to the total storage capacity of the layer. Thick layers will
thus have a larger contribution to the evapotranspiration compared to thinner layers.
When the entire root zone is below critical soil moisture conditions the evaporation
is limited for the entire topsoil and actual evapotranspiration will be lower than
potential evapotranspiration. Bare soil evapotranspiration occurs only from the first
layer of 2 cm. Via capillary rise replenishment of the root zone can occur from the
fourth unsaturated zone layer (the subsoil). The amount of capillary rise depends on
the difference in hydraulic head between two layers and the average conductivity of
the layers. The first layer will also largely impact the amount of surface runoff in
the LISFLOOD model. The soil wetness of the first layer determines the infiltration
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Figure 6.2 LISFLOOD model set-up, with fluxes; precipitation (P), evaporation (E),
recharge from the unsaturated zone to the groundwater (Rch). The calibration parameters
of the model are: snowmelt coefficient (SnCoef), Xinanjiang shape parameter (bxin), sat-
urated conductivity of the topsoil (KSat1), saturated conductivity of the subsoil (KSat2),
empirical shape parameter preferential macro-pore flow (cpref ), maximum percolation rate
from upper to lower groundwater (GWprec), reservoir constant upper groundwater (Tuz),
reservoir constant lower groundwater (Tlz), surface runoff roughness coefficient (ChanN2),
channel Mannings roughness coefficient (CalMan).

capacity of the unsaturated zone and when the infiltration capacity is exceeded by
rainfall or snowmelt this will generate overland flow. Sub-daily time steps are included
to enable a stable performance of the soil moisture simulation, where the number of
sub-daily time steps is dependent on the amount of potential infiltration and water
storage in the unsaturated zone.

In order to use the best calibrated model for the study area, the hydrological model
LISFLOOD was calibrated for the Upper Danube. For the calibration, soil moisture
and discharge observations were used to calibrate the most sensitive model parame-
ters. The parameters which were calibrated were related to the snow accumulation,
infiltration and percolation through the unsaturated zone, the groundwater system
and routing of discharge (Figure 6.2). A dual state and parameter Ensemble Kalman
filter was used to calibrate LISFLOOD for the Upper Danube. A total of 300 mem-
bers was used to estimate all parameters of the model over the period 2010-2011.
The period was selected because satellite data from multiple sensors is available for
this period. This resulted in calibrated parameters with distributions defined by 300
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realizations of parameter sets, which could be used for hydrological simulations. The
use of these parameter distributions allows to account for the uncertainty in the initial
conditions and for different hydrological responses to identical meteorological inputs.
More detailed information on the probabilistic model calibration set-up can be found
in Chapter 5.

The meteorological forcing of EFAS consists of daily precipitation, daily potential
evapotranspiration and the average daily temperature. EFAS uses meteorological
forcing from the 51 members of the European Centre for Medium-Range Weather
Forecasting Ensemble Prediction System (ECMWF-EPS). This results in 51 hydro-
logical forecasts for every 12 hours at midday and midnight. The new set-up of EFAS
which uses 300 realizations of parameter sets, differs from the original EFAS set-up
which uses one parameter set. Additionally, the new set-up also uses a set of initial
hydrological conditions which are forced with identical meteorological forcing. The
original EFAS set-up only uses one parameter set and one initial hydrological condi-
tion for all meteorological forecasts. The EFAS setup used here will allow accounting
for the uncertainty in the initial conditions which can be an important factor in flood
forecasting.

Throughout the manuscript the term EFAS will be used when talking about the entire
forecasting system, i.e. the combination of meteorological forcing, hydrological model
and resulting flood forecasts. The term LISFLOOD will be used when the focus is
specifically on the data assimilation or the hydrological model.

6.2.3 Data

Satellite and discharge data

Remotely sensed soil moisture data from three satellites is used, namely SMOS, AS-
CAT and AMSR-E. A detailed description of the the satellite properties can be found
in Section 5.2.3 of this thesis.

All satellite soil moisture products are used on an equal area Discrete Global Grid
product (DGG). For the SMOS and ASCAT soil moisture product a DGG is available
(Bartalis et al., 2006a), while for the AMSR-E product a DGG is not available.
Therefore, the AMSR-E data was projected on the DGG of SMOS using the nearest
neighbour approach, because both satellites have roughly the same spatial resolution.
The DGG of ASCAT uses equally spaced areas of 12.5 km while the other DGG uses
a slightly lower resolution of 15 km between points.

Although both SMOS and AMSR-E, give absolute soil moisture values in m3m−3, all
satellite data was converted using a rescaling approach. This was done to prevent
suboptimal data assimilation as a result of biases between the model and satellite
dynamic range. These biases can reduce the quality of the data assimilation scheme
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resulting in a poor model performance. Similar to Section 5.2.3, the converted satellite
values θs,new in m3m−3 used for assimilation are calculated by:

θs,new =
θs − θs,5
θs,95 − θs,5

(θFC − θWP ) + θWP (6.1)

where θs are the observed satellite soil moisture values, θs,95 and θs,5 are the 95th and
5th percentiles of satellite soil moisture values respectively (-), θFC and θWP are field
capacity and wilting point of the modelled soil moisture values (m3m−3). θFC and
θWP , are dependent on the soil texture and are averaged over the spatial resolution
of the satellite observation.

Discharge data

The Upper Danube catchment contains 23 locations where daily discharge observa-
tions are available (Figure 6.1). Time series of discharge are available from January
2000 until December 2011. Using a split sample approach the discharge of 7 stations
was used for data assimilation into the forecasting system, while the other 16 stations
were only used for validations of the forecasts. This approach is similar to the ex-
perimental set-up of Lee et al. (2012) and Rakovec et al. (2012), who used multiple
interior discharge stations for validation and assimilation. Assimilation and validation
stations are selected such that they are equally distributed over the catchment and
are situated both in small rivers and the main Upper Danube river. This will allow to
evaluate the impact of the data assimilation at different catchment sizes within the
Upper Danube catchment.

6.2.4 Data assimilation

Identical to Chapter 5, the EnKF is applied to update state variables of the hydro-
logical model. The LISFLOOD model is given by:

Ψ(t+ 1) = f(Ψ(t), F (t), p) (6.2)

where f is the set of model equations, i.e. the model structure, representing the
hydrological processes that lead to change in the system state over time, Ψ(t) is the
state of the model at time t, F (t) the model forcing at time t (i.e. precipitation, evap-
oration and temperature) and p are the model parameters. The EnKF is applied on
each daily time step using observations from remote sensing (when available, AMSR-
E, SMOS and ASCAT) and discharge observations. If no observations of any kind are
available no update will be performed. When only a limited number of observations
are available these will be used to update the model. The general form of the EnKF
(Evensen, 2003) is given by:

Ψa = Ψf + P fHT (HP fHT +R)−1(Y −HΨf ) (6.3)
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where Ψa is the analysis of Ψf , the model forecast, P f the error covariance matrix of
the model, R is the measurement error covariance, H is the measurement operator
which relates the model states Ψ to the satellite or discharge observations Y . The
observations Y can be described by:

Y = HΨt + ε (6.4)

where the true model state (Ψt) is transformed to the Y , using the measurement
operator (H) and random noise ε with a zero mean and a measurement error. The
state error covariance matrix of the model prediction is calculated from the ensemble
spread:

P f = (Ψf −Ψt)(Ψf −Ψt)T (6.5)

where Ψ is the model state vector and the superscripts f and t represent the forecast
and true state, respectively. Since the true state is not known it is assumed that:

P f ≈ P f
e = (Ψf −Ψf )(Ψf −Ψf )T (6.6)

where Ψf represents the ensemble average and it is assumed that the ensemble of
model simulations is sufficient to represent the true state. The EnKF is implemented
in the PCRaster modelling environment (Karssenberg et al., 2010).

For the assimilation of the satellite data with the Ensemble Kalman Filter (EnKF),
spatial information on the measurement error covariance (R, Equation 6.3 and 6.4) is
required. The structure of R is determined from estimates of Chapter 2 over Spain,
obtained by using high resolution modelling of the unsaturated zone. From this study
the errors of each satellite product were determined (diagonal terms of R) as well as
the spatial correlation of the errors of the satellites and the covariance between the
errors of different sensors (off-diagonal terms of R).

All observations are assimilated as daily averages, since this is the same temporal
resolution as the meteorological forcing. Following Di Baldassarre and Montanari
(2009), the error covariance between the discharge observations is set to zero with
a 30% error on the discharge observations. No covariance is assumed between the
satellite soil moisture and discharge observations..

6.2.5 Assimilation and ensemble hindcasting

In this study, observed satellite and discharge data for December 2010 - November
2011 are used in a hindcasting experiment for the Upper Danube. Only one year was
selected to test the procedure since all satellite products are available for this time
period with sufficient data quality. After the selected time period the AMSR-E sensor
was shut down and before the selected period the quality of the SMOS observations
was still below the potential maximum quality due to RFI contamination.
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A data assimilation procedure was used to create a reanalysis time series of all state
variables which are used as starting point for the hindcast (t0). Model states are
updated with the observations and used to have a better estimate of initial conditions
at t0. Figure 6.3 provides a flowchart that shows the full hindcasting procedure
described below. The 300 parameter realizations from the probabilistic calibration
were used to generate the reanalysis time series. As meteorological forcing for the
analysis, observed time series of daily precipitation, daily potential evapotranspiration
and the average daily temperature were used. Observations are interpolated between
meteorological stations with an inverse distance interpolation. For every time step
up till t0, observed state variables, remotely sensed soil moisture and/or discharge
(depending on the scenario), are assimilated into the model. Assimilation is done on
a daily time step, since information on the exact time of the discharge observations is
largely unknown. Additionally, the model uses meteorological input with a temporal
resolution of one day. Parameters are not updated in the assimilation. Thus, the
same set of 300 parameter sets is used to generate the 300 ensemble members between
analysis steps with the EnKF.

At t0, the start of the hindcast, the forward model (Equation 6.2) is used for the
hindcasting of discharge and other state variables. After t0, the daily forcing from
the ECMWF-EPS is used to drive the model simulation. The hindcast is evaluated
based on the observed discharge for the hindcasting period. Like in EFAS, hindcasts
are done at midday and midnight based on the latest simulations of the ECMWF-EPS
leading to a total of 730 hindcasts. In the original forecasts from EFAS only one set of
initial conditions is used, thereby neglecting the uncertainty in the initial conditions.
In this experiment, 300 possible realizations of the initial conditions are available from
the reanalysis. For each hindcast the 51 members of the ECMWF-EPS are used twice
with random realizations from the 300 members of the reanalysis to create n = 102
realizations per hindcast. In this approach different meteorological forcing and ini-
tial conditions are used for each hindcast to have a better estimate of the forecast
uncertainty. A four month simulation was performed using all 300 members in com-
bination with all 51 meteorological forecasts. An analysis of the probability density
functions of each hindcast showed that a total of 102 realizations showed no signifi-
cant differences with a simulation consisting using all possible (51 × 300 = 15300)
realizations (for lead times up to 10 days). The significance was tested with a non-
parametric Kolmogorov-Smirnoff test, which showed that distributions created with
102 realizations and 15300 realizations are identical (p = 0.05). In another set of
runs, it was shown that using fixed initial conditions for the hydrological state leads
to significantly different distributions. The same holds for fixing the meteorological
forecast for all 300 ensemble members which results in a significantly different prob-
ability density function compared to the run created with 15300 realizations. With
this exercise it is concluded that both the uncertainty in initial states as well as the
forcing uncertainty need to be taken into account, but that it suffices to use a subset
of the possible realizations to model this joint uncertainty. Hence, to reduce calcula-
tion times 102 realizations per hindcast were used in all scenarios. Calculation times
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Figure 6.3 Flowchart of the hindcasting procedure including initialization of the model
and the construction of the reanalysis time series.
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Table 6.1 Hindcasting scenarios for the EFAS system including abbreviations and assimi-
lated data used to create a re-analysis time series from which hindcasts were initiated. The
calibration indicates the data used in Chapter 5 to calibrate the hydrological model.

Hindcast Calibration

Scenario # of discharge stations Satellite data Data for calibration

Q0 0 stations None None, expert knowledge
Q0sat 0 stations All satellite data Satellite data
Q1 1 stations None 1 discharge observation
Q1sat 1 stations All satellite data 1 discharge station & satellite data
Q7 7 stations None 7 discharge stations
Q7sat 7 stations All satellite data 7 discharge stations & satellite data

Q7noDA None None 7 discharge stations
Q7satDA None All satellite data 7 discharge stations

for this new assimilation system are low. For a 10-day forecast with 102 members for
the Upper Danube the required calculation time is 120 seconds on a 8-core machine
with 2.26 GHz processors and 24 GB RAM.

6.2.6 Scenarios

The different scenarios used are given in Table 6.1 as well as the data used in the
assimilation before the hindcasting was done. The parametrization was calibrated
for the Upper Danube for the period 2010-2011 and was used to create analysis time
series for each scenario. The calibration was based on the observations available for
the reanalysis, so if both discharge and satellite data were available these were also
used for the calibration of the hydrological model (Table 6.1).

Two additional scenarios have been included (bottom half of Table 6.1) to show the
performance of the hindcasts in case of limited or no data availability. Both scenarios
have been calibrated on discharge and use assimilation of satellite observations or no
data.

6.2.7 Evaluation

The evaluation of each hindcast was done based on coefficient of variation (COV ),
Continuous Ranked Probability Score (CRPS, Hersbach, 2000), Mean Absolute Error
(MAE), Brier Score (BS, Brier, 1950) and the number of false and true positive
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flood alerts. These scores were calculated for each lead time separately to evaluate
the quality of the hindcast for different lead times.

To assess the spread of the ensemble of simulated discharges, the coefficient of varia-
tion was determined with:

COV =
1

T

T∑
t=1

σQmod(t)

Qmod(t)
(6.7)

where σQmod(t) and Qmod(t)(m
3d−1) are the standard deviation and the mean of the

ensemble of modelled discharge at time t, respectively, and T is the number of time
steps (days) in the reanalysis period.

The CRPS (Hersbach, 2000) was used to calculate whether the uncertainty of the
forecast is correct and not over- or underestimated. The CRPS is given by:

CRPS =
1

T ∗N
T∑
t=1

N∑
n=1

∫ x=∞

x=−∞
(CDF f

n (x, t)− CDF o
n(x, t))

2dx (6.8)

where CDF f
i (x, t) is the cumulative density function of the hindcast at time t for

ensemble member n, CDF o
i (x, t) is the cumulative density function of the observation

at time t for ensemble member n. CDF o
i (x, t) is given by a Heaviside function, with

a step from 0 to 1 probability at the observed value. The CRPS is standardized
by Qobs for each validation location to enable a comparison between stations with a
different magnitude of discharge.

To calculate if the hindcasts were biased theMAE was calculated using the ensemble
mean of the forecast. The MAE is given by:

MAE =
1

T

T∑
t=1

|Qmod(t)−Qobs(t)|
Qobs

(6.9)

where Qmod(t) and Qobs(t) (m
3d−1) are the average hindcasted discharge and observed

discharge at time t, respectively, and Qobs is the average discharge over the evaluation
period. COV , CRPS and MAE were used to evaluate the performance of each
scenario and to determine the quality of each hindcasting scenario. Scores were
standardized to enable a comparison between upstream and downstream stations
without correcting for differences in discharge volumes. In addition, these scores
were determined per lead time separately to enable a better comparison between the
different scenarios and also to determine the flood forecasting performance of EFAS
for different lead times.

To test the accuracy of the flood alerts (both timing and height of the flood peak),
the Brier score is calculated for different flood thresholds and different lead times.
The Brier score was calculated by:

BS =
1

T

T∑
t=1

(sgn(Qmod(t))− sgn(Qobs(t))) (6.10)
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where sgn(Qmod(t)) and sgn(Qobs(t)) are binary values indicating flood event (1)
or no flood event (0) for model and observation, respectively. The Brier score can
be calculated for different thresholds of discharge and different lead times. In this
study two threshold levels were used, namely the 80th and 90th percentile of the
discharge (Q80, Q90). Exceedance of these arbitrary levels will not necessarily cause
flood situations, however to allow for evaluation of hindcasts these high discharge
events were used. Furthermore the number of false positives (flood forecast, no flood
observed), missed events (no flood forecasted, flood observed) and correctly forecasted
(flood forecasted, flood observed) were calculated for each hindcasting scenario for
the Q80 and Q90. This resulted in 1035 and 2070 time steps with floods exceeding
Q90 and Q80 respectively divided over 10 to 18 flood events on average over the 16
validation locations.

6.3 Results

6.3.1 Reanalysis

To analyse the performance of the reanalysis the COV (Equation 6.7) is used to
determine the uncertainty after the assimilation of the observations (Figure 6.4 and
Table 6.2). In the Q0 scenario, the model is not calibrated and no data is assim-
ilated into the reanalysis to correct for incorrect model states. The uncertainty in
the model simulation is large with a COV of 0.25. Uncertainty even increases dur-
ing extreme flood events, reducing the potential to use a model calibrated on expert
knowledge without data assimilation for flood forecasting. The assimilation of three
different satellite products (Q0sat) results in a reduction of the COV of the discharge
simulation to 0.136 compared to 0.25 for Q0 (Figure 6.4). This reduction is caused
by the assimilation procedure, which constrains the model to follow the observations
and hence the spread between ensemble members is reduced. Soil moisture observa-
tions do not contain information on groundwater and routing processes, hence they
impact the discharge simulation only indirectly via surface runoff and percolation to
the groundwater from the unsaturated zone. This results in the fact that the dis-
charge simulations are not necessarily improved by assimilation of remotely sensed
soil moisture observations.

Two scenarios were created where only discharge is assimilated into the model, namely
Q1 and Q7. For Q1 only discharge from the outlet was used and for Q7, additional
discharge observations (Figure 6.1) upstream were assimilated into the model. The
assimilation of additional observation data reduces the COV to 0.08 for Q1 and to
0.04 for Q7, which is for both scenarios lower than for Q0 (Table 6.2). Q1 shows a
small positive bias in the selected time period compared to the discharge observations.
However, on average the bias does not exist for the entire entire simulation period
and no systematic bias exists between the simulation and the observations.
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Figure 6.4 Reanalysis time series of discharge at the outlet of the Upper Danube catch-
ment (Figure 6.1) for part of the hindcasting period. In grey are all model realizations, the
ensemble mean is given by the dotten black line and the solid black line gives the observed
discharge value. The different assimilation scenarios are indicated on the left; for explana-
tion of scenarios see Table 6.1. The different assimilation scenarios are indicated in the top
left corner of each plot.

Finally, two scenarios where both discharge and remotely sensed soil moisture ob-
servations are assimilated into the model (Q1sat and Q7sat) were evaluated. In these
scenarios the uncertainty is reduced compared to most other scenarios. However, peak
discharge for Q1sat is overestimated, while baseflow simulations are better compared
to Q1. Improved simulations are also observed with Q7sat compared to Q7 and the
problem with overestimated peak discharge is gone Q7sat (Figure 6.4). An example
time series is provided to show the impact of the satellite observations in the Q7sat
scenario (Figure 6.5).

It must be mentioned that additional discharge data has a larger impact on the reduc-
tion of the uncertainty, than assimilation of remotely sensed soil moisture. Remotely
sensed soil moisture enables a better simulation of the base flow compared to assim-
ilation of discharge observations only. The reduction in uncertainty of the discharge
simulations with the assimilation of remotely sensed soil moisture shows that this
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Figure 6.5 Example time series (14◦E, 48◦N) of simulated soil moisture for 0−2 cm (upper
panel) and the simulated soil moisture for 0 − 5 cm (lower panel) for the analysis period,
Q7sat scenario. Observations of remotely sensed soil moisture are shown from three different
sensors. Jumps in the time series at assimilation moments indicate the update of model
states according to the observations.

method has a high potential in sparsely gauged river basins to reduce uncertainties
in simulate discharges.

6.3.2 Hindcasting performance

The hindcast performance of each scenario was evaluated using the CRPS (Equation
6.8) and the MAE (Equation 6.9). In general the uncertainty in the hindcast is
reduced when more data is assimilated into the system, leading to a better hindcast
simulation (Figure 6.6). When more discharge data is assimilated, the uncertainty is
more strongly reduced than with the assimilation of only remotely sensed soil moisture
data (Figure 6.4 and 6.6). This is also confirmed by the CRPS score for the different
scenarios (Figure 6.7), where the decrease in CRPS is strongest when more discharge
data is used (Table 6.2). In general the CRPS increases with increasing lead times
for all scenarios with the exception of Q1sat. Due to the larger spread for longer lead
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Figure 6.6 Example forecast time series of discharge at the outlet of the Upper Danube
catchment (Figure 6.1) for part of the hindcasting period. In grey are all model realizations,
the ensemble mean is given by the dashed line and solid black line gives the observed
discharge value. Each column of figures gives the hindcast for a particular time, indicated
by the vertical line.

times (Figure 6.6) the CRPS will increase, because forecasts with high uncertainty
are penalized. The CRPS for Q1sat is the highest, indicating that this scenario
has the lowest hindcasting skill of all scenarios (Figure 6.7 and Table 6.2). This is
caused by the overestimation of most flood events, which results in a high CRPS.
When more discharge data is assimilated (Q0 compared to Q1 and Q7) the CRPS
is reduced throughout the catchment for most locations including the outlet near
Bratislava. When a combination of discharge data and satellite data is assimilated
(Q7sat), the quality of the hindcast is highest (Figure 6.6).

The MAE (Equation 6.9) is calculated for all scenarios for different lead times and
locations (Figure 6.8). Compared to the scenario without assimilation of observations
(Q0), only the scenarios where multiple discharge stations are assimilated (Q7 and
Q7sat) show an increase in performance. The best performance is generated by Q7sat,
which shows a low bias compared to the observed discharge. For Q1sat the MAE is
relatively low, especially when compared to the CRPS. This is mainly caused by the
accurate discharge simulation in base flow periods, resulting in a low MAE.
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Figure 6.7 Continuous Ranked Probability Scores (CRPS) for different forecasting times
for the European Awareness Flood System (EFAS). Each box only contains the CRPS for
the 16 validation locations for a period of 1 year with two forecasts per day.

Table 6.2 Average skill scores for different hindcast scenarios for the EFAS system. Scores
are averaged over different forecasting times and for different locations with discharge ob-
servations in the Upper Danube (Figure 6.1).

Scenario COV CRPS MAE BS Q90 BS Q80

Q0 0.272 0.328 0.620 0.130 0.257
Q0sat 0.161 0.252 0.791 0.220 0.363
Q1 0.084 0.203 0.702 0.168 0.314
Q1sat 0.075 0.306 0.508 0.084 0.177
Q7 0.049 0.186 0.382 0.038 0.166
Q7sat 0.047 0.182 0.309 0.029 0.096

Q7noDA 0.055 0.187 0.385 0.042 0.173
Q7satDA 0.053 0.183 0.384 0.040 0.160
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Figure 6.8 Mean Absolute Error (MAE) for different forecasting times for the European
Awareness Flood System (EFAS). MAE is standardized by dividing the MAE through the
mean discharge. Each box only contains the MAE for the 16 validation locations for a
period of 1 year with two forecasts per day.

6.3.3 Flood hindcasting skill

The performance of each scenario was evaluated using the BS (Equation 6.10) and
the number of false positive flood alerts. Due to the large spread within the ensemble
the Q0 in general has a low forecasting skill (Table 6.2). This is shown by the rela-
tively high BS (Figure 6.9) and the large number of false positive forecasts (Figure
6.10). Almost all flood events are correctly captured also for long lead times, which
is caused by the overestimation of discharge in general (Figure 6.6). The overestima-
tion of discharge also causes the high number of false positive flood forecasts, where
around 90% of the exceedances of the threshold are incorrect and no flooding occurs.
Compared to Q0 the forecasting skill for Q0sat is decreased, shown by an increas-
ing BS and a higher number of false positives. The high number of false positives
is the result of an even higher overestimation of the peak discharge in this scenario
(Figure 6.6), which results in false flood alerts. The number of missed and correctly
forecasted floods remains the same. The BS and the number of false positives for
Q1 and Q7 is considerably lower than for Q0. Q7 also has a better hindcast skill
than the Q1 caused by the increased number of observations used in the assimilation
framework. The improved forecasting skill is also found in the BS for both Q1sat and
Q7sat (Figure 6.9), which are for both scenarios lower than without the assimilation
of remotely sensed soil moisture. For Q1sat this is mainly caused by an increased
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Figure 6.9 Brier Score (BS) for different forecasting times for the European Flood Aware-
ness System (EFAS) in the Upper Danube (Figure 6.1). Each box only contains the BS for
the 16 validation locations for a period of 1 year with two forecasts per day. The Brier scores
for the 90% threshold (top) and the 80% threshold (bottom) are given. A total of 1035 and
2070 time steps (90th and 80th percentile, respectively) with flooding were observed for the
Upper Danube

performance in the upstream areas of the catchment, while Q7sat shows an improved
performance throughout the catchment. The number of false positive flood forecasts
is reduced by 70% compared to the scenarios with only discharge assimilation, while
the number of missed and correctly forecasted floods remains the same. This leads to
the conclusion that even when the simulation of discharge throughout the catchment
is used and discharge simulations are of a high quality, adding satellite data will lead
to an improvement in the forecasting skills of the hydrological model.

6.3.4 Hindcasting performance with limited assimilation

Two additional scenarios have been evaluated were the model was calibrated on dis-
charge observations alone and either remotely sensed soil moisture is assimilated
(Q7satDA) or no observations are assimilated (Q7noDA) in the reanalysis period (Ta-
ble 6.2). The reanalysis for Q7noDA shows the largest spread in the reanalysis (indi-
cated by a large COV ), while with the assimilation of remotely sensed soil moisture
(Q7satDA) this uncertainty is reduced. However, the uncertainties remain larger than
for scenarios Q7 and Q7sat, where in both cases discharge data has been assimilated.
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Figure 6.10 Relative changes in false positive flood alerts for the 90th percentile threshold,
compared to no assimilation scenario (Q0) for different forecasting times. A total of 1035
time steps with flooding were observed for the Upper Danube.

The uncertainty in the hindcasting performance (CRPS) is reduced for Q7satDA com-
pared to Q7 and almost equal to joint assimilation of discharge and soil moisture
(Q7sat). This indicates that the more accurate representation of the soil moisture
will reduce the uncertainty in model simulations and hence hindcasts. For both
Q7noDA and Q7satDA the MAE does not show an increased performance, indicating
that the bias is not reduced compared to Q7 nor Q7sat.

As expected, the hindcast skills scores (BS) are reduced when the satellite data is
used in the assimilation compared to no assimilation. Compared to Q7 and Q7sat the
hindcast skill for the extreme events are not increased. However, compared to Q7
and Q7noDA the assimilation of satellite data (Q7satDA and Q7sat) will increase the
hindcast skill for the less severe floods (BSQ80).

In general, the assimilation of remotely sensed soil moisture will increase the simu-
lation of discharge. However, the discharge simulation performance for the extreme
events is less impacted by the assimilation of soil moisture observations. The as-
similation of soil moisture observations results in a better estimate of the initial soil
moisture conditions and estimate of discharge (CRPS), mainly for the intermediate
discharge rates. In extreme events with high precipitation totals the relative impor-
tance of pre-storm soil moisture conditions is reduced. Assimilation of discharge has
the largest impact on the uncertainty in the hindcast, which will have an impact
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on the ensemble spread. Joint assimilation of soil moisture and discharge observa-
tions, combining the advantages of both types observations, leads to improved initial
conditions and consequently high hindcasting skills, especially for the extreme events
(BSQ90). The low uncertainty as a result of discharge assimilation with the improved
estimate on the soil moisture state in the catchment leads to increased hindcasting
performance.

6.4 Conclusions

In this study the added value of remotely sensed soil moisture in an operational
flood forecasting system was evaluated. The gain from assimilation of soil moisture
observations is compared to assimilation of only discharge and the combination of
discharge and soil moisture observations. EFAS was used for a hindcasting experiment
in the Upper Danube. Hindcasts were made for a period of one year and the results
compared for six different scenarios.

The assimilation of remotely sensed soil moisture has an impact on the simulation of
discharge, as shown by other studies (e.g. Pauwels et al., 2001; Brocca et al., 2010,
2012; Draper et al., 2011). However, in this study the impact is not only limited to
small catchments with a spatial extent close to or smaller than the satellite resolution
but also works for larger catchments.

We show that the assimilation of remotely sensed soil moisture improves the flood
forecasting, especially when used in combination with assimilation of distributed dis-
charge observations. The uncertainty in the discharge simulations is reduced and
biases in the simulation are reduced when satellite data is assimilated. In scenarios
where only discharge from the outlet is used in combination with satellite observa-
tions, the peak discharges are generally overestimated. Although this will result in a
less accurate simulation of discharge it will not impact the quality of the forecasting
of the flood events.

Floods are better predicted when soil moisture data is assimilated into EFAS in com-
bination with discharge observations. The number of false alerts is reduced compared
to scenarios when remotely sensed soil moisture observations are not used. Although
the gain of using more discharge observations remains larger, soil moisture observa-
tions improve the quality of the flood alerts, both in terms of timing and in the exact
height of the flood peak.

Two additional scenarios were studied, where only calibration of the hydrological
model was used and no assimilation or assimilation of only satellite data. These
scenarios were created to study the added value of the assimilation compared to only
calibration of the hydrological model. It was found that the COV , CRPS,MAE and
BS are all reduced by the assimilation of remotely sensed soil moisture compared to
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no assimilation. However, assimilation of discharge reduces uncertainties more than
assimilation of remotely sensed soil moisture. Simulations without data assimilation
tend to have biases in the simulation and a larger ensemble spread than scenarios
with data assimilation, while the reduced uncertainty resulting from assimilation
will lead to a increased reliability of flood forecasts. These results show that the
assimilation of soil moisture will result in an increased performance compared to not
assimilating observations. This is important for ungauged basins, where satellite data
is available and discharge observations are not available or not available in near-real
time. Additionally these results show the added value of assimilation of observations
into the EFAS system, compared to the current set-up.

In conclusion, the uncertainty in the flood forecasts is reduced when discharge ob-
servations and satellite data are assimilated into the hydrological model of the EFAS
system for the Upper Danube. The addition of remotely sensed soil moisture to ex-
isting discharge observations reduces the number of false positive flood alerts and
thereby increases the reliability of the flood awareness system. Although the number
of the data available via satellite retrievals still remains a challenge in an operational
system, the potential benefits could lead to a significant reduction in the false flood
alerts, possibly also for other catchments. This will reduce the number of unneces-
sary precautions taken by the responsible governments and increase the confidence
and willingness to act upon these flood alerts.
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Part II

Assessment of drought definitions





7 Comparison of frequently used
drought indicators

This chapter is based on:
Wanders, N., van Loon, A. F., van Lanen, H. A. J. (2014), Uncover the real
drought, Geophysical Research Letters, under review.

Abstract

Drought is caused by a prolonged deficit in available water and has a major impact on

natural and social resources. Possible impacts of drought are crop losses, famine, fatalities,

power black outs and degraded ecosystems. These severe socio-economic impacts show the

need to carefully monitor drought conditions using the appropriate drought indicators. The

indicators should consider differences in drought-generating processes resulting in drought

in different domains of the terrestrial water cycle. The objective of this study is to deter-

mine which indicators can be used for monitoring drought in each domain of the terrestrial

water cycle. A selection of frequently used indicators for different drought types (e.g. SPI

for different accumulation periods, PDSI, threshold approach) was used to investigate their

potential to monitor drought on a global scale. Correlations (r) between indicators were

calculated for the major climates and for the whole globe to quantify the unique informa-

tion content of each indicator and their interchangeability to be used for different drought

types. It was found that indicators used for precipitation drought show low correlations

(r = 0.1 − 0.65), although most of them are calculated in a similar way (e.g. SPI-1 and

SPI-3). Indicators for soil moisture drought show even lower similarity (r = 0.25), while in-

dicators for streamflow drought show the highest correlation (r = 0.5− 0.95). Additionally,

meteorological drought indicators are not capable to correctly describe soil moisture drought

(r = 0.0 − 0.7) nor streamflow drought (r = 0.0 − 0.75). These findings have implications

for drought monitoring systems: (i) for each drought type, which is associated with one

or more impacted sectors, a different indicator should carefully be identified; (ii) drought

indicators that are designed to monitor the same drought type (e.g. meteorological) should

also be carefully identified because these show large discrepencies in their anomalies and

hence drought detection. Correlation between drought indicators also depends on climate

type. In particular snow-dominated climates need indicators that address snow accumula-

tion and melting. In addition, studies on trends in drought or projections of future drought

should be specific on the drought type to reduce the current confusion in how drought has

developed or will develop.
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7.1 Introduction

Drought is caused by a prolonged deficit in the available water and has a major
impact on both natural and societal hydrological resources (Wilhite, 2000; Tallaksen
and Van Lanen, 2004; Mishra and Singh, 2010; Sheffield and Wood, 2011). Due
to the large spatial and long temporal extent of drought events, they tend to have
a large economic damage, e.g. $2.2 billion for the still ongoing California drought
(2014) in the United States alone (Howitt et al., 2014). This drought is caused by
lack of precipitation in three consecutive years, leading to a significant reduction of
the water levels in some of the major rivers and reservoirs affecting shipping and
energy production. Agriculture is even more heavily impacted resulting in job loss
for thousands of agricultural workers. A similar situation occurred in the United
Kingdom in 2012. Due to very low rainfall in the winter of 2011/2012 most reservoirs
were not replenished by spring 2012 leading to restrictions on water use (Marsh and
Parry, 2012).

These examples clearly show that drought can affect all domains of the hydrological
cycle and can mitigate from on impacted sector to another. Three major drought
types that refer to different parts of the hydrological cycle are identified, namely,
meteorological, soil moisture/agricultural and hydrological drought. Depending on
the type of drought the impacts on society and nature are different (Figure 7.1). This
emphasizes the need to monitor drought throughout the hydrological cycle, to be able
to pro-actively respond to possible impacts. To facilitate the monitoring of drought,
indicators are used to monitor and determine the severity of drought events.

Most drought indicators aim to subtract the normal seasonal variation in water avail-
ability or water state from the climatological variations and thereby quantify extreme
events and thus drought. However, the large number of different drought indicators
(e.g. Keyantash and Dracup, 2002) results in uncertainty of which indicators could
be used under which circumstances and for what purpose. It is obvious that this
will lead to confusion about which indicator to use for which impact. Expert knowl-
edge is required to monitor drought with the correct indicators. Mostly, the focus
of drought monitoring is put on precipitation and soil moisture drought, while the
impact of drought on various sectors goes beyond these domains of the hydrological
cycle (Figure 7.1). The World Meteorological Organization advices to the use one
single drought indicator that derives drought conditions from anomalies in precipi-
tation (World Meteorological Organization, 2009). However, an important unknown
remains if one single indicator would suffice to monitor drought conditions relevant to
all possible impacted sectors. Which indicator would fullfill this goal and would this
indicator provide valuable information on drought conditions for all relevant potential
impacted sectors (Figure 7.1).

The objective of this study is to investigate: (i) intrachangeability of drought indi-
cators used for different drought types (ii) interchangeability of drought indicators
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Figure 7.1 Different types of drought and their impact on society and nature.

used for the same drought type (iii) dependency of this intrachangeability and inter-
changeability on climatology. A conceptual hydrological model was used to simulate
time series of hydrological variables to determine different drought indicators. Time
series of these indicators were compared on a global scale.

7.2 Material and Methods

7.2.1 Hydrological model

A conceptual hydrological model (Van Lanen et al., 2013) was used to simulate the
catchment response to meteorological forcing. The model was used to simulate the
hydrological cycle at a global scale with a resolution of 0.5◦ for the period 1958-2002.
The model incorporates snow, soil moisture and groundwater modules that enable the
simulation of the hydrological response of the 0.5◦ grid cell. Using a lumped approach,
the model generates time series of snow accumulation, soil moisture, groundwater and
discharge. The precipitation, temperature and potential evapotranspiration data that
are required as forcing were derived from the WATCH reanalysis dataset (Weedon
et al., 2011). The conceptual model uses a fixed catchment parameterization which
reflects a sandy-loam soil with an intermediate groundwater response time. The model
has been successfully applied in previous studies (Van Lanen et al., 2013; Van Loon
et al., 2014). The conceptual model allows for isolation of the climatic signal from
the signal due to differences in catchment characteristics. This allows to focus on
differences between drought indicators, only with respect to different climate types.
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Table 7.1 Indicators under study and their properties.

Indicator Drought type Period Abbr. Reference

Effective Drought Index Meteorological 365 days EDI (Byun and Wilhite, 1999)
Standardized Precipitation Index Meteorological 1 month SPI-1 (McKee et al., 1993)
Standardized Precipitation Index Meteorological 3 month SPI-3 (McKee et al., 1993)
Standardized Precipitation Index Meteorological 6 month SPI-6 (McKee et al., 1993)
Standardized Precipitation Index Meteorological 12 month SPI-12 (McKee et al., 1993)
Standardized Precipitation Index Meteorological 24 month SPI-24 (McKee et al., 1993)
Palmer Drought Severity Index Soil moisture - PDSI (Palmer, 1965)
Threshold level method Meteorological 1 month MAP (Yevjevich, 1967)
Threshold level method Soil moisture 1 month MAS (Yevjevich, 1967)
Threshold level method Hydrological 1 month MAQ (Yevjevich, 1967)
Total Storage Deficit Index Hydrological - TSDI (Yirdaw et al., 2008)
Groundwater Resource Index Hydrological - GRI (Mendicino et al., 2008)

7.2.2 Drought indicators

Drought in all parts of the hydrological cycle were evaluated using a selection of 12 fre-
quently used drought indicators (Table 7.1). These indicators cover all drought types
and strongly vary in calculation procedure and input data required. These drought
indicators were applied to detect drought conditions in the hydrological simulations.
The exact calculation procedure is given in Section 7.3. Here the SPI-12 and SPI-24
are classified as meteorological drought indicators, however, these are often used as
proxy for soil moisture or meteorological drought (Seneviratne et al., 2012).

For drought indicators that require only precipitation as input, the time series of
the WATCH reanalysis dataset were used (Weedon et al., 2011). All indicators were
derived on a monthly time step and normalized time series for each indicator were
calculated. For more information about the calculation procedure of each drought
indicator the reader is referred to the individual papers mentioned and Section 7.3.

Indicators were evaluated based on the correlations between indicators that should in-
dicate similar drought types or could be used to monitor similar impacts (Figure 7.1).
The correlation between two meteorological drought indicators (e.g. EDI and SPI-1)
is referred to as interchangeability. The correlation between indicators of different
drought types (e.g. SPI-1 for meteorological and GRI for hydrological drought) is
referred to as intrachangeability. Additionally, the impact of climate types accord-
ing to the Köppen-Geiger classification was evaluated, to see if a dependency exists
between the correlation and the climate type.
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7.3 Drought indicator calculation

7.3.1 Effective Drought Index

A method to identify meteorological drought on a daily time scale is the Effective
Drought Index (EDI). It was developed by Byun and Wilhite (1999) to calculate
daily water accumulation with a weighting function of time passage. Daily rain- and
snowfall data from time series of 30 years or more are used for the calculation of
the EDI. These long series are needed to transform the EDI values into a reliable
normal distribution (Kim et al., 2009). Most drought indices have their limitations
because they are based on a monthly time step (Byun and Wilhite, 1999; Kim et al.,
2009), while the EDI has a daily time step. The EDI is a standardized index, which
makes it possible to compare EDIs from different climatic regions. The use of the
EDI has been tested in several drought studies (Byun and Wilhite, 1999; Smakhtin
and Hughes, 2007; Kim et al., 2009).

7.3.2 Standardized Precipitation Index

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993).
The SPI calculation is done with monthly precipitation, which is fitted to a two pa-
rameter gamma probability distribution. This distribution is then transformed into
a normal distribution (Redmond, 2000; Keyantash and Dracup, 2002; Naresh Kumar
et al., 2009). The SPI is designed to quantify the precipitation deficits for multiple
timescales (Keyantash and Dracup, 2002). McKee et al. (1993) suggest to calculate
the SPI for 3-, 6-, 12-, 24-, and 48 month time scales. The longer timescales are
sometimes used as proxies of streamflow and groundwater drought. Because of the
normalized distribution, wetter and drier climates can be represented and compared
in the same way. A disadvantage of the SPI is the need for long time series of ob-
served data, and the possibility of trends in precipitation during this period. The
National Drought Mitigation Centre in the United States has daily updates of the
SPI for the United States. SPI has gained importance in recent years as a potential
drought indicator and is being used more frequently for assessment of drought inten-
sity in many countries (e.g. United States, Korea, and Australia) as mentioned by
Vincente-Serrano et al. (2004), Wilhite et al. (2005) and Wu et al. (2006). The World
Meteorological Organization (2009) has recommended the SPI as the best suitable
indicator for meteorological drought. The SPI is a commonly used indicator across
the world.

7.3.3 Palmer Drought Severity Index

The Palmer Drought Severity Index (PDSI) was developed by Palmer (1965) to pro-
vide an index based on drought severity, that allowed the comparison of drought with
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different time and spatial scales. Palmer (1965) based his index on the supply-on-
demand concept of the soil water balance. The PDSI takes into account precipitation,
evapotranspiration, and soil moisture, although it is still classified by many authors
as a meteorological drought indicator. In the United States the PDSI is regarded
the most prominent index for meteorological and soil moisture drought (Alley, 1984;
Keyantash and Dracup, 2002; Wells et al., 2004). The PDSI is based on a generic
two-layer soil model. For both layers soil moisture storage is calculated based on
observed meteorological conditions. In this research the PDSI is considered a soil
moisture drought indicator, because of the simulated soil moisture content. Several
limitations of the PDSI have been reported by Alley (1984). The most important
limitation is that the beginning and end of a drought or wet spell are not clearly
defined and only based on Palmer’s study (Palmer, 1965). The two-layer approach is
a simplification and may not be an accurate representation of the actual situation. In
colder climates, accumulation of snow and frozen ground are not represented by the
index (Dai et al., 2004). The PDSI is used for drought research on a global scale in
studies done by Dai et al. (2004); Sheffield and Wood (2007); Sheffield et al. (2009);
Dai (2013); Sheffield et al. (2012). In the United States the National Climatic Data
Centre has maps from 1895 till present of monthly PDSI values.

7.3.4 The threshold method

The threshold method or truncation level method originates from the theory of runs
developed by Yevjevich (1967) and has been widely used (Smakhtin, 2001). With the
threshold method, different drought characteristics can be determined (e.g duration
and deficit volume) (Tallaksen et al., 1997; Hisdal et al., 2004; Fleig et al., 2006;
Tallaksen et al., 2009). The method is based on a threshold. When streamflow or
another hydrometeorological variable is below this threshold it is considered a drought
situation (Dracup et al., 1980; Hisdal et al., 2004).

7.3.5 Total Storage Deficit Index

The Total Storage Deficit Index (TSDI) was developed by Yirdaw et al. (2008) for
drought characterization in the Canadian Prairie. In their study, they combined the
TDSI with water storage anomalies from Gravity Recovery And Climate Experiment
(GRACE) satellite observations and streamflow measurements. A study of Agboma
et al. (2009) used the TSDI in combination with the Variable Infiltration Capacity
(VIC) model. The TSDI uses precipitation, evapotranspiration, and discharge from
the basin outlet. The anomalies in total amount of water stored in the catchment
are an indicator for drought. Since no further research has been done on the TSDI,
only the experiences results from Yirdaw et al. (2008) and Agboma et al. (2009) are
available. So far, the TSDI is not used on a global scale.
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7.3.6 Groundwater Resource Index

For the calculation of groundwater drought, the Groundwater Resource Index (GRI)
can be used. This index, developed by Mendicino et al. (2008), was tested in Calabria,
Italy. The GRI is based on a normal distribution of the simulated groundwater storage
in at a site. Since the GRI is a very new drought indicator, the performance of the
GRI has only been tested by Mendicino et al. (2008) with 40-years of simulated data.
The simulated data were generated by a hydrological model which used: precipitation,
air temperature, and air pressure data as driving force. They compared the GRI with
the SPI of 6-, 12-, and 24-months. They found that the GRI was a better indicator
for drought in the Mediterranean area than the SPI.

7.3.7 Sensitivity analysis

A sensitivity analysis was done to assess the robustness of the model parameteriza-
tion with respect to the generated time series of soil moisture, discharge and derived
drougth indicators. The sensitivity analysis by Van Lanen et al. (2013) showed that
hydrological drought characteristics derived from simulated discharge, did not change
significantly with changes in parameterization. However, here the robustness of the
model with respect to different drought indicators was evaluated. The sensitivity of
the soil moisture and discharge simulations to changes in the parameterization was
evaluated for a temperate climate (with seasonal snow impact). The relative differ-
ence in the variance and the mean of the soil moisture and discharge are related to the
changes in parameterization. Thereafter, drought characteristics are calculated with
different drought indicators and via correlation indicators the time series are com-
pared with the baseline scenario (sandy-loam soil with an intermediate groundwater
response time) .

7.4 Results

7.4.1 Sensitivity analysis of hydrological model

From the local sensitivity analysis, it was found that the parameterization of the
conceptual model has a minor impact on the simulated drought indicators and hence
it hardly influences the comparison between indicator time series. The impact on the
correlations between drought indicators is less than 0.005 for all indicators under study
for all locations. This clearly shows that the impact of the model parameterization
on the conclusions of this study is negligible.
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7.4.2 Analysis of spatial patterns in drought indicators

An example of the drought conditions in Africa in August 1984 is shown for all
indicators under study, indicating the severity of the drought conditions and to explore
differences between drought indicators (Figure 7.2). It is clear that although the 1984
drought in Africa is known to be severe (Van Huijgevoort et al., 2012; Wada et al.,
2013), not all indicators show this signal. There is a strong disagreement amongst the
drought indicators on the spatial pattern of the drought and the severity. Although
not all indicators have been developed to monitor the same drought type, similarities
in the spatial patterns should be visible between indicators of the same type. Certainly
most indicators of the same type use similar input data. This example of a spatial
drought pattern clearly shows that when this drought was monitored with a single
indicator, the impact assessment of the natural hazard, could be significantly different
relative to monitoring with another drought indicator of the same type. Since the
textitreal drought situation is unknown no comparison could be made with the real
drought situation; however, a better agreement on the spatial pattern of the same
type should occur.

7.4.3 Interchangeability of drought indicators

The correlation between drought indicators used for different drought types (intra-
changeability) is lower than the correlation for indicators within a drought type (in-
terchangeability, Figure 7.3). It is striking to see that meteorological drought was
characterized differently by the seven relevant indicators used in this study (EDI,
MAP, SPI-1,3,6,12,24), resulting in the lowest median correlations over all climates
(r = 0.1 − 0.65). Because these indicators use only precipitation time series, the
cause of the low correlation can fully be alloted to the way in which precipitation time
series are transformed to meteorological drought. These indicators were expected to
have a high correlation because they should represent drought conditions for the same
impacts. This could be partly caused by the way indicator calculations deal with this
highly dynamic time series of precipitation.

The low average correlations (r = 0.25) found between the two soil moisture in-
dicators (PDSI and MAS) are a result of the different ways in which soil moisture
drought is defined. Especially in situations with snow accumulation the way in which
the drought identification was performed is of high importance. For example, PDSI
does not account for snow or delayed soil moisture availability as a result of snow
melt, which results in different drought characteristics compared to MAS.

The interchangeability of three hydrological drought indicators (GRI, TSDI, MAQ)
is high compared to the other drought types (r = 0.5−0.95, also seen in Figure 7.2).
This indicates that one indicator might already suffice to correctly characterize hy-
drological drought events and their impacts (in contrast to meteorological or soil
moisture drought). The fact that hydrological drought indicators show the highest
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Figure 7.2 Drought conditions over Africa in August 1984 for selected drought indicators
under study. Colours indicate the normalized drought severity, where negative numbers
show more severe drought conditions and positive numbers more wetness.
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interchangeability could be related to the fact that the dynamics in groundwater and
discharge time series is low compared to precipitation or soil moisture time series.
This low dynamic behaviour results in a reduced impact of any smoothing or aggre-
gation in the drought indicator calculation and as a result leads to higher correlations
and agreement in the identification of drought events. Hydrological drought events
often have long duration, whereas meteorological drought events are often short.

7.4.4 Intrachangeability of drought indicators

The potential intrachangeability of drought indicators is even lower than the inter-
changeability, which is to be expected when indicators are supposed to monitor differ-
ent domains of the hydrological cycle (Figure 7.3). Meteorological drought indicators
show low intrachangeability with soil moisture (r = 0.0 − 0.7) and hydrological
drought indicators (r = 0.0 − 0.75). The highest correlations of meteorological
drought indicators with indicators of other drought types are found for the EDI, SPI-
3, SPI-6 and SPI-12, while the indicators with short or very long aggregation periods
(MAP, SPI-1 and SPI-24), clearly show low potential intrachangeability. The indi-
cators with a short aggregation period do not have memory to accurately reproduce
soil moisture of hydrological drought conditions.

Soil moisture indicators show an intermediate intrachangeability with meteorological
drought indicators (r = 0.0− 0.7) and hydrological drought indicators (r = 0.1−
0.65), where the PDSI shows the highest intrachangeability with meteorological drought
indicators.

The results suggest that substitutes (meteorological drought indicators that should
approximate another drought type) cannot be used to study different drought types.
For example, the intrachangeability of drought indicators is always lower than the
interchangeability found for each of the three hydrological drought indicators. This
indicates, for instance, that differences amongst hydrological drought indicators are
smaller than for differences between hydrological drought indicators and possible sub-
stitutes, e.g. SPI-12 or SPI-24 (r = 0.3− 0.7). Although computational effort and
complexity of the calculations might be decreased by selection of a substitute for all
drought types, this does not provide useful information for impacted sectors. For
example, when the SPI is used to monitor hydrological drought (for reasons of data
availability), this leads to different drought severity patterns (see Figure 7.2).

An impact of snow accumulation is found for the snow-affected (D) and polar (E)
climate where the intrachangeability of meteorological and hydrological drought in-
dicators is lower than for other climate types. Similar to the result obtained for
meteorological drought indicators, the intrachangeability between soil moisture and
hydrological drought indicators is hampered in snow-affected (D) and polar (E) cli-
mate regions. This clearly illustrates that snow should be accounted for in these
regions, when soil moisture or hydrological drought is considered. In snow affected

154



Figure 7.3 Correlations between indicators for the period 1958-2002, where the colours of
bars and histograms indicate median correlations between indicators. The colours of each
global correlation distribution (below diagonal) indicate the global median of the corre-
lations, where no distinction is made between climate types. Bar plots (above diagonal)
indicate the median of the globe (All), tropical (A), desert (B), temperate (C), Snow (D) and
Polar (E) climate type (upper left cell gives sequence of climate types for the histograms).
Different drought types as defined in Table 7.1 are separated by thick lines.
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(D) climates, snow melt can end drought events by increased water availability in
spring, which could lead to different behaviour of indicators that either include snow
accumulation or not. Moreover, a meteorological drought in winter is not directly
visible in groundwater or discharge (Van Loon and Van Lanen, 2012). Especially,
indicators that do not include snow accumulation and snow melt are highly affected
by this and show low correlations in these snow-affected regions. In the desert climate
(B) all indicators are affected by long periods with no precipitation or recharge. In
these regions the definition of a drought remains challenging and should be done with
care in order not to confuse drought and aridity (i.e normal climatic conditions). In-
trachangeabilityality of drought indicators is higher in the tropical (A) and temperate
(C) climate regions than in the dry and cold climates (B, D and E).

7.5 Discussion and Conclusions

The low correlations between drought indicators (Figure 7.3) show that it is very
important to select the correct indicator for monitoring, forecasting and predicting
a drought relevant for an impacted sector. Since drought impacts are related to
different domains of the hydrological cycle (Figure 7.1), no single indicator can be
used to monitor all impacts. Additionally, the different spatial patterns between
indicators for a known drought event show the need to be cautious when using a
single drought indicator to identify drought conditions even for one drought type
(Figure 7.2). The example for a drought over Africa shows that the indicator used to
characterize drought should be dependent on the impact under study.
Time series of different drought indicators are often used to derive trends in drought
characteristics. However, intercomparison of the outcome of these drought studies
should be done with extreme caution since indicators used might not capture the
same type of drought and are therefore not to be compared. Caution is also advis-
able when one particular drought indicator is calculated for different lag-times or in
different ways (e.g. the PDSI Dai, 2013; Sheffield et al., 2012). Trend analysis based
on a single indicator creates the illusion that the phenomenon drought is studied in
general, but the drought is not captured by one indicator and consequently only the
trend for some impacts is studied. Single indicator studies can be used to capture
trends in a single type of drought (e.g. meteorological or hydrological), although this
should also be done with care since using a different indicator could lead to different
results (see interchangeability potential, Section 7.4.3).
There was an attempt and a request from policy-makers to identify a universal
drought indicator to enable global drought monitoring and enable global risk as-
sessment (World Meteorological Organization, 2009). However, researchers should
not try to fulfil this quest to one ultimate drought indicator, since such an indicator
can never cover the full width of the multi-faced drought phenomenon. Every impact
requires a different type of indicator and although some impacts can be studied with
the same indicator, this is certainly not a standard procedure. The performance of an
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indicator is also dependent on climate type, indicating that the desire for one global
indicator certainly cannot be fulfilled.
For monitoring the propagation of drought through the hydrological cycle it is im-
portant that drought indicators are calculated in a similar way for all domains of the
hydrological cycle (Van Loon and Van Lanen, 2012).
A distinction can be made between indicators used for drought awareness usually on a
large scale (e.g. the European Drought Observatory, Sepulcre-Canto et al., 2012) and
indicators for operational practices on a river basin scale (e.g. Andreu et al., 2009).
Indicators for public awareness could be dimensionless and do not require a direct
connection with an impacted sector. For example, the SPI with different accumu-
lation periods can be used to monitor anomalies throughout the hydrological cycle,
since it gives an indication on the duration and severity of the drought. Indicators like
the SPI are, however, not applicable to calculate drought deficits since only standard-
ized anomalies are provided. The SPI or similar indicators can be used to increase
public drought awareness due to their easy interpretation. Similar calculation proce-
dures as the SPI have been applied to other hydro-meteorological time series to study
drought propagation in for example runoff (Standardized Runoff Index, Shukla and
Wood, 2008) and groundwater (Standardized Groundwater Index, Bloomfield and
Marchant, 2013). For operational purposes, however, a threshold approach would
be more suitable, since it can directly be translated into drought deficits or water
shortages. The threshold approach is easily applicable throughout the hydrological
cycle and therefore suitable for propagation studies (e.g. Peters et al., 2003, 2006;
Tallaksen et al., 2009; Van Loon and Van Lanen, 2012; Van Loon et al., 2014). The
calculated deficits are not very informative for the general public unless standardised,
e.g. by the mean flow.
The results of this study should impact the way in which drought should be monitored
and forecasted. Since indicators are not interchangeabilityal, different indicators are
required for different impacts. Additionally, studying drought in snow-affected regions
should be done with more care and a realistic representation of snow accumulation
should be included in indicators used for these regions (Staudinger et al., 2014). In
this study, it is shown that drought indicators show large differences in drought iden-
tification and therefore drought indicators should be related to the impacted sector
under study. Drought indicators are hardly inter- and intrachangeabilityal and there-
fore a careful selection of the drought indicator is required. Using a single indicator
to study global trends for all drought types is impossible and unrealistic.
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8 Hydrological drought under a
changing hydrological regime

This chapter is based on:
Wanders, N., Wada, Y., van Lanen, H. A. J. (2015), Global hydrological
droughts in the 21st century under a changing hydrological regime, Earth System
Dynamics, 6, 1-15, doi:10.5194/esd-6-1-2015.

Abstract

Climate change very likely impacts future hydrological drought characteristics across the

world. Here, the impact of climate change on future low flows is quantified and associated

hydrological drought characteristics on a global scale using an alternative drought identi-

fication approach that considers adaptation to future changes in hydrological regime. The

global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5◦ glo-
bally for 1971–2099. The model was forced with CMIP5 climate projections taken from

five GCMs and four emission scenarios (RCPs), from the Inter-Sectoral Impact Model In-

tercomparison Project. Drought events occur when discharge is below a threshold. The

conventional variable threshold (V TM) was calculated by deriving the threshold from the

period 1971–2000. The transient variable threshold (V TMt) is a non-stationary approach,

where the threshold is based on the discharge values of the previous 30 years implying the

threshold to vary every year during the 21st century. The V TMt adjusts to gradual changes

in the hydrological regime as response to climate change. Results show a significant neg-

ative trend in the low flow regime over the 21st century for large parts of South America,

southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low

flows are projected, while increased low flows are found in the snow dominated climates.

In 27% of the global area both the drought duration and the deficit volume are expected

to increase when applying the V TMt. However, this area will significantly increase to 62%

when the V TM is applied. The mean global area in drought, with the V TMt, remains

rather constant (11.7 to 13.4%), compared to the substantial increase when the V TM is

applied (11.7 to 20%). The study illustrates that an alternative drought identification, con-

sidering adaptation to an altered hydrological regime, has a substantial influence on future

hydrological drought characteristics.
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8.1 Introduction

Drought has large socio-economic and environmental impacts, e.g. on food (rainfed
agriculture, irrigation), energy (hydropower, release of cooling water), water-borne
transport, ecosystem services, wild fires, greenhouse gas emissions (e.g. Wilhite, 2000;
Tallaksen and Van Lanen, 2004; Sheffield and Wood, 2011). The 2011 drought in the
Horn of Africa caused large famine across the region, leaving hundreds of thousands
of people in need of assistance and many were regrettable fatalities (United Nations,
2011; Sida et al., 2012). Drought-related heat waves and forest fires caused almost
80000 deaths in Europe in 2003. Overall losses were estimated to be about 5000 bil-
lion Euro over the period 1998–2009 (EEA, 2010). IPCC describes in the Special
Report on EXtremes (IPCC-SREX) that droughts will intensify in the 21st century
in certain seasons and areas (e.g. many European regions, parts of North America,
Central America, southern Africa) as result of climate change (Seneviratne et al.,
2012). Society needs to be better prepared to ensure future water, food and energy
security (e.g. Romm, 2011; Van Vliet et al., 2012; Bourzac, 2013). The severe im-
pacts of large-scale droughts show the need to improve understanding of droughts
on continental and global scales, particularly to increase credibility of future drought
projections.

Drought is induced by below-normal precipitation and/or temperature anomalies,
which also propagate to reduce soil moisture. For management of groundwater and
surface water, however, more relevant is the further propagation into hydrological
drought (e.g. Van Loon and Van Lanen, 2012). Despite the need for hydrological
drought information, most large-scale future drought studies focus either on precip-
itation or soil moisture (e.g. Burke et al., 2006; Sheffield and Wood, 2008; Sheffield
et al., 2012; Dai, 2013; Orlowsky and Seneviratne, 2013; Trenberth et al., 2014). Few
studies deal with assessments of large-scale future hydrological drought (e.g. Forzieri
et al., 2014; Prudhomme et al., 2014). The limitation of these studies are, however,
that most of them only use one emission scenario that is based on the previous gen-
eration (i.e. CMIP3) of global circulation models (GCMs) and the previous scenario
projections (i.e. IPCC SRES). Furthermore, Forzieri et al. (2014) only assesses future
drought for one continent (i.e. Europe) at high spatial resolution, rather than span-
ning the whole globe. An exception is the recent study by Prudhomme et al. (2014),
which describes projections of hydrological drought across the world obtained from
a comprehensive multi-model ensemble (five GCMs and seven global hydrological
models or GHMs) using most recent climate models (CMIP5) and four emission sce-
narios (i.e. RCPs). All studies on large-scale future hydrological drought, so far, used
the so-called threshold method (e.g. Hisdal et al., 2004; Fleig et al., 2006) and drought
characteristics in the 21st century are identified by using the threshold of the control
or historical period (e.g. 1971–2000). However, one may argue if such a stationary
approach is suitable for all impact assessments. An updated (transient) threshold for
a moving reference period that reflects changes in the hydrological regime over time
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might be more appropriate to assess such impacts. Vidal et al. (2012) explored the
use of a changing drought index for future drought in France. A transient threshold
assumes adaptation to long-term changes in the hydrological regime. It is also more
in line with the drought definition (Tallaksen and Van Lanen, 2004) being a devia-
tion from normal conditions (i.e. normal implies decadally updated 30 year averages
according to the World Meterological Organization guidelines), although the con-
sequences of such a statistically-constructed metric for real-world applications need
careful investigation (e.g. World Meteorological Organization, 2007; Arguez and Vose,
2010) and should consider if drought-impacted sectors can cope with the changes in
the hydrological regime.

The objective of this study is to assess the impact of climate change on future hy-
drological drought across the globe under a changing hydrological regime, here repre-
sented using a transient threshold over the spatially-distributed river discharge. The
paper is innovative by using: (i) a gradually-changing, spatially-distributed threshold
to adapt to changing hydrological regime, (ii) the latest version of climate models
from CMIP5 climate projections, and (iii) the number of emission scenarios: four
RCPs (2.6, 4.5, 6.0, 8.5).

The paper starts with a brief description of the global hydrological model, forcing
data, drought identification approach and the trend analysis, which are followed by
the description of the temporal evolution of the spatially-distributed threshold for
the river discharge over the 21st century. Next, future drought duration and drought
intensity obtained with the transient threshold method, reflecting a changing hy-
drological regime, are presented and intercompared with the non-transient threshold
approach that is derived from the control period (fixed historical period). Results
are followed by a discussion that intercompares the outcome of this study with exist-
ing assessments of future hydrological drought. It also addresses uncertainty aspects
(e.g. variability among GCMs and RCPs), sensitivity of the threshold values applied
(Q80, Q90), and the impact of the combined effect of the change in the simulated wa-
ter availability (hydrological regime) and in the drought characteristics. Eventually,
conclusions and recommendation are given.

8.2 Material and Methods

8.2.1 Model simulation of streamflow

The state-of-the-art global hydrological and water resources model PCR-GLOBWB
was used to simulate spatial and temporal continuous fields of discharge and storage
in rivers, lakes, and wetlands at a 0.5° spatial resolution (Wada et al., 2010, 2013,
2014; Van Beek et al., 2011). In brief, the model simulates for each grid cell and
for each time step (daily) the water storage in two vertically stacked soil layers and
an underlying groundwater layer. At the top a canopy with interception storage and
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a snow cover may be present. Snow accumulation and melt are temperature driven
and modelled according to the snow module of the HBV model (Bergström, 1995).
To represent the rain-snow transition over sub-grid elevation dependent gradients
of temperature, 10 elevation zones were distinguished in each grid cell based on the
HYDRO1k Elevation Derivative Database, and re-scaled the 0.5° grid temperate fields
with a lapse rate of 0.65°C per 100 m. The model computes the water exchange
between the soil layers, and between the top layer and the atmosphere (rainfall,
evaporation and snowmelt). The third layer represents the deeper part of the soil
that is exempt from any direct influence of vegetation, and constitutes a groundwater
reservoir fed by active recharge. The groundwater store is explicitly parametrized and
represented with a linear reservoir model (Kraijenhof van de Leur, 1962). Sub-grid
variability is considered by including separately short and tall natural vegetation,
open water (lakes, floodplains and wetlands), soil type distribution (FAO Digital
Soil Map of the World), and the area fraction of saturated soil calculated by the
Improved ARNO scheme (Hagemann and Gates, 2003), as well as the spatio-temporal
distribution of groundwater depth based on the groundwater storage and the surface
elevations as represented by the 1 km by 1 km Hydro1k data set (https://lta.cr.
usgs.gov/HYDRO1K/). Simulated specific runoff from the two soil layers (direct runoff
and interflow) and the underlying groundwater layer (base flow) is routed along the
river network based on the Simulated Topological Networks (STN30) (Vörösmarty
et al., 2000a) using the method of characteristic distances (Wada et al., 2014).

The PCR-GLOBWBmodel and model outputs have been extensively validated in ear-
lier work. Simulated mean, minimum, maximum, and seasonal flow (all at monthly
temporal step), monthly actual evapotranspiration, and monthly total terrestrial
water storage were evaluated respectively against 3613 GRDC observations (http:
//www.bafg.de/GRDC) (r2 ∼ 0.9 and slope ∼ 0.9 to 1.1 respectively for each monthly
flow), the ERA-40 reanalysis data, and the GRACE satellite observations, in earlier
work (Van Beek et al., 2011; Wada et al., 2012, 2014), and generally showed good
agreement with them.

In brief, the PCR-GLOBWB model has been evaluated with r2, slope and the root
mean square error (RMSE) against 3613 GRDC stations with drainage areas larger
than 2500 km2, that is roughly equivalent to one grid cell (0.5°). These stations
contain the long-term statistics of mean, minimum, and maximum discharge with
sufficient data record (more than 10 years of monthly data), to evaluate our modelled
streamflow. Because of the coarse spatial resolution of the model (0.5), the upstream
drainage area of some stations, particularly the smaller ones, cannot be represented
accurately, thus they have not been included in our model evaluation. Notwithstand-
ing, this data set provides a good starting point to evaluate the skill of the model to
simulate discharge variations within and between years for varying catchment sizes
and regions. In addition, in Wada et al. (2014), the monthly streamflow has also
been evaluated with r2, slope, and NashSutcliffe model efficiency coefficient (NS).
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Table 8.1 GCMs (Global Climate Models) used in this study.

GCM Organization

HadGEM2-ES Met Office Hadley Centre
IPSL-CM5A-LR Institute Pierre-Simon Laplace
MIROC-ESM-CHEM JAMSTEC, NIES, AORI (The University of Tokyo)
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
NorESM1-M Norwegian Climate Centre

The reader is referred to Van Beek et al. (2011) and Wada et al. (2014) for the
detailed descriptions of the validation exercises.

The model has also been applied to simulate low flow conditions and associated hy-
drological drought events at a global scale (Wada et al., 2013) and simulated drought
deficit volumes and drought frequency were extensively validated against those de-
rived from observed streamflow (from GRDC stations) (Wada et al., 2013) over re-
gions where drought has a major impact on the hydrology. The comparison showed
that the model performance is good for simulating low flow conditions across regions
with different climatic conditions. In addition, the model has been tested to simulate
different drought conditions using different percentile threshold levels (Q70, Q80, and
Q90) and the performance remains good. These previous modeling exercises led to the
conclusion that the PCR-GLOBWB model is suited to reproduce low flow conditions
and that the model can adequately simulate hydrological drought events across the
globe. Uncertainties that are inherent to the model and the intercomparison with
existing studies or models are discussed in Section 8.4.

The model was forced with daily fields of precipitation, reference (potential) evap-
otranspiration and temperature taken from five global climate models (GCMs; see
Table 8.1) and four underlying emission scenarios (here accounted for by using four
Representative Concentration Pathways or RCPs; see Table 8.2). The newly available
CMIP5 climate projections were obtained through the Inter-Sectoral Impact Model
Intercomparison Project (Warszawski et al., 2014). The GCM climate forcing was
bias-corrected on a grid-by-grid basis (0.5° grid) by scaling the long-term monthly
means of the GCM daily fields to those of the observation-based WATCH climate
forcing for the overlapping reference climate 1960–1999 (Hempel et al., 2013). Poten-
tial evapotranspiration was calculated with the bias-corrected GCM climate forcing
with the method of Hamon (Hamon, 1963). The resulting bias-corrected transient
daily climate fields were used to force the model over the period 1971–2099 with a spin-
up, reflecting a climate representative prior to the start of the simulation period. The
result of each GCM is treated equally and no weight was given to a particular GCM
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Table 8.2 Overview of representative concentration pathways (RCPs) (Van Vuuren et al.,
2011). Radiative forcing values include the net effect of all anthropogenic greenhouse gases
and other forcing agents.

RCPScenario

2.6 Peak in radiative forcing at ∼ 3.1W m−2 (∼ 490ppm CO2 equivalent) before
2100 and then decline (the selected pathway declines to 2.6 W m−2 by 2100)

4.5 Stabilization without overshoot pathway to 4.5 W m−2 (∼ 650ppm CO2

equivalent) at stabilization after 2100
6.0 Stabilization without overshoot pathway to 6W m−2 (∼ 850ppm CO2 equiv-

alent) at stabilization after 2100
8.5 Rising radiative forcing pathway leading to 8.5 W m−2 (∼ 1370ppm CO2

equivalent) by 2100

based on the performance against historic climate. As a result, 20 (5 GCMs by 4
RCPs) projections of future daily streamflow were produced.

8.2.2 Drought calculation

Hydrological drought characteristics (e.g. drought duration and deficit volume) were
derived from simulated time series of daily discharge (Q) using the variable threshold
level approach (Yevjevich, 1967; Tallaksen et al., 1997; Hisdal et al., 2004). In this
study the Q90 (m3 s−1) was derived from the flow duration curve, where the Q90 is
the threshold which is equalled or exceeded for 90% of the time. This threshold has
been selected to study the impact of severe drought conditions and have been used in
multiple studies where drought is studied (e.g. Fleig et al., 2006; Parry et al., 2010).

The drought state is given by:

Ds(t, n) =

{
1 for Q(t) < Qx,n(t, n)

0 for Q(t) ≥ Qx,n(t, n)
(8.1)

where Qx(t, n) is the x percentile threshold Ds(t, n) is a binary variable indicating if
a location or grid cell (n) is in drought at a given time t. The drought duration for
each event at n is calculated with:

Duri,n =

Li∑
t=Si

Ds(t, n) (8.2)

where Duri,n is the drought duration (d) of event i at n, Si the first time step of
a event i and Li the last time step of the event. The deficit volume per time step was
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defined by:

Def(t, n) =

{
Qx(t, n)−Q(t, n) for Ds(t, n) = 1

0 for Ds(t, n) = 0
(8.3)

where Def(t, n) is the daily deficit volume of drought i (m3 s−1) at n. The total
drought deficit volume for each drought event was calculated with:

Defi(n) =

Li∑
t=Si

Def(t, n) (8.4)

where Defi(n) is the total deficit volume of the drought event i (m3 s−1) at n. The
deficit volume is the cumulative deviation of the discharge from the threshold over the
duration of a drought event. If the Qx(t, n) equals 0m

3 s−1 by definition a drought
will not occur since Ds(t, n) will remain zero (Eq. 8.1). If Qx(t, n) equals 0m

3 s−1 for
more than 50% of the time, no drought characteristics were calculated for this cell.
These cells were excluded from the analysis, since frequent zero discharge situations
are part of the local climate (i.e. aridity) and are not manifestation of hydrological
drought condition or occurrence (Chapter 9).

The total area in drought (AID) at a given time t was calculated by:

AID(t) =

∑N
n=1 Ds(t, n)

N
(8.5)

where AID(t) is the total area in drought, N (–) is the total number of cells in the area
(e.g. continent, Köppen–Geiger climate region) or all grid cells (globe) except those
arid regions that were excluded from the analysis. The AID(t) can range between 0
and 1, where 0 indicates that there is no cell in the area in drought and 1 indicates
that all cells in the area are in drought.

8.2.3 Variable threshold approach

In this study, two variable threshold approaches were used. The first approach uses
the non-transient calculation of the variable threshold level method, where monthly
values ofQx are calculated from the aggregated daily values ofQ(t) over a fixed 30 year
period (usually 1971–2000). Thereafter, the monthly values of Qx are smoothed with
a moving average window of 30 days, resulting in the conventional variable threshold
(V TM , Van Loon and Van Lanen, 2012; Van Lanen et al., 2013; Prudhomme et al.,
2014; Van Loon et al., 2014), that was used in the few studies so far on future
hydrological drought.

However, present climatology can significantly change over the future period under
climate change. This will result in an altered hydrological regime. This could have
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Figure 8.1 Example time series with schematic overview of the non-stationary variable
threshold (V TM), which is constant over the 21st century, and the stationary variable
threshold (V TMt) that considers the gradually-changing future hydrological regime.

a significant impact on the detection of drought events, leading to the misrepresen-
tation of drought events as reported by Van Huijgevoort et al. (2014). Areas which
become gradually dryer, will be constantly in drought, whereas the opposite will hap-
pen in regions with increased low flows. Hydrological regime shifts (e.g. earlier snow
melt peak) could have a similar impact, where the threshold is not adjusted to the
new hydrological conditions. Therefore, the transient variable threshold (V TMt) is
proposed, where monthly values of Qx are calculated from the aggregated daily values
of Q(t) of the previous 30 years (Figure 8.1). The monthly values of Qx are derived
from the discharge climatology of the past 30 years instead of a threshold based on
a historic period (1971–2000). The monthly Qx is smoothed with a moving average
window of 30 days, resulting in the variable threshold (V TMt).

The difference between the V TM and V TMt can be seen in Figure 8.1. Both thresh-
olds have been applied to the complete time series of river discharges for the period
2000–2099 and drought events were calculated.

8.2.4 Trend analysis

To study the trends in future drought thresholds, time series of 130 years of simulated
river discharges were used. A linear regression was used to study the directionality
of the changes and the robustness of those changes. These analyses were performed
for each cell separatly to study the effect of regime shifts (e.g. due to shifts in snow
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melt peaks). The robustness in the spatially-distributed trends of the threshold was
investigated per season for an ensemble of five GCMs, four RCPs and only statistically
significant (p < 0.05) trends were taken into account. For each cell the trend was
calculated over the three months belonging to the season for each of the 20 ensemble
members. If for a certain season 16 out of 20 ensemble members showed the same
trend direction it was assumed to be a robust decrease or increase. If 13 to 15 members
had the same direction then the trend is classified as a possible decrease of increase,
while for a lower number than 13, no trend was supposed to occur.

Relative trends in drought characteristics were determined by comparing the average
drought characteristics for the period 1971–2000 to the period 2070–2099. Per year the
number of droughts, number of drought days and total drought deficit were calculated.
Yearly statistics were used since drought events often last for more than one month
and therefore it would result in large fluctuations in monthly drought statistics. The
robustness in the trends in drought characteristics was studied by comparing the
outcome from the multiple GCM simulations for each RCP scenario. If for one RCP,
all 5 GCMs pointed in the same direction it was assumed to be robust, while if the
GCMs showed more discrepancy the changes were deemed not to be robust. This
resulted in 3 classes, robust (5 GCMs agree), likely (4 GCMs agree) and plausible
(3 GCMs agree). The classification was done per grid cell for both the robustness of
the trend in average drought duration and the trend in the average deficit volume.
These were per grid cell combined in a bivariate classification.

8.2.5 Köppen–Geiger climate classification

The impact of changes in temperatures and precipitation patterns has been evaluated
with the Köppen–Geiger climate classification (Geiger, 1954, 1961). For all combina-
tions of RCPs and GCMs the Köppen–Geiger climate type has been determined for
each cell. Climate classification has been done for each year in the period 2000–2099,
where the previous 30 years have been used to calculated the climatology. Changes
in climate types have been evaluated for major and minor climate types, for each
RCP–GCM combination separately. After the climate types have been determined
for each RCP–GCM combination separately, the dominant climate type for each RCP
is determined from the 5 GCMs. Since climatology is discrete classification no aver-
aging was applied between the GCM climate types. The dominant climate type was
used as the ensemble mean RCP climatology and used in further analyses.
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Figure 8.2 Average trends in the transient Q90 threshold in the four seasons derived from
simulation with PCR-GLOBWB. Trends are aggregated over 3 month periods for an ensem-
ble of 20 members consisting of 4 RCPs and 5 GCMs. An increase or decrease is significant
when over 16 ensemble members show similar trends. When over 13 ensemble members
agree on the directionality of the change, the trend is deemed possible.

8.3 Results

8.3.1 Trends in future low flow regimes

Global trends in the transient variable threshold (V TMt) were studied for each RCP
separately and for the ensemble of five GCMs (Figure 8.2). When V TMt decreases,
the long-term low flow regime is reduced in that location and drought characteristics
were calculated against the reduced low flows. For the average over all RCP scenarios,
40–52% of the world will face decreasing low flows (V TMt for Q90). However, regional
variability is large. As expected, RCP2.6 shows the smallest area with a decrease in
low flows globally (40% of the world), while for RCP8.5 the decrease in the threshold
is more severe (52%). Difference in these trends are larger among continents and
climate types (Figure 8.3) than among the GCMs; the latter in general show high
agreement on the directionality of the change. For the equatorial and warm temperate
climate (A and C) the low flows will decrease in 62–77% of the area, while for the
snow and polar climates (D and E) the low flows will increase in 54–90% of the area
(depending on RCP scenario). In these colder regions the increased low flows are
mainly due to larger snowmelt and increased precipitation. However, a seasonal shift
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Figure 8.3 Global map of Köppen–Geiger climate types for 2000.

in low flows was observed for these regions where the snowmelt will occur earlier in
the season under a warmer climate. This leads to reduced low flows late in summer,
which was observed by the decreasing trend in July to September for most of the
Northern Hemisphere (Figure 8.2).

Decreasing low flows were observed in: South America, southern Africa, Australia and
the Mediterranean area. For the summer months also North America and Europe are
largely effected by a decreasing trend. As expected, the decrease in low flows is most
severe for the highest emission scenario (RCP8.5), while the trends are less obvious
for the lowest emission scenario (RCP2.6). However, all RCPs agree on where in the
world the low flows will decrease (e.g. decrease in variable threshold).

8.3.2 Comparison in drought characteristics under a non-transient and
transient hydrological regime

Drought characteristics, i.e. drought duration and deficit volume, were calculated
with the V TMt for Q90 for all RCP scenarios and for all GCMs. Model agreement
in the direction of the change is high and distinct patterns are visible in the results
(Figure 8.4). Globally the agreement between the GCMs is high especially for the
snow dominated climate (D), the Mediterranean and South America. Four possible
cases have been distinguished in the bivariate distribution of the drought duration
and the deficit volume: (i) an increase in both drought duration and deficit volume in
27% of the world (RCP8.5), (ii) increase in duration and decrease in deficit (11%),
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Figure 8.4 Average trends in drought duration and drought deficit volume, derived with
a transient Q90 threshold from discharge simulation of PCR-GLOBWB. Maps indicate the
changes per RCP for a ensemble of 5 GCMs. Colours indicate the robustness of the trend
where the darkest colours are robust (5 GCMs agree), thereafter likely (4 GCMs agree) and
plausible (3 GCMs agree). A white colour indicates areas where no drought characteristics
were calculated.

(iii) decrease in duration and increase in deficit (17%), and (iv) a decrease in both
drought characteristics (38%). The remaining part shows no trends of characteristics
could not be calculated.

Significant different trends in drought duration and deficit volume were obtained
when instead of a gradually-changing hydrological regime (V TMt) a stationary regime
(V TM) was assumed (Figures 8.4 and 8.5). Large parts of the world, especially the
Southern Hemisphere, show significant increases in both drought duration and deficit
volumes. Only the snow affected climates show a decrease in both duration and deficit
volume. There is also a better agreement that the trends in the duration and deficit
volume point in the same direction than for V TMt. An increase in both drought
duration and deficit volume is found for 62% of the world (RCP8.5). The areas
covered by the other three cases are: (i) increase in duration and decrease in deficit
(4%), (ii) decrease in duration and increase in deficit (6%), and (iii) decrease in both
drought characteristics (25%). The differences between Figures 8.4 and 8.5 clearly
show that the use of a different threshold approach (V TMt compared to V TM), which
reflects whether a non-stationary or a stationary hydrological regime was assumed,
has a significant impact on the obtained drought characteristics.
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Figure 8.5 Average trends in drought duration and drought deficit volume, derived with
the non-transient Q90 threshold from discharge simulation of PCR-GLOBWB. Maps indi-
cate the changes per RCP for a ensemble of 5 GCMs. Colours indicate the robustness of
the trend where the darkest colours are robust (5 GCMs agree), thereafter likely (4 GCMs
agree) and plausible (3 GCMs agree). A white colour indicates areas where no drought
characteristics were calculated.

8.3.3 Trends in drought characteristics under a non-stationary hydrological
regime

With the V TMt for all RCPs in large parts of the snow dominated climate a trend
was found towards longer droughts, although the low flows have increased (Figures 8.2
and 8.4). This is partly due to the decreased length of the snow accumulation season
and partly due to the shift in the snowmelt peak. Trends in the deficit volume in
these areas are not so pronounced. Precipitation totals for these regions show an
increase of 30–100 mm in annual precipitation for the period 2070–2099 compared to
1971–2000 (Warszawski et al., 2014). The annual temperature shows an increase of
2–5 ° C depending on RCPs when the above-mentioned periods were compared. This
confirms the observed earlier snowmelt peak and increased water availability in these
regions. The snowmelt peak comes earlier in the year leading to drier soil moisture
and groundwater conditions in summer.

For the Mediterranean, the savannah areas of Africa and Middle East, the increase
in drought duration is larger for most scenarios (except RCP2.6). The threat is even
higher due to the decrease in water availability during low flow conditions (Figure 8.2).
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Figure 8.6 Global map of Köppen–Geiger climate types for 2099.

In these regions water scarcity is a known problem which could be intensified by
increased drought durations. The same pattern was found for the interior of Australia,
where drought duration is projected to increase and low flows to decrease. However,
the impact is less due to a lower population density in the region. For these drier
areas, temperature rise will be limited to 0.5–3.5 ° C, while annual precipitation will
decrease by 35–90 mm.

For South America the decrease in annual precipitation is limited to 12–60 mm, while
temperature increase is low (1.2–3.5 ° C) compared to global averages (1.5–4.5 ° C).
However, drought duration in the eastern part of the continent shows a strong in-
crease. In the wetter regions of the Amazon Basin this will likely not cause significant
impacts. However, the drier regions in Eastern Brazil could be affected as the agri-
cultural areas (mostly irrigation) are located there.

8.3.4 Köppen–Geiger climate classification

As a result of changes in temperature and precipitation patterns the KppenGeiger
climate classification for a certain location may change in the 21st century. The area
and location of temperate (C) and polar (E) major climate types are most affected
by the changing climate (Table 8.3 and Figures 8.3 and 8.6). Global coverage of both
climate types will reduce mostly due to increasing temperatures (E) and decrease in
annual precipitation (C). On the other hand the tropical (A), desert (B) and snow (D)
climate types will increase in global coverage in 2070–2099 compared to 1971–2000.
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Table 8.3 Average fraction of changed major Köppen–Geiger climate types between 2000
and 2099 based on 5 GCMs and 4RCPs.

Original New Climate type
Climate
type

A B C D E

A 0.975 0.025 0.000 0.000 0.000
B 0.009 0.989 0.001 0.001 0.000
C 0.128 0.091 0.781 0.000 0.000
D 0.000 0.025 0.104 0.871 0.000
E 0.000 0.027 0.025 0.343 0.605

Regions where changes are largest can be found in: polar regions in the Northern
Hemisphere (E to D), around the Sahara (C to B) and Gobi desert (E to B), Eastern
Europe (D to C) and the tropics (C to A). Although not used further in this paper
the changes in area and location of minor climate types are significant, especially in
the temperate (C) and snow (D) minor climate types. The area of the minor climate
types shows a shift from colder climate types (within the major climate type) to
warmer climate types.

8.3.5 Trends in area in drought (AID)

The total area in drought has been calculated for Q90 with the transient (V TMt)
and the non-transient (V TM) variable threshold approach. For the V TMt also an
approach with transient adjusted climatology was applied to account for changes in
the AID when location shift from one major climate type to another. This has been
done for the globe and the five Köppen–Geiger major climate regions. The temporal
evolution of the mean and uncertainty of the 20 ensemble members (5 GCMs and
4 RCPs) are given in Figure 8.7. The mean global area in drought is projected to
increase from 11.7 to 13.4% under a gradually-changing hydrological regime (V TMt)
(Figure 8.7). The uncertainty (one standard deviation) among the members by the
end of the 21st century is about 1.9%. When a stationary hydrological regime was
assumed (V TM), then the increase of the global area in drought was substantially
larger. The mean area is expected to grow from 11.7 to 19.5%. The spread among
members also is projected to be substantially larger by the end of the 21st century,
i.e. 5% under a stationary hydrological regime.

The area in drought of the tropical (A) climate is expected to grow more than the
global increase over the 21st century (Figure 8.7). The mean area in drought for the
tropical climate will remain steady around 16.7% for the non-stationary hydrological
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regime (V TMt), whereas it is projected to double (16.7 to 32.6%) by the end of
the century for a stationary hydrological regime (V TM). The difference between
the adjusted climate type and the fixed climate types is minor at the end of the
21st century, 16.6% compared to 16.4% (dynamic climate types). The spread among
the members for the tropical climate is about 3.9% at the start of the century and
is similar for the V TMt and V TM , but differences in spread are larger by the end
of the century when a stationary hydrological regime (V TMt) was supposed rather
than a non-stationary regime (V TM) (5.5 and 8.5%, respectively).

The difference in area in drought between the V TMt and V TM approaches among
the Köppen–Geiger major climates is smallest for the polar (E) climates (Figure 8.7),
which is caused by the increased water availability. The mean area in drought is
projected to remain constant (around 10.0%) under a non-stationary hydrological
regime (V TMt), and is expected to only slightly decrease under a stationary regime
(V TM) (10.2 to 6.7%). In contrast to the other climates, the spread by the end of
the 21st century is smaller when a stationary hydrological regime was supposed (i.e.
3.5% for the V TMt approach and 2.3% for the V TM approach).

The impact of a changing climate is minor as can clearly be seen from Figure 8.7. Only
minor differences can be found between the transient and stable climate classification
results. This suggests that the impact of changes in major climate types is limited
on the AID.

8.4 Discussion

8.4.1 Implication of transient threshold approach

This study uses a newly developed transient threshold, which is based on the discharge
climatology of the previous 30 years. This approach has implications on how changes
in drought characteristics are evaluated. For some applications the absolute water
availability is important, where a particular demand of available water should be met
(e.g. energy production from reservoirs or drinking water supply). However, it is
questionable whether these demands could be seen as a drought. They are related
to water availability and demand, which is more a matter of water scarcity, since
it deals with the imbalance between the available water and the demand (European
Union, 2007a). Drought only deals with natural conditions and is not driven by any
type of demand. Therefore, sectors that have a human induced water demand are
not considered with the transient threshold and these sectors should work with a
conventional fixed threshold approach. This threshold describes the water demand
that should be met to prevent imbalance between demand and supply.

When looking at natural conditions and extremes in these conditions, processes like
ecosystems and agriculture are included in the transient threshold approach. Climate
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Figure 8.7 Projected evolution of ensemble mean area (solid line) and the spread in hydro-
logical drought in the 21st century derived from simulation with PCR-GLOBWB, forced by
an ensemble of 20 scenarios consisting of four RCPs and five GCMs. The evolution is given
for the globe and for the five major Köppen–Geiger climatic regions. The coloured lines
present the evolution under a changing hydrological regime with changing climate types
per cell (transient variable threshold, V TMt), dark gray without a changing climate per
cell with the V TMt and light gray the evolution under a stationary hydrological regime
(non-transient variable threshold, V TM).

change will induce changes in ecosystems (Fischlin et al., 2007) and require changes
in agricultural management (European Union, 2009). These sectors will slowly adapt
to the changes in climatology, leading to higher or lower water availability depending
on where you are at Earth and hence other crops or ecosystems. When the sectors get
used to the new conditions and a below normal water availability event will occur (i.e.
drought) the effects can be significantlt different than without a changing climate. To
illustrate, one can picture a semi-arid region where agriculture is heavily impacted
by water limiting conditions. When this region is permanently receiving more water
(e.g. rain), this will result in a change to crops that require more water and are more
productive and profitable. If this area is hit by a drought event the crop losses will
be high due to fact that farmers have changed to the more water demanding crops.
This will result in higher productivity in the wetter, but then normal years and bigger
losses in drought years, which will impact the local economy and residents. For the
ecosystems a similar situation will occur, since nature will seek for an optimal situation
relative to the available resources. Animals and plants that can deal with semi-arid
conditions will be replaced by more successful species which fully utilize the increased
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availability of water resources. These animals and plants will be heavily impacted
in drought conditions since they require more water and other resources, which will
increase the drought vulnerability of the ecosystem. When the fixed threshold would
have been applied this interaction between nature/humans and the availability of
resources would not be taken into account and hence not captured by the analyses
of future hydrological drought. For conditions that deal with a fixed demand or a
demand that is not driven by water availability this is no problem. However, in
conditions where the water resources are limiting the transient threshold will give a
more realistic portrayal of the potential impact of future hydrological drought.

This statement does not only apply to changes in future hydrological drought but it
will also impact climate impact assessments of frequently used drought indicators like
the Standardized Precipitation Index (SPI, McKee et al., 1993) and Palmer Drought
Severity Index (PDSI, Palmer, 1965). For the calculation of these indicators the
distribution of events is used to assess anomalies. However, the distribution of a
30-year period will change with a changing climate and what is a anomaly in the
current condition could be seen as normal in 50 years. Therefore, it is proposed not
only to apply the transient approach on drought assessments that study hydrological
drought with the threshold approach. The transient approach should be applied
more widely to all type of drought assessments ranging from normalized indicators
like the SPI or PDSI to drought indicators like the threshold level approach. It is
argued that a combined transient and non-transient approach would cover all potential
drought impacts and would provide a more realistic portrayal of future drought under
a changing climate.

8.4.2 Intercomparison with existing studies on large-scale future hydrological
drought

This study showed that in more than half of the world (about 60% of the land area)
hydrological drought frequency is projected to increase by the end of the 21st century
even by considering that the hydrological regime will change. The average drought
duration and deficit volume each are expected to increase on around 30 and 40% of
the globe. Chapter 9 reports in the global analysis on future hydrological drought
using a conceptual hydrological model and 3 GCMs (SRES A2 scenario), a decrease
of the number of days in drought, pointing at a lower drought frequency and an in-
crease of the average drought duration and deficit volume of the remaining drought
events. The characteristics they found cannot directly be compared because these
refer to magnitudes rather than to affected areas (this study) and they used another
threshold (Q80) and the non-transient variable threshold approach (V TM , i.e. sta-
tionary hydrological regime). However, there seems to be some disagreement in at
least the drought frequency. Repetition of our drought analysis with Q80 and the
V TM led to a lower area (40%) with an increased drought frequency, whereas the
area with longer drought events and larger deficit volumes increased by about 52 and
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56%, which indicates agreement in the direction of change of hydrological drought
when the same methodology was applied.

Forzieri et al. (2014) used a large-scale hydrological model and 12 GCMs (SRES A1B
scenario) to conclude that low flows in the 2080s are expected to become more extreme
in large parts of Europe during the period without frost. Exceptions are Scandinavia,
the Baltic countries and northern Russia. They used the Q80 and the V TM for their
analysis. In our study the area in Europe with a higher future drought frequency
varied from about 75–85% (RCPs 6.0 and 8.5), which seems to be in line with their
study. The area with a higher future average drought deficit volume, however, is
about 30–35% (see also Figure 8.4), which appears to disagree with their conclusion.
Repetition of our drought analysis with Q80 and the V TM led to a larger area (55–
70%) with an increased deficit volume, which agrees more with their outcome.

Prudhomme et al. (2014) explored future hydrological drought using seven global
hydrological models (GHMs) and the same GCMs and RCPs as this study. They show
that the increase of the global area in drought depends on the RCP, models (GCM,
GHM, in particular if the CO2 effect is included) and the temporal scale (annual,
season). The mean increase varies from about 4% under RCP2.6 to 13% under
RCP8.5. The spread in increase is large with a maximum increase of about 25%.
They used the Q90 and the V TM for their analysis. Their results correspond well
with our study, but only when using a non-stationary hydrological regime (Figure 8.5).
Clearly, the increase of global area in hydrological drought is smaller, if the variable
threshold is based on a transient hydrological regime (V TMt).

Intercomparison of future hydrological drought from this study against existing sim-
ilar studies showed that the outcome points more or less in the same direction, if
the same methodology is applied. However, it also shows the large influence of as-
sumptions on projected drought characteristics, such as a transient variable threshold
derived from a changing hydrological regime that is introduced in this study vs. the
non-transient variable threshold derived from a stationary hydrological regime that
has been used in the few existing future hydrological drought studies so far.

Van Huijgevoort et al. (2014) describe that it is not straightforward to determine
future hydrological drought with the V TM derived from observations in the past.
This can lead to unintended future drought events (short-lived, very high deficit
volume) for climates and hydrological systems with a sharp rise in the hydrograph
(e.g. cold climates with pronounced snow melt, monsoon climates) that will face
a regime shift. The V TMt method proposed in this study implicitly handles this
impact of a regime shift.

When the transient threshold decreases (Figure 8.2) it implies that the low flows are
reduced in that location. When these reduced low flows coincide with an increase
in drought duration and deficit volume this will have a large impact on the water
availability under drought (15% of the world). This poses enormous challenges to
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society and nature to adapt, especially in developing countries, which usually are very
vulnerable.

8.4.3 Uncertainty

Differences between projected temperature and precipitation with GCMs and RCPs
used (Tables 8.1 and 8.2) are large (e.g. Warszawski et al., 2014). Clearly, these
differences influence future hydrological drought, as illustrated by Chapter 9 and
Prudhomme et al. (2014). The spread in the projected temporal evolution of the
global area in hydrological drought, as shown in Figure 8.7, also illustrates the impact
of different climate drivers. In particular, the spread is large for the Tropical climate
and Desert climate. Prudhomme et al. (2014) conclude that the model structure of
the hydrological models substantially contributes to uncertainty in future hydrological
drought, particularly if the rather hard predictable response of plants to a changing
CO2 concentration (i.e. CO2 effect) is implemented. The PCR-GLOBWB model
used in this study, is one of the seven hydrological models that contributed to the
ISI-MIP project (Warszawski et al., 2014); the CO2 effect is not included. The model
has proven to reasonably capture hydrological characteristics (Wada et al., 2013).

Another source of uncertainty is the drought identification methodology that should
be defined by the drought-impacted sectors. These sectors determine the magnitude of
the threshold level to be used (e.g. Q80 instead of Q90) and whether a fixed threshold
(constant through the whole period) or a variable threshold method should be applied.
Similarly, these sectors determine if a V TMt for the variable threshold approach,
should be chosen for the assessment of future drought that considers a gradually
changing hydrological regime in the future or that a V TM should be taken that
is based on a stationary hydrological regime derived from historical observations.
Table 8.4 shows that the global area with increased average hydrological drought
duration is hardly affected by the selection of the magnitude of the threshold level
(maximum difference in % change is 1%). Differences for the average deficit volume
are slightly larger (maximum difference in % change of global area with increased
deficit volume is 4%). Differences are substantially larger whether the V TMt or the
V TM was applied. The difference in change of area in hydrological drought with
increased drought duration is 13% for RCP2.6 and 18–19% for the other RCPs.
The difference in change for the drought deficit volume is 9% for RCP2.6, 13% for
RCP4.5 and 6.0, and 17% for RCP8.5. As expected, it appears that the difference
in projected change of global area in hydrological drought between the two variable
threshold methods is larger for the more extreme RCPs.

178



Table 8.4 Change in global area (%) with increased hydrological drought duration and
drought deficit volume: % change derived from 30 year averages of future (2070–2099)
against reference (1971–2000) for two variable threshold methods (V TMt and V TM) and
two thresholds Q80 and Q90.

Drought RCP % of world with
identification Increased drought duration Increased drought deficit
method Q80 Q90 Q80 Q90

Transient (V TMt) 2.6 33 33 42 38
4.5 32 32 41 38
6.0 35 34 43 40
8.5 33 33 40 39

Non-transient (V TM) 2.6 46 47
4.5 50 51
6.0 52 53
8.5 54 56

8.5 Conclusions

In this study future hydrological drought that considers adaptation to a gradually-
changing hydrological regime has been studied. An ensemble of 5 General Circulation
Models (GMCs) and 4 Representative Climate Pathways (RCPs) has been used as
meteorological forcing for the global hydrological model PCR-GLOBWB. Daily dis-
charge has been simulated for the period 1971–2099 and drought in discharge was
detected using two threshold level approaches. The conventionally applied variable
threshold (V TM) was calculated by deriving the threshold from the period 1971–
2000 and subsequently the V TM was used for the period 2000–2099 to identify fu-
ture drought characteristics (stationary approach). As an alternative, the transient
variable threshold (V TMt) was proposed, which is based on the discharge values of
the previous 30 years, where the threshold will vary over time (non-stationary ap-
proach). The V TMt reflects changes in the hydrological regime as response to climate
change. The V TMt is supposed to provide more realistic future hydrological drought
characteristics when the impacted sectors are able to adapt to gradual changes in
the hydrological regime. The Q90 (discharge that is equalled or exceeded 90% of the
time) has been used both for the V TM and V TMt.

Results based on the V TMt show that low flows are projected to become lower in
40–52% of the world (dependent on the RCP). In the equatorial and warm temperate
(A and C) climates the low flows will decrease in 62–77% of the area, while for the
snow and polar (D and E) climates the low flows will decrease in 10–46% of the
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area. The small decrease in low flows for the snow affected climates is mainly due
to increased precipitation leading to higher low flows. A regime shift was also found,
where snow melt will occur earlier in the season due to higher temperatures, leading
to drier conditions during the summer. Droughts were identified relative to these
altered low flow conditions when applying the V TMt.

Future hydrological drought characteristics strongly depend on whether the impact
of adaptation to a gradually changing hydrological regime due to climate change is
considered (V TMt) or not (V TM). The global area with an increase of both duration
and deficit volume is only 27% (RCP8.5) by the end of the 21st century by using the
V TMt, whereas this is substantially larger (62%) when the V TM is applied. The
area with a decrease of both the duration and the deficit volume is larger when the
V TMt was used rather than the V TM (38 and 25%, respectively). The global area
in drought is also strongly affected by whether the V TMt or V TM is applied. The
mean global area with drought in discharge is projected to increase by only a few
per cent (11.7 to 13.4%) when using the V TMt, but it is expected to become about
20% (RCP8.5) when the stationary approach was applied (V TM). The spread in
projected areal increase among ensemble members also is substantially smaller when
the V TMt is used instead of the V TM .

Results show that although the V TMt has been used, drought duration and deficit
volume is expected to increase in large parts of South America, southern Africa and
the Mediterranean. In 15% of the world a negative trend in low flows is found in
combination with an increase in drought duration and deficit volume, which points
at a likelihood of severe future water stress.

The study demonstrates that an alternative way to identify hydrological drought that
considers adaptation to an altered hydrological regime caused by climate change, has
a significant influence on future hydrological drought characteristics. For sectors
that can deal with gradual changes in the hydrological regime the transient variable
threshold (V TMt) is an alternative approach to calculate drought characteristics.
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Part III

Uncertainty in projections of
hydrological drought





9 Future discharge drought across
climate regions

This chapter is based on:
Wanders, N., van Lanen, H. A. J. (2015), Future discharge drought across
climate regions around the world modelled with a synthetic hydrological modelling
approach forced by three General Circulation Models, Natural Hazards and Earth
System Sciences, in press.

Abstract

Hydrological drought characteristics (drought in groundwater and streamflow) likely will

change in the 21st century as a result of climate change. Magnitude and directionality of

these changes and their dependency on climatology and catchment characteristics, however,

is largely unknown. In this study a conceptual hydrological model was forced by downscaled

and bias-corrected outcomes from three General Circulation Models for the SRES A2 emis-

sion scenario (GCM forced models), and the WATCH Forcing re-analysis dataset (reference

model). The threshold level method was applied to investigate drought occurrence, duration

and deficit volume. Results for the control period (1971-2000) show that the drought char-

acteristics of each GCM forced model reasonably agree with the reference model for most of

the climate types, suggesting that the climate model’s results after post-processing produce

realistic outcome for global drought analyses. For the near future (2021-2050) and far future

(2071-2100) the GCM forced models show a decrease in drought occurrence for all major

climates around the world and increase of both average drought duration and deficit volume

of the remaining drought events. The largest decrease in hydrological drought occurrence

is expected in cold (D) climates where global warming results in a decreased length of the

snow season and an increased precipitation. In the dry (B) climates the smallest decrease

in drought occurrence is expected to occur, which probably will lead to even more severe

water scarcity. However, in the extreme climate regions (desert and polar), the drought

analysis for the control period showed that projections of hydrological drought character-

istics are most uncertain. On a global scale the increase in hydrological drought duration

and severity in multiple regions will lead to a higher impact of drought events, which urges

water resources managers to timely anticipate on the increased risk on more severe drought

in groundwater and streamflow and to design pro- active measures.
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9.1 Introduction

Drought are caused by situations with less than normal natural water availability.
They occur in all components of the hydrological cycle and occur across all climate
regions throughout the globe (Wilhite, 2000; Tallaksen and Van Lanen, 2004; Mishra
and Singh, 2010; Sheffield and Wood, 2011). On a global scale drought is one of the
most severe natural hazards, with large environmental and socio-economic impacts,
and more attention is require to be better prepared for the future water, food and
energy security (Romm, 2011; Van Vliet et al., 2012). The recent summer drought in
Russia and Central United States (National Oceanic and Atmospheric Administra-
tion, 2012) were the most severe on record. The 2011 drought in the Horn of Africa
caused large famine across Djibouti, Ethiopia, Kenya and Somalia (United Nations,
2011). In Europe almost 80000 people died due to drought-related heat waves and
forest fires; overall losses were estimated to be as high as 4940 billion Euro over the
period 1998-2009 (EEA, 2010). Seneviratne et al. (2012) report that there is medium
confidence that since the 1950s some regions of the world have experienced longer
and more severe drought (e.g. southern Europe and West Africa) and that drought
will intensify in the 21st century in some seasons and areas (e.g. many European re-
gions, parts of North America, Central America, southern Africa) as result of climate
change. Lack of long, updated time series of observed hydrological data (e.g. Hannah
et al., 2011; Stahl et al., 2012), multiple definitions and drought-generating processes
(e.g. Van Loon and Van Lanen, 2012), and the incapability of models to include all
these processes (e.g. Gudmundsson et al., 2012; Haddeland et al., 2011; Prudhomme
et al., 2011) impede our ability to instil strong confidence in the assessment of past
and future drought across the world. High-impact large-scale drought, like the recent
drought in Russia, United States and Africa, show the need to improve understand-
ing of drought on continental and global scales, particularly to provide an improved
assessment of climate change impact on drought.

Most global drought studies and near-real time drought monitoring programs focus on
meteorological drought (in particular SPI, McKee et al., 1993), since meteorological
data are widely available on a global scale. Other research has focused on soil mois-
ture drought on global scale (e.g. Dai et al., 2004; Sheffield and Wood, 2007; Sheffield
et al., 2009; Dai, 2011; Orlowsky and Seneviratne, 2013). Global soil moisture drought
have been often examined (e.g. Dai et al., 2004; Dai, 2011; Sheffield et al., 2012) with
the Palmer Drought Severity Index (PDSI Palmer, 1965), which is calculated from
a simple soil water balance, with the threshold method in combination with a more
comprehensive model (e.g. Sheffield and Wood, 2007; Sheffield et al., 2009) or through
anomalies (e.g. Orlowsky and Seneviratne, 2013). For water resources, it is particu-
larly relevant how meteorological and soil moisture drought propagate into hydrologi-
cal drought (e.g. Peters et al., 2003; Tallaksen et al., 2009; Van Loon and Van Lanen,
2012). At large scales, Global Hydrological Models (GHMs) are used to produce
runoff time series, which are then used for hydrological drought assessment. At the
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continental scale, Andreadis et al. (2005) investigated runoff drought in the United
States and Prudhomme et al. (2011) studied European runoff drought. Forzieri et al.
(2014) project for the A1B scenario that future drought in streamflow will increase
in many European regions, except for North and Northeast Europe. Corzo Perez
et al. (2011b) and Van Huijgevoort et al. (2012) show hydrological drought character-
istics at the global scale. These large-scale studies investigate which characteristics
(frequency, scale, duration, severity) of past hydrological drought are captured with
the GHMs to explore their potential to assess future continental and global drought.
Recently, the WATCH (WATer and global CHange) project concluded a comprehen-
sive multi-model analysis (e.g. Haddeland et al., 2011) that tested GHM performance
against historic low runoff (e.g. Gudmundsson et al., 2012; Stahl et al., 2012) and
drought (e.g. Prudhomme et al., 2011). Corzo Perez et al. (2011b) made a first at-
tempt to use the outcome from the WATCH model suite to assess future hydrological
drought across the globe (three General Circulation Models (GCMs), two scenarios,
multiple hydrological models).

A detailed impact assessment on the importance of climate and catchment structure
on drought occurrence is complicated since GHMs have a complex model structure
with a large number of internal and external feedback mechanisms. To investigate
the relative importance of climate and catchment structure on hydrological drought,
Van Lanen et al. (2013) used a synthetic hydrological modelling approach to study
the effects of these factors on hydrological drought characteristics on a global scale.
The approach involved a conceptual hydrological model that was applied to a set of
possible realizations of catchment characteristics (synthetic catchments) in combina-
tion with precipitation and evapotranspiration data from different climates around
the globe. With this set-up Van Lanen et al. (2013) examined the relative importance
of the physical catchment structure and meteorological forcing data (i.e. precipita-
tion and evapotranspiration). They conclude that the physical catchments structure
(i.e. the responsiveness of the groundwater system and soil type) has a similar im-
pact on drought characteristics as climatology. However, the effects of climate change
with respect to future hydrological drought across the world is largely unknown and
difficult to study (Corzo Perez et al., 2011b).

The objective of this study is to examine the impact of climate change on hydrolog-
ical drought at a global scale. Following the approach of Van Lanen et al. (2013) a
synthetic hydrological model was used to model discharge time series at randomly
selected locations in various climate regions around the world. Three GCMs provided
model forcing data to the hydrological model and simulated drought were compared
against those derived from a reanalysis data (WATCH) forced model over the pe-
riod 1971-2000 to explore uncertainty due to GCM forcing. Thereafter the effect of
climate change was studied by the inter-comparison of modelled discharge time se-
ries and associated drought characteristics against the control period (1971-2000) for
all GCM scenarios and the periods 2020-2050 and 2070-2100. The results allow a
discussion on the projected impact of climate change on hydrological drought char-
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acteristics, including uncertainty, which, in addition to impacts on meteorological
and soil water drought characteristics, provide key information for planning of future
water resources.

9.2 Forcing data

9.2.1 WATCH Forcing Data

The WATCH Forcing Data (WFD) consist of time series of meteorological variables
(e.g. rainfall, snowfall, temperature, wind speed) and are a product of the EU-
FP6 project WATCH (WATer and global CHange). The WFD are derived from
bias-corrected ECMWF ERA-40 reanalysis data (Uppala et al., 2005), which have a
sub-daily, 1◦ resolution. For the WFD these data have been downscaled to 0.5◦ and
temperature and specific humidity were bias corrected for elevation difference between
the ERA-40 grid and WFD grid (Weedon et al., 2010, 2011). Bias corrections were
applied to the daily temperature cycle and average temperature values using the
CRU 2.0 data (Mitchell and Jones, 2005) and to the number of “wet” days using
the CRU data, while precipitation totals were corrected with the GPCCv4 dataset
(Schneider et al., 2008). The CRU grid was used for the projection of the WFD,
resulting in a total of 67420 land points at 0.5◦ × 0.5◦ resolution. The WFD for
the period 1971-2000 have been used as a reference forcing dataset in this study.
The WFD were successfully used in multiple hydrological studies (e.g. Corzo Perez
et al., 2011a; Haddeland et al., 2011; Harding et al., 2011; Prudhomme et al., 2011;
Gudmundsson et al., 2012; Stahl et al., 2012; Van Vliet et al., 2012; Van Huijgevoort
et al., 2013; Van Loon et al., 2014). In this study the WFD were used to identify
the reference hydrological situation for every selected location, with the synthetic
hydrological modelling approach.

9.2.2 General Circulation Models

In this study the output from three coupled atmosphere-ocean GCMs for the SRES
A2 scenario (Nakićenović and Swart, 2000) has been used. The SRES A2 scenario
includes extensive emission of carbon dioxide and slow adaptation by the global pop-
ulation, leading to severe changes in future climatology. Through the EU-WATCH
project simulation outcome from three GCMs was available on a global scale and used
for this study. The GCMs included are ECHAM5 (Roeckner et al., 2003; Jungclaus
et al., 2006), CNRM3 (Royer et al., 2002; Salas-Mélia, 2002) and IPSL (Hourdin
et al., 2006; Madec et al., 1998; Fichefet and Maqueda, 1997; Goosse and Fichefet,
1999). Additional GCM simulations from other projects were not used since these
used other bias correction approaches and data than the three GCMs selected for
this study. Each GCM provides meteorological forcing for the period 1960-2100. The
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Table 9.1 Three IPCC AR4 GCMs and their properties.

Centre GCM Horizontal res. Vertical res.

MPI ECHAM5/MPIOM T63 ≈ 1.9◦ ≈ 200 km 31 Layers
CNRM CNRM-CM3 T42 ≈ 2.8◦ ≈ 300 km 45 Layers
IPSL IPSL-CM4 3.75◦ × 2.5◦ ≈ 300 km 19 Layers

period 1971-2000 was used as control period. The same procedure as for the WFD
was applied in WATCH to downscale each GCM to the higher resolution 0.5◦ grid of
the WFD. The WFD were used to determine the bias correction required for rainfall,
snowfall, minimum, mean and maximum air temperature for the control period. The
procedure is described in more detail by Piani et al. (2010a,b); Chen et al. (2011);
Haerter et al. (2011). More detailed information on the GCMs can be found in Ta-
ble 9.1. The data from the GCMs were used as meteorological input data for the
synthetic hydrological modelling approach to produce discharge time series and as-
sociated drought characteristics for: (i) the control period (1971-2000), and (ii) the
periods 2021-2050 and 2071-2100 to intercompare obtained drought characteristics
against those derived from the reference model (1971-2000).

The advantages of this mini-ensemble is that the bias correction was performed by
experts in the field both for the control period (Piani et al., 2010a,b; Haerter et al.,
2011) using the WFD dataset (Weedon et al., 2010, 2011) to correct the models and
for the future (Hagemann et al., 2011; Chen et al., 2011). This resulted in consistent
downscaled and bias-corrected GCM data for 1963-2100. The period 1963-1970 was
used to initialize the hydrological model and make sure that the groundwater and
discharge simulations where no longer influenced by the initial conditions. Although
this mini-ensemble most likely under samples the climate variability, the advantage
of having a long initialization period and a validated bias correction is deemed more
important.

9.3 Model framework

9.3.1 Model description

The synthetic hydrological model, is a lumped conceptual hydrological model, which
consists of reservoirs for snow cover, soil moisture and groundwater (Figure 9.1). The
model concept is a simplified representation of the natural system that simulates
daily fluxes and state variables. The synthetic hydrological model generates time
series of potential realizations for soil moisture storage and groundwater discharge
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without use of specific local catchment information apart from meteorological forcing
(synthetic catchments). The simulations do not claim to provide actual site specific
soil moisture storage and groundwater discharge, but rather give a possible realization
of these variables given the local meteorological data (e.g. Van Lanen et al., 2013;
Van Loon et al., 2014). The water balance of the modelled soil moisture is given by:

SS(t) = SS(t− 1) + Pra(t) +Qsn(t)− Eact(t)−Qs(t) (9.1)

where, SS is the soil moisture storage (mm), Pra the rainfall (mm d−1), Qsn the snow
melt (mm d−1), Eact the actual evapotranspiration (mm d−1) and Qs is recharge gen-
erated by percolation through the unsaturated zone (mm d−1). The model is forced
with daily temperature, precipitation and potential evapotranspiration to enable snow
accumulation, soil moisture, actual evapotranspiration and discharge simulations. Es-
timates of daily evapotranspiration were calculated using the Penman-Monteith ref-
erence evapotranspiration (McMahon et al., 2013). The potential evapotranspiration
was calculated from daily temperature (minimum, mean, maximum), air pressure
and wind speed (Allen et al., 2006). The daily mean temperature was also used in
the snow-module for snow accumulation and melt, following the widely-accepted ap-
proach of the HBV-model (Seibert, 2002). Precipitation is simulated as snow when
air temperature is below a pre-defined threshold, snow melt only occurs above the
threshold temperature and is simulated with the degree-days approach (Clyde, 1931;
Collins, 1934). The snow water balance of the snow module is given by:

Sn(t) = Sn(t− 1) + Psn(t)−Qsn(t) (9.2)

where Sn is the snow storage (mm) and Psn is snowfall (mm d−1). The groundwater
recharge (mm d−1) is given by:

Rch(t) = Qs(t) +Qb(t) (9.3)

whereQs(t) is recharge generated by unsaturated zone (mm d−1) andQb(t) is recharge
generated by bypass in the unsaturated zone (mm d−1). The percolation through the
unsaturated zone is given by:

Qs(t) = SS(t)− SSFC if SS(t) ≥ SSFC

Qs(t) = ( SS(t)−SSCR

SSFC−SSCR
)bxinKsatif SSCR ≤ SS(t) ≤ SSFC

Qs(t) = 0 if SS(t) ≤ SSCR

(9.4)

where SS(t) (mm) is the soil moisture content at time t (d), bxin is a shape parameter
derived from the soil retention curve (−), Ksat is the unsaturated hydraulic conduc-
tivity at field capacity (mm d−1), SSCR and SSFC (mm) are the critical and field
capacity soil moisture content, respectively. The bypass to the groundwater (Qb(t))
is 50% of the rainfall above 2 mm, when the soil is below SSCR to simulate flow
through the macropores of the unsaturated zone. A soil with an intermediate soil
moisture supply capacity was selected to simulate the response of the unsaturated
zone (Van Lanen et al., 2013). This soil has a total supply capacity of 125 mm where
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about 75 mm is readily available for evapotranspiration. The water balance of the
groundwater system is given by:

SG(t) = SG(t− 1) +Rch(t)−Qout(t) (9.5)

where SG is the groundwater storage (mm) and Qout is the groundwater discharge
(mm d−1). The Qout is calculated with the De Zeeuw-Hellinga approach (Kraijenhof
van de Leur, 1962; Ritzema, 1994):

Qout(t) = Qout(t− 1) ∗ e−1
j +Rch(t) ∗ (1− e

−1
j ) (9.6)

where j is the groundwater response parameter (d), which can be derived from
data on the aquifer transmissivity, storativity and the distance between rivers. The
j-value in this study was fixed to 250 d, which corresponds to an intermediate-
responding groundwater system. The groundwater discharge is hereafter called dis-
charge (Q = Qout). The ability of the synthetic model to reproduce observed stream-
flow was demonstrated by Tijdeman et al. (2012). The synthetic model was evaluated
against observed drought characteristics of four contrasting catchments in Europe.
It was shown that the model is capable to correctly simulate hydrological drought
characteristics. The Nash-Sutcliffe (NS, Nash and Sutcliffe, 1970) for the selected
catchments was between 0.35 - 0.75, with an improved performance for the low-flow
conditions (NS 0.35 - 0.85). For a more detailed description of the synthetic hydrolog-
ical modelling approach or the validation results, the reader is referred to Tijdeman
et al. (2012); Van Lanen et al. (2013); Van Loon et al. (2014).

9.3.2 Drought identification

Hydrological drought characteristics (e.g. drought duration and deficit volume) were
derived from simulated time series of daily discharge (Q) using the threshold level
approach (Yevjevich, 1967; Tallaksen et al., 1997; Hisdal et al., 2004). In this study
the Q80 (mm d−1) was derived from the flow duration curve, where the Q80 is the
threshold which is equalled or exceeded for 80% of the time. The Q80 has been used in
multiple studies where drought is studied (e.g. Fleig et al., 2006; Parry et al., 2010). A
monthly threshold was applied, where the Q80 is derived for every month of the year.
With a moving average window of 30-days the threshold was smoothed, resulting in
the variable monthly threshold used for this study (Van Loon and Van Lanen, 2012).
The Q80 obtained from the reference period was also used for the future period to
enable drought identification in the period 2000-2100, relative to 1971-2000. Similar
to Chapter 8 the drought state is given by:

Ds(t, n) =

{
1 for Q(t, n) < Q80(t, n)

0 for Q(t, n) ≥ Q80(t, n)
(9.7)
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Figure 9.1 Model set-up of the synthetic hydrological model used in this study. The
model consists of three partitions, Snow, Soil and Groundwater. Psn snowfall, Pra rainfall,
ETp potential evapotranspiration, ETa actual evapotranspiration, Sn snow storage, SS soil
storage, SSmax maximum soil storage, Qsn snow melt, Qs recharge to the groundwater from
the unsaturated zone, Qb bypass flow, Rch total recharge to groundwater, SG groundwater
storage, j groundwater response parameter, Qout groundwater discharge and t is the time
index.

where Ds(t) is a binary variable indicating if a location is in drought at time t. The
drought duration for each event was calculated with:

Duri =

Li∑
t=Si

Ds(t) (9.8)

where Duri is the drought duration (d) of event i, Si the first time step of an event
i and Li the last time step of the event. The Percentage Drought per Year (PDY )
was used in this study as a measure of drought occurrence that enables a comparison
between the simulated discharge time series of different time periods (e.g. 2021-2050
relative to 1971-2000). The PDY was calculated by:

PDY =

∑T
t=1Ds(t) ∗ 365

T
(9.9)

where PDY is the fraction of the total simulation period that a location is in drought
(d y−1) and T is the total number of timesteps. Please note that PDY=73 d y−1 for
the control period 1971-2000 by definition. The deficit volume was defined by:

Def(t, n) =

{
Q80(t, n)−Q(t, n) for Ds(t, n) = 1

0 for Ds(t, n) = 0
(9.10)
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where Def(t) is the daily deficit volume of drought i (mm). The total drought deficit
volume for each drought event was calculated with:

Defi =

Li∑
t=Si

Def(t) (9.11)

whereDefi is the total deficit volume of the drought event i (mm). The deficit volume
is the cumulative deviation of the discharge from the threshold over the duration of a
drought event. Furthermore, the standardized deficit volume (d) was obtained with:

StDefi =
Defi

Q
(9.12)

where StDefi is the deficit volume of event i (d) divided by Q, the mean yearly dis-
charge (mm d−1). StDefi was introduced to enable a comparison across the globe
between locations with different flow magnitudes. Since the deficit volume (Defi) is
highly correlated to the discharge, the obtained StDef provides the drought severity
relative to the local hydrological situation. The StDef can be interpreted as the
number of days that the mean yearly discharge is missing. The drought duration
and standardized deficit volume are hereafter referred to as the duration and deficit
volume. If the Q80 equals 0 mm d−1 for more than 20% of the time, no drought char-
acteristics were calculated since by definition a drought will not occur (Equation 9.7).
These locations were excluded from the analysis, since frequent zero discharge situ-
ations are part of the local climate (i.e. aridity) and are not a situation with below
normal water availability. When a drought is already present at the beginning of a
simulation period or still present at the end no valid average characteristics could be
obtained and therefore the drought event was excluded from the analysis to avoid
including incomplete drought events in the statistics.

9.3.3 Similarity Index

The Similarity Index (SI) was introduced as a measure to examine changes in drought
characteristics (Van Lanen et al., 2013). Bivariate probability distributions (Wand
and Jones, 1995) were used to find relations between drought duration (Equation 9.8)
and deficit volume (Equation 9.12). The bivariate probability distributions were
compared for different time periods and their joint occurrence was evaluated with the
SI. The area of the 90% probability mass of the bivariate probability distribution
field was calculated and used for further evaluation. Both low and high extreme values
of Duri and Defi were excluded, since the focus of this study is not on changes in the
most extreme drought conditions. The similarity index (SI) quantifies the degree of
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overlap (%) between two 90% Dur − StDef probability fields as follows:

SI = R1∩R2
R1

· 100
R1 =

m∑
x=1

n∑
Y=1

MR1(m,n) if MR1(m,n) = 1

R1 ∩R2 =
m∑

x=1

n∑
Y=1

MR1(m,n)if MR1(m,n) = 1 and MR2(m,n) = 1
(9.13)

where R1 is the 90% Dur − StDef probability field of realization of period 1 (e.g.
1971-2000), R1 ∩ R2 is the coinciding 90% Dur − StDef probability fields of real-
izations of period 1 and 2 (e.g. 1971-2000 and 2021-2050, respectively), m and n
indicate probable realizations of Duri and Defi. MR1 and MR2 are matrices, MR1
contains the conditional probabilities of realization of period 1, and MR2 the field
of realization of period 2. MR1(m,n) and MR2(m,n) are binary quantities where
1 equals a value within, and 0 a value outside the 90% Dur − StDef probability
field of realizations 1 and 2, respectively. In this study m · n was set at 150 · 150 and
physical limits of Dur and StDef where fixed to 1296 (d) and 256 (d), respectively.
By definition the SI can range between 0% (no joint occurrence) to 100% (complete
joint occurrence). For a more detailed description of the SI the reader is referred to
Van Lanen et al. (2013).

9.3.4 Selection of evaluation locations

For a global evaluation of the change in drought duration and deficit volume as
result of climate change, locations (i.e. WATCH cells) were randomly selected around
the world. The Köppen-Geiger climate classification (Köppen, 1900; Geiger, 1954,
1961) was used to ensure that sufficient locations were selected in all different major
climate regions. The five climate types distinguished in this study are: Equatorial
(A), Arid (B), Warm temperate (C), Snow (D) and Polar climates (E). The global
map with Köppen-Geiger climate classification was recalculated based on the WFD,
to obtain correct positioning of climate regions (Figure 9.2). Van Lanen et al. (2013)
found that 1495 locations were sufficient to adequately include world’s climates and
the same locations were also used for this study (21 locations were excluded due to
large numbers of no flow conditions). They show that at least 30 randomly selected
locations are required per major climate region to obtain reliable general drought
characteristics. The selected locations were distributed over the climate types A, B,
C, D and E as follows: 16%, 21%, 16%, 34% and 13%, which reflect differences in
area of major climate regions.

9.3.5 Impact assessment of climate change

To examine the impact of climate change on characteristics of discharge drought, the
synthetic hydrological modelling approach was used and forced with meteorological
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Figure 9.2 The Köppen-Geiger climate classification, based on the climatology of the
WATCH Forcing Data (1958-2001).

data from three GCMs (GCM forced) over the period 1960-2100. This period was
divided into three evaluation periods, namely 1971-2000, 2021-2050, 2071-2100. An
eleven year warm-up period (1960-1970) was applied for the hydrological model to
remove biases resulting from the initial conditions. The monthly Q80 was derived over
the period 1971-2000 to determine the variable threshold (Section 9.3.2). The 1971-
2000 threshold was applied to the two other future periods, to enable calculation of the
drought characteristics (D and StDef , Equations 9.8 and 9.12), and to determine the
effect of climate change relative to the period 1971-2000. The effect of climate changes
on drought duration and deficit volume was studied for all different major climate
regions. The discharge drought characteristics of each GCM forced hydrological model
over the control period (1971- 2000) were compared against the characteristics derived
from the model forced with the WFD for the same period (reference model) to explore
uncertainty due to GCM forcing. Ideally, there should be only minor differences in
drought characteristics between the characteristics derived from discharge simulated
with the GCM forcing and the simulation with the WFD, since the control periods
of each GCM are bias corrected to match the WFD (Piani et al., 2010a,b; Haerter
et al., 2011; Chen et al., 2011; Hagemann et al., 2011). The changes in drought
characteristics were evaluated for the period 2021-2050 and 2071-2100 by comparing
against the control period of each GCM forced hydrological model. For the evaluation
the SI was calculated for all major climate types and used to determine the changes
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Figure 9.3 Bivariate probability functions for two hydrological drought characteristics (du-
ration and standardized deficit volume) for all climate types (All) and individual major cli-
mate types, Equatorial (A), Arid (B), Warm temperate (C), Snow (D) and Polar climates
(E) obtained from simulations of the synthetic hydrological model, using meteorological
forcing by the WATCH Forcing Data (WFD, reference) and General Circulation Models;
ECHAM, CNRM and IPSL.

in drought duration and deficit volume as a result of a changing climate. For the
seasonal analysis of changes in drought deficit volumes, the season for the location
at the Southern hemisphere has been transposed to match the Northern hemisphere
climatology.

9.4 Results

9.4.1 Control period

Hydrological drought derived from discharge time series that were simulated with the
synthetic hydrological modelling approach using re-analysis data (WFD) as meteoro-
logical forcing (reference model) were the benchmark in this study. The hydrological
drought characteristics were intercompared for the control period from 1971-2000 with
those obtained from the same hydrological model that was forced with downscaled
and bias-corrected outcome from three GCM forced models.
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Table 9.2 Similarity Index (SI) between the reference model with meteorological forcing
from the WATCH Forcing Data and models with meteorological forcing from three General
Circulation Models (ECHAM, CNRM, IPSL) for the control period (1971-2000). SI is given
for all major climates, Equatorial (A), Arid (B), Warm temperate (C), Snow (D) and Polar
climates (E) and averaged over all climates.

WFD
A B C D E All

ECHAM 100 75 99 92 67 91
CNRM 100 82 100 87 73 94
IPSL 100 85 98 90 65 93

The bivariate density distributions obtained for the control period for all three GCM
forced models show large similarity with the reference model for all climate types
(Figure 9.3). However, some deviations occur for the polar (E) and arid (B) climate
types where the GCM forced models show less spread in the drought characteristics
than the reference model. In the snow dominated (D) climate type a division between
short duration and long multi-year drought events was found. This is caused by the
fact that groundwater storage is not replenished in the winter season. Below zero
temperatures in the following summer prevent snowmelt and groundwater recharge
and hence drought conditions will not lift. When summer temperatures are too low to
generate enough snow melt to replenish the groundwater, this drought will continue
over the next winter. If the drought continues over winter this will automatically result
in a multi-year drought and hence long drought durations (Van Loon et al., 2014).
Overall the GCM forced models show a large resemblance to the reference model
throughout the climate regions, especially for the less extreme climate types. This
is also illustrated through the Similarity Index (SI, Equation 9.13) when the GCM
forced models are compared against the reference model (Table 9.2). For example, the
SI for the A-climate is 100%, which means that the bivariate distribution of drought
duration and deficit volume for the 3 GCM forcing datasets is identical to the WFD
forcing. The SI for the C-climate is almost 100%, and for the D-climate around 90%.
For the B-climate the SI is still 75% or more, whereas for the E-climate the SI is
above 60%.

The average drought duration and deficit volume for the major climates and averaged
over all climates show that the GCM forced models are in good agreement with the
reference model with some mismatch in the extreme arid and polar climate types
(Figure 9.4 and 9.5). The results from Table 9.3 support the SI findings (Figure 9.3
and Table 9.2) that the GCMs are capable to produce realistic meteorological forcing
for hydrological drought assessment under most climate conditions, but show diffi-
culties in desert and polar climates. The drought duration derived from the GCM
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Figure 9.4 Spatial distribution of average hydrological drought duration for different time
periods, obtained from simulations of the synthetic hydrological model, using meteorolog-
ical forcing by the WATCH Forcing Data (WFD) and three General Circulation Models,
ECHAM, CNRM and IPSL.

forced models for the A, C and D major climate types deviates less than 10% from the
duration obtained for the reference model (Table 9.2, IPSL for the A climate type is
an exception). For the B and E climates the deviation is larger, in particular for the
latter (up to more than 50%). The deficit volume shows a similar pattern but relative
deviations are larger because of smaller magnitude (Table 9.2). Uncertainties in the
differences are low (Table 9.3), increasing the confidence that GCMs can correctly
reproduce hydrological drought characteristics for the control period.

The monthly drought deficits for the control period for all three GCM forced models
show large similarity with the reference model derived from the WFD (Figure 9.6).
The GCM forced simulation show identical patterns with respect to the monthly
distribution of the drought deficits. An exception is found for the polar (E) climate
type, where the drought deficit volume in summer is overestimated by the GCM
forced simulations.

The deviation of the GCM forcings from the reference situation that are found are
most likely caused by the bias correction applied to GCM forcing data. Bias correc-
tion is applied to the number of rain days and total precipitation volumes. However,
the frequency, co-occurrence and magnitude of precipitation is not bias-corrected.
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Figure 9.5 Spatial distribution of average standardized deficit volume for different time
periods, obtained from simulations of the synthetic hydrological model, using meteorolog-
ical forcing by the WATCH Forcing Data (WFD) and three General Circulation Models,
ECHAM, CNRM and IPSL.

Since the precipitation is corrected using a fitted gamma-distribution these second
order statistics are not included in the bias correction. This could (especially in a
dry climate) have a significant impact on the drought characteristics, where little
rainfall could end a drought event. In the polar climate, the interaction between
precipitation amounts and temperatures is of significant importance with respect to
ending of drought events. If the forcing of the GCM would have exactly the same
statistical properties as the WFD, no differences would occur in drought characteris-
tics. Therefore, it is concluded that the statistical properties of the precipitation and
temperature are not fully matched for the polar climates and to a lesser extent for the
B-climate, which significantly impacts the drought characteristics in these climates.

9.4.2 Future period

All GCM forced models show a decrease in the number of hydrological drought
throughout climate types (Figure 9.7, upper row, note logarithmic scale). This
decreasing number of drought is associated with an increase in the duration by
143 to 157% for all GCM forced models in 2071-2100 (Figure 9.7 and 9.8, second
row, Table 9.4). The most severe drought also show a very strong increase relative
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Figure 9.6 Monthly distribution of the annual total cumulative deficit volume over the
year, obtained from simulations of the synthetic hydrological model, using meteorological
forcing by the WATCH Forcing Data (WFD) and General Circulation Models, ECHAM,
CNRM and IPSL. Results are shown per analysis period and for each major climate type
separately.

to the control period and the spread in duration between locations strongly increases
(Figure 9.7). The overall effect of climate change on the PDY over the two future
periods shows a decreasing trend (Figure 9.7, third row). The total time a location
is in drought decreases by 67 to 74% in 2071-2100 (Table 9.4), indicating that the
locations are less in drought throughout the 30 year period (Figure 9.8). The deficit
volume shows an overall increase of slightly over 200% in 2071-2100 (Table 9.4, Fig-
ure 9.5), which indicates that although drought are less frequent, the severity in both
duration and deficit volume increases for the remaining events. Uncertainties in the
estimated relative changes are low, 2 - 5% for duration and 1 - 5% for the PDY ,
(Table 9.4), with the exception of the deficit volume (4 - 64%). This indicates that
it is more difficult for the ensemble of GCMs to indicate changes in deficit volumes
with high certainty.
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Figure 9.7 Distribution of three discharge drought characteristics obtained from a syn-
thetic hydrological model using meteorological forcing from the WATCH Forcing Data
(reference model) and three models with meteorological forcing from General Circulation
Models (ECHAM, CNRM and IPSL) for the control period (1971-2000). Row one indicates
the number of hydrological drought per evaluation period, row two the average drought
duration, row three the percentage of the year in drought and the last row gives the average
standardized deficit volume.
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Table 9.3 Absolute average hydrological drought characteristics for the control period
(1971-2000), including relative difference for the three GCMs, relative to the WATCH Forc-
ing Data and the standard deviation of the relative difference. Characteristics are provided
for Equatorial (A), Arid (B), Warm temperate (C), Snow (D) and Polar climates (E).

WFD ECHAM CNRM IPSL
Abs. Abs. Rel. Abs. Rel. Abs. Rel.

A 54.3 57.3 106 ± 3% 59.5 110 ± 3% 70.7 130 ± 10%
B 79.4 57.4 72 ± 3% 63.1 79 ± 3% 66.5 84 ± 4%

Duration (d) C 50.2 49.3 98 ± 3% 54.6 109 ± 3% 51.4 102 ± 3%
D 57.1 56.5 99 ± 4% 57.0 100 ± 12% 55.5 97 ± 6%
E 105.0 48.8 46 ± 4% 51.8 49 ± 6% 47.2 45 ± 4%
All 66.7 59.8 90 ± 2% 69.0 103 ± 4% 66.6 100 ± 2%

A 5.31 4.58 86 ± 5% 5.25 99 ± 5% 6.61 124 ± 6%
Standardized B 8.44 4.89 58 ± 4% 5.85 69 ± 4% 5.47 65 ± 4%
deficit C 4.73 4.26 90 ± 5% 5.01 106 ± 5% 4.13 87 ± 5%
volume (d) D 5.61 4.82 86 ± 4% 4.43 79 ± 11% 4.14 74 ± 5%

E 10.89 4.08 37 ± 4% 4.24 39 ± 6% 3.64 33 ± 4%
All 6.58 5.05 77 ± 2% 5.94 90 ± 4% 5.24 80 ± 2%

The projected changes in the median of discharge drought characteristics (duration,
deficit volume and PDY ) for each major climate type are included in Table 9.4. The
duration increases relative to the control period in all major climate regions, where
the period 2071-2100 is more affected than 2021-2050 (Table 9.4). The strongest
increase occurs for the equatorial and arid climates, where duration increases up to
181% for IPSL (Table 9.4). For the snow and polar climate (D, E) the increase in
duration is smaller (114-138%) and lower than for the warmer A, B and C climates.

The PDY is projected to decrease throughout the 21st century (Figure 9.8, Table 9.4).
However, changes vary throughout climate regions. Averaged over all climates by the
end of the century, median PDY will decrease to 26-33% relative to the control
period, leading to an average of ≈ 22 d y−1. For the equatorial climate (A) the
direction of the change is not uniform. The IPSL forced model shows an increase
for the equatorial climate (A) in 2071-2100 (128%), while both ECHAM and CNRM
show that the PDY will decrease throughout all climate types (74% and 44%). For
the other climate regions the direction of the change is uniform and shows a decrease
in the PDY . For the snow climate, the changes are largest, the total PDY reduces
to 5-8% relative to the control period, leading to an average PDY of ≈ 5 d y−1 by
the end of the 21st century.
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Figure 9.8 Spatial distribution of average Percentage Drought per Year for different time
periods, obtained from simulations of the synthetic hydrological model, using meteorological
forcing by the WATCH Forcing Data (WFD) and General Circulation Models, ECHAM,
CNRM and IPSL.

A substantial increase was found for the deficit volume for all climate regions in
both future periods, where the mean deficit volume clearly increases over the century
(Figure 9.5, Table 9.4). This increase is strongest for the A, B and C climates, where
the ranges increase by 217 to 327%, leading to median deficit volumes between 9.24
and 21.6 d, i.e. 9.24 and 21.6 times the mean discharge.

Seasonal changes in the relative importance of the drought deficit are small, with the
exception of the polar (E) and snow dominated (D) climate types (Figere 9.6). In
these regions a shift to more spring and summer dominated drought are projected.
This is caused by shifts in the snowmelt season due to temperature rise (as a result
of climate change), resulting in a lower water availability in late spring and summer
(development towards warm snow season drought, Van Loon and Van Lanen, 2012).
This effect is not found in the other major climate, since the discharge seasonality
in the regions is not dominated by snow accumulation and melt periods. Although
locally, the changes in the drought seasonality might be severe, on a global scale
no changes have been found as a result of changes in climatology (e.g. shifts in
precipitation patterns).

For all future GCM forced models the 90% probability fields were calculated and the
changes relative to the control period are presented using the SI (Table 9.5). All
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Table 9.4 Changes in median of drought characteristics (% relative to control period, 1971-
2000, including standard deviation) for climate types: Equatorial (A), Arid (B), Warm
temperate (C), Snow (D) and Polar climates (E).

2021-2050 2071-2100
ECHAM CNRM IPSL ECHAM CNRM IPSL

A 142 ± 4 138 ± 4 131 ± 12 175 ± 7 169 ± 5 181 ± 15
B 142 ± 4 133 ± 3 144 ± 6 175 ± 6 160 ± 4 181 ± 12

Duration (d) C 133 ± 4 123 ± 3 115 ± 5 150 ± 7 162 ± 6 162 ± 7
D 107 ± 7 93 ± 15 100 ± 11 129 ± 8 121 ± 29 114 ± 12
E 100 ± 4 108 ± 16 108 ± 8 123 ± 6 138 ± 23 131 ± 7
All 115 ± 3 114 ± 6 121 ± 5 146 ± 3 143 ± 9 157 ± 6

A 81 ± 5 75 ± 4 112 ± 5 74 ± 4 44 ± 4 128 ± 5
B 95 ± 4 81 ± 3 98 ± 4 89 ± 4 56 ± 3 99 ± 4

PDY (d y−1) C 78 ± 4 65 ± 4 49 ± 3 41 ± 4 40 ± 3 22 ± 4
D 57 ± 3 49 ± 3 47 ± 2 8 ± 3 5 ± 3 8 ± 2
E 61 ± 4 53 ± 4 52 ± 3 22 ± 4 19 ± 4 25 ± 4
All 70 ± 2 61 ± 1 62 ± 2 33 ± 2 26 ± 1 30 ± 2

A 193 ± 7 194 ± 7 182 ± 25 301 ± 18 317 ± 13 327 ± 40
Standardized B 206 ± 9 179 ± 7 218 ± 16 305 ± 15 268 ± 12 310 ± 64
deficit C 164 ± 10 145 ± 7 134 ± 9 217 ± 21 220 ± 20 247 ± 22
volume (d) D 131 ± 8 103 ± 18 117 ± 11 144 ± 12 152 ± 36 126 ± 25

E 115 ± 7 128 ± 20 115 ± 8 147 ± 14 170 ± 35 167 ± 18
All 155 ± 4 139 ± 7 146 ± 8 206 ± 7 214 ± 12 222 ± 22

models indicate that changes occur with a similar magnitude for all major climate
types. For example, the SIs obtained with the ECHAM forced model show that
19% of drought characteristics (duration and deficit volume) of events in 2021-2050
(averaged over all climates), did not occur in the control period. This percentage
increases up to 31% by the end of the century. The strongest decrease in SI (i.e.
largest change) was found in the equatorial, arid and warm temperate climates (A,
B, C) where SI values can be as low as 60%. The same pattern was found for the
snow climate (D), however, changes in SI are smaller.

9.5 Discussion

Most global drought projections address meteorological or soil moisture drought. Dai
(2013) has investigated global soil moisture drought up to 2010 and states that the
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Table 9.5 Similarity Index (SI) for the near (2021-2050) and far (2071-2100) future, com-
pared to the control period (1971-2000) derived from a synthetic hydrological model forced
with three General Circulation Models. SI is given for all major climates, Equatorial (A),
Arid (B), Warm temperate (C), Snow (D) and Polar climates (E) and averaged over all
climates.

GCM Period A B C D E All

ECHAM 2021-2050 77 71 73 84 84 81
ECHAM 2071-2100 63 60 64 70 73 69
CNRM 2021-2050 78 82 85 88 81 87
CNRM 2071-2100 64 71 68 64 68 71
IPSL 2021-2050 73 71 83 87 86 82
IPSL 2071-2100 60 58 63 73 71 68

PDSI changes derived from observed weather records are consistent with model pre-
dictions, which would indicate severe and extended global drought in the 21st century
resulting from either decreased precipitation and/or increased evaporation. Sheffield
et al. (2012) argue that the increase in global soil moisture drought since the 1980s
is overestimated because the PDSI was computed with a too simple evapotranspira-
tion model, which has consequences of how to interpret the impact global warming on
global drought changes. Orlowsky and Seneviratne (2013) use meteorological drought
(SPI) and soil moisture drought (anomaly) to illustrate that there will be both wetting
regions in the 21st century (e.g. East and South Asia, Sahel, Central North America,
Central Europe) and drying regions (e.g. Australia, South Africa, Central America,
Amazon, Mediterranean). Seneviratne et al. (2012) conclude that there is medium
confidence that in some regions across the world duration and intensity of meteoro-
logical or soil moisture drought will increase and elsewhere the confidence level is low
because of definitional differences or model disagreement. Land surface processes and
properties (e.g. groundwater flow and storage, stream-aquifer interaction, Van Lanen
et al., 2004; Van Loon et al., 2012) make meteorological or soil moisture drought
projections not straightforwardly applicable to hydrological drought.

Hydrological drought projections, which are of paramount importance for assessments
of future water resources, are still limited. GCMs and Regional Climate Models
(RCMs) are somewhat simplified to include all relevant land surface processes and
properties, hence usually lack adequate soil and aquifer storage processes (Stahl et al.,
2011). Hydrological drought projections are often associated with change in annual
runoff or river flow (e.g. Arnell, 2003; Milly et al., 2005). Off-line approaches on
a global scale use large-scale hydrological models in combination with forcing from
either GCMs or RCMs. Intermediate approaches are needed to downscale and bias
correct the climate model forcing (Haddeland et al., 2011), which is a challenging
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process (e.g. Sperna Weiland et al., 2010; Hagemann et al., 2011), in particular for
the future climate (Chen et al., 2011). Very few attempts have been made so far to
derive hydrological drought characteristics at the global or continental scale under
future climate. Forzieri et al. (2014) project an increase in deficit volume of river
flow for vast areas of Europe, except the Scandinavian countries and North Russia.
Hirabayashi et al. (2008) and Feyen and Dankers (2009) project a substantial increase
in the number of drought days (PDY ) or flow deficit volume for the period 2071-
2100 in some regions, whereas in contrast, wide areas will benefit from a decrease
in drought days. An increase in number of drought days in general is not in line
with the modelling experiment in this study, whereas an increase in deficit volume is
supported (Table 9.4). In Chapter 10 an increased water availability in the colder snow
dominated climate types was found, which is in line with the findings of this study.
Corzo Perez et al. (2011b) analysed future drought for two time domains (2021-2050
and 2071-2100), two emission scenarios (A2 and B1), 3 downscaled and bias-corrected
GCMs, and 5 large-scale hydrological models. The number and spatial distribution
of drought events did not clearly show a consistent change. The limited number of
global studies on future hydrological drought still makes projections uncertain.

In the control period 1971-2000, differences occur between hydrological drought char-
acteristics (Figure 9.3) derived from discharge time series simulated with meteorolog-
ical forcing from downscaled and bias-corrected outcomes from three Global Circu-
lation Models (GCM forced models). For example, the duration and deficit volume
averaged over all climates varies from 60 to 69 d and 5.05 to 5.94 d, respectively, for
the three GCM forced models (Table 9.3). The main reason for this is GCM model
uncertainty, caused by the differences in model structures (Chen et al., 2011; Haerter
et al., 2011). Differences in hydrological drought characteristics among GCM forced
models are more similar than the differences between characteristics derived from the
GCM forced models and characteristics that were obtained using re-analysis data as
meteorological forcing (reference model). Exceptions are the B and E climates (Ta-
bles 9.2 and 9.3). For the A, C and D climates differences in drought duration of
GCM forced models against the reference model vary from 0-30%, whereas for the
deficit volume the range is 1-26% (Figure 9.4 and 9.5). Differences in drought char-
acteristics between GCM forced models and the reference model are mostly negative,
implying that the drought duration and standard deficit volume are smaller when
GCM forcing was used instead of re-analysis data. Differences in drought character-
istics against the reference model are not always mono-directional for a particular
climate (e.g. drought duration for the C climate). The above-mentioned differences
are a measure for climate model uncertainty. Most large-scale studies, which explore
hydrological impact of climate change, compare simulated and observed annual river
flow to assess model fitness as a basis for projections (e.g. Arnell, 2003; Milly et al.,
2005). Other studies also focus on low-water availability and include minimum flow
or flow deficits to investigate future drought (e.g. Feyen and Dankers, 2009; Forzieri
et al., 2014). Few large-scale studies test hydrological model performance by com-
paring GCM forcing against observed forcing. Sperna Weiland et al. (2010) are such
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an exception. They conclude that bias-corrected GCM-forcing should be used with
caution for global hydrological impact studies in which persistence is relevant, like
for drought. Another example is Corzo Perez et al. (2011b), who confirm that for
a control period no clear patterns can be found in differences between hydrological
drought characteristics derived from GCM-forced hydrological models and the same
models forced with re-analysis data.

Global annual precipitation totals are projected to increase throughout the 21st cen-
tury, although locally annual precipitation might decrease (Solomon et al., 2007).
Precipitation increase is most prominent in the equatorial and polar climates, result-
ing in an increase in discharge (Solomon et al., 2007), which was confirmed by the
data from GCMs that was used for this study. Therefore, in the 21st century the
historic Q80 (1971-2000) was exceeded for more than 80% of the time in our study,
hence the PDY decreased both in the near and far future (Table 9.4).

It was noticed that for the equatorial climate the impact of climate change is not
unambiguous. Two GCM forced models (ECHAM, CNRM) indicate a decrease in
total drought occurrence (PDY ) relative to the control period (19-25% for 2012-2050
and 36-56% for 2071-2100), while one GCM forced model (IPSL) indicates a small
increase (12% for 2012-2050 and 28% for 2071-2100) in total drought occurrence (A
climate, Table 9.4). The main reason for the model disagreement is an increase in
precipitation projected by ECHAM and CNRM and a decrease by IPSL in most of the
selected locations for the A climate leading to higher and lower discharge, respectively.

The three GCMs project increasing annual temperatures leading to a decreased length
of the snow accumulation period in cold climates (D- and E-climates), which have
great impact on river flow (e.g. Wilson et al., 2010), and consequently on drought
occurrence (PDY , D climates, Table 9.4). For instance, duration of rain-to-snow-
season drought as identified by Van Loon and Van Lanen (2012) will decrease due
to later precipitation as rain in autumn or earlier rain in spring, leading to, quicker
snow melt peak. It was found that the combined effect of increased precipitation and
shorter snow accumulation periods causes a strong decrease in total drought duration
(i.e. PDY ). Feyen and Dankers (2009) report on a decrease in drought severity (i.e.
7-day minimum flow and deficit volume during the frost period) in the cold European
climates. Classical rainfall drought, however, will become more severe due to lower
summer flows in some regions, e.g. southern and eastern Norway (Feyen and Dankers,
2009; Wilson et al., 2010; Wong et al., 2011; Stahl et al., 2011), which is supported
by this study, where the remaining drought in the far future last 14-29% longer and
are 26-52% more severe.

A large portion of the globe is covered by snow dominated and polar climates (D and
E, Figure 9.2). While the impact of climate change on hydrological drought may be
most severe for the snow dominated regions (D and E-climates), the societal impact
is expected to be relatively low. In these regions the population density is low and
the projected changes have a positive impact on the water availability. Projected
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changes are far more likely to have a significant impact on the tropical and desert
climates (A and B-climate). In these regions vulnerability to drought is higher while
the drought resilience is lower compared to other regions in the world. Therefore, the
forecasted increase in severity and duration of drought should be seen as events which
could severely impact the region. These changes could lead to forced immigration,
putting pressure on adjacent regions usually also scarce in water already. Uncertainty
in projections for these regions should challenge policy makers and stakeholders to
take appropriate decisions for drought adaptation measures.

9.6 Conclusions

With a synthetic hydrological modelling approach the impact of climate change
on drought occurrence and severity was studied. Drought characteristics, namely
drought duration, standardized deficit volume and percentage of drought occurrence
per year were calculated for the time period 1960-2100. Three different General
Circulation Models (ECHAM, CNRM, IPSL) were used as meteorological forcing to
simulate possible effects of climate change on drought (GCM forced models). The A2
emission scenario was used to explore the most severe outcome for the three GCM
forced models. Obtained drought characteristics were compared against the drought
characteristics obtained from simulations of the hydrological model forced with meteo-
rological data from the WATCH Forcing Data, which was used as a reference dataset
in this study (reference model). Comparison was performed for the control period
1971-2000 and the deviations of each GCM forced model from the reference model
were calculated. On a global scale drought duration found for the reference model
and the GCM forced models were in the same order of magnitude, while the stan-
dardized deficit volume was underestimated compared against the reference model.
It was concluded that the GCM forced models produce realistic meteorological forc-
ing for future hydrological drought assessment, but have difficulties to capture the
more extreme arid and polar climates. This issue is most likely caused by the bias
correction, which only corrects for numbers of rain days and total precipitation vol-
umes. However, it does not take into account second order statistics like the sequence
of rainfall events, the co-occurrence and magnitude of specific events. These second
order statistics could have significant impact on the duration and severity of drought
events.

The effects of climate change were studied for two periods, namely 2021-2050 and
2071-2100 and compared relative to the control period. From the analysis it is con-
cluded that average drought duration and standardized deficit volume will increase
as a result of climate change. However, the total drought duration and number of
drought will decrease since on a global scale the total water availability will increase
due to increased precipitation totals.
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On a global scale the average duration of drought events will increase by a factor
1.5 in the far future (2071-2100), where this increase is most severe in the equatorial
and arid climate types. Overall the total drought duration (PDY ) decreases to 26-
33% relative to the control period, where the decrease is most striking in the snow
climates. Increasing temperatures cause a decrease in winter drought and snow accu-
mulation, combined with increased precipitation, leading to a very strong decrease in
total drought duration (5-8% relative to the control period). Global average drought
standardized deficit volume increases by slightly more than 2 times for the period
2071-2100, which suggests that drought severity will increase as a result of changes
in the climate.

Projections of global hydrological drought, which are essential for future water re-
sources management, are still very limited. This study advances knowledge on future
hydrological drought. Averaged over all climates the GCM forced hydrological models
produces similar changes in discharge drought. Some spread is found among the mod-
els, but the directionality is similar. In general, the synthetic hydrological modelling
approach shows that hydrological drought occurrence (i.e. total days in drought per
year) is projected to decrease over the 21st century, particularly in the temperate and
cold climate regions. On the contrary, average drought duration and deficit volume
of the remaining drought are expected to substantially increase. The most critical
impacts are projected for the already water scarce arid climates (B climates), where
drought occurrence will not decrease that much and average duration and deficit vol-
ume of remaining drought events will increase more than in other climates. However,
in this climate, model uncertainty is largest.
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10 Human and climate impacts on
hydrological drought

This chapter is based on:
Wanders, N., Wada, Y. (2014), Human and climate impacts on the 21st century
hydrological drought, Journal of Hydrology, in press, doi:10.1016/j.jhydrol.2014.
10.047.

Abstract

Climate change will very likely impact future hydrological drought characteristics across

the world. Here, the impact of human water use including reservoir regulation and climate

change on future low flows and associated hydrological drought characteristics was quanti-

fied on a global scale. The global hydrological and water resources model PCR-GLOBWB

is used to simulate daily discharge globally at 0.5◦ resolution for 1971-2099. The model was

forced with the latest CMIP5 climate projections taken from five General Circulation Mod-

els (GCMs) and four emission scenarios (RCPs), under the framework of the Inter-Sectoral

Impact Model Intercomparison Project. A natural or pristine scenario has been used to cal-

culate the impact of the changing climate on hydrological drought and has been compared

to a scenario with human influences. In the latter scenario reservoir operations and human

water use are included in the simulations of discharge for the 21st century. The impact of

humans on the low flow regime and hydrological drought characteristics has been studied

at a catchment scale. Results show a significant impact of climate change and human water

use in large parts of Asia, Middle East and the Mediterranean, where the relative contri-

bution of humans on the changed drought severity can be close to 100%. The differences

between Representative Concentration Pathways (RCPs) are small, indicating that human

water use is proportional to the changes in the climate. Reservoirs tend to reduce the im-

pact of drought by water retention in the wet season, which in turn will lead to increased

water availability in the dry season, especially for large regions in Europe and North Amer-

ica. The impact of climate change varies throughout the season for parts of Europe and

North-America, while in other regions (e.g. North-Africa, Middle East and Mediterranean),

the impact is not affected by seasonal changes. This study illustrates that the impact of

human water use and reservoirs is nontrivial and can vary substantially per region and per

season. Therefore, human influences should be included in projections of future drought

characteristics, considering their large impact on the changing drought conditions.
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10.1 Introduction

Climate change is expected to increase drought intensity and frequency worldwide
as a result of changes in precipitation patterns and rising temperature (Burke et al.,
2006; Lehner et al., 2006; Feyen and Dankers, 2009; Dai, 2011, 2013; Prudhomme
et al., 2014; Trenberth et al., 2014). Drought is generally related to meteorological
extremes and is induced by below-normal precipitation (Wilhite and Glantz, 1985;
Wilhite, 2000; Mishra and Singh, 2010). Lack of precipitation causes meteorolog-
ical drought and agricultural drought over the region, but further propagates into
hydrological drought via the drainage network (Tallaksen et al., 1997; Sheffield and
Wood, 2007; Tallaksen et al., 2009; Sheffield et al., 2012; Van Loon et al., 2014).
Various studies analysed the severity, frequency and trends of hydrological droughts
using large-scale hydrological models that enable the analysis of drought over con-
tinental to global scales (Hisdal et al., 2001; Fleig et al., 2006; Feyen and Dankers,
2009; Tallaksen et al., 2009; Corzo Perez et al., 2011b; Van Huijgevoort et al., 2013,
2014; Alderlieste et al., 2014). However, the anthropogenic impact on drought is
generally less well known and such impact has rarely been explored. Notable excep-
tions are recent studies by Dai (2011, 2013) and Sheffield et al. (2012), who indicated
that anthropogenic global warming is likely responsible for intensifying meteorolog-
ical droughts, primarily due to enhanced evaporative demand and altered monsoon
circulation over regions such as Africa and Asia. Another exception by Wada et al.
(2013) showed that human water consumption substantially intensifies the magnitude
of hydrological droughts regionally by 10-500%, and it alone increases global drought
frequency by 30%. However, no study has yet provided a comprehensive overview
of human and climate impacts on future hydrological drought at the global scale.
Prudhomme et al. (2014) provided future projections of hydrological drought based
on a large ensemble of five Global Climate Models (GCMs) from the latest CMIP5
(Coupled Model Intercomparison Project Phase 5), four emission scenarios or Rep-
resentative Concentration Pathways (RCPs) and seven Global Hydrological Models
(GHMs). Yet, they considered only the effect of climate on hydrological drought
using the streamflow simulated under natural or pristine conditions such that anthro-
pogenic influence (e.g., irrigation and reservoir regulation) on resulting drought is not
explicitly incorporated.

The severe impacts of large-scale droughts have historically shown the need to im-
prove understanding of drought mechanisms so that our society can be better pre-
pared (Trenberth et al., 1988; Gleick, 2000; Andreadis et al., 2005; Seager, 2007;
Gleick, 2010; Pederson et al., 2012). Thus, providing a comprehensive overview of fu-
ture drought projections considering both human and climate impacts is a vital step,
ensuring future water and food security. Here, for the first time a full global analysis
of the impact of human activities (irrigation and reservoir regulation, Wada et al.,
2013) and climate change on hydrological drought is presented. Streamflow is simu-
lated under both natural or pristine conditions and under conditions including human
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influences using the global hydrological and water resources model PCR-GLOBWB
(Van Beek et al., 2011; Wada et al., 2011a,b, 2014) with five GCMs from the latest
CMIP5 and four emission scenarios (here represented by RCPs 2.6, 4.5, 6.0 and 8.5).
Human-induced change are incorporate by including human water use for irrigation
and reservoir regulation parameterized by the latest extensive global reservoir data
set (GRanD, Lehner et al., 2011). Another innovative aspect of this study is that a
transient spatially-distributed threshold or Q90 (30-year window) was applied, iden-
tifying drought characteristics that reflects changes in the hydrological regime over
time (Chapter 8), while most studies used the threshold calculated over the control
or historical period (e.g., 1971-2000). A transient threshold assumes adaptation to
long-term changes in the hydrological regime as the drought is defined by a deviation
from normal conditions (i.e. normal implies decadally updated 30-year averages ac-
cording to the WMO guidelines) (World Meteorological Organization, 2007; Arguez
and Vose, 2010). Our study stands out from earlier work by presenting for the first
time the human impact on future hydrological droughts using the latest multi-model
climate projections and multi-emission scenarios.

Section 10.2 of this paper presents a brief description of the global hydrological and
water resources model PCR-GLOBWB, climate forcing data, the drought identifica-
tion method and the simulation protocol. In Section 10.3 the simulation results are
presented and the human and climate impacts on future hydrological drought are
evaluated globally and per river basin. Section 10.4 discusses the advantages and the
limitations of our approach and the associated uncertainties, and provides conclusions
from this study.

10.2 Material and Methods

10.2.1 Model simulation of streamflow

The state-of-the-art global hydrological and water resources model PCR-GLOBWB
was used to simulate spatial and temporal continuous fields of discharge and storage
in rivers, lakes, and wetlands at a 0.5◦ spatial resolution (Wada et al., 2010; Van Beek
et al., 2011; Wada et al., 2014). In brief, the model simulates for each grid cell and
for each time step (daily) the water storage in two vertically stacked soil layers and
an underlying groundwater layer. At the top a canopy with interception storage
and a snow cover may be present. Snow accumulation and melt are temperature
driven and modelled according to the snow module of the HBV model (Bergström,
1995). To represent the rain-snow transition over sub-grid elevation dependent gradi-
ents of temperature, 10 elevation zones were distinguished in each grid cell based on
the HYDRO1k Elevation Derivative Database (https://lta.cr.usgs.gov/HYDRO1K/),
and the 0.5◦ grid temperate fields are down-scaled with a lapse rate of 0.65◦C per
100 m. The model computes the water exchange between the soil layers, and between
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Table 10.1 GCMs (Global Climate Models) used in this study.

GCM Organization

HadGEM2-ES Met Office Hadley Centre
IPSL-CM5A-LR Institute Pierre-Simon Laplace
MIROC-ESM-CHEM JAMSTEC, NIES, AORI (The University of Tokyo)
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
NorESM1-M Norwegian Climate Centre

the top layer and the atmosphere (rainfall, evaporation and snowmelt). The third
layer represents the deeper part of the soil that is exempt from any direct influence
of vegetation, and constitutes a groundwater reservoir fed by active recharge. The
groundwater store is explicitly parameterized and represented with a linear reservoir
model (Kraijenhof van de Leur, 1962). Sub-grid variability is considered by includ-
ing separately short and tall natural vegetation, open water (lakes, floodplains and
wetlands), soil type distribution (FAO Digital Soil Map of the World), and the area
fraction of saturated soil calculated by the Improved ARNO scheme (Hagemann and
Gates, 2003) as well as the spatio-temporal distribution of groundwater depth based
on the groundwater storage and the surface elevations as represented by the 1 km
by 1 km Hydro1k data set. Simulated specific runoff from the two soil layers (direct
runoff and interflow) and the underlying groundwater layer (base flow) is routed along
the river network based on the Simulated Topological Networks (STN30, Vörösmarty
et al., 2000a) using the method of characteristic distances (Wada et al., 2014).

The PCR-GLOBWB model and model outputs have been extensively validated in
earlier work. Simulated mean, minimum, maximum, and seasonal flow, monthly ac-
tual evapotranspiration, and monthly total terrestrial water storage were evaluated
against 3600 GRDC observations (http://www.bafg.de/GRDC) (R2 ∼ 0.9), the ERA-
40 reanalysis data, and GRACE satellite observations, respectively in earlier work
(Van Beek et al., 2011; Wada et al., 2012, 2014), and generally showed good agree-
ment. Simulated drought deficit volumes were also validated against those derived
from observed streamflow (from GRDC stations) for major river basins of the world
(Wada et al., 2013). The comparison generally showed reasonable agreement for most
of the basins, which leads to the conclusion that PCR-GLOBWB can adequately re-
produce low flow conditions and associated drought events across the globe.

The model was forced with daily fields of precipitation, reference (potential) evapo-
transpiration and temperature taken from five GCMs (Table 10.1) and four underlying
emission scenarios (here accounted for by using four RCPs (Table 10.2). The newly
available CMIP5 climate projections were obtained through the Inter-Sectoral Impact
Model Intercomparison Project (Warszawski et al., 2014). The GCM climate forcing
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Table 10.2 Overview of representative concentration pathways (RCPs) (Van Vuuren et al.,
2011). Radiative forcing values include the net effect of all anthropogenic greenhouse gases
and other forcing agents.

RCP Scenario

2.6 Peak in radiative forcing at ∼3.1 W m−2

(∼490 ppm CO2 equivalent) before 2100 and then decline
(the selected pathway declines to 2.6 W m−2 by 2100).

4.5 Stabilization without overshoot pathway to 4.5 W m−2

(∼650 ppm CO2 equivalent) at stabilization after 2100

6.0 Stabilization without overshoot pathway to 6 W m−2

(∼850 ppm CO2 equivalent) at stabilization after 2100.

8.5 Rising radiative forcing pathway leading to 8.5 W m−2

(∼1370 ppm CO2 equivalent) by 2100

was bias-corrected on a grid-by-grid basis (0.5◦ grid) by scaling the long-term monthly
means of the GCM daily fields to those of the observation-based WATCH climate forc-
ing for the overlapping reference climate 1960-1999 (Hempel et al., 2013). Potential
evapotranspiration was calculated with the bias-corrected GCM climate forcing with
the method of Hamon (Hamon, 1963). The resulting bias-corrected transient daily
climate fields were used to force the model over the period 1971-2099 with a spin-up,
reflecting a climate representative prior to the start of the simulation period. The
results of each GCM are treated equally and no weight was given to a particular
GCM based on the performance against historic climate. As a result, 20 projections
(5 GCMs with 4 RCPs) of future daily streamflow were produced.

10.2.2 Drought calculation

Hydrological drought characteristics (e.g. drought duration and deficit volume) were
derived from simulated time series of daily discharge (Q) using the variable threshold
level approach (e.g. Yevjevich, 1967; Dracup et al., 1980; Tallaksen et al., 1997; Hisdal
et al., 2004; Fleig et al., 2006; Tallaksen et al., 2009; Wanders et al., 2010). In this
study the Q90 (m3s−1) was derived from the flow duration curve, where the Q90 is
the threshold which is equalled or exceeded for 90% of the time. This threshold
has been selected to study the impact of severe drought conditions and has been
used in multiple studies where drought is studied for future and current hydrological
conditions (e.g. Fleig et al., 2006; Parry et al., 2010; Van Loon et al., 2014).

213



The drought state is given by:

Ds(t, n) =

{
1 for Q(t, n) < Qx(t, n)

0 for Q(t, n) ≥ Qx(t, n)
(10.1)

where Qx(t, n) is the threshold which is equalled or exceeded for x percent of the time
and Ds(t, n) is a binary variable indicating if a location or grid cell (n) is in drought
at a given time t. The drought duration for each event at n is calculated with:

Duri,n =

Li∑
t=Si

Ds(t, n) (10.2)

where Duri,n is the drought duration (d) of event i at n, Si the first time step of a
event i and Li the last time step of the event. An event starts when Q(t, n) < Qx(t, n)
and ends when Q(t, n) ≥ Qx(t, n). The deficit volume per time step was defined by:

Def(t, n) =

{
Qx(t, n)−Q(t, n) for Ds(t, n) = 1

0 for Ds(t, n) = 0
(10.3)

where Def(t, n) is the daily deficit volume of drought i (m3s−1) at n. The total
drought deficit volume for each drought event was calculated with:

Defi(n) =

Li∑
t=Si

Def(t, n) (10.4)

where Defi(n) is the total deficit volume of the drought event i (m3s−1) at n. The
deficit volume is the cumulative deviation of the discharge from the threshold over
the duration of a drought event. The intensity of all drought events is calculated
with:

Int(n) =
I∑

i=1

Defi(n)

Duri(n)
(10.5)

where the total drought deficit is divided by the total drought duration of location
n, for all drought events I, to obtain the total drought intensity (m3s−1d−1). The
intensity enables comparison of the drought impact for a location under different
scenarios. If the Qx(t, n) equals 0 m

3s−1 by definition a drought will not occur since
Ds(t, n) will remain zero (Equation 10.1). If Qx(t, n) equals 0 m

3s−1 for more than
50% of the time, no drought characteristics were calculated for this cell, although
some techniques exist to deal with these extreme situations (Van Huijgevoort et al.,
2012). In this study these locations were excluded from the analysis, since frequent
zero discharge situations are part of the local climate (i.e. aridity) and are not a
manifestation of hydrological drought conditions or occurrence.
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10.2.3 Transient variable threshold approach

Most studies that evaluate future changes in hydrological drought use the Variable
Threshold level Method (V TM), to derive drought characteristics (e.g. Prudhomme
et al., 2014; Alderlieste et al., 2014; Forzieri et al., 2014). In this study, the transient
Variable Threshold level Method approach (V TMt) was used that was developed
in Chapter 8. The V TMt was calculated from the daily values of Qx derived from
simulated discharge of the previous 30-year period (x = 90, in this study). For
each month daily discharge values of the last 30-year period are binned and the Qx

is calculated. Thereafter, the monthly values of Qx were smoothed with a moving
average window of 30-days, resulting in the variable threshold (V TMt). The V TMt

is expected to adapt to changes in the hydrological regime, based on the simulation of
the previous 30-year period, while the standard V TM does not change over time and is
normally derived from a control period (typically 1970-2000). Present climatology can
significantly change over the future period under human and climatological influences.
This will result in an altered hydrological regime and therefore the V TMt was used
when future hydrological drought characteristics were calculated. This requires that
the V TMt is calculated every day and dependent on the climatology of the last 30
years for the entire future period (Chapter 8). Changes in the V TMt will also indicate
changes in the low flow regime in the 21st century. This approach is different from the
more traditional non-transient threshold that is calculated from a control period and
that will not adapt to changes in the hydrological regime. Figure 10.1 indicates, in
a theoretical example, the difference between the traditional non-transient threshold
and the transient threshold. It shows that the threshold will gradually change, since
the V TMt was derived from the discharge of the previous 30-year period, instead of
a extrapolation of the threshold based on the discharge from a control period.

10.2.4 Assessment of climate and human impact

To assess the impact of climatic changes on hydrological drought characteristics for
the 21st century, two periods were compared. The first period runs from 1971-2000
(control period, ctrl) and the second period runs from 2070-2099 (future period). For
both periods a scenario with natural conditions (pristine) was considered to derive
hydrological droughts. In this scenario no human impacts were included and only
climate change affects the changes in hydrological drought characteristics. To evaluate
the impact of climate change, the changes (in percent) in the low flow regime have
been calculated by:

dV TMclimt =
V TMfuturet − V TMctrlt

V TMctrlt
× 100 (10.6)

where dV TMclimt is the change in the low flow regime, V TMctrlt and V TMfuturet
are the transient variable thresholds for the control and future period, respectively.
Thereafter, the V TMt was used to calculate the drought characteristics, for both the
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Figure 10.1 Example time series of threshold calculation for different scenarios. The tra-
ditional non-transient threshold is derived from the natural discharge for a control period
(typically 1970-2000). The natural transient threshold is derived from the natural discharge
of the previous 30-year period. The human transient threshold is derived from the human
influenced discharge of the previous 30-year period.

periods. The changes for the future period in the ensuing deficit volumes calculated
compared to the control period is thus an indication of the impact of climate change
on hydrological drought. The relative climate impact on the deficit volume is given
by:

dDefclim =
Deffuture −Defctrl

Defctrl
× 100 (10.7)

where dDefclim is the relative impact of climate change on the drought deficit volume,
Defctrl andDeffuture are the drought deficit volumes for the control and future period,
respectively.

To assess the impact of human water use and reservoirs on projected changes in
hydrological drought characteristics for the 21st century, two scenarios have been
used. The pristine scenario has been compared to a scenario with human influences
(human). In the scenario with human influences, water is abstracted according to the
local water demand and associated reservoir operations are included (Wada et al.,
2014). Reservoirs are located on the drainage or river network based on the newly
available and extensive Global Reservoir and Dams Dataset (GRanD, Lehner et al.,
2011) that contains 6,862 reservoirs with a total storage capacity of 6,197 km3. The
reservoirs were placed over the river network based on the year of their construction.
Water is abstracted from surface water (river discharge, reservoirs and lakes) and
groundwater, part of it comes back to the river network as return flow and part of
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it is consumed. Human water use was calculated for the irrigation sector only, since
comprehensive sets of socio-economic projections are not yet available consistently
across all RCPs under SSPs (Shared Socioeconomic Pathways), which can be used
to estimate industrial and domestic water use. Irrigation water use was simulated
with PCR-GLOBWB per unit crop area based on the surface water balance (surface
water layer for paddy rice) and the soil water balance (soil moisture deficit in the root
zone calculated from the difference between the water content at field capacity and the
water content at wilting point) (Wada et al., 2014). Irrigated areas were obtained from
the MIRCA2000 data set (Portmann et al., 2010). The losses during water transport
and irrigation application were included in the calculation based on daily evaporative
and percolation losses per unit crop area. Current land use and population density
are constant over time since only limited sets of socio-economic data and no future
irrigated area projections are available for the 21st century. Meteorological forcing
from five different GCMs with four RCPs have been used to project discharge for the
21st century for both the pristine and human scenario. Effects on projected discharge
have been studied, where the changes per RCP were calculated using the ensemble
mean of all GCMs. Thereafter, the relative impact of each scenario on the projected
changes in hydrological drought has been studied by comparing both scenarios.

For both scenarios the transient threshold (V TMt) was calculated and compared (see
Figure 10.1 for the example). By making a comparison between both thresholds
(one for each scenario), impact of human water use and reservoirs on the low flow
regime can be studied. Additionally, this enables a comparison between the impact of
climate change and human water abstraction on the changes in the low flow regime.
The impact (in percent) of human influence on the low flow regime is calculated by:

dV TMhumant =
HumanV TMt − PrisV TMt

PrisV TMt

× 100 (10.8)

where dV TMhumant is the change in the low flow regime, PrisV TMt andHumanV TMt

are the transient variable thresholds for the pristine and human scenario, respectively.
Thereafter, the V TMt of the pristine scenario was used to calculate the drought char-
acteristics, for both the pristine and human scenario. By selecting the pristine V TMt

the relative impact of human influences could be calculated and compared to the
impact of climate change. The increase in the ensuing deficit volumes calculated
compared to the pristine condition is thus an indication of the anthropogenic inten-
sification of hydrological drought. The relative impact (in percent) of human water
abstraction and reservoirs on the deficit volume is given by:

dDefhuman =
HumanDef − PrisDef

PrisDef
× 100 (10.9)

where dDefhuman is the relative impact of humans on the drought deficit volume,
HumanDef and PrisDef are the drought deficit volumes under the human and
pristine scenario, respectively.
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The combined impact of both climate change, and human water use and reservoirs
has been studied, by comparing the control period for the pristine scenario with the
future period of the human scenario. The relative total impact (in percent) on the
deficit volume is given by:

dDefcombi =
HumanDeffuture − PrisDefctrl

PrisDefctrl
× 100 (10.10)

where dDefcombi is the relative combined impact of climate change, and human water
use and reservoirs on the drought deficit volume, PrisDefctrl is the deficit volume
for the control period under pristine conditions and HumanDeffuture is the drought
deficit volume for the future period under the human scenario.

The differences between the scenarios were studied for major river basins of the world,
where drought events are known to be influenced by human water abstraction and
reservoirs regulations (Wada et al., 2013). This would give insight in the hydrological
processes and the impact of humans on a river basins scale. Drought characteristics
were calculated for the last 30 years of the 21st century. Thereafter, the results are
presented on a global scale to assess the regions in which humans have a larger impact
than climate on future hydrological drought.

10.3 Results

10.3.1 Climate impact on a global scale

On a global scale the impact of climate change on the low flow regime (dV TMclimt,
Equation 10.6) has been evaluated and compared for the control and the future period
(Figure 10.2). It is shown that climate change has a negative impact on the low
flow regime (decrease of 10% or more) in South-America, Australia, Southern-Africa,
Southeast Asia and the Mediterranean. Positive impacts on the low flow regime are
found in Northwest Africa and large parts of Northern Europe, Russia and Canada.
Differences between RCPs are small, whereas a slightly larger impact is found for the
higher CO2 emission scenarios (e.g., RCP6.0 and 8.5).

The impact of climate change on the drought deficit volumes (dDefclim, Equation
10.7) is projected to be severe in large parts of the world (Figure 10.3). This is
especially true for regions in Northern Africa, Eastern part of the United States and
Southern Europe. In these regions drought deficit will likely increase by more than
100%, and for some regions it will increase even up to over 200%. A slightly negative
impact (about 10%) exists on the dV TMclimt for regions in Southeast Asia and
South-America, however, this does not result in a negative impact on the dDefclim.
The agreement amongst different RCP scenarios is strong and only small uncertainty
remains in the projections for North-America and Europe.

218



Figure 10.2 Climate impact on drought threshold (Q90, dV TMt) compared between the
periods 1971-2000 and 2070-2099. Impact is calculated as a percentage where positive
percentages indicate an increase in the Q90 and negative percentages indicate a decrease in
the Q90 as a result of climate change. Each plot gives the ensemble mean impact derived
from 5 GCMs for different RCPs.

It is concluded that the impact of climate change on hydrological drought character-
istics is large and associated uncertainties amongst RCPs are low. Although some
regions show a negative impact in the low flow regime, this does not necessarily result
in increased drought deficit volumes. Overall, drought conditions in most of the world
are projected to be negatively impacted by climatic changes.

10.3.2 Impact of human water use on a global scale

On a global scale the thresholds for the pristine scenario and the human scenario
(dV TMhumant, Equation 10.8) have been compared (Figure 10.4). As expected the
dV TMhumant decreased in Asia and the Mediterranean, where the impact of human
water use exceeds the compensating effect brought by reservoir operations. The water
abstraction in these regions results in a negative impact on the low flow regime,
where low flows reduce as a result of the water abstraction. For central Europe and
the United States the reservoir regulation measures compensate the negative impact
caused by water abstraction and overall human influences have a positive impact on
the low flows. Similar to the climate change impacts, differences between different
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Figure 10.3 Climate impact on drought deficit volume (dDef), compared between the
periods 1971-2000 and 2070-2099. Each plot gives the annual average impact derived from
5 GCMs for different RCP scenarios. Impact is calculated as a percentage, where positive
percentages indicate a decrease in the drought deficit volume and negative percentages
indicate an increase in the drought deficit volume as a result of climate change.

RCP scenarios are small, with only slightly higher dV TMhumant values for RCP2.6.
This is likely caused by the relatively small impact of the climate on dV TMhumant

compared to that of human water abstraction. For RCP8.5 the impact of climate
change is projected to be more severe compared to the human contribution to the
overall changes in the low flow regime.

The impact of humans on the drought deficit volumes (dDefhuman, Equation 10.9)
is more pronounced than the impact on the dV TMhumant (Figure 10.5), which
is mainly caused by the reduced water availability as a result of water use. In some
regions abstractions and water regulation measures account for almost 200% of the net
increase in deficit volume for the 21st century. A negative dDefhuman is found where
water regulating measures reduce drought deficits as a direct result of water retention
over the year. This effect is found in large parts of Europe, where a large number
of reservoirs exist. Additionally, regions in Southern Africa and South America show
an impact of the reservoirs operations on the drought deficit volumes. Differences
between RCPs are minor, indicating that the contribution of humans to the changes
in drought deficit is proportional to the changes in the climate. From this analysis
it was derived that the mechanisms between drought, and human water use and
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Figure 10.4 Impact of reservoirs and human water use on drought threshold (Q90) com-
pared to the pristine conditions (dV TMhumant), for the period 2070-2099. Impact is
calculated as a percentage where positive percentages indicate an increase in the Q90 and
negative percentages indicate a decrease in the Q90 as a result of human water use and
reservoirs. Each plot gives the ensemble mean impact derived from 5 GCMs for different
RCPs.

reservoir regulation measures are nontrivial. The combined effect of human water use
and river regulations could result in both a positive or negative impact on the low
flow regime.

10.3.3 Combined impact on a global scale

The impact of climate change, and human water use and reservoirs has been studied
for the changes in deficit volumes (dDefcombi, Equation 10.10). To this end, the
pristine scenario under the control period was compared to the human scenario under
the future period (i.e., the end of this century, Figure 10.6). It is clear that the
combined impact results in severely increased drought deficit volumes, up to 200%
from the control period. Regions include Southeast Asia and the Mediterranean,
which are not projected to be impacted by climate change (Figure 10.3), but which
will likely be heavily impacted by the additional driving force of the human water
use. The severity of the dDefcombi increase is less severe for regions in Russia, Europe
and North-America. Allthough different RCP scenarios agree upon to a large extent,

221



Figure 10.5 Impact of reservoirs and human water use on drought deficit volume compared
to the pristine conditions (dDefhuman), for the period 2070-2099. Each plot gives the annual
average impact derived from 5 GCMs for different RCP scenarios. Impact is calculated as
a percentage, where positive percentages indicate a decrease in the drought deficit volume
and negative percentages indicate an increase in the drought deficit volume as a result of
human water use and reservoirs.

for Europe the directionality of the changes is expected to be dependent on the RCP.
It is concluded that the combined impact overall results in increased drought deficit
volumes and hence increases drought vulnerability, especially for Southeast Asia,
Middle East and North-Africa.

10.3.4 Impact of climate and human water use - seasonal

The impacts of climate change, reservoirs and human water use on the drought deficit
have been studied for each season separately. To assess the impact of climate change
the control and future period under the pristine scenario were compared (Figure 10.7),
while for the impact of human water use and reservoirs the human and pristine sce-
nario have been compared for the period 2070-2099 (Figure 10.8). For these analyses,
the simulations for all RCPs were averaged, because it was shown by our previous
analyses (see Figure 10.2, 10.3, 10.4 and 10.5) that the differences between RCPs are
minor.
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Figure 10.6 Impact of climate change, human water use and reservoirs on drought deficit
volume (dDefcombi), comparison between the periods 1971-2000 (pristine scenario) and
2070-2099 (water use scenario). Each plot gives the annual average impact derived from
5 GCMs for different RCP scenarios. Impact is calculated as a percentage, where positive
percentages indicate a decrease in the drought deficit volume and negative percentages
indicate an increase in the drought deficit volume as a result of climate change, human
water use and reservoirs.

The impact of climate change is visible throughout the world (Figure 10.7), where the
largest impacts are again found in Northern Africa, the Eastern part of the United
States and Southern Europe. Seasonality in the projected changes is mainly found
in Europe and North-America, where the biggest negative impact is found in winter
(December - January - February). In the other seasons the impact of climate change
is projected to be less or even positive on the observed drought deficit volumes. A
non-seasonal or constant water use impact is found for Northern-Africa (negative)
and Southeast Asia (positive).

Clear patterns are also visible for the impact of human water use and reservoirs, for
example in Asia and the Mediterranean, again showing a positive dDefhuman. The
magnitude of the dDefhuman varies over the year, with a peak in the respective dry
season for each region. For the United States, spring droughts are projected to be
more severe as a result of water retention of the snow melt peak in reservoirs. This
does not, however, decrease the drought deficit volumes in summer and autumn, when
more water is available than under pristine conditions. In Europe, reservoirs result
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Figure 10.7 Impact of climate change on drought deficit volume (dDef) comparison be-
tween the periods 1971-2000 and 2070-2099. Each plot gives the seasonal average derived
from 5 GCMs and 4 RCPs. Impact is calculated as a percentage, where positive percent-
ages indicate a decrease in the drought deficit volume and negative percentages indicate an
increase in the drought deficit volume as a result of climate change.

in a longer retention of water throughout the year, leading to less seasonal discharge
and hence lower deficit volumes.

10.3.5 River discharge simulation and impact of human water use per basin

For selected river basins (e.g. Mississippi and Indus) the discharges of the pristine and
human scenarios have been compared, to study the impact of reservoirs and human
water use on the discharge regime (Figures 10.9 and 10.10). As expected, annual
discharge decreased as a result of increased evapotranspiration due to irrigation water
use. However, the addition of reservoirs to the river network has a dampening impact
on the annual cycle in the discharge regime. Although annual average discharge
generally decreased as a result of increased evapotranspiration from the water surface
of the reservoirs and irrigation, the decrease is not equally distributed throughout the
year. In general, peak flows are reduced as a result of the buffering capacity of the
reservoirs and low flow levels are increased even though the water abstraction results
in overall lower water availability. The dampening effect for some rivers is projected
to result in a decreased drought severity in the low flow season due to increased water
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Figure 10.8 Impact of reservoirs and human water use on drought deficit volume compared
to the pristine conditions (dDefhuman) per season, for the period 2070-2099. Each plot
gives the seasonal average derived from 5 GCMs and 4 RCPs. Impact is calculated as a
percentage, where positive percentages indicate a decrease in the drought deficit volume
and negative percentages indicate an increase in the drought deficit volume as a result of
human water use and reservoirs.

availability. This effect is obvious in some, mostly strongly regulated, river basins in
the world where human water abstraction does not exceed the compensating effect
(i.e., buffering capacity) of the reservoirs on the low flows. These river basins are
mainly situated in Europe and North America (e.g. Mississippi, Figure 10.9). The
dampening effect is mainly important in the low flow season when discharge rates
are low and droughts tend to have the largest impact on the natural ecosystem and
society.

Other major river basins suffer from large abstractions of water for irrigation, resulting
in an overall decreased water availability throughout the year. For these basins, the
reservoir regulating measures are not enough to compensate the abstraction, and thus
the low flow regime changes to even drier conditions. This effect is especially strong
for some major river basins in the Middle East and Asia (e.g. Indus, Figure 10.10). In
these regions, human water abstractions are large and have a strong negative impact
on the drought severity and vulnerability. The projected impacts vary slightly for
different RCPs, however, the trend directionalities are similar. For the Mississippi
(Figure 10.9) the largest impact of different RCPs is projected, which results in the
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shift in the high flow season towards earlier peak flows for the RCPs with a higher
temperate rise (RCP6.0 and 8.5), leading to increased and earlier snowmelt. This
also impacts the timing and level of the low flow regime. For the Indus (Figure 10.10)
the water availability is projected to increase from RCP2.6 to RCP8.5. However, the
water abstraction is also projected to increase towards RCP8.5, leading to a significant
reduction of the low flow level.

The changes in the streamflow climatology show a decrease in total water availability
for the selection of the major river basins (Figure 10.11). On average the streamflow
climatology will likely be smoothed throughout the year due to reservoir regulation.
The combined impact of this reduced water availability and regulation measures does
not always result in a reduction of the threshold as is shown in Figure 10.12. The
threshold under human influence is not always lower than the pristine threshold (e.g.
Mississippi, Colorado, Volga) and the regulation measures counteract the reduced
water availability.

Drought characteristics have been calculated to analyse the impact of reservoirs and
human water use on the severity and frequency of drought events (Tables 10.3 and
10.4) for selected river basins. In the current situation (1971-2000) the drought fre-
quency, severity and intensity are increased due to human influences for almost all
rivers. The human impact is very large in regions known to be affected by severe
water abstractions such as Asia and North America. For example, the Huang He and
Colorado are severely impacted and drought characteristics are intensified by five to
tenfold compared to the natural conditions. In general, drought events tend to be
more severe and frequent for the selected river basins. When the V TMt is applied
to the future period, drought characteristics in the pristine simulation do not signif-
icantly change. However, since the V TMt is adapted to the climatology, the actual
low flow level might still reduce significantly, as shown in Figure 10.12. The human
influence on drought shows that the drought intensity increases for all rivers, with the
exception of the Mississippi and Danube. In these rivers, the reservoirs result in more
regulated discharge leading to longer, but less severe drought events. The increase
in deficit volume impacts the severity of the drought events and likely increases the
vulnerability of our society and nature. The relative increase in drought deficits is
largest for the Indus and Huang He, while for the Mississippi the impacts are minor
as a result of strong river regulation measures. It should be noted that for many
river basins in the world no impact was found since human water use is negligible
and reservoir regulations are minimal or reservoirs are absent. In general, human wa-
ter use increases drought duration and severity, however, this effect can be (partly)
compensated by reservoir regulations that retain the water for prolonged periods.
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Figure 10.9 Average discharge over 5 GCMs per RCP for the Mississippi river. Solid line
indicates the natural scenario without human water abstractions and reservoirs, and the
dashed line gives the river discharge under human influences.

10.4 Discussion and Conclusions

In this study the impact of climate change, and human water use and reservoirs on
projected hydrological drought characteristics for the 21st century has been studied.
Obtained future simulation results were compared to the control period or the pristine
scenario (climate change only) and the relative contribution of humans was compared
to the impact of climate change. The impact of climate change on the low flow regime
and hydrological drought characteristics is projected to be severe. Large regions
are expected to suffer from a negative impact of climate change on drought deficit
volumes. Additionally, it was found that the impact of water use and reservoirs on
hydrological drought characteristics is non-trivial and can vary depending on the local
climate and available water resources.

The approach used here is limited by the analysis of only one GHM, where it would
be more comprehensive to use an ensemble of GHMs (e.g. Prudhomme et al., 2014;
Van Huijgevoort et al., 2014). However, due to the fact that many GHMs do not
incorporate the human water abstraction or reservoir regulations, this type of analysis
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Figure 10.10 Average discharge over 5 GCMs per RCP for the Indus river. Solid line
indicates the natural scenario without human water abstractions and reservoirs, and the
dashed line gives the river discharge under human influences.

Figure 10.11 Average discharge climatology derived from 5 GCMs and 4 RCPs for 10
selected river basins, for the period 2070-2099. The pristine scenario (solid line) and scenario
with human influences (dashed line) are given.
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Figure 10.12 Average low flow regime (i.e. thresholds) derived from 5 GCMs and 4 RCPs
for 10 selected river basins, for the period 2070-2099. Solid lines indicate the pristine (black)
and water demand (grey) scenarios, dashed line gives the ratio between the two discharge
climatologies. In other words, the dashed lines show the change in the low flow regime as a
result of reservoirs and human water abstractions, where a positive ratio indicates increased
mean annual discharge.

Table 10.3 Impact of reservoirs and human water abstractions on drought characteristics
compared to the pristine conditions, for the period 1971-2000 and selected rivers. Average
drought duration, deficit volume per drought event and the total drought intensity are
given. The drought characteristics are obtained with the pristine threshold (derived from
the period 1971-2000). The characteristics are averaged over all RCPs and GCMs.

Pristine Human

Average event Drought Average event Drought
Duration Deficit Intensity Duration Deficit Intensity

River name (d) (m3s−1) (m3s−1d−1) (d) (m3s−1) (m3s−1d−1)

Indus 6.68 3642 545 32.59 67098 2059
Yangtze 5.68 9324 1640 10.36 32223 3110
Huang He 3.42 449 131 32.26 43753 1356
Ganges 4.57 5973 1306 10.92 22438 2054
Mekong 12.96 9344 721 21.72 21504 990
Mississippi 12.71 36501 2873 16.47 43569 2645
Colorado 5.26 494 94 26.83 5452 203
Murray-Darling 29.69 11934 402 37.81 17409 460
Danube 8.48 7581 893 13.88 10549 760
Volga 11.67 7179 615 25.66 46129 1797
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Table 10.4 Impact of reservoirs and human water abstractions on drought characteristics
compared to the pristine conditions, for the period 2070-2099 and selected rivers. Average
drought duration, deficit volume per drought event and the total drought intensity are given.
The drought characteristics are obtained with the transient pristine threshold (derived from
the period 30-year moving window). The characteristics are averaged over all RCPs and
GCMs.

Pristine Human

Average event Drought Average event Drought
Duration Deficit Intensity Duration Deficit Intensity

River name (d) (m3s−1) (m3s−1d−1) (d) (m3s−1) (m3s−1d−1)

Indus 7.75 4866 628 33.65 70173 2085
Yangtze 6.58 11481 1744 10.51 33011 3142
Huang He 4.27 535 125 28.84 37828 1312
Ganges 4.07 4507 1107 13.00 24083 1852
Mekong 15.60 11601 743 27.50 31481 1145
Mississippi 15.68 50522 3221 17.91 50342 2810
Colorado 6.21 691 111 25.56 4855 190
Murray-Darling 38.15 17076 448 52.50 27947 532
Danube 9.31 9324 1002 15.44 13033 844
Volga 11.43 9083 794 24.62 36724 1492

is difficult. Nevertheless, a multi GHM analysis would increase our understanding of
uncertainties in future projections of the impact of humans on hydrological drought.

A limitation of the present study is that the abstraction of water is related to the
current extent of agricultural irrigation for each region. Expected expansion of irri-
gated areas is projected to further increase irrigation water demand in some regions
(e.g., Africa, South America). Additionally, population growth will result in increased
demand for drinking water and industrial activities (Wada et al., 2013), leading to a
higher water demand. Especially in areas like Africa, the population is projected to
increase substantially. The changes in land use could also significantly alter the prop-
agation of drought and hydrological drought characteristics (Van Lanen et al., 2013).
The projected changes in population and land use were currently not included, due
to data availability and uncertainty, but could be important when higher accuracy
is warranted for future projections. Future hydrological drought characteristics may
be altered for regions like Africa, where changes are expected, in both water demand
and land use.

Since the relative contribution of human influence on hydrological drought for the
21st century has not been studied globally to our knowledge, it is difficult to compare
the obtained results with existing studies. However, areas with a high human impact
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as identified in this study have been identified by previous studies (e.g. Wada et al.,
2014). One of the main conclusions from this study is that the increased drought
vulnerability as a direct result of human water abstraction can be compensated by
river regulating measures by reservoirs. Reservoirs retain the water for longer times
compared to pristine conditions and thus lead to a smoothed hydrograph, with lower
peak flows and higher low flows. This will also directly impact the severity of droughts
in the human-controlled systems, where the low flows are partly compensated by extra
water availability due to retention in the reservoirs. This phenomenon is mainly found
in the United States and Europe, where the number of reservoirs is large.

Furthermore, it is found that human influence can account for almost 100% of the
changes in future hydrological drought in areas such as Asia, Middle East and the
Mediterranean. These areas are heavily impacted by water abstraction and reservoirs
are not enough to compensate for these severe water abstractions. In these regions
low flows are expected to be even lower in the future and drought deficit volumes
will likely increase significantly. The differences among the RCPs in the obtained
results are minor, indicating that the impact of human influence is proportional to
the magnitude of the climate change.

Finally, the seasonal changes in drought characteristics were studied by looking at
the projected drought events for the period 2070-2099 and the relative contribution
of climate change and humans to these events. Climate change is projected to result
in increased deficit volumes in large parts of the world, however, seasonal effects play
an important role. The impact of summer drought in the Northern Hemisphere is
expected to be lower or sometimes result in decreased drought deficit volumes. It is
shown that reservoirs increase the drought deficit volumes in the wet season, when
the water availability is high, and reduces the deficit volume in the dry season. In the
dry season the retained water in the reservoirs is slowly released, positively impacting
deficit volumes compared to the pristine scenario. In large parts of Asia, the Middle
East and the Mediterranean a high impact of human water abstraction on future
drought deficits is found. The impact varies throughout the year and shows a high
correlation with the temporal pattern in human water demand. In the crop growing
season, water abstractions are projected to be more severe, leading to more severe
drought events, while the impact is expected to be reduced in the wet season, due to
large water availability and lower human water demands.

It is concluded that the human impact on projected hydrological drought is severe,
which has been neglected in most projections for future hydrological drought. Better
scenarios of future human water demand could lead to a more skilful projection for
the 21st century, however, they are not available yet due to the lack of comprehensive
future socio-economic and land use projections that are consistent with one another.
Human water use and reservoirs have nowadays substantial impacts on global hy-
drology and water resources, and should therefore be included in global hydrological
models that are used for projections of the future hydrological droughts. This will
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significantly improve our understanding of future hydrology and the changes in hy-
drological drought characteristics.
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11 Synthesis

Hydrological extremes have an important impact on society. Accurate simulations
and early-warning systems for these extremes could significantly reduce damage and
the number of fatalities. Hydrological simulations are hampered by uncertainty in
various components (e.g. input data, model parameterization). Uncertainty can be
found at all timescales, ranging from historic simulations or reanalysis to forecast and
projections of future hydrology. Observations could be used to constrain model results
thereby reducing the uncertainty. An additional problem for modelling hydrological
extremes is the vagueness that comes with the definition of either flood or drought
events and how we describe and define extremes.

The main objective of this thesis is: To reduce uncertainty in simulations, reanalysis,
monitoring, forecasting and projections of hydrological extremes for large river basins.
The impact of satellite observations in hydrological model simulations, the human
impact on hydrological drought and the vagueness in drought terminology have been
dealt with in this thesis and the main findings will be discussed below.

11.1 Impact of ground-based and satellite observations on
uncertainty in hydrological model simulations

Satellite observations are frequently used in hydrological analysis and modelling. Ex-
amples include, precipitation (Kummerow et al., 2001; Huffman et al., 2010), snow
cover (Immerzeel et al., 2009), land surface temperature (Holmes et al., 2009), evap-
oration (Miralles et al., 2011). A disadvantage of these observations is that they
require some form of ground-truth and validation. Recently more research has been
focussed on the estimation of soil moisture from space and the applicability of these
observations. The launch of the Soil Moisture Ocean Salinaty mission (SMOS, Kerr
et al., 2012) and the planned launch of Soil Moisture Active Passive mission beginning
2015 (SMAP, Entekhabi et al., 2010) generated extra attention for this important hy-
drologic variable. A large number of studies evaluated the performance of SMOS and
compared it to Advanced Microwave Scanning Radiometer for the Earth Observing
System (AMSR-E, Njoku et al., 2003; Owe et al., 2008), Advanced Scatterometer
(ASCAT, Naeimi et al., 2009) or land surface models.

In chapter 2 a detailed evaluation was performed of the accuracy of satellite remote
sensing products from SMOS, AMSR-E and ASCAT over Spain. Satellite soil mois-
ture observations were compared to high resolution probabilistic modelling of the
unsatured zone and the full error structure of the satellite observations was obtained.
Additionally, the satellite retrieval uncertainty was compared to factors such as veg-
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etation density, terrain topography and distance to the sea. This detailed evaluation
of the error structure provided valuable information for applications that use these
surface soil moisture retrievals as observations. It was shown that retrieval errors
are largely related to land surface properties and sea salinity in the scene. As a
result of that, the errors have a strong spatially correlated error structure. This in-
formation on the retrieval error has major implications for the use of these data in
hydrological modelling, for example in studies that assume no cross-covariance, like
triple collocation or in some data assimilation applications. The information on the
cross-covariance in the satellite retrieval error was also used in the following chapters.

In chapter 3 the detailed information on the soil moisture uncertainty together with
satellite land surface temperature estimates were used to reduce retrieval uncertainty
in a satellite derived real-time precipitation product over the United States. With a
particle filter based approach, uncertainty in precipitation retrievals was reduced. A
synthetic experiment showed that the potential for improved rainfall estimates was
high using both surface soil moisture and land surface temperature retrievals. How-
ever, the potential of observed satellite soil moisture retrievals proved to be limited.
This was caused by the noise between sequential soil moisture retrievals, which could
not always be related to precipitation events. This retrieval noise significantly limits
the application of these data for improving the retrieval accuracy of satellite precip-
itation. On the other hand, satellite retrievals of land surface temperature showed
very promising results and the accuracy of satellite precipitation was improved sig-
nificantly. The results from this study show that it is possible to reduce uncertainty
in satellite precipitation. Satellite precipitation is used in many meteorological, agri-
cultural and hydrological applications (especially over data-sparse regions) and the
results from this study will improve the accuracy of these applications.

In chapter 4 uncertainty in precipitation estimates and model parameterization was
reduced by assimilation of discharge observations. This type of ground-based obser-
vation contains valuable information on the integrated state of the catchment and
hence could lead to improved estimates of states and parameters. A global hydro-
logical model was used to simulate global discharge and the parameterization and
precipitation estimates were corrected with an Ensemble Kalman Filter approach. It
was shown that global precipitation estimates need to be reduced to match the ob-
served discharge, model parameters could be estimated successfully with high accu-
racy and uncertainty in model simulated discharge was reduced. This new simulation
provides the first multi-ensemble and water balance preserving terrestrial hydrological
reanalysis product and shows that by including observations, simulation of the global
hydrological cycle can be significantly improved.

In chapter 5 an Ensemble Kalman Filter approach was successfully applied to esti-
mate model parameters with ground-based discharge and remotely sensed soil mois-
ture observations in the Upper-Danube catchment. Using an identical approach to
chapter 4, the uncertainty in hydrological model parameterization was reduced sig-
nificantly. Apart from discharge, satellite soil moisture observations were used to
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increase information on important hydrological processes (e.g. overland flow). More-
over, the information on the spatial error structure of the satellite retrievals from
chapter 2 was used to improve the performance of the Ensemble Kalman Filter. The
added satellite soil moisture observations were found to reduce uncertainty in the
parameterization of the land-surface processes. The reduced uncertainty in parame-
terization leads to an improved simulation of the discharge and soil moisture in the
upper parts of the catchment. In these regions surface runoff generated in the model
by saturation excess of the soil moisture is important. It was shown that the com-
bined assimilation of ground-based and satellite observations increases the potential
for model calibration to reduce uncertainty in model parameterization and will allow
for calibration in regions where ground-based observations are not available.

In chapter 6 the improved calibration for the Upper-Danube (chapter 5) was used
in a hindcasting experiment in the European Flood Awareness System (EFAS). In
this experiment, observations of discharge at various locations in the catchment and
satellite soil moisture were assimilated into a forecasting system and the forecasting
performance was evaluated against a scenario without assimilation. It was shown
that the addition of satellite soil moisture contributes to an improved forecasting
skill of EFAS, especially for shorter lead times (up to 4 days). Additionally, the bias
in the forecast was reduced by the assimilation of satellite soil moisture. However,
assimilation of additional discharge observations has a bigger impact on the reduction
of the uncertainty for longer lead times. This study showed the potential of satellite
soil moisture to improve operational flood forecasting in large river basins and has
implications for the forecast quality at short lead times.

The combination of detailed evaluation of the satellite soil moisture retrieval errors,
calibration of a hydrological model with these observations and application to an
operational flood forecasting system, clearly shows the potential and limitations of
remotely sensed data. It was also shown that extra ground-based or remote sensing
observations could be used to reduce uncertainty in ground-based or satellite precip-
itation observations, with the help of a Bayesian framework. This work focussed on
the implications for large river basins and provided one of the first examples where
real satellite data are used to improve hydrological simulations at these scales. The
potential positive impact of satellite soil moisture could be even higher in smaller
catchments, since fast runoff processes (often related to soil moisture conditions) play
a more important role at that scale. However, satellite soil moisture observations are
hampered by a low spatial resolution, which impacts their potential for small scale
application. The potential to reduce uncertainty in large-scale hydrological simula-
tions by assimilation of satellite observations is present and could improve accuracy
of not only hydrological, but also meteorological and agricultural applications at large
scales.
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11.2 Vagueness in drought terminology

In chapter 7 a comparison between 12 frequently used drought indicators was made
on a global scale. These drought indicators were used for drought monitoring related
to different parts of the hydrological cycle (meteorological, soil moisture, hydrological
drought). It was found that the correlation between drought indicators is low, even
when they are designed to monitor the same drought type. The highest correlation is
found amongst indicators that are designed to monitor hydrological droughts, while
the interchangeability of meteorological drought indicators is very low. Additionally,
it was shown that it is important to select a drought indicator based on the drought
type under study (e.g. precipitation, soil moisture or hydrological drought). The
correlation between indicator time series is low and the results will change significantly
when the incorrect indicator is used to study, for example, a soil moisture drought.
From these results it is clear that scientists and policy makers should not have the
desire to use a single indicator to monitor drought and drought indicators should be
chosen based on the drought type of interest.

In chapter 8 a global hydrological model was used to simulate the changes in hydrolog-
ical drought for the 21st century. From chapter 8 it was found that a fixed threshold
to determine drought events does not acknowledge the definition of drought and pro-
vides limited information on the changes that occur. Therefore, a transient threshold
was developed that uses the climatology of the previous year to study hydrological
drought. Results show that the transient approach allows for better understanding
of changes in future hydrological drought, where people and nature will adjust to
changes in the hydrological regime. Furthermore, it was found that the uncertainty
that is derived from the GCM forcing and the climate change scenarios is limited
compared to changes in hydrological drought. It is clear that the transient approach
should be the new standard for drought analysis in the 21st century, since a conven-
tional fixed threshold does not provide enough information on the impact of climate
change. Moreover, the results obtained with fixed threshold often only show increases
in drought severity, while in reality society and nature will adjust to new conditions
over a period of 30 years.

Reducing the vagueness in drought terminology should be a topic to be dealt with
before policy makers are provided with information. Currently, no clear guidelines
exist to provide policy makers with the information they need in order to implement
adaptation strategies. Moreover, the output from decision support systems should be
customized to the local stakeholders or the policy makers that use the system. We
should be aware that drought is a complex hydrological extreme, which cannot be
characterized by a single indicator or threshold. Also, it should be realized that both
society and nature will adjust to climate change. For instance, if water availability
increases, people will grow different (more productive) crops, which will increase their
drought vulnerability and vice versa. These positive feedbacks between nature and
society require dynamic approaches to the concept of drought and calls for further
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research. The adaptation of society and nature to changing hydroclimatic conditions
should be included in current and future drought simulations to reduce the vagueness
in drought terminology.

11.3 Uncertainty associated with the human and climate impact
on projections of hydrological drought

In chapter 9 a synthetic hydrological model was used to study the impact of climate
change on hydrological drought. It was shown that the impact of a changing climate
on hydrological drought is significant. General Circulation Models (GCMs) show a
high skill to reproduce hydrological drought, but lack skill in the polar regions where
snow accumulation takes place in most times of the year. The agreement amongst
GCMs is high and they all show that hydrological drought severity will strongly
increase in warm to temperate regions. In the cold regions a shift is projected to
occur to less frequent winter drought and an increase in summer drought severity.

In chapter 10 the relative impact of human water demand on hydrological drought
for the 21st century was studied. The impact of human water use is more important
for some regions than the impact of climate change. Human water abstraction has a
strong negative impact on the drought severity, while river regulating measures show
a reduction of drought severity for the 21st century. This is the first projection of the
impact of human water use on future hydrological drought for an ensemble of GCMs
and climate change scenarios. From these results it can be concluded that it is highly
important to include the human influence on hydrological drought for projections of
the future hydrological regime.

The approach presented in this thesis allows to separate the impact of climate change
and human water use on future hydrological drought, and shows that these projections
still require considerable improvements. Currently, including human influence on the
future hydrological regime is not standard practice, while the impact of humans is
considerable. Furthermore, it is shown that the potential impact of climate change
in the snow-dominated and polar regions is currently underexposed. The emphasis
of most research is placed on the potential changes in desert areas, where the impact
on drought events is small. Moreover, the results show that a regime shift occurs in
the cold climates which will have a major impact on hydrological management and
hydrological extremes in these regions.

11.4 Future perspectives

The aim of this thesis was to quantify and reduce uncertainty and vagueness in simu-
lations of hydrological extremes in large river basins. Bayesian frameworks were used
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to combine observational and model data to reduce uncertainty in simulations, reanal-
ysis, forecasts and projections of hydrological extremes. The vagueness in drought
terminology was reduced or at least assessed by revisiting the drought definitions and
by using dynamic drought definitions and a global evaluation of drought terminology.
The findings in this thesis have some major implications for the quality of simulations
of hydrological extremes. With the methods, concepts and frameworks that have been
developed here, improvements can be made to existing decision support systems and
could bring advances to other related fields (e.g meteorological and agricultural mod-
elling). This section is dedicated to the further perspectives and applicability of the
methods, concepts and frameworks developed in this thesis.

11.4.1 Satellite observations for hydrological modelling

Satellite observations have proven to be a valuable source of information to reduce un-
certainty in hydrological simulations. Although satellite observations are sometimes
hampered by high observation uncertainty, correct and accurate characterization of
the error structure improves their usability. The major advantage of space-born ob-
servations is that they provide a global estimates of land-surface variables with a high
temporal resolution. I believe that the results from this thesis show that the com-
bination of data assimilation, satellite data and model simulation could bring major
advances in the field of flood forecasting and hydrological modelling in general.

Although data assimilation techniques are standard practice in meteorological sim-
ulations and weather predictions, they are underutilized in hydrological simulations
(Liu et al., 2012). Particularly, in flood forecasting data-assimilation can be used to
improve estimates of current hydrological conditions and thereby reduce forecasting
uncertainty. Additionally, data assimilation proved to be a valuable tool to improve
hydrological simulations and improve simulations of historic hydrologic events, given
that observations are available (Van Dijk et al., 2014). All types of observational
data (e.g. satellite, ground-based or historic records) could be simultaneously used
in a data assimilation approach, where the optimal state is found based on the ratio
between uncertainty in observations and model simulations. This thus greatly in-
creases the amount of suitable observations, especially in data-sparse regions where
satellite observations provide estimates of important land surface fluxes and storage.
The impact is expected to be most prominent in large scale river basins, because the
spatial resolution of most Earth observing satellite sensors is coarse and matched the
spatial scale often used for large scale river basin modelling.

Although the theoretical basis to use satellite data in hydrological simulations is
present, researchers are often hampered by a lack of knowledge on the implemen-
tation of satellite data in hydrological modelling. In this thesis it was shown that
satellite observations could be used to reduce the uncertainty in precipitation esti-
mates, hydrological simulations and flood forecasts. Satellite observations show high
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potential, and it is my believe that they are currently underutilized in hydrological
applications. Possible reasons for the underutilization of remote sensing data are: dif-
ficult data formats, large data volumes, relatively new products, sub-optimal access
to the satellite data or observations that require expert knowledge to interpret. In the
remote sensing community efforts are made to improve usability of remote sensing
data, which also creates opportunities for the hydrological community to use satellite
observations of important land surface fluxes and storages. The combination of satel-
lite observations and model simulations integrated with data assimilation approaches
was proven to reduce uncertainty in hydrological simulations in this thesis and hence
improves our understanding of the terrestrial water cycle. A disadvantage of some
data assimilation approaches (e.g. Ensemble Kalman Filter) is that they require an
ensemble of hydrological model simulations to be used. This in turn increases cal-
culation time and certainly the computational demand. However, with the current
advances in the field of computational hydrology and supercomputing facilities, this
should be of no concern. In this study multiple realizations of a large scale hydrolog-
ical model have been used in an ensemble simulation, showing that with the current
resources this is feasible. Hydrologists should be more focussed on the accuracy of
their simulations, than on potential increase in computational demands. Moreover,
the use of an ensemble simulation will improve insight in the diversity amongst mod-
els and model parameterizations and the resulting uncertainty in the hydrological
simulations.

11.4.2 Projection of future hydrological drought

This thesis showed that the impact of climate change on future hydrological drought
is highly dependent on the local climatology and the impact of human influence. Al-
though most drought studies focus on changes in regions where a semi-arid climate is
present, the impact of the changes is limited for these climates. More severe changes
can be expected in the snow-dominated regions, where the timing of the snowmelt
plays an important role in the water availability throughout the year. Here, shifts
in the timing of the snowmelt peak will occur, which in turn will likely impact sum-
mer water availability for crops and drinking water. With higher temperatures the
evaporation will increase and since most of the water is not available in the catch-
ment (since it has melted) more severe water deficits will occur. This will in turn
increase summer drought vulnerability in the cold regions, where water availability
was no problem before climate change. This calls for more research on the feedback
processes between climate change and water availability throughout the year. These
processes will play an important role with respect to the energy and agricultural
sector and could potentially be harmful to the local economy in these cold regions.

The impact of humans on hydrological drought has been largely neglected in projec-
tions and simulations of hydrological drought (Wada et al., 2013). The main reason
for this shortcoming in hydrological simulations is that most models designed to sim-
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ulate large-scale hydrological processes, do not incorporate human influence on the
hydrological cycle. In this thesis it was shown that for some regions this impact
cannot be neglected and our perspective on future hydrological drought will change
if we include human interactions in hydrological models. Humans are not only im-
portant for large-scale hydrology, but also in the smaller catchments. In many small
catchments the surface runoff in urban areas has a distinct impact on the observed
hydrograph and should be incorporated in the hydrological models. At larger scales,
water abstraction and consumption will decrease water availability and hence lead
to dry conditions. Although it is difficult to obtain abstraction data, these processes
should be included as realistically as possible to have a more realistic portrayal of
hydrology in our models.

11.4.3 Drought definitions

This study showed that there are multiple ways to identify drought events and that
the impact of climate changes on drought identification is significant. It was con-
cluded that the definition of drought should use a transient approach (especially with
respect to climate change) and should be adjusted to the drought type of interest.
For example, when the impact of drought on irrigation demand is studied, there is no
need to know the anomalies in reservoir storage. Therefore, it is advised to provide
policy makers with a selection of drought indicators that could be adjusted to the
impacted part of the hydrological cycle of interest (e.g. precipitation, soil moisture,
discharge). Drought monitoring systems or drought projections should therefore pro-
vide policymakers and stakeholders with the information based on their interest. It
is also important that for cold regions, where snow accumulation is relevant, snow
processes are incorporated in the drought definition. Most drought indicators that
are currently used do not respect processes related to snow accumulation or increased
water availability due to snow melt.

When projections for the 21st century are provided, drought definitions should be
adjusted to the changes in climate and the changing impact of humans on natural
water availability. A non-transient approach would not do justice to the ever changing
climatology. Since extremes are defined as exception with respect to the climatology
(last 30 years) the common understanding of a hydrological extreme will change over
time. Additionally, more information should be provided on the uncertainty in the
hydrological simulations and projections. This would advance the field of drought
monitoring and forecasting with more custom-made simulations that provide useful
information for stakeholders and include information on simulation uncertainty. This
uncertainty information will also provide knowledge on the skill of the projections
and the probability that an area is really affected by a change in local climatology.
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11.4.4 Uncertainty in simulations of hydrological extremes for large river
basins

This thesis showed that it is possible to reduce the uncertainty in the simulations of
hydrological extremes with existing data, models and frameworks. The ultimate goal
is to combine all possible sources of information/observations into a data-assimilation
framework that will improve the simulations and forecasting of hydrological extremes
in large river basins. This improved framework will utilize the information coming
from multiple sources and will be a major advance in the quality of decision support
system in data-sparse regions. These often vulnerable regions will benefit from the
improved preparedness, resulting in a lower number of fatalities and reduced economic
damage caused by hydrological extremes. The developments of the last decade in the
field of large-scale hydrology will help to put this new framework in place and provide
a solid scientific basis for the research. Therefore, I believe that the field of hydrology
can make advances in this new era in which more data and more computer power
can be combined with our increased understanding of hydrological processes in large
river basins.
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Appendix A Time series of satellite
and modelled soil
moisture
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Figure A.1 Three example time series for AMSR-E, SMOS and ASCAT compared with
the satellite support averaged SWAP soil moisture (black line), including 95% confidence
interval (grey), N is the number of satellite soil moisture retrievals for one location in South
Spain (36.8◦ N, 2.4◦ W).
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Figure A.2 Three example time series for AMSR-E, SMOS and ASCAT compared with
the satellite support averaged SWAP soil moisture (black line), including 95% confidence
interval (grey), N is the number of satellite soil moisture retrievals for one location in
Northeast Spain (42.8◦ N, 1.6◦ W).
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Figure A.3 Three example time series for AMSR-E, SMOS and ASCAT compared with
the satellite support averaged SWAP soil moisture (black line), including 95% confidence
interval (grey), N is the number of satellite soil moisture retrievals for one location in central
Spain (41.7◦ N, 4.8◦ W).
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Summary

Hydrological extremes regularly occur in all regions of the world and as such have
large impacts on society. Floods and drought are the most severe hydrological ex-
tremes, in terms of their societal impact and potential economic damage. These
events are amongst the most costly natural disasters, due to their often large spatial
extent and high societal impact. The high numbers of economical and human losses
indicate the importance of accurate monitoring, forecasting and projection of high
impact hydrological driven natural disasters. This is even more urgent for regions
where resilience to natural disasters is low and where these events can have a multi-
year impact on the economy of the region. Hydrological extremes are often monitored
and modelled with computer models that aim at accurately representing the current
and future hydrological conditions. Reducing uncertainty in hydrological simulations
of hydrological extremes is of major importance to reduce socio-economic impacts
of these extremes. Bayesian data assimilation methods provide a framework to re-
duce uncertainty in large scale hydrological models by combining model simulations
and observations. Additionally, the impact of different definitions for hydrological
extremes has not been properly studied yet. It is important to agree upon a common
terminology, which can be used for analyses of hydrological extremes. Therefore,
the main objective of this thesis is: To reduce uncertainty in simulations, reanalysis,
monitoring, forecasting and projections of hydrological extremes for large river basins.

The first part of this thesis focusses on the uncertainty in hydrological simulation
and short-term flood forecasting. I try to reduce the uncertainty in, (i) precipitation,
(ii) historic hydrological simulations and state estimates and (iii) short term flood
forecasting.
First, I focus on the uncertainty in precipitation. I used ground-based and satellite
observations to reduce the uncertainty in precipitation forcing fields. Precipitation is
an important hydro-meteorological variable, and is a primary driver in hydrological
modelling. Improved estimates of precipitation fields lead to better simulations of soil
moisture (SM) which in turn are expected to greatly increase the accuracy of flood
and drought predictions. In large parts of the world, real-time ground-based observa-
tions of precipitation are sparse and satellite derived precipitation products are the
only information source. Satellite derived SM and land surface temperature (LST)
were used to reduce uncertainties in satellite precipitation over the continental United
States. Assimilation of both satellite-based SM and LST observations reduced the
false detection of precipitation and the uncertainty in the retrieved rainfall volumes.
However, with SM assimilation a larger number of observed rainfall events were not
detected, while LST assimilation did not have this problem. This work showed the
potential of satellite based SM and LST estimates for reducing the uncertainties in
satellite based precipitation estimates over sparsely gauged areas and thereby the
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potential to improve hydrological modelling in these areas.
To reduce the uncertainty in historic global hydrological model simulations, obser-
vations and model simulations are combined to produce a multi-decadal “terrestrial
hydrological reanalysis” dataset with retrospective and updated hydrological states
and fluxes that are constrained with available in-situ river discharge measurements.
With an Ensemble Kalman Filter I calibrate the model parameters of the global
hydrological model PCR-GLOBWB and precipitation pre-factors to correct forcing
precipitation fields based on 1495 time series of discharge observations from the Global
Runoff Data Center. Results show that the model parameters can be calibrated suc-
cessfully. Corrections to the rainfall fields are considerable, and topography has the
largest impact on the precipitation corrections. The final outcome is the first ensem-
ble hydrological reanalysis product that is consistent with discharge observations, has
a closed water balance and provides estimates on the uncertainty in all fluxes and
storage components of the terrestrial water cycle.
The final objective of this part was to reduce the uncertainty in short term flood for-
casting. As it is impossible to collect ground-observations at the global scale, remotely
sensed satellite observations could provide a valuable source of observations for many
components of the hydrological cycle. However, it is important to properly validate
the observations and obtain an accurate estimate of the uncertainty in the satellite
retrievals. The validation of remotely sensed SM products is generally hampered by
the difference in spatial support of in-situ observations and satellite footprints. Un-
saturated zone modelling may serve as a valuable validation tool because it could
bridge the gap between different spatial supports. A time series analysis was per-
formed to compare surface SM from the SWAP unsaturated zone model to surface
SM retrievals from three different microwave sensors, including AMSR-E, SMOS and
ASCAT. Results suggest that temporal dynamics compared to SWAP are captured
by satellite derived SM products, however, not all with similar quality. Additionally,
it was found that satellite uncertainty is spatially correlated and distinct spatial pat-
terns are found.
Thereafter, a dual state and parameter Ensemble Kalman Filter was used to calibrate
the hydrological model LISFLOOD for the Upper Danube. Calibration is done with
discharge and remotely sensed SM data. Calibration with discharge data improves
the estimation of parameters linked to groundwater and routing processes. Calibra-
tion with only remotely sensed SM results in an accurate identification of parameters
related to land surface processes. It was shown that remotely sensed SM holds po-
tential for calibration of hydrological models, leading to a better simulation of SM
content throughout the catchment and a better simulation of discharge in upstream
areas.
In addition, the calibration results were used to study the added value of assimilated
remotely sensed SM and discharge for the European Flood Awareness System (EFAS)
and its potential to improve the prediction of the timing and height of the flood peak
and low flows. The results show that the accuracy of flood forecasts is increased
when more discharge observations are assimilated. The additional inclusion of satel-
lite data results in a further increase of the performance: forecasts of base flows are
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better and the uncertainty in the overall discharge is reduced. The assimilation of
SM data reduces the timing errors in the flood predictions, especially for shorter lead
times and imminent floods can be forecasted with more skill. This is the first work
that shows the potential of remotely sensed SM observations to improve near-real
time flood forecasting in large catchments.

In the second part of the thesis I focus on the vagueness in drought terminology by
studying the definitions that are used to identify and quantify drought. I present an
intercomparison between frequently used drought indicators to study their differences
and provide a solution to define drought under a changing climate.
A selection of frequently used indicators for different drought types was used to in-
vestigate their potential to monitor drought on a global scale. Correlation between
indicators was calculated for the major climates and for the whole globe to quan-
tify the unique information content of each indicator and their intersubstitutability.
Indicators used for precipitation drought show low correlations although most of
them are calculated in a similar way. Indicators for soil moisture drought show even
lower similarity, while indicators for streamflow drought show the highest correla-
tion. Additionally, meteorological drought indicators are not capable to correctly
describe either SM drought or streamflow drought. These findings have implications
for drought monitoring systems: (i) for each drought type, which is associated with
one or more impacted sectors, a different indicator should carefully be identified; (ii)
drought indicators that are designed to monitor the same drought type should also
be carefully identified, because they show large discrepancies in their anomalies and
hence drought detection.
Under a changing climate our perception of drought might change as well. This work
quantifies the impact of climate change on future low flows and associated hydro-
logical drought characteristics (drought in groundwater and streamflow) on a global
scale using an alternative drought identification approach that considers adaptation
to future changes in hydrological regime. The transient variable threshold is a non-
stationary approach that adjusts to gradual changes in the hydrological regime as
response to climate change. In 27% of the world both the drought duration and the
deficit volume are expected to increase when applying the transient threshold. How-
ever, this area will significantly increase to 62% when a non-transient threshold is
applied. This work illustrates that an alternative drought identification that consid-
ers adaptation to an altered hydrological regime, has a substantial influence on future
hydrological drought characteristics.

In the final part of the thesis, the hydrological drought projections are studied in more
detail. Magnitude and directionality of changes in hydrological drought characteristics
are largely unknown. I evaluated the impact of the climatology and catchment char-
acteristics as well as the impact of human water use on future hydrological drought.
First the impact of climatology and catchment characteristics is studied by using
a conceptual hydrological model that was forced by downscaled and bias-corrected
outcome from three General Circulation Models (GCM) for the SRES A2 emission
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scenario (GCM forced models), and the WATCH forcing re-analysis dataset (reference
model). The threshold level method was applied to investigate drought occurrence,
duration and deficit volume. Results for the control period (1971-2000) show that
the drought characteristics of each GCM forced model reasonably agree with the
reference model for most of the climate types, suggesting that the climate models
after post-processing produce realistic outcome for global drought analyses. For the
near future (2021-2050) and far future (2071-2100), the GCM forced models show a
decrease in drought occurrence for all major climates around the world and an in-
crease of both average drought duration and deficit volume of the remaining drought
events. On a global scale the increase in hydrological drought duration and severity
in multiple regions will lead to a higher impact of drought events, which urges water
resources managers to timely anticipate on the increased risk of more severe drought
in groundwater and streamflow, and to design proactive measures.
Secondly the PCR-GLOBWBmodel was forced with the latest CMIP5 climate projec-
tions taken from five GCMs and four Representative Concentration Pathways (RCPs)
to study the impact of human water use on future hydrological drought. A natural
or pristine scenario has been used to calculate the impact of the changing climate on
hydrological drought and has been compared to a scenario with human influences.
Results show a significant impact of climate change and human water use in large
parts of Asia, Middle East and the Mediterranean. The differences between RCPs are
small, indicating that human water use is proportional to the changes in the climate.
Reservoirs tend to reduce the impact of drought by water retention in the wet season,
which in turn will lead to increased water availability in the dry season, especially for
large regions in Europe and North America. This work illustrates that the impact of
human water use and reservoirs is nontrivial and can vary substantially per region
and per season.

The results from this thesis show that the inclusion of data assimilation, satellite data
and model simulation is beneficial in the field of flood forecasting and hydrological
modelling in general. This is shown by the results obtained in the first part of this
thesis, where I successfully integrated different sources of observations to reduce un-
certainty in hydrological model simulations. It was also proven in the second part of
this work that there are multiple ways to identify drought events and that the impact
of climate change on drought identification is significant. This impact of a changing
climate contributes to the current vagueness in drought terminology and should be
taken into account when studying the phenomena drought. Finally, I showed that
the impact of climate change on future hydrological drought is highly dependent on
the local climatology and the impact of human influence. This thesis showed that
it is possible to reduce the uncertainty in the simulations of hydrological extremes
by combining existing data, models and frameworks. These findings can bring major
advances in the field of hydrological modelling to support monitoring and forecasting
of hydrological extremes in large river basins.
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Nederlandse samenvatting

In grote delen van de wereld zijn hydrologische extremen een regelmatig terugkerend
verschijnsel met grote maatschappelijke gevolgen. Wat betreft economische schade
en verlies aan mensenlevens zijn overstromingen en droogte de belangrijkste hydro-
logische extremen. Het is daarom van groot belang om deze hydrologisch gedreven
natuurrampen goed te kunnen monitoren en voorspellen, zowel op de korte als lange
termijn. Dit is nog belangrijker voor gebieden waar de weerbaarheid tegen natuur-
rampen laag is en waar de economische gevolgen meerdere jaren merkbaar kunnen
zijn.

Hydrologische extremen worden vaak gemonitord en gesimuleerd met computermod-
ellen die proberen de huidige en toekomstige hydrologische situatie zo nauwkeurig
mogelijk na te bootsen. Hoewel hydrologische modellen steeds beter worden, gaan
de modelsimulaties gepaard met aanzienlijke onzekerheid. Het is van groot be-
lang om deze onzekerheid te reduceren, opdat het voorkomen van droogtes en over-
stromingen en mogelijke gevolgen daarvan beter voorspeld kunnen worden. Data-
assimilatiemethodes bieden de mogelijkheid om de onzekerheid te reduceren door
modelsimulaties te combineren met observaties. Daarbij is het van groot belang dat
er in de wetenschappelijke wereld overeenstemming is over wanneer een hydrologisch
extreme gebeurtenis een overstroming of droogte genoemd wordt. Het hanteren van
een gezamenlijke terminologie maakt extreme gebeurtenissen op verschillende locaties
en tijdstippen beter vergelijkbaar en leidt uiteindelijk tot betere analyses van de fre-
quentie en grootte van hydrologische extremen. Tezamen leidt dit tot het hoofddoel
van deze thesis: het reduceren van de onzekerheid in hydrologische simulaties en het
met eenduidige terminologie analyseren, monitoren en voorspellen van hydrologische
extremen in grote rivieren.

Het eerste deel van deze thesis richt zich op de onzekerheid in de hydrologische simu-
laties en korte-termijn voorspellingen. Ik probeer de onzekerheid te verminderen in
(i) neerslag gegevens, (ii) schattingen van verschillende hydrologische componenten
in historische hydrologische simulaties en (iii) korte-termijn overstromingsvoorspel-
lingen.

Allereerst heb ik me gericht op de onzekerheid in de neerslag. Ik heb gebruik gemaakt
van grondobservaties en neerslagschattingen van satellieten om de onzekerheid in neer-
slagvelden te reduceren. Neerslag is een belangrijke hydro-meteorologische variabele
en van groot belang in hydrologische modellering. Verbeterde schattingen van de
neerslaghoeveelheid zullen leiden tot een betere simulatie van het bodemvocht, wat op
zijn beurt weer een positieve invloed heeft op de nauwkeurigheid van overstromings-
en droogtevoorspellingen. In grote delen van de wereld zijn geen tot weinig actuele
grondobservaties van neerslag beschikbaar. In die gebieden bieden neerslagobservaties
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van satellieten een uitkomst. Satellietobservaties van bodemvocht en de oppervlak-
tetemperatuur zijn gebruikt om de onzekerheid in satellietneerslag te reduceren op
het vaste land van de Verenigde Staten. Assimilatie van zowel bodemvocht als de tem-
peratuur van het aardoppervlak reduceerde het aantal incorrect gemeten regenbuien
en het geschatte totale regenvolume. De assimilatie van bodemvocht zorgde er echter
ook voor dat een groot aantal regenbuien helemaal niet werd gedetecteerd, terwijl dit
geen probleem was bij de assimilatie van de temperatuur van het aardoppervlak. Deze
studie demonstreerde de mogelijkheden om met satellietobservaties van bodemvocht
en temperatuur van het aardoppervlak de onzekerheden in satelliet-gebaseerde neer-
slagschattingen te reduceren voor gebieden met weinig grondobservaties. Dit kan de
nauwkeurigheid van hydrologische modelsimulaties in slecht bemeten gebieden ver-
groten.

Om de onzekerheid in historische hydrologische simulaties te verkleinen, heb ik model-
simulaties gecombineerd met afvoermetingen om een hydrologische heranalyse dataset
te creëren. De dataset bevat gecorrigeerde hydrologische toestandsvariabelen en
fluxen over meerdere decennia. Met een ensemble Kalman filter heb ik de model-
parameters en pre-factoren voor neerslagcorrecties gekalibreerd voor het mondiale
hydrologische model PCR-GLOBWB. Deze analyse is gebaseerd op 1495 tijdseries
van rivierafvoeren, verkregen van het Global Runoff Data Center. De resultaten laten
zien dat het mogelijk is om de modelparameters te kalibreren. De correcties in de
neerslagvelden zijn aanzienlijk, waarbij de lokale topografie de grootste invloed heeft
op de uitgevoerde correcties. Deze studie heeft geleid tot de eerste mondiale ensem-
ble1 hydrologische heranalyse dataset die consistent is met gemeten rivierafvoeren, een
sluitende waterbalans heeft en een schatting geeft van de onzekerheden in de fluxen
en bergingen in de verschillende componenten van de terrestrische waterkringloop.

Tot slot heb ik in het eerste deel van de thesis onderzocht of het mogelijk is om
de onzekerheid in korte-termijn overstromingsvoorspellingen te reduceren. Omdat
het onmogelijk is om grondobservaties te verzamelen op mondiale schaal, zouden
satellietobservaties een belangrijke extra bron van informatie kunnen zijn om compo-
nenten van de hydrologische kringloop beter te monitoren. Het blijft echter belang-
rijk om de satellietobservaties te valideren en zo een goede schatting te krijgen van
de nauwkeurigheid van deze observaties. De validatie van bijvoorbeeld bodemvocht
gemeten met een satelliet is over het algemeen beperkt door de verschillen in de
ruimtelijke schaal van de grond-, en satellietobservaties. Het modelleren van de on-
verzadigde zone, en vooral het bodemvocht, kan dienen als een validatiemiddel om de
schaalverschillen tussen grond- en satellietobservaties te overbruggen. Een tijdreeks-
analyse is uitgevoerd om de verschillen in gemodelleerd bodemvocht uit het model
SWAP te vergelijken met bodemvochtobservaties van drie verschillende satellietsen-
soren die meten in het microgolf-domein (AMSR-E, SMOS en ASCAT). De resultaten

1Met het woord “ensemble” bedoel ik dat er meerdere datasets zijn gecreëerd die even zo waar-
schijnlijke representaties van de werkelijkheid zijn. Hieruit kunnen we ook onzekerheden van de
verschillende waterbalanstermen schatten.
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laten zien dat de temporele variatie van SWAP-bodemvocht overeenkomt met de satel-
lietobservaties, waarbij niet iedere sensor een gelijke kwaliteit levert. Verder toonde
deze studie aan dat de onzekerheid in satellietobservaties in de ruimte is gecorreleerd
en dat er duidelijke ruimtelijke patronen in de fout van de observaties zichtbaar zijn.

Vervolgens heb ik geëvalueerd hoe deze satellietobservaties van bodemvocht kunnen
worden gebruikt bij de korte-termijn voorspelling van overstromingen. Hierbij heb ik
eerst parameters gekalibreerd met behulp van satellietgegevens, en deze vervolgens ge-
bruikt in een voorspelling van overstromingen. Bij de kalibratie maak ik gebruik van
een Ensemble Kalman Filter om zowel de toestandsvariabelen als de parameters van
het hydrologisch model LISFLOOD te schatten voor de bovenloop van de Donau.
De kalibratie is uitgevoerd met zowel afvoermetingen als bodemvocht geschat met
behulp van satellietobservaties. De kalibratie met afvoerdata zorgde voornamelijk
voor een verbetering van de parameters gerelateerd aan grondwater- en afvoerpro-
cessen. Kalibratie met alleen satellietobservaties leidde tot een nauwkeurigere iden-
tificatie van de parameters gerelateerd aan oppervlakteprocessen. Hierdoor werd het
duidelijk dat satellietobservaties de potentie hebben om te helpen bij de kalibratie
van hydrologische modellen. Dit zal uiteindelijk leiden tot een betere simulatie van
het bodemvocht in het stroomgebied en een betere simulatie van bovenstroomse af-
voeren. Vervolgens zijn de kalibratieresultaten gebruikt om de toegevoegde waarde
van geassimileerd satellietbodemvocht en afvoeren te onderzoeken in het European
Flood Awareness System (EFAS). Daarbij heb ik gekeken naar het effect van de as-
similatie op de voorspellingen van het optreden en de hoogte van overstromingen
en lage afvoeren. De resultaten laten zien dat de nauwkeurigheid van de over-
stromingsvoorspellingen verbetert wanneer meer afvoermetingen worden gebruikt.
Wanneer tevens satellietgegevens worden gebruikt zien we een verdere verhoging van
de nauwkeurigheid; de basisafvoer wordt beter geschat en de fout in de totale afvoer
wordt lager. De assimilatie van bodemvocht vermindert tevens de onzekerheid in de
voorspelling van het moment waarop de overstroming zal plaatsvinden, met name
wanneer voorspellingen worden gedaan voor de komende paar dagen, dat wil zeggen
op relatief korte termijn. Geconcludeerd kan worden dat het gebruik van satelliet-
gegevens de onzekerheid in de voorspelling van overstromingen verlaagd. Dit is de
eerste keer dat de toegevoegde waarde van satellietbodemvochtobservaties voor korte-
termijn overstromingsvoorspellingen in grote riviersystemen is aangetoond.

In het tweede deel van deze thesis heb ik mij gericht op de onduidelijkheid die er
bestaat over de definitie van droogte en de manier waarop droogte-indicatoren ge-
bruikt worden om droogte te kwantificeren en te identificeren. Ik presenteer een on-
derlinge vergelijking van meerdere, vaak gebruikte, droogtedefinities en een droogte-
definitie die geldig blijft in een veranderend klimaat.

Een selectie van veelgebruikte droogte-indicatoren is getest op de potentie om droogte
te monitoren op mondiale schaal. De correlatie tussen de verschillende indicatoren is
berekend voor de belangrijkste klimaattypen en voor de wereld in zijn geheel, om de
unieke waarde van elke indicator te bepalen en om te bepalen in hoeverre ze onder-
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ling uitwisselbaar zijn. Indicatoren die gebruikt worden om meteorologische droogte
te bepalen laten een lage uitwisselbaarheid zien, ondanks de bijna identieke manier
waarop ze worden berekend. Droogte-indicatoren voor bodemvochtdroogte laten zelfs
nog minder gelijkenissen zien, terwijl de indicatoren voor hydrologische droogte juist
de meeste gelijkenissen vertonen. Meteorologische droogte-indicatoren blijken niet
in staat te zijn om bodemvochtdroogte noch hydrologische droogte te detecteren.
Deze bevindingen hebben belangrijke consequenties voor systemen die droogtecondi-
ties monitoren: (i) Voor elk droogtetype zou een aparte indicator gebruikt moeten
worden die gekozen wordt op basis van het type droogte dat men wil bestuderen;
(ii) droogte-indicatoren die zijn ontwikkeld om hetzelfde droogtetype te bestuderen
zouden beter bestudeerd moeten worden, omdat blijkt dat er grote verschillen bestaan
in de droogtedetectie van deze indicatoren.

Onder invloed van klimaatverandering verandert ook onze perceptie van droogte.
Ik heb gekeken naar de invloed van klimaatverandering op lage afvoeren en hy-
drologische droogtekarakteristieken (droogte in grondwater en afvoer) op wereld-
schaal, waarbij gebruik gemaakt wordt van een definitie van droogte die rekening
houdt met veranderingen in het hydrologische klimaat. De niet-stationaire variabele-
drempelwaardemethode is een methode die zich aanpast aan veranderingen in het
hydrologische regime als gevolg van klimaatverandering en de bijbehorende veran-
deringen in waterbeschikbaarheid. In 27% van de wereld nemen zowel de droogteduur
als het totale watertekort toe wanneer deze niet-stationaire methode wordt gebruikt.
Dit gebied zal significant toenemen tot 62% bij het gebruik van een stationaire con-
ventionele methode. Hiermee wordt aangetoond dat de alternatieve niet-stationaire
droogte identificatie, die rekening houdt met adaptatie aan een veranderd hydrolo-
gisch regime, een aanzienlijke invloed heeft op de toekomstige hydrologische droogte-
karakteristieken.

In het laatste deel van deze thesis worden hydrologische droogteprojecties beter
bestudeerd. De omvang en richting van de veranderingen in hydrologische droogteka-
rakteristieken zijn grotendeels onbekend. Ik evalueer de invloed van klimatologie en
stroomgebiedskenmerken alsmede de invloed van menselijk watergebruik op toekom-
stige hydrologische droogte.

Als eerste is de invloed van klimatologie en stroomgebiedskenmerken bestudeerd door
gebruik te maken van een conceptueel hydrologisch model, dat is gedraaid met her-
schaalde en voor onzuiverheid gecorrigeerde resultaten van drie General Circulation
Models (GCM) voor het SRES A2 emissie scenario (GCM-modelsimulaties), en een
heranalyse dataset (referentiemodel). De stationaire variabele-drempelwaardemethode
is gebruikt om droogtefrequentie, -duur en -tekort te bepalen. Resultaten voor de
controle periode (1971-2000) laten zien dat de droogtekarakteristieken voor de GCM-
modelsimulaties redelijk overeenkomen met resultaten van het referentiemodel voor de
meeste klimaattypes, wat suggereert dat de klimaatmodellen realistische uitkomsten
produceren voor droogte-analyse. Voor de nabije (2021-2050) en de verre (2071-2100)
toekomst laten de GCM-modelsimulaties een neerwaartse trend zien in de droogte-
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frequentie voor alle klimaattypes en een toename van droogteduur en -tekort. Op
wereldschaal zal de toename in droogteduur en hevigheid of tekort leiden tot een
groter negatief effect van droogte in bepaalde gebieden. Daarom zullen waterbe-
heerders moeten nadenken over maatregelen, die de gevolgen van toenemende droogte
in grondwater en afvoeren kunnen verminderen.

Om de invloed van menselijk watergebruik op hydrologische droogte te onderzoeken,
heb ik vervolgens het mondiale hydrologische model PCR-GLOBWB gedraaid met
gegevens van de meest recente CMIP5 klimaatvoorspellingen, afgeleid van vijf GCMs
en vier Representative Concentration Pathways (RCPs). Een natuurlijk scenario is
gebruikt om de invloed van klimaatverandering op hydrologische droogte te verge-
lijken met een scenario waarbij waterverbruik wél werd meegenomen in de simulatie.
De resultaten laten zien dat naast klimaatverandering het menselijk watergebruik
een belangrijke invloed heeft op droogtevoorspellingen in grote delen van Azië, het
Midden-Oosten en de Mediterrane gebieden. De verschillen tussen de twee scenario’s
zijn groot, wat aangeeft dat de menselijke invloed op de droogtekarakteristieken
vergelijkbaar is met de invloed van klimaatverandering op de droogtekarakteristieken.
Reservoirs hebben de neiging om de negatieve gevolgen van droogte te verminderen
door in het natte seizoen water te bergen, wat vervolgens in het droge seizoen zorgt
voor een verhoogde waterbeschikbaarheid, vooral voor gebieden in Europa en Noord-
Amerika. Dit werk laat zien dat de invloed van menselijk watergebruik en reservoirs
op droogte niet triviaal is en sterk kan variëren per regio en seizoen.

De resultaten van deze thesis laten zien dat het gebruik van data-assimilatie om satel-
lietobservaties en modelsimulaties te combineren kan leiden tot betere voorspellingen
van overstromingen. Dit wordt vooral duidelijk in het eerste deel van de thesis,
waarin ik met succes verschillende bronnen van observaties combineer en zodoende
de onzekerheid in hydrologische simulaties verminder. Het tweede deel van dit werk
laat zien dat er meerdere manieren zijn om droogte te identificeren en dat de gebruikte
methodes een significante invloed hebben op droogtedetectie. Dit draagt bij aan ver-
mindering van de huidige onduidelijkheid in droogteterminologie. Wetenschappers
zouden in de toekomst meer aandacht moeten besteden aan een juist gebruik van
droogte-indicatoren en terminologie wanneer men het fenomeen droogte bestudeert.
Tot slot heb ik laten zien dat de invloed van klimaatverandering op droogte sterk
afhangt van het lokale klimaat en de menselijke invloeden in het stroomgebied. Deze
thesis laat zien dat het mogelijk is om de onzekerheid in simulaties van hydrolo-
gische extremen te reduceren door bestaande data, modellen en raamwerken op een
slimme manier te combineren. Deze resultaten kunnen helpen bij het verbeteren van
de huidige modellering en monitoring van hydrologische extremen in grote stroomge-
bieden.

283





Dankwoord

Toen was het eindelijk over met de pret, na 4 jaar PhD-onderzoek is het boekje
afgerond. Uiteraard is dat niet iets wat ik zonder hulp had kunnen bereiken, en dit is
het moment dat ik enkele mensen persoonlijk zou willen bedanken voor hun bijdragen
en hulp. Sommige bijdragen waren intellectueel van aard, terwijl andere bijdragen
vooral op het sociale vlak en alles behalve intellectueel waren; toch zijn ze allemaal
even belangrijk. Alvorens ik begin en per ongeluk iemand zou vergeten, wil ik alvast
iedereen bedanken die de moeite heeft genomen om het dankwoord te lezen.

Allereerst mijn begeleiders, Steven, Derek, Marc, en Ad. Jullie besloten mij aan te
nemen in Utrecht bij Fysische Geografie. Nieuwe universiteit, onbekende gezichten,
maar al snel was ik helemaal op mijn plek, mede dankzij jullie uitstekende begeleiding.
Ik wil jullie graag bedanken voor het vertrouwen dat jullie in mij hebben gehad en de
vrijheid die ik heb gekregen om mijn eigen weg te gaan tijdens het onderzoek. Het
voelde als vier jaar vakantie met af en toe een deadline.
Steven de Jong, jouw persoonlijke benadering en aanstekelijke enthousiasme kan ik
heel erg waarderen. Ik kon mijn eigen beslissingen maken en ik heb nooit het gevoel
gehad dat jij officieel gezien mijn baas bent. Ik wil je nog het meeste bedanken voor
het volledige vertrouwen en de ruimte die ik kreeg om mijn eigen plan te trekken.
Derek Karssenberg, het is fijn dat je me soms hebt afgeremd. Niet alles hoeft snel,
soms kun je gewoon rustig aan doen en komt het toch goed. Soms vervloekte ik alle
correcties, maar ze maakten het schrijfwerk beter. Ik heb veel geleerd op dit gebied
van jou, en dat is te merken aan het dalende aantal correcties in het latere schrijfwerk.
Denktank Marc Bierkens, ik kom graag bij jou langs voor brainstormsessies gevuld
met creatief en snel denken. Als ik alles zou uitvoeren wat jij hebt bedacht in deze
vier jaar zou ik nog wel een tijdje in Utrecht zitten. De beste ideeën eruit filteren en
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