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Preface   
The work presented in this PhD thesis, entitled “Integration of groundwater 
models and near-surface geophysical data”, was conducted at the Department of 
Environmental Engineering at the Technical University of Denmark (DTU) 
under the supervision of Associate Professor Peter Bauer-Gottwein (DTU) and 
Associate Professor Esben Auken (Aarhus University). The PhD research project 
was conducted in the period November 2008 to November 2011 and was funded 
by DTU and the Danish Agency for Science and Innovation. The study included 
an external stay of two months at the Department of Geophysics at Stanford 
University under supervision of Professor Rosemary Knight and an intensive 
collaboration with the Geophysics Department at Aarhus University under 
supervision of Associate Professor Esben Auken. 
 
This PhD thesis comprises a synopsis and three papers that were submitted to 
international, ISI-indexed scientific journals: 

 
I. Herckenrath, D., Legaz-Gazoty, A., Fiandaca, G., Auken, E., Christensen, 

M., Balicki, M. and P. Bauer-Gottwein, Sequential and Coupled 
Hydrogeophysical Inversion of a Groundwater Model using Geoelectric 
and Transient Electromagnetic Data, Journal of Hydrology, submitted. 
 

II. Herckenrath, D., Odlum, N., Nenna, V., Auken, E., and P. Bauer-
Gottwein, Calibrating salt water intrusion models with Time-Domain 
Electromagnetic Data, Ground Water, submitted.  
 

III. Herckenrath, D., Behroozmand, A., Christiansen, L., Auken, E., and P. 
Bauer-Gottwein, Coupled hydrogeophysical inversion using time-lapse 
magnetic resonance sounding and time-lapse gravity data for hydraulic 
aquifer testing: potential and limitations, Water Resources Research, in 
review. 
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Summary 
Over the past decade geophysical methods have gained an increased popularity 
due to their ability to map hydrologic properties. Such data sets can provide 
valuable information to improve hydrologic models. Instead of using the 
measured geophysical and hydrologic data simultaneously in one inversion 
approach, many of the previous studies apply a Sequential Hydrogeophysical 
Inversion (SHI) in which inverted geophysical models provide information for 
hydrologic models. In order to fully exploit the information contained in 
geophysical datasets for hydrological purposes, a coupled hydrogeophysical 
inversion was introduced (CHI), in which a hydrologic model is part of the 
geophysical inversion. Current CHI-research has been focussing on the 
translation of simulated state variables of hydrologic models to geophysical 
model parameters. We refer to this methodology as CHI-S (State). In this thesis a 
new CHI-approach was developed, called CHI-P (Parameter), which applies 
coupling constraints between the geophysical and hydrologic model parameters.  
 
A CHI-P was used to estimate hydraulic conductivities and geological layer 
elevations for a synthetic groundwater model using Time-Domain 
Electromagnetic (TDEM) data and for a real-world groundwater model using 
geo-electric data. For the synthetic study, the CHI-P resulted in improved 
parameter estimates and a reduction in parameter uncertainty for both the 
hydrologic and the geophysical model, when compared with a SHI. For the real-
world groundwater model, parameter uncertainty could not be reduced 
significantly, but the CHI-P resulted in more consistent parameter estimates 
between the groundwater model and the geophysical model. To our knowledge, 
CHI-P is the first CHI method that can be applied to inform large-scale 
groundwater models with near-surface geophysical data. 
 
In another study, we successfully applied a CHI-S to estimate parameter values 
of a saltwater intrusion model with TDEM data. Considering the small number of 
estimable parameters, data fit and parameter uncertainty, the salt water intrusion 
model provided an excellent interpretation of the geophysical data. The CHI-S 
yielded a geophysical model that could never be obtained with a separate 
geophysical inversion. Furthermore, we applied a CHI-S to evaluate the potential 
for time-lapse relative gravimetry (TL-RG) and magnetic resonance sounding 
(TL-MRS) to improve the estimation of aquifer properties during an aquifer 
pumping test. This was done, taking in account a number of practical issues that 
might limit the sensitivity of these techniques with respect to the estimated 



 

vi 

aquifer properties. For this purpose a virtual pumping test was used with 
synthetic observation data. In contrast to the prior assumptions, the conclusions 
suggest that both geophysical techniques have a potential to improve the 
estimation of aquifer properties. In the analyses, TL-MRS outperformed TL-RG 
data and parameter uncertainty could be reduced with ca. 30 % for most of the 
scenarios that were investigated. 
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Dansk sammenfatning 
I det seneste årti har geofysiske metoders vundet stor udbredelse i kortlægning af 
hydrologiske egenskaber. Disse teknikker kan levere data med høj opløsning, 
som kan korreleres med hydrologiske egenskaber og bruges til at forbedre 
hydrologiske modeller. I stedet for at benytte en fælles kalibrerings-metode, hvor 
de geofysiske målinger og hydrologiske data er brugt samtidig, kan mange af de 
nuværende undersøgelser anvende en Sequential Hydrogeophysical Inversion 
(SHI), hvor geofysiske modeller giver information til hydrologiske modeller. For 
at udnytte det fulde potentiale af geofysiske datasæt med hensyn til hydrologiske 
formål, blev en Coupled Hydrogeophysical Inversion (CHI) indført, hvor en 
hydrologisk model er en del af den geofysiske inversion. Aktuel CHI-forskning 
har fokuseret på oversættelse af simulerede tilstandsvariable i hydrologiske 
modeller til geofysiske modelparametre. Vi henviser til denne metode som CHI-
S (State). I denne afhandling en ny CHI-strategi blev udviklet, kaldet CHI-P 
(Parameter), som baserer sig på koblingsbindinger mellem geofysiske og 
hydrologiske modelparametre. 
 
En CHI-P blev anvendt til at estimere hydraulisk permeabilitet og geologisk lag-
tykkelse for henholdsvis en syntetisk grundvandsmodel ved hjælp af Time-
Domain Elektromagnetic (TDEM) data og en eksisterende grundvandsmodel ved 
hjælp af geo-elektriske data. I den syntetiske undersøgelse resulterede CHI-P i 
forbedrede parameter værdier og en reduceret parameterusikkerhed i både den 
hydrologiske og den geofysiske model, når man sammenligner med en SHI. For 
den eksisterende grundvandsmodel, kan parameterusikkerheden ikke reduceres 
tilsvarende, men CHI-P resulterede i mere konsekvente parameterestimater 
mellem grundvandsmodellen og den geofysiske model. Så vidt vides, er CHI-P 
den første CHI metode, der kan anvendes til at informere regionale 
grundvandsmodeller om geologiske egenskaber ud fra geofysiske data. 
 
I en anden undersøgelse har vi med succes anvendt en CHI-S til at estimere 
parameter værdier af en saltvandsindtrængningsmodel med TDEM data. Under 
hensyntagen til det lille antal parametre, datafit og parameterusikkerhed, gav 
saltvandindtrængningsmodellen en fremragende fortolkning af de geofysiske 
data. CHI-S resulterede i en geofysisk model, der aldrig ville kunne opnås med 
en separat geofysisk inversion. Derudover har vi anvendt en CHI-S for at 
evaluere potentialet for time-lapse relativ gravimetri (TL-RG) og magnetisk 
resonans sounding (TL-MRS) for at forbedre estimater af grundvandsmagasinets 
egenskaber i løbet af en pumpetest. En række praktiske problemer, der kan 
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begrænse følsomheden af disse teknikker med hensyn til det estimerede 
grundvandsmagasins egenskaber blev herunder taget i regning. Til dette formål 
anvendte vi en virtuel pumpetest med syntetiske observationsdata. I modsætning 
til tidligere antagelser tyder konklusionerne på, at begge geofysiske teknikker har 
potentiale til at forbedre estimering af grundvandsmagasinets egenskaber. I 
analyserne har TL-MRS klaret sig bedre end TL-RG data, og 
parameterusikkerheden kunne reduceres med ca. 30 % for de fleste af de 
scenarier, der blev undersøgt.  
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1 Introduction 
Groundwater resources suffer from an increasing pressure due to increasing 
water demands for domestic, agricultural and industrial use. To develop optimal 
management strategies, essential background information is needed about the 
geology and the present hydrologic state of an area. Three core disciplines can be 
identified to characterize the hydrogeological properties of a region, which are 
geology, geophysics and hydrogeology. Typically geologists and geophysicists 
characterize the geological setting of an area, where geologists typically process 
and interpret available borehole and outcrop information, while geophysicists try 
to map geological structures using surface geophysical methods such as seismic, 
electromagnetic and geo-electric methods. Finally, hydrogeologists develop 
quantitative tools to describe relevant hydrologic processes and assess the impact 
of different groundwater management strategies. 
 
Over the past decade geophysical methods, have gained an increased popularity 
because of their ability to map hydrologic properties as well. For example 
methods such as ground penetrating radar (GPR) and magnetic resonance 
sounding (MRS) are used to map moisture content [Legchenko et al., 2002; 
Huisman et al., 2003], while electromagnetic (EM) techniques are used to map 
salt water intrusion in coastal aquifers [Macaulay and Mullen, 2007]. If 
interpreted separately, these geophysical datasets only provide images of a 
certain hydrologic property in space or time. However, the methods do not 
provide an explanation with regards to the physical processes underlying the 
distribution of the mapped hydrologic property, which is essential to make 
predictions for the hydrologic system under different management scenarios. For 
this purpose hydrologic models are needed. 
 
The emerging use of geophysical methods for hydrogeological imaging has 
yielded a new field of research, called hydrogeophysics. [Rubin and Hubbard, 
1999] and [Vereecken, 2006] are the first books in which geophysics and 
hydrologic models are consistently brought together. A topic that is given 
specific interest is the inversion method1 used to estimate geophysical models 

                                                            

1 Inversion: Physical theories allow us to make predictions. Given a complete description of a physical 
system, we can predict the outcome of some measurements using a model. The inverse problem 
consists of using the actual measurements to estimate the values of model parameters that characterize 
the physical system [modified form Tarantola, 2005]. In the inversion process model parameter values 
are changed until the difference between the actual measurements and model simulations is minimal. 
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and parameters of hydrologic models. [Ferré et al., 2009] and [Hinnell et al., 
2010], provide an overview of inversion frameworks that can be used to inform 
hydrologic models with geophysical data. Two specific types of inversion 
frameworks are a sequential hydrogeophysical inversion approach (SHI) and a 
coupled hydrogeophysical inversion approach (CHI). The main difference 
between both methods is that a SHI does not take into account the hydrologic 
model when performing a geophysical inversion. 
 
This PhD research was part of RISKPOINT, a project funded by the Danish 
Council for Strategic Research, which aims to create a risk assessment tool to 
identify and prioritize clean up and management of point sources of 
contamination to groundwater. To provide an indication of the magnitude of this 
problem, there are ca. 13000 documented sites with contamination in Denmark 
and an additional 14000 sites where soil contamination is suspected 
[Miljøstyrelsen, 2009]. One of the objectives of this project is to evaluate the 
hydrological and hydrochemical interactions between groundwater and surface 
water with the ultimate goal to develop optimal management strategies. 
 
Within the overall framework of the RISKPOINT-project, this PhD research was 
focused on the use of SHI and CHI to constrain, calibrate and validate numerical 
models of water flow and solute transport. Numerical models typically suffer 
from the lack of accurate and sufficiently resolved input and calibration data. 
Geophysical methods have the potential to provide essential information for flow 
and transport models over a range of scales [e.g. Kemna et al., 2002; Thomsen et 
al., 2004; Chambers et al., 2004]. 
 

1.1 Previous work 
Numerous papers have been published about the inclusion of geophysical data 
for hydrogeological site characterization. Examples are the delineation of 
landfills [Radulescu et al., 2007; Meju, 2000], mapping tracer concentrations 
[Singha and Gorelick, 2005 and 2006] and the estimation of the spatial 
correlation structure of hydraulic properties [Hubbard et al., 1999, Day-Lewis et 
al., 2005]. The main reason for the increasing interest in using geophysical 
methods in hydrogeological studies is that geophysics provides spatially 
distributed models of physical properties in regions that are difficult to sample 
using conventional hydrological sampling methods [Butler, 2005]. Hinnell et al. 
[2010] and Ferré et al. [2009] discuss the different types of hydrogeophysical 
inversion approaches that can be used and Hinnell et al. [2010] provide a 
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comprehensive list of references to case study applications using different types 
of coupling approaches. For example, geostatistical methods have been employed 
to estimate hydrologic parameter distributions based on the correlation structures 
found in inverted geophysical images [Cassiani et al., 1998; Hubbard et al., 
1999; Yeh et al., 2002; Chen et al., 2004]. Hyndman and Gorelick [1996], Chen 
et al. [2006] and Linde et al. [2006] are examples of studies where hydrologic 
structures and parameter distributions are being estimated using geophysical and 
hydrologic data at the same time. Other studies use geo-electric [Kemna et al., 
2002; Vanderborght et al., 2005; Cassiani et al., 2006] and electromagnetic data 
[Binley et al., 2001; Day-Lewis et al., 2003; Lambot et al., 2004; Looms et al., 
2008; Knight, 2001; Huisman et al., 2003], e.g. GPR, to monitor temporal 
changes in water content or solute concentrations. 
 
Many previous studies use a SHI in which first a geophysical model is estimated 
after which the hydrologic model is informed with the geophysical model. 
Hinnell et al. [2010], Ferré et al. [2009], Kowalsky et al. [2005], Pollock and 
Cirpka [2010] and Lambot et al. [2006, 2009], however, describe a CHI, in 
which a hydrological model is part of the geophysical inversion process and a 
single objective function is minimized which includes both a geophysical and 
hydrological component. In other words, both the geophysical and the hydrologic 
model and their associated observations are used to constrain one another. 
 
1.2 Aim of this study 
The vast majority of previous CHI-studies perform a geophysical inversion by 
estimating parameters of a hydrologic model in order to fit geophysical 
measurement data. This is done by translating simulated hydrologic state 
variables (moisture content, concentration) to geophysical parameter 
distributions to simulate a geophysical signal that can be compared with the 
measurement data. This is not the only way to perform a CHI. Another approach 
to perform a CHI would be to couple parameters of the geophysical model with 
parameters of the hydrologic model. A limitation of most previous studies is the 
small spatial scale of CHI case study applications. Moreover, the CHI 
frameworks by Hinnell et al. [2010], Kowalsky et al. [2005] and Lambot et al. 
[2009] do not allow for the separate estimation of geophysical model parameters 
which cannot be linked to the hydrologic model. This can be a significant 
limitation as a hydrologic model may not have a sufficiently detailed spatial 
resolution to represent near-surface variations in geophysical model parameters. 
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This research aims to develop new general CHI methods to address the 
previously mentioned limitations. The need for such a general framework can 
best be described by an example: At many sites globally large, high-resolutions 
airborne EM datasets have been collected to map salt water intrusion and 
geological properties on a regional scale [Auken et al., 2008; Macaulay and 
Mullen, 2007]. At the same time regional-scale groundwater models are available 
to establish a regional overview of the present state and future trends in the 
available groundwater resources and salt water intrusion [e.g. Henriksen et al., 
2003; Langevin, 2003a]. A consistent framework to integrate the potential wealth 
of geophysical information into these models is lacking. With this question in the 
back of our mind, the aim of this research is to: 
 
� develop a new CHI-approach to estimate hydraulic properties for regional 

groundwater models using electromagnetic and geo-electric data 
 

� apply a CHI to estimate parameters of salt water intrusion model based on 
electromagnetic data 

 

� apply a CHI to evaluate the use of time-lapse gravity and magnetic 
resonance sounding data for aquifer pumping test monitoring 

 
The latter objective pertains to a different spatial scale, but aquifer pumping tests 
are used to estimate typical values for the hydraulic properties of an aquifer, 
which are important to inform larger scale groundwater models with. 
 
1.3 Structure of the thesis 
This thesis provides a synopsis of the three papers that are found in Chapter 9. 
All the remaining chapters in this book have the purpose to introduce the 
different methods that are used in the papers and put them into a scientific and 
application-oriented context. Chapter 2 gives an overview of common hydrologic 
models that are used to simulate groundwater water flow and solute transport in 
the saturated zone, together with a brief summary of common geophysical 
techniques that are used for mapping hydrologic properties. Chapter 3 lists the 
properties of the two field sites that were used in our investigations, while 
chapter 4 provides an overview of the inversion frameworks that were developed 
in this research. Chapter 5 gives a short overview of results that were obtained 
during this PhD study. Finally, chapters 6 and 7 summarize, respectively, the 
main conclusions of this research and a list of future research directions based on 
the work that is presented in this book. 



 

5 

2 Hydrologic models and geophysical 
methods 

2.1 Hydrologic models 
In this research only flow and solute transport in the saturated groundwater zone 
will be considered. To simulate groundwater flow we start from the continuity 
equation 

dt
cWuc s

s
����� )())(( �����

�

                                         
(2.1) 

where W is the external flux per unit volume [T-1����s is the porosity [-] which we 
assume to be equal to the saturated water content, where )(c� is the density of the 
water [-] and where �s represents the density of the water associated with the 
external sinks and sources [-]. )(c�  depends on the concentration of the 
dissolved solutes c [ML-3] in the groundwater. The pore velocity u [LT-1] is 
calculated using Darcy’s law  
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 (2.2) 

 
in which h is the hydraulic pressure [ML-1T-2], K [LT-1] is the hydraulic 
conductivity of the subsurface and g the gravitational acceleration [L2T-1]. Solute 
transport is commonly simulated with a convection-diffusion equation together 
with some basic chemical reactions like adsorption to a solid phase and a first 
order rate reaction. Neglecting the inclusion of adsorption and reactions the 
convection-diffusion equation can be written as 
 

� � sWcccu
t
c

���������
�
� D�

                                                  (2.3) 

 
where D is the dispersion tensor [L2T-1], and cs is the solute concentration 
associated with the sink and sources W, which represents features such as drains, 
wells and surface water bodies. 
 
For regional models, Equation 2.1 and 2.3 are often solved numerically, using 
groundwater modeling software such as MODFLOW [Harbaugh and McDonald, 
2000] and the solute transport module MT3DMS [Zheng and Wang, 1999]. The 
results of MODFLOW are water fluxes and water levels, while MT3DMS 



 

6 

calculates solute concentrations and solute fluxes. In paper II we simulate salt 
water intrusion, for which we take into account the groundwater flow component 
due to density differences which are caused by differences in salinity. This is 
done, by coupling equation 2.1 and 2.3 with an “equation of state”, which 
provides a relationship between groundwater density and salt concentrations. 
This equation of state is formulated as follows 
 

cc f 71.0)( �� ��                                            (2.4) 
 

where f�  represents the density of freshwater and c the salt concentration 
calculated with equation 2.3. Equation 2.4 is based on a linearized formulation 
derived by [Baxter and Wallace, 1916] which does not take into account 
temperature and pressure effects on the density of the water. In this research 
SEAWAT [Langevin and Guo, 2006] is used to perform simulations for variable-
density groundwater flow. 
 
In paper III we use an analytical hydrologic model to calculate the water table 
drawdown around a pumping well due to groundwater pumping. For aquifer 
pumping tests, the governing equations are the same as for saturated groundwater 
flow. Typically uniform aquifer properties and simple aquifer geometries are 
assumed, in order to use an analytical expression for the simulation of water table 
drawdown. Many studies [Moench, 1997; Neuman, 1972] have been dedicated to 
the derivation of the most complete analytical expression to capture all relevant 
hydrologic processes and pumping test design characteristics, as delayed 
drainage and borehole flow. Typical software packages for pumptest analysis are 
AQTESOLV [Duffield, 2007] and WTAQ [Barlow and Moench, 1999]. 
 
2.2 Hydrologic applications of geophysical methods 
A wide variety of geophysical techniques is available. Many books provide a 
description of the underlying physics and applications for the various methods 
[e.g. Telford et al., 1990]. The art of the geophysicist is to pick out a particular 
geophysical method that is most suitable, given its sensitivity for the property 
that needs be mapped, the scale that has to be represented and the environmental 
noise conditions that might interfere with the geophysical survey. In this 
paragraph we only provide a brief overview of the different techniques, after 
which we describe some major applications of geophysics to map hydrologic 
variables. 
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2.2.1 Basic classification of geophysical methods 
Kearey et al. [2002] provide an excellent description of available geophysical 
methods. Table 2.1 is based on the classification used in this book and provides a 
basic classification of available techniques according to their underlying physics 
and indicates which physical property of the earth is estimated. 
 
Table 2.1 Classification of geophysical techniques 

Method Measured data Estimated  property 

Seismic Travel time refracted/reflected seismic 
wave 

Density and elastic 
moduli 

Gravity Gravitational field of the Earth in space 
and time Density 

Magnetic Geo-magnetic field in space and time Magnetic susceptibility 
Nuclear magnetic 

resonance Relaxation electromagnetic field Fluid content and 
relaxation constants 

Geo-electric Earth resistance Electrical resistivity 
Induced polarization Voltage decay Electrical chargeability 

Self potential Electric potential Electrical resistivity 
Electromagnetic Response to electromagnetic pulses Electrical resistivity 

Radar Travel time of reflected radar Dielectric constant 
 
According to Table 2.1 many different physical properties of the subsurface can 
be estimated. In this thesis we only discuss their use with respect to hydrologic 
mapping. A much wider range of applications can be associated with geophysical 
techniques. For example, magnetic methods are used to detect iron ore bodies 
and seismic methods are employed to explore existing oil and gas reservoirs. 
Note Table 2.1 lists two properties, a measured quantity and an estimated 
property. For most geophysical techniques the estimated property is obtained 
after a geophysical inversion process in which its value is estimated based on the 
measured data. This is done by calculating a geophysical forward model, which 
simulates the data you would measure in the field or laboratory, given a certain 
value of the estimated property and then fitting the simulated data to the observed 
data.  
 
Instead of describing the geophysical methods according Table 2.1, we discuss a 
number of main application areas for geophysics in hydrology [like in Vereecken 
et al., 2007]. For this thesis we consider three of those applications areas, which 
are the vadose zone, landfills and contaminant transport and regional geology 
and coastal regions. 
 
2.2.2 Vadose zone 
The vadose zone, commonly referred to as unsaturated zone, plays an important 
role associated with environmental issues such as soil and groundwater 
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contamination, ground stability and flood control. Monitoring the spatial and 
temporal variability of moisture content and the freezing/thawing of the 
subsurface can yield valuable information regarding these environmental 
concerns. Applications of geophysical techniques in frozen soils can be found in 
[French and Binley, 2004], which are commonly geo-electric methods to 
distinguish between the frozen and unfrozen part of the subsurface. To monitor 
moisture content � [-], two groups of geophysical techniques are currently 
employed.  
 
The first group of geophysical techniques comprises radar and geo-electric 
methods based on relating the electric permittivity and electrical resistivity of the 
subsurface with its water content. As pointed out in the previous paragraph, these 
geophysical techniques do not measure electric permittivity or resistivity directly, 
but estimate these values based on the measured data. For radar methods as Time 
Domain Reflectrometry (TDR) [Michot et al., 2003] and Ground Penetrating 
Radar (GPR) [Knight, 2001], measured data comprise recorded electromagnetic 
wave velocities which are obtained by transmitting an electromagnetic wave after 
which their refracted and reflected waves are recorded.  
 

 
Figure 2.1 Measurement setup for Electric Resistivity Tomography [ERT]. a is the spacing 
between the electrodes (red arrows) where I indicates an electrical current [A] andV indicates 
the potential difference [V] that is measured during a survey 
 
Figure 2.1 represents the setup of a geo-electric survey using Electric Resistivity 
Tomography (ERT), in which electrodes are placed in the subsurface after which 
potential differences (V) are measured by applying an electrical current (I) for 
different electrode combinations with a spacing a. Based on the potential 
differences [voltages] and the used electrode configuration (e.g. Wenner, 
Schlumberger), an apparent resistivity can be calculated. Apparent resistivities 
can be computed from subsurface resistivity distributions using the forward 
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model for DC electric surveying. Matching measured and simulated apparent 
resistivities results in estimated subsurface resistivity distributions. 
 
For radar methods the estimated electrical permittivity can be related to the soil 
moisture content by an empirical petrophysical relationship, called the Topp-
equation [Topp, 1980] 
 

36222 103.41092.2103.5 rr ��� ��� �������                        (2.5) 
 

���	�� 
r is the electrical permittivity of the subsurface normalized over the 
permittivity of free space, also known as the relative permitivitty or dielectric 
constant. Examples of studies using this approach to estimate � can be found in 
Kowalsky et al. [2004], Lambot et al. [2009] and Huisman et al. [2003]. A more 
general overview of environmental applications for GPR can be found in Knight 
[2001]. 
 
When using resistivity methods, often Archie’s law is used to estimate the 
moisture content, given by [Looms et al., 2008] as 
 

b

mn
s

w
n

r
r

�

�
��

                                                  (2.6) 

 
where rw indicates the electrical resistivity of water and n and m are shape factors 
that are soil specific [Looms et al., 2008]. rb represents the resistivity of the bulk 
material. Note that rb is the estimated parameter using a geo-electric method. To 
apply equation 2.6 for estimating moisture content a reasonable estimate is 
required for rw. 
 
The first group of techniques is not very attractive for clayey sediments, as radar 
methods suffer from a limited depth of penetration due to dielectric dispersion in 
sediments with a low electrical resistivity [Knight, 2001]. For geo-electric 
methods Archie’s law does not apply anymore, as this empirical law does not 
include surface conductivity through the bulk material itself [Lesmes and 
Friedman, 2006]. This additional term is complicated to characterize and makes 
the estimation of soil moisture content less reliable. 
 
The second group of methods does not require a relationship like Archie’s law or 
the Topp-equation, but directly relate the measured geophysical signal with the 
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moisture content of the subsurface in the geophysical forward model. Two of 
these methods are Nuclear Magnetic Resonance (NMR) or Magnetic Resonance 
Sounding (MRS) [Legchenko and Valla, 2002] and time-lapse gravity 
[Montgomery, 1971].   
 
With relative gravimeters, the vertical component of the gravitational 
acceleration is measured. This reveals spatial differences in density which can be 
due to ore deposits, buried paleo-channels and changing depth to bedrock 
[Carmichael and Henry, 1977; Zawila et al., 1997]. Time-lapse relative gravity 
(TL-RG) can be applied to monitor changes in mass, which can be used to 
monitor natural gas extraction [van Gelderen et al., 1999] and quantify changes 
in water storage [e.g. Christiansen et al., 2011].  
 

 
Figure 2.2 Observed data during a MRS sounding [picture from Legchenko, 2002]. 1) hydrogen 
protons in equilibrium state aligned along the Earth’s magnetic field H0, 2) hydrogen protons 
are excited with an external magnetic pulse and 3) hydrogen protons return to their equilibrium 
state yielding the received MRS signal shown on the bottom right side of the figure. 
 
MRS is commonly known through its application in hospitals, where Magnetic 
Resonance Imaging (MRI) is used for imaging and diagnosis. With MRS the 
spins of the hydrogen protons of water molecules in the subsurface are excited 
with an external magnetic field, applied through a transmitter loop on the ground 
surface. After the external magnetic field is switched off, the spins of the 
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hydrogen protons return to their original state generating a new magnetic field 
[Legchenko et al., 2002], whose magnitude is measured by a receiver on the 
ground. Figure 2.2 [based on Legchenko et al., 2002] shows the three stages of a 
MRS-sounding. The bottom-right panel of this figure shows the received MRS 
signal, which is oscillating with exponential decreasing amplitude. Typically two 
properties are extracted from this signal, which are the initial amplitude of this 
signal, depending on soil moisture content, and an exponential decrease rate of 
the amplitude (relaxation constant), which correlates with the pore characteristics 
of the subsurface and can be used to estimate hydraulic conductivity [Mohnke 
and Yarmanci, 2008; Vouillamoz et al., 2008]. 
 
2.2.3 Landfills and contaminant transport 
In the past low elevation areas, such as pits and wetlands were typically used for 
waste deposition [Milosevic et al., 2011, Lorah et al., 2009]. The waste 
deposition at these old landfills often lacked adequate control and documentation 
such that the boundaries of the landfill and the type of landfill material are 
unknown. Some of these landfills pose a significant environmental threat in 
polluting groundwater and surface water [Christensen et al., 2001; Lorah et al., 
2009]. Such landfills usually contain household-, demolition- and chemical 
waste, where the main impact on surrounding water bodies is associated with  
inorganic macro-components (chloride, sodium, ammonium), dissolved organic 
carbon (DOC) and several different xenobiotic organic compounds [Bjerg et al., 
2011; Kjeldsen et al., 2002]. The heterogeneous nature of an old landfill causes 
high spatial variability of the leachate compounds, and a large amount of work is 
required to accurately delineate the landfill, and detect leachate plumes.  
 
Meju [2000] lists the geo-electric and electromagnetic methods as most popular 
geophysical techniques to characterize landfills due to their ability to detect 
changes in electrical resistivity, which correlates with moisture content and 
chemical composition of the pore water, and the relative low-costs to perform 
such surveys. Due to the presence of saline fluids in the landfill leachate, which 
is a good electrical conductor, it is possible to delineate the landfill and locate a 
contaminant plume by employing these geophysical techniques [Naudet et al., 
2004, Chambers et al., 2004] One major limitation of using the electrical 
resistivity in landfill surveys is the fact that several factors influence the 
electrical resistivity of the subsurface, which makes it difficult to differentiate 
between one another. For example, clay and saline fluids both have a small 
electrical resistivity. 
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An upcoming technique for delineating landfills and detecting solute plumes is 
Induced Polarization (IP), which can be performed in combination with a geo-
electric survey [Dahlin et al., 2002; Sogade et al., 2006]. IP is based on the fact 
that the subsurface is able to act as an electric capacitor and store electric charge.  
The same measurement setup as described in Figure 2.2 can be used, but instead 
of measuring the potential differences when an electrical current is applied, the 
decay of these potential differences is measured in time after terminating the 
applied electrical current. The decay rate of the potential difference can then be 
related to the chargeability of the subsurface. The signal that is retrieved with IP 
is mainly the result of the local redistribution of ionic charge in the electric 
double layer at the mineral-fluid interface [Slater, 2007]. Typically, the observed 
IP response is fitted by an empirical relationship named the Cole-Cole model 
[Pelton et al., 1978], which parameters (chargeability, electrical resistivity, 
relaxation time and shape parameter) can be correlated with hydraulic 
conductivity and the presence of contaminant plumes. The Cole-Cole model, 
however, does not provide a mechanistic understanding of the retrieved IP-
signal. A physical model is still lacking to explain the IP signature of 
contaminant plumes. [Vaudelet et al., 2011], [Revil and Florsch, 2010] and 
[Leroy and Revil, 2009] are examples where the development of such a physical 
model is investigated. 
 
2.2.4 Regional geology and coastal regions 
To characterize regional geological properties and human structures, seismic and 
electromagnetic methods are often employed. With seismic methods, a seismic 
wave is generated by an explosion or vibrator, after which the wave is reflected 
and refracted at geological interfaces of materials with different seismic 
velocities. These reflected and refracted waves are recorded by receivers, called 
geophones or hydrophones (off-shore applications) to obtain a seismogram. 
Seismic velocity depends on the density of the rock, which makes the method 
attractive to determine the thickness of unconsolidated sediments overlying 
bedrock [Miller et al., 1989]. 
 
Electromagnetic surveys can be performed using ground-based and airborne 
instruments. In Figure 2.3 a sketch is given of the measurement setup for a 
ground based electromagnetic survey using a Time-Domain Electromagnetic 
(TDEM) sounding. In this setup a square transmitter loop is used to generate an 
electrical current, which is switched off to generate a magnetic field in the 
subsurface whose strength decreases after the electrical current is turned off. A 
receiver coil, placed in the middle or outside the transmitter loop, is used to 
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record this decrease in magnetic field strength, which can be translated to a series 
of apparent resistivities which, in turn, are inverted to obtain the subsurface 
resistivity distribution. 
 
TDEM surveys are sensitive to estimate the depth of a layer with a low electrical 
resistivity, for example a clay layer or salt water saturated sediments. The depth 
of penetration can be up to 500 m [Kearey et al., 2002], but this depends on the 
magnitude of the transmitted electrical pulse, the electrical resistivity of the 
subsurface and the frequency at which the electrical pulse is applied. In coastal 
regions this technique is very attractive as TDEM can potentially delineate the 
location of the freshwater/salt water interface, which is of major interest for 
supporting freshwater resources management in coastal aquifers. Examples of 
other applications of electromagnetic surveys are the mapping of buried channels 
[Auken et al., 2008] and the mapping of a cave system in Mexico [Supper et al., 
2009]. 
 

 
Figure 2.3 Measurement setup of a Time-Domain Electromagnetic (TDEM) sounding 
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Figure 3.1 Installing a benchmark point for a geodesy survey at Risby Landfill (upper left). 
Seepage meter measurements at Risby Landfill (upper right). Performing a Time Domain 
Electromagnetic (TDEM) sounding at Monterey Bay, California (bottom). 
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3 Field sites and data collection 
 
3.1 Risby landfill 

 
Figure 3.2 An overview of Risby Landfill and the collected measurement data that were used in 
paper I. 
 
Risby landfill is located ca. 20 km west from Copenhagen, Denmark, and was 
chosen as a pilot-area in the RISKPOINT project to identify the dominant 
processes affecting the hydrogeological and geochemical interaction between the 
landfill, regional aquifer and the Nybølle stream. For this purpose boreholes have 
been drilled and leveled, together with the collection of indirect information 
using several geophysical methods. In Figure 3.2 a map is provided with the data 
that was used in paper I, comprising groundwater level measurements, seepage 
measurements in the Nybølle stream, borehole information and an ERT profile. 
 
A detailed historical overview of Risby landfill was provided by [Thomsen et al., 
2011]. The geological setting of Risby landfill [Gazoty et al., 2011, Frederiksen 
et al., 2003; Carl Bro A/S, 1988] comprises pre-Quaternary limestone bedrock 
overlain by Quaternary glacial deposits. The pre-Quaternary limestone surface is 
located between -10 and +5 mamsl, corresponding to 20-30 m below the natural 
terrain surface. The Quaternary glacial deposits mainly consist of clay till, but 
intercalated sand lenses and sand layers are common. The sandy deposits range 
in thickness from a few centimeters to several meters. 
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In addition to the data that was used for paper I, water samples, ecological data 
and other geophysical data were collected in order to quantify contaminant fluxes 
from the landfill towards the stream and groundwater [Milosevic et al., 2011, 
Thomsen et al., 2011] and indentify which properties of a typical Danish landfill 
can be mapped using state-of-the-art geophysical techniques as magnetic 
methods, induced polarization and geo-electric methods [Gazoty et al., 2011].  
 

3.2 Monterey Bay, California 

 
Figure 3.3 Right: Map of California, with a box highlighting Pajaro Valley, the water district 
where the School-site is located. Left: Overview of the School-site and the locations of the 
TDEM soundings. 
 
At Monterey Bay, California, different electromagnetic (EM) methods were 
applied at two field sites, to evaluate the use of geophysical data for water 
managers in California. One of these field sites is called Monterey Bay 
Academy, to which we refer as the School-site. The other site is located 30 km 
south and is called Fort Ord. At Ford Ord there are plans to install a desalination 
plant that takes in salt water trough the upper aquifer system. [Nenna et al., 2011] 
focus on the value of EM data at this site to inform local water managers about 
the current delineation of the salt water-fresh water interface and the presence of 
confining geological units that protect deep aquifers from induced salt water 
intrusion as a result of the placement of a desalination plant. Paper II is related to 
[Nenna et al., 2011] and is focused on the TDEM data set collected at the 
School-site in relation to salt water intrusion at Monterey Bay. At the School-site 
19 TDEM soundings were collected along an airstrip to obtain an electrical 
resistivity profile perpendicular to the coast that can be correlated to geological 
trends and changes in salt concentrations. 
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4 Inversion methodology 
For the field sites in chapter 3, a hydrogeological model was employed to 
determine groundwater flow directions and quantify salt water intrusion, 
respectively. These hydrologic models require a significant amount of unknown 
input parameters, which have to be estimated based on prior knowledge or with 
an inversion approach using available measurement data. Measurement data 
include direct hydrologic observations but also indirect data such as geophysical 
measurements.  
 
For both field sites in chapter 3 a CHI was applied, using a regional groundwater 
model in combination with TDEM or ERT data. When performing such a CHI a 
number of challenges were faced that are not taken in account in existing CHI-
applications. The three most important challenges are: 
 

� using the geophysical data to inform a hydrologic model about its input 
parameters 
 

� allow for a separate estimation of essential geophysical parameters to 
achieve an acceptable geophysical data fit  

 

� the large computational burden associated with the hydrologic model and 
the geophysical data sets 

 
Ferré et al. [2009] provide a basic classification of hydrogeophysical inversion 
methods, which includes the division between CHI and SHI approaches. In 
addition to this classification, these CHI and SHI approaches can be divided into 
groups that couple geophysical models with a hydrologic model using the 
simulated hydrological state variables or the hydrologic input parameters. 
Paragraph 4.1 provides a short description of existing SHI and CHI approaches. 
Paragraph 4.2 describes the basics of performing a hydrogeophysical inversion 
using parameter and state coupling. In addition the differences are listed between 
existing CHI-applications and the CHI-frameworks that are developed in this 
thesis. Paragraph 4.3 concludes with a specification of the coupling constraints 
that can be used to inform hydrologic models with geophysical data, which we 
subdivide in geometric and petrophysical relationships. 
 
4.1 Sequential and coupled hydrogeophysical inversion  
Figure 4.1a and 4.1c show a Sequential Hydrogeophysical Inversion (SHI) 
approach. The first step in a SHI comprises a geophysical inversion in which a 



 

18 

geophysical parameter is estimated (e.g. electrical resistivity). Subsequently, the 
estimated geophysical parameter distribution is translated to a number of 
hydrologic observations or hydrologic input parameters. This can be done 
directly or with the use of a petrophysical relationship (e.g. Archie’s law, Topp-
equation). The way a hydrologic model is informed with the inverted geophysical 
model depends on the geophysical technique and the hydrologic interpretation of 
the estimated geophysical model. The final step in the SHI is to perform a 
hydrologic inversion, in which the hydrologic model parameters are estimated 
using the estimated geophysical parameters as observation data.  
 

 
Figure 4.1 Inversion frameworks. Left: SHI, right: CHI. Up: Parameter coupling (P), down: 
����� ��������� ����� �� 	��	������� ���	������� �	����	��� �� ����������� �	����	�� ��� ��
���	����������	����	������ ���	��!�"���������#�����������u ����c�����	���u are uncoupled (u) 
geophysical parameters that are estimated independent from the hydrologic model. 
 
In a SHI, the value of the geophysical data for informing the hydrologic models 
is not only influenced by the geophysical measurement errors, but also by the 
errors and assumptions associated with the geophysical forward model and the 
geophysical inversion. For example filter properties of a geophysical instrument 
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might not be modeled correctly [Effersø et al., 1999] and regularization 
constraints used for the geophysical inversion might bias the hydrologic 
parameter estimates [Day-Lewis et al., 2005]. Another important error 
component is the relationship with which geophysical parameters are correlated 
with hydrologic properties, which might neglect processes or properties that are 
important for fitting the geophysical measurement data, e.g. heterogeneity in 
petrophysical properties [Hinnell et al., 2010]. 
 
Instead of performing a hydrologic and geophysical inversion separately, a 
Coupled Hydrogeophysical Inversion (CHI) can be employed, in which the 
hydrologic model is included in the geophysical inversion (Figure 4.1b and 4.1d).  
 
This has a number of advantages compared to an SHI: 
 

� A geophysical inversion can be undertaken, which is consistent according 
to an a priori hydrologic interpretation of the geophysical data [Hinnell et 
al., 2010] 
 

� The geophysical model can be updated according to the hydrologic 
observations 
 

� Subjective geophysical parameter constraints (i.e. regularization) are 
partly substituted by a hydrologic model 

 

� As the hydrologic model provides an advanced type of regularization 
framework for the geophysical inversion, the resolution of the geophysical 
model can be improved 

 
Disadvantages of a CHI are: 
 

� Larger computational burden 
 

� Propagating errors associated with the hydrologic model into the 
geophysical model 

 

� Not taking into account processes or properties of the subsurface that are 
essential for fitting the geophysical measurement data due to a poor 
coupling strategy between the geophysical and hydrologic model 
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4.2 State and parameter coupling 
Instead of separating hydrogeophysical inversion methods into SHI and CHI 
approaches, these methods can be subdivided in another way. Many studies have 
used geo-electric methods to estimate moisture content based on electrical 
resistivity [Robinson et al., 2008]. Slater [2007], Purvance and Andricevic 
[2000] and Niwas and de Lima [2003] discuss the estimation of hydraulic 
conductivity based on electrical resistivity. In contrast to moisture content, 
hydraulic conductivity is not a simulated state variable of a hydrologic model, 
but a static hydrologic input parameter. In addition, Vanderborght et al. [2005], 
Hubbard et al. [1999] and Hyndman and Gorelick [1996] provide examples were 
geostatistical properties of hydrologic input parameters are estimated using 
geophysical models. For this purpose this study divides hydrogeophysical 
inversion methods into a group that uses geophysical models to inform 
hydrologic models about its input parameters and a group of methods that is 
focused on simulated hydrologic state variables. We refer to these approaches as 
parameter (P) and state coupling approaches (S). 
 
Figures 4.1a and 4.1b show the implementation framework for estimating 
hydrologic model parameters with geophysical data using a parameter coupling 
approach (SHI-P and CHI-P), where  figures 4.1c and 4.1d show the use of a 
state coupling approach (SHI-S and CHI-S). Paper I provides a thorough 
theoretical description of using a parameter coupling approach. Paper II includes 
the theory for state coupling approaches. For SHI applications parameter and 
state coupling approaches are straightforward, as a geophysical inversion is 
undertaken after which the estimated geophysical parameters can be used as 
additional observations to constrain the hydrologic model. For CHI applications 
these coupling approaches are more difficult to implement due to the three 
challenges mentioned at the start of this chapter.  
 
Existing CHI-applications by Pollock and Cirpka [2010] Kowalsky et al. [2005], 
Hinnel et al. [2010] and Lambot et al. [2009] only consider state coupling 
approaches (CHI-S). In these studies hydrologic and petrophysical parameters 
are estimated, after which the hydrologic simulations are translated to 
geophysical parameters to generate a geophysical forward response. 
 
This thesis introduces a small modification with respect to the traditional CHI-S 
approach applied in Pollock and Cirpka [2010], Kowalsky et al. [2005], Hinnel et 
al. [2010] and Lambot et al. [2009]. This modification comprises the separate 
estimation of some ����������� �	����	�� ����  ���	�� !�"�� 	��	�������� $�� �u) 
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that are not coupled with the hydrologic model in order to fit the geophysical 
measurement data satisfactorily as some geophysical parameters cannot be 
calculated from the hydrologic simulations. For example in paper II, the 
electrical resistivity of the unsaturated zone needed to be estimated for the 
geophysical model. The hydrologic model, however, did not provide any 
information about this geophysical parameter. 
 
The most important development in this thesis is the introduction of CHI-P, 
which is to our knowledge a new CHI-method. CHI-P employs a parameter 
coupling between the geophysical and hydrologic model. In the CHI-P both 
hydrologic and geophysical parameters are estimated. Within these two 
parameter groups, parameters are constrained using standard regularization 
constraints. Across the two parameter groups, parameters are coupled using 
coupling constraints.  
 
The strength of both the CHI-S and CHI-P is their flexibility with which the 
hydrologic interpretation of the geophysical models can be coupled to the 
structure, parameters and simulations of a hydrologic model. In principle CHI-S 
and CH-P can be performed simultaneously, but for clarity reasons this topic will 
not be further discussed in both the thesis and in papers I, II and III. 
 

4.3 Petrophysical and geometric coupling constraints 
Relationships between geophysical parameters and hydrologic models can 
generally be divided in two groups, petrophysical and geometric relationships. 
Petrophysical relationships can be specified by empirical laws that describe the 
correlation between a geophysical parameter value and a hydrologic state 
variable or parameter. Geometric relationships are different as they apply to the 
spatial characteristics of the subsurface. 
 
The most widely used examples of petrophysical relationships are given by 
Archie [1942] and Topp et al. [1980], which were discussed in paragraph 2.2.2. 
These laws describe the dependence of, respectively, electrical resistivity and 
permittivity on soil moisture content. These properties represent the natural 
characteristics (‘physics’) of the subsurface or rock (‘petro’ in Latin). Examples 
of studies where such petrophysical relationships are used can be found in 
[Kemna et al., 2002; Singha and Gorelick, 2006]. 
 
Slater [2007], Purvance and Andricevic [2000] and Niwas and de Lima [2003] 
discuss another important petrophysical relationship, which includes the 



 

22 

estimation of hydraulic conductivity from geo-electric and IP-data. An important 
remark in these papers is the log-log relationship between electrical resistivity 
and hydraulic conductivity. In paper I we apply such a relationship in 
combination with a SHI-P and CHI-P using 
 

sb ePK ��� )(10log)(10log �
                                               (4.1) 

 
In Equation 4.1, K represent the hydraulic conductivity [L/T] of a layer in the 
hydrologic model and �b denotes the electrical resistivity in a TDEM or geo-
electric model, where P is an expected value and es the assumed standard error 
associated with the petrophysical relationship. The assumption behind this 
relationship would be that the electrical resistivity is not influenced by another 
factor, e.g. the presence of a contaminant plume. The value for P and es depends 
on a priori knowledge and is site-specific.  
 
In time-lapse applications of geophysical methods, petrophysical relationships 
can be employed differently. For example, ERT data can be used to monitor a 
salt tracer experiment. Salt tracer tests are commonly used to estimate the spatial 
distribution of hydraulic properties [e.g. Kemna et al., 2002; Vanderborght et al., 
2005]. In such a setup concentration time series can be derived from the ERT 
data using a petrophysical relationship, which can be compared with simulated 
concentrations. Instead of comparing concentration time-series directly, temporal 
moments of the simulated and observed concentrations can be compared, which 
are a measure of the mean arrival time and the spread of a tracer [Day-Lewis and 
Singha, 2008]. For monitoring salt-tracer experiments with ERT data, Singha and 
Gorelick [2005] noted that only a fraction (25-50%) of the injected tracer was 
recovered from the inverted ERT model. To avoid such non-physical results, a 
CHI-S as in Pollock and Cirpka [2010] can be performed to consider the physics 
of the geophysical technique and the hydrologic process simultaneously. 
 
The second type of coupling constraints between geophysical and hydrologic 
models comprises geometric constraints. Geometric constraints quantify spatial 
characteristics of hydrologic properties as the delineation of geological units and 
the spatial correlation structure of heterogeneous aquifer properties. Examples of 
studies which use such geometric constraints can be found in Vanderborght et al. 
[2005], Hubbard et al. [1999], Hyndman and Gorelick [1996] and many other 
papers. In paper I we use a geometric constraint to estimate the elevation of a 
geological layer in the groundwater model based on the thickness of a layer in 
the geophysical model.  
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5 Results 
Each paragraph in this chapter successively addresses one of the three research 
objectives provided in paragraph 1.3 and the major findings in paper I, II and III. 
 
5.1 Informing groundwater models with transient 

electromagnetic and geo-electric data 
In paper I we present a CHI-P to inform a groundwater model with Time Domain 
Electromagnetic (TDEM) and Electrical Resistivity Tomography (ERT) data and 
compare the results with a SHI. The new aspect of the developed inversion 
strategy is the ability to constrain hydrologic model parameters with geophysical 
data. Previous studies about CHI have been applied using CHI-S only. As 
described in chapter 4 we developed a CHI-P approach. We tested our CHI-P 
approach for a synthetic groundwater model with TDEM measurements and a 
real-world groundwater model with ERT data.  
 
For a synthetic study the CHI-P resulted in improved parameter estimates and a 
reduction in parameter uncertainty for both the groundwater model and the 
geophysical model compared with a SHI and a separate inversion. Figure 5.1 
shows the estimates and confidence intervals for the synthetic groundwater and 
TDEM model parameters when performing a CHI-P. The x-axis of Figure 5.1 
shows the strength of the coupling between the geophysical and groundwater 
model parameters, marked by ec which denotes the standard deviation associated 
with the coupling constraint. When ec is small, the coupling between the 
geophysical model and groundwater model is strong. In this analysis we 
generated 50 realizations of synthetic observation data which we used to estimate 
3 groundwater model parameters and 3 geophysical model parameters. For 
smaller values for ec, which again mark a stronger coupling between the 
geophysical and groundwater model, parameter estimates (dashed lines) 
approximate the truth (solid black line) more closely and parameter confidence 
intervals are reduced for all parameters. In Figure 5.1 the geophysical parameters 
are less impacted by the CHI-P. 
 
For another study, considering a real-world groundwater model and an ERT 
section, a local sensitivity analysis for the groundwater model parameters showed 
that the use of petrophysical coupling constraints is likely to be of more 
importance compared to the use of geometric coupling constraints in order to 
improve groundwater model parameter estimates through a CHI-P. For this 
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second study, parameter uncertainty could not be reduced as well compared to a 
SHI and the computational burden associated with the CHI-P increased with a 
factor of ca. 2-3. However, the CHI-P clearly impacted the parameter estimates 
in both the groundwater model and geophysical model, resulting in consistent 
parameter estimates between the groundwater model and the geophysical model 
according to the hydrogeological interpretation of the geophysical model. 

 
Figure 5.1 Parameter estimates (dashed red lines) for the synthetic example using a CHI with 
different ec values for 50 realizations. Groundwater model parameters are shown in the left 
column of figures, geophysical parameters on the right. The straight black line marks the truth 
and the blued dots ± 2 standard deviations associated with the estimate. The x-axis shows the 
standard deviation of the two types of coupling constraints that were used, the geometrical 
constraint [m] between thickness clay and t1 and the petrophysical constraint between log10 
Kclay and log10 r1 [-]. 
 
The impact by the CHI-P can be seen in Figure 5.2, which shows the inverted 
ERT model using a separate geophysical inversion and a CHI-P. Figure 5.2a 
shows a bottom layer of relatively resistive material of ca. 100 -���������hich 
dips down towards the east, which was interpreted as the regional limestone 
aquifer. The second layer at the right part of the profile with a resistivity of about 
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50 -%&�'� was interpreted as a sandy deposit, while the first and second layer 
������	������#�����(����"&�'���n the left part of the profile were interpreted as  
clayey deposits. Figure 5.2c shows the uncertainty associated with the parameters 
that are estimated in the ERT model (layer resistivities: r1, r2, r3; layer 
thicknesses: t1, t2), expressed by their standard deviation as a percentage of the 
parameter estimate. This analysis included all the information provided by the 
data and parameter constraints. Note light colours in Figure 6c indicate relatively 
poorly resolved parameters, e.g. r1, r2 and t1 at the left part of the profile. 
 
Figure 5.2b shows the inverted ERT model using a CHI-P with an ec of 0.2. 
Compared with the result of a separate geophysical inversion in Figure 5.2a, the 
���������	������#�����(����	�)����	����������(�������(	�����#�	����(�*+�'��
������,&�'��(�	�����(�	���"&�	������vity models. Those were the models for which 
the electrical resistivity of layer 1 and 2 (r1 and r2) were coupled to the 
estimation of hydraulic conductivity of the clay in the groundwater model. In 
paper I, it can be seen in that the hydraulic conductivity of the clay was also 
impacted (Figure 8, paper I). Figure 5.2d shows the standard deviations 
associated with the estimated geophysical model obtained with the CHI-P. The 
parameter standard deviation of r2 indicates this parameter is not well-
determined using the CHI-P as was the case in the separate geophysical 
inversion. r1 is determined with an approximate standard deviation of 10%. 
However, Figure 5.2d shows t1 is less well resolved for those model numbers 
where the petrophysical relationship was applied. The geometric coupling 
constraint does not show any effect on the estimated geophysical models in 
Figure 6. 
 
With the results in paper I we show the main advantage of performing a CHI, a 
geophysical inversion that takes in account a hydrogeological interpretation of 
the geophysical data. Hinnell et al. [2010] point out that the formulation of a 
consistent framework for inference and solution between the geophysical model 
and hydrologic model is essential when performing a CHI. Our method would 
provide a very flexible framework to apply a CHI for hydrologic model 
parameters, which takes in account that 1) only part of a geophysical model can 
be coupled with a hydrologic model, 2) confidence associated with the 
hydrologic interpretation of a geophysical model can be altered using different 
weights for the employed coupling constraints and 3) scale issues can be 
overcome by coupling several geophysical parameters to hydrologic parameters 
and vice versa. 



 

26 

 
Figure 5.2 Inverted ERT model obtained after a separate geophysical inversion (a) and using 
the CHI with ec=0.2 (b) together with a parameter uncertainty analysis expressed by their 
standard deviation relative to the parameter estimate. A gray scale marks well (dark coloured) 
and undetermined parameters (light coloured) for the separate geophysical inversion (c) and a 
CHI-P with ec=0.2 (d). 
 

5.2 Calibrating a saltwater intrusion model with time 
domain electromagnetic data 

Attempts have been made to calibrate salt water intrusion models with different 
geophysical data [Duque et al., 2008, Langevin et al., 2003b, Guérin et al., 
2001], but all these approaches have been using a SHI (with the exception of 
Bauer-Gottwein et al., 2010].  A SHI can induce a number of errors related to 
inconsistent scales between the geophysical and hydrologic models and the 
assumption behind the petrophysical relationship that converts the simulations of 
the hydrologic model to a geophysical parameter distribution. For this purpose 
we apply a CHI-S approach for a small pilot area in California in which we 
calibrate a salt water intrusion model with TDEM measurement data.  
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Figure 5.3 Hydrogeological schematization of the School site. 
 
The CHI-P was applied for a semi-synthetic example, based on a real TDEM 
data set at a site in Monterey, California. For this site 14 TDEM soundings were 
available and we assumed a cross-sectional model with uniform aquifer 
properties. The geology and hydrologic processes that are represented by the salt 
water intrusion model are given by a conceptual hydrogeological cross-section in 
Figure 5.3, which only represents the water table aquifer that is found in this 
area, which is separated from the deep aquifer system by a clay unit marked by 
the Lower Aromas Sand formation. The current extent of the freshwater/salt 
water interface is the result of pumping activities at this site over a time period of 
67 years. For the site no water level or salt concentration data were available and 
exact properties of the present and past water supply wells are unknown. For this 
aquifer we want to estimate five uniform aquifer properties (diffusion, 
dispersion, hydraulic conductivity, anisotropy and porosity) and one 
petrophysical shape parameter (m in Archie’s law) by fitting the collected TDEM 
data (more than 300 apparent resistivities).  
 
Except for the data at early time gates pertaining to three soundings all the 
TDEM data could be fitted with a RMSE close to 1 (Figure 6, paper II). Possible 
explanations for the poor data fit for these three soundings are the neglecting of 
spatial heterogeneity in the salt water intrusion model and not taking in account 
3D effects for generating the TDEM forward responses.  
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Figure 5.4 Inversion results of the 14 TDEM soundings using A) a 3-layer electrical resistivity 
model, B) 25-layer smooth inversion and C) CHI-S inversion. 
 
Figure 5.4a presents the inverted 3-layer resistivity models for TDEM sounding 
1-14 as a function of the distance with respect to the coast. All electrical 
resistivity models show a first layer with a high resistivity, a second layer with a 
very low electrical resistivity and a third layer with a higher resistivity compared 
to the second layer. The first TDEM-layer can be interpreted as a layer 
comprising both the dry deposits and the freshwater saturated aquifer, where the 
second layer with a very low electrical resi���#�����(� ����� ����"�'��	��	�������
the salt water saturated sediments. The final third layer in Figure 5.4a is 
remarkable as it shows an increased electrical resistivity compared with the layer 
above. This layer has been interpreted as a freshwater saturated clay deposit. In 
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Figure 4a a dip can be seen associated with the clay layer. Figure 5.4b shows the 
inversion result for the 25-layer smooth model. The pattern is consistent with 
5.4a, showing both the clay layer and the salt water saturated layer. The dip of 
the clay layer is not very obvious in Figure 5.4b, but provides more information 
about the distribution of fresh and salt water in the aquifer.  
 
Figure 5.4c shows the resulting TDEM model using a CHI-S. The bottom layer is 
the same in both Figures 5.4a and 5.4c, representing the clay layer that is present 
at the site. We fixed the particular geophysical parameters for this clay layer 
when performing the CHI-S as the salt water intrusion model does not provide 
any information about this layer. The second commonality between 5.4c and the 
geophysical inversion results is the high electrical resistivity of the top layer. The 
difference, however, is the much higher amount of detail for the electrical 
resistivity in the aquifer. The electrical resistivity model resulting from the 25-
layer smooth inversion has a similar resolution, but shows a much less consistent 
pattern about the distribution of salt and fresh water in the aquifer. Given the 
simple SEAWAT model, the data fit and the small amount of parameters which 
could be resolved well (Table 3, paper II), obviously the hydrologic model 
provided a well defined regularization or interpretation framework for inverting 
the TDEM data. 
 
We think our CHI-S approach provides a great method to extract the huge 
amount of hydrogeological information that might be available within existing 
and future TDEM datasets with which salt water intrusion models can be 
constrained. This could improve the simulation of the past system state of a 
coastal aquifer, but also provides an opportunity to use TDEM data and salt 
water intrusion models together as a consistent real-time monitoring and 
simulation tool to support current coastal water management. 
 
5.3 Monitoring aquifer pumping tests with time-lapse 

gravity and magnetic resonance sounding data 
The previous two applications of applying a CHI were related to relative large 
scale hydrologic problems. To inform large scale simulation models aquifer 
pumping tests are conducted, to provide an indication of local aquifer properties 
as hydraulic conductivity and aquifer storage characteristics. Blainey et al. 
[2007] and Damiata and Lee [2004] provided a specific application of time-lapse 
signals retrieved with relative gravimetry (TL-RG) to estimate aquifer properties 
for aquifer pumping tests using a CHI-S. 
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Table 5.1 Properties of the different pumping test scenarios investigated in paper III. 

 
 
In paper III we investigate this particular application of CHI-S, as these studies 
considered highly idealized conditions considering the configuration of the 
pumping test and accuracy of the geophysical methods. The aim of paper III is 
twofold: 1) major issues are investigated which likely limit the practical utility of 
TL-RG for pumping test monitoring and 2) we introduce TL-MRS data using a 
similar CHI-S framework and compare the performance of TL-MRS and TL-RG 
for pumping test monitoring.  
 
The investigations were performed for a virtual aquifer pumping test, for which 
synthetic drawdown data was generated together with synthetic TL-MRS and 
TL-RG measurement data. Subsequently aquifer parameters were estimated 
using a CHI-S for 6 different scenarios listed in Table 5.1, which comprise 
respectively (1) a fully penetrating well with low-noise geophysical data, (2) a 
fully penetrating well with high-noise geophysical data, (3) a partially 
penetrating well in an anisotropic aquifer, (4) a fully penetrating well in an 
aquifer showing delayed drainage effects, (5) a real-world scenario of a partially 
penetrating well in an anisotropic aquifer showing delayed yield in combination 
with high-noise geophysical data and (6) TL-RG data with correlated 
measurement errors. Table 5.1 summarizes the assumed properties for the six 
pumping tests scenarios that were investigated, including the observation 
locations, the aquifer properties, the pumping test design variables and the 
standard deviation of the measurement errors that were assumed to generate 
synthetic observation data. 

Property
Fully High Noise Partially Delayed Yield Partially Penetrating & Correlated

Penetrating Penetrating Delayed Yield &  Noise Gravity
High Noise 

Thickness of aquifer (D), m
Depth to initial water level (hi), m 
Hydraulic conductivity (Kh), m/s
Anisotropy Kh/Kz 1 1 10 1 10 1
Specific yield (Sy)
Radius of borehole, m

Fully Fully Partially Fully Partially Fully
Penetrating Penetrating Penetrating Penetrating Penetrating Penetrating

Screen interval, m below initial water level 0-50 0-50 40-50 0-50 40-50 0-50
Density of groundwater, kg/m3
Flow rate (Q), m3/s
Duration of pumping, d
Locations observation wells, m from pumping well
Locations RG observations, m from pumping well
Locations MRS observations, m from pumping well
Measurement error drawdown, cm
Measurement error TL-RG, µGal 2 4 2 2 4 4
Measurement error TL-MRS, nV 10 20 10 10 20 -
�������	
�����d   [Boulton, 1970], d 0 0 0 2 2 0

5

1000
0.06309

7
5, 8.3, 13.9, 23.2, 38.7, 64.6, 107.8, 179.8, 300
5, 8.3, 13.9, 23.2, 38.7, 64.6, 107.8, 179.8, 300

5, 179.8

0.1

Well type

Scenario

50
25

 10-4    

0.25
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Figure 5.5 Water table drawdown (a) and simulated TL-RG data (b) after seven days of 
pumping for a fully and partially penetrating well and the inclusion of delayed yield. (c) and (d) 
show the TL-MRS signal at respectively 5.0 and 179.8 m from the extraction well. Note this 
figure shows the synthetic data without the added measurement errors. Indicated by the dashed 
lines are the standard deviations of the measurement errors (“Noise level”) that were used to 
generate the synthetic TL-RG and TL-MRS observations. 
 
In Figure 5.5 the synthetic drawdown, TL-RG and TL-MRS data are plotted 
without the added measurement errors, for scenrario “Fully Penetrating”, 
“Partially Penetrating” and “Delayed Yield”. Figure 5.5a shows the drawdown 
data of 9 different monitoring wells after 7 days of pumping, which marks an 
exponential decreasing water table drawdown when moving further away from 
the extraction well for scenario “Fully Penetrating” and “Delayed Yield”. For 
scenario “Partially Penetrating” water table drawdown is much smaller closer to 
the pumping well compared with the other scenarios. Figure 5.5b shows the 
corresponding change in gravity signal together with the measurement errors we 
investigated for this data type. Figure 5.5c and d show the change in MRS signal 
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(initial amplitude data only) for 8 pulse lengths at two locations with respect to 
the pumping well (5m and 179.8 m). Remarkable is the large size of the 
measurement error for the geophysical data compared to the actual signal (signal-
to-noise ratio). This signal-to-noise ratio is one of the factors that might limit the 
sensitivity of TL-RG and TL-MRS to estimate aquifer parameters for a pumping 
test. 
  
In Table 5.2 we listed the CHI-S results for the 6 different scenarios. Based on 
this table, we can conclude that more conservative TL-RG and TL-MRS data 
error estimates (according our own field experience) strongly limits the 
informative value of the TL-RG data; TL-MRS data was less affected by this. 
For a partially penetrating well under anisotropic conditions parameter 
uncertainty could be reduced more effectively compared to a fully penetrating 
well. Delayed drainage effects did not limit the ability of the TL-MRS and TL-
RG data to reduce parameter uncertainty significantly. The incorporation of 
representative correlated measurement error in the TL-RG data neither affected 
its informative value.  
 
A local sensitivity analysis showed that TL-RG and TL-MRS observations were 
most sensitive to the pumping rate and the thickness, specific yield and hydraulic 
conductivity of the aquifer. The inclusion of TL-MRS data proved to be more 
effective to constrain the aquifer parameters compared with TL-RG. The 
inclusion of both TL-RG and TL-MRS had a limited added value compared to 
TL-MRS only. We conclude that this particular application of CHI-S has a 
limited potential for TL-RG, while TL-MRS appears to be a more promising 
method. 
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6 Conclusions 
The combination of hydrologic models and geophysical datasets is powerful as a 
united characterization tool. Where geophysical techniques are able to provide 
high resolution datasets that can be correlated with hydrogeological properties, 
hydrologic models can provide a method to understand and identify the relevant 
physical processes underlying the geophysical parameter distributions.  
 
This study focused on development of new and the application of existing 
methods to inform groundwater models with near-surface geophysical data in a 
consistent way. In paper I, II and III the following key-findings and 
developments have been made: 
 
� A new Coupled Hydrogeophysical Inversion (CHI) approach has been 

developed, which is called CHI-P. CHI-P uses a parameter coupling 
approach, which can be used to estimate hydrologic input parameters with 
geophysical data by coupling the estimation process of geophysical and 
hydrologic parameters directly. To our knowledge, existing CHI methods 
are only focused on CHI-S, in which hydrologic model simulations are 
transformed to a geophysical model, not on parameter coupling. We 
believe our CHI-P method increases the flexibility of performing a CHI 
greatly, especially for the estimation of hydraulic conductivity in 
groundwater models. 
 

� A minor change was made with respect to the existing CHI-S approaches 
[Pollock and Cirpka, 2010; Kowalsky et al., 2005; Hinnel et al., 2010; 
Lambot et al., 2009], in order to allow for the separate estimation of 
geophysical parameters that cannot be computed from simulated 
hydrological state variables.  
 

� Compared with a Sequential Hydrogeophysical Inversion (SHI), the CHI-
P resulted in improved parameter estimates and a reduction in parameter 
uncertainty for a synthetic groundwater and a Time Domain 
Electromagnetic (TDEM) model. For a real-world groundwater model and 
a geo-electric profile, the CHI-P resulted in significant parameter changes 
in both the geophysical as the groundwater model, which were consistent 
with the coupling constraints that represented the hydrogeological 
interpretation of the geophysical model. Parameter uncertainty was not 
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reduced significantly. The computational burden associated with the CHI-
P increased with a factor of ca. 2-3 compared with a SHI. 
 

� We successfully applied a CHI-S to estimate an acceptable range of 
parameter values for the main hydraulic properties of an aquifer, using the 
data of 14 TDEM soundings in combination with a salt water intrusion 
model. Given the simple parameterization of the saltwater intrusion 
model, the data fit and narrow parameter confidence intervals, we think 
the saltwater intrusion model provided an excellent spatial correlation 
structure for the geophysical model, yielding a superior resolution which 
could never be obtained with a separate geophysical inversion and 
standard regularization constraints. 
 

� We successfully applied a CHI-S to evaluate the potential for time-lapse 
relative gravimetry (TL-RG) and magnetic resonance sounding (TL-MRS) 
to estimate aquifer properties during a pumping test. We investigated four 
practical issues that might limit the sensitivity of these techniques which 
are (1) a partially penetrating well in an anisotropic aquifer, (2) typical 
environmental noise properties for TL-RG, (3) delayed yield and (4) 
correlated measurement error. The findings of this thesis suggest a limited 
applicability of a CHI-S with TL-RG data for practical pumping tests, but 
inversion results proved to be more optimistic than we expected 
beforehand, especially for the partially penetrating well. The inclusion of 
TL-MRS data appeared more promising compared to the TL-RG data, as 
parameter uncertainty could be reduced with ca. 30 % for most of the 
investigated scenarios in this paper. 
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7 Perspectives 
A CHI offers a great opportunity to integrate geophysical information into 
groundwater models, but like all methods it should fit a clear purpose. Factors 
determining the suitability of a CHI will depend on whether the targeted 
prediction is sensitive with respect to the geophysical data, whether the 
geophysical model will be significantly impacted by the CHI and whether there is 
enough data to support the assumption behind the coupling relationships between 
the geophysical and hydrologic model.  
 
Based on this research, we like to address some future challenges and 
opportunities: 
 
� In Denmark, Australia and the United States large airborne 

electromagnetic data sets have been collected to map salt water intrusion 
and delineate groundwater protection zones. At the same time, large 
regional models are available to simulate salt water intrusion and 
groundwater flow. According to the results in this thesis, the 
computational time and the CHI-approach are no practical limitations to 
perform a CHI on this scale. However, the main question is whether the 
improvement in groundwater and geophysical models will outweigh the 
additional effort of performing a CHI. 
 

� In general, large-scale hydrologic models are supported by less data 
compared to geophysical models. This means the hydrologic model can 
incorporate large conceptual errors which should not be propagated to the 
geophysical model by using a CHI. Additional research could focus on the 
transfer of such conceptual errors and a set of general guidelines about 
when to use a SHI instead. 
 

�  A real aquifer pumping test should be performed in combination with 
time-lapse magnetic resonance sounding (TL-MRS) and relative 
gravimetry. For selecting a potential site, aquifer properties and 
environmental noise properties should be assessed. At three sites in 
Denmark the environmental noise properties for MRS seem acceptable, 
which are Skive [paper I], Dalby and Bredal [Chalikakis et al., 2008]. To 
assess the suitability of these field sites, synthetic simulations as in paper I 
need to be performed, in which a rough estimate of the local aquifer 
characteristics and the intended pumping test design are taken in account. 
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Abstract 
This paper presents a new coupled hydrogeophysical inversion approach (CHI) to 
inform a groundwater model with Time Domain Electromagnetic (TDEM) and 
Electrical Resistivity Tomography (ERT) data and compares the results with a 
sequential inversion approach (SHI). The SHI uses an inverted geophysical 
image to constrain the calibration process of the groundwater model using 
geometric and petrophysical relationships. In the CHI we consider two groups of 
parameters to be estimated: parameters determining the groundwater flow only 
and parameters determining the geophysical response only. Within the parameter 
groups, parameters are coupled using standard regularization constraints. Across 
the parameter groups, parameters are coupled using coupling constraints. The 
strength of this approach is the flexibility of the coupling constraints with which 
the hydrogeological interpretation of the geophysical models can be coupled to 
the structure and parameters of the groundwater model. Coupling constraints can 
be based on petrophysical relationships (e.g. between electrical resistivity and 
hydraulic conductivity) or geometric relationships (e.g. correspondence of layer 
interfaces). The weight of individual constraints can be adjusted depending on 
the quality of the petrophysical or geometric relationships. The utility of the 
developed coupled hydrogeophysical inversion approach is tested for a synthetic 
groundwater model with TDEM measurements and a real-world groundwater 
model with ERT data. When applying the CHI for both the synthetic and real-
world example, parameter estimates in the geophysical and groundwater models 
were more consistent and the parameter uncertainty was reduced, particularly for 
those parameters that were subjected to the coupling constraints. Compared with 
the SHI, the computational burden increased with a factor 2-3. 
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1. Introduction 
Over the last decade, interest in geophysical methods for hydrogeological site 
characterization has been increasing (e.g. Hubbard and Rubin, 2000; Vereecken 
et al., 2004). This growing interest is due to the ability of many geophysical 
methods to provide spatially distributed models of subsurface properties, which 
are difficult to obtain from sparse borehole information. Geophysical imaging of 
the subsurface is increasingly being used to conceptualize and develop 
geophysical and hydrologic models. 

 
Hinnell et al. [2010] provide an extended list of references to case study 
applications using different types of approaches in which geophysical models and 
hydrologic models are integrated. A number of joint inversion methods have 
been developed to use multiple geophysical methods to improve their structural 
models [e.g., Vozoff and Jupp, 1975; Gallardo and Meju, 2003, 2004; Linde et 
al., 2006a]. For example, geostatistical methods have been employed to estimate 
hydrologic properties based on statistical correlations in geophysical images 
[Cassiani et al., 1998; Hubbard et al., 1999; Yeh et al., 2002; Chen et al., 2004] 
and hydrologic structures and parameter distributions have been estimated 
simultaneously using geophysical and hydrologic data [Hyndman and Gorelick, 
1996; Dam and Christensen, 2003; Chen et al., 2006, Linde et al., 2006]. In other 
studies geo-electrical [Kemna et al., 2002; Vanderborght et al., 2005; Cassiani et 
al., 2006], electromagnetic [Binley et al., 2001; Day-Lewis et al., 2003; Lambot 
et al., 2004; Looms et al., 2008b] and ground penetrating radar (GPR) [Knight, 
2001; Huisman et al., 2003] are used  to monitor changes in water content or 
solute concentrations with time. 
 
Many previous applications in which hydrologic models are informed with 
geophysical data use a sequential inversion approach (SHI), where  geophysical 
data is inverted to estimate the distribution of a geophysical property (e.g. 
electrical resistivity, chargeability), after which a petrophysical relation [e.g., 
Archie, 1942; Topp et al., 1980] is used to convert the geophysical property to 
hydrologic state distributions (e.g. solute concentrations, water content), which 
are then used to calibrate a hydrologic model. In a SHI measurement errors and 
parameter uncertainties associated with the independent inversion of the 
geophysical data are propagated to the hydrologic analysis through a 
petrophysical relation. Not only geophysical parameter uncertainty is propagated 
with these petrophysical relationships, but also the uncertainty pertaining to 
parameters of the petrophysical relationship (e.g. shape factors in Archie’s law). 
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Another issue is the large number of parameters that is estimated in geophysical 
models, which commonly requires the use of extensive regularization (e.g. 
smoothness constraints) to stabilize the geophysical inversion [e.g., Menke, 
1984]. These regularization constraints do not necessarily reflect the hydrologic 
conditions and can limit the value of hydrologic state estimates derived from 
geophysical observations [Day-Lewis et al., 2005; Chen et al., 2006; Slater, 
2007]. 
 
Hinnell et al. [2010], Ferré et al. [2009], Kowalsky et al. [2005], Lambot et al. 
[2006, 2009], Christiansen et al. [2011] and Herckenrath et al. [2011] describe a 
coupled hydrogeophysical inversion approach (CHI), in which a hydrologic 
model is part of the geophysical inversion process and a single objective function 
is minimized which comprises both a geophysical and hydrologic component. In 
these studies the coupling of both models is predominantly done by translating 
simulated hydrological state variables (e.g. soil moisture content) to a 
geophysical parameter distribution (e.g. electrical conductivity). We refer to this 
methodology as “state coupling”. However, not only hydrologic states can be 
correlated with geophysical parameter distributions, but also hydrologic 
parameters (e.g. electrical resistivity and hydraulic conductivity [Purvance and 
Andricevic, 2000; Niwas and de Lima, 2003]). For this purpose, we investigate 
another way to conduct a CHI to which we refer as “parameter coupling” in 
which parameters of hydrologic and geophysical models are coupled. To our 
knowledge this concept is fairly new as no appropriate references were found to 
clearly illustrate this type of CHI. 
 
The main purpose for doing a CHI is to provide a context of interpretation for the 
geophysical measurements through the hydrologic model and use this 
interpretation in the geophysical inversion [Hinnell et al., 2010]. One severe 
drawback of a CHI is the fact that all conceptual errors pertaining to the 
hydrologic model, as well as errors associated with the hydrologic measurements, 
are transferred to the geophysical model. The influence of these conceptual 
model errors is application dependent, and their contribution is ultimately 
unknown. Linde et al. [2006b] discuss the factors that influence a successful 
integration of hydrogeological and geophysical data and identify the critical 
choices and considerations. For example the applicability of a certain 
geophysical technique in combination with a hydrologic model heavily depends 
on the site, the research objective and the available a priori knowledge. 
 



 

I - 5 

In this research we consider a groundwater model together with Time Domain 
Electromagnetic (TDEM) and Electrical Resistivity Tomography (ERT) data. 
Our objective is to constrain the hydrogeological parameters of the groundwater 
model with these geophysical datasets using a CHI. For this purpose we will use 
a parameter coupling approach. Several complications arise when performing a 
SHI and CHI for a groundwater model together with ERT and TDEM data. The 
first complication arises due to the fact that the conceptual framework of many 
groundwater models is prone to large uncertainties [Refsgaard et al., 2006]. 
These differences are the result of limited data availability to characterize the 
hydrogeological properties of an area and the use of many simplifying 
assumptions associated with the geological setup and the boundary conditions 
used in the groundwater model. The second complication pertains to the 
difference in scales between the groundwater and geophysical models, while the 
third problem is the accuracy and error associated with the assumed 
petrophysical relationship between geophysical and groundwater model 
parameters. Error and accuracy in the petrophysical relationship should be clearly 
distinguished, as its accuracy pertains to processes that are not taken in account 
in the petrophysical relationship (e.g. surface conductivity in Archie’s law 
[Winsauer and McCardell, 1953]) and its error is associated with defining the 
parameters of the petrophysical relationship (e.g. pore space tortuosity factor in 
Archie’s law). The fourth issue involves processes that significantly affect the 
geophysical model which are not included in the hydrogeological model. An 
example would be a geological layer that was not defined in the groundwater 
model which is of significant importance for the geophysical model. Based on 
these four problems, we cannot expect to generate a decent geophysical signal 
based on the parameters and states of a groundwater model only in order to fit the 
geophysical data satisfactorily. These four issues suggest a modification of the 
coupled inversion framework described in Hinnel et al. [2010] by not letting the 
entire interpretation of the geophysical model be done by the hydrologic model, 
but only couple those parts of the geophysical models that are relevant to the 
groundwater model. Another difficulty is the large computational burden 
associated with a groundwater model and the huge amount of parameters in the 
geophysical models, limiting parameter estimation to gradient-search algorithms 
[e.g. Doherty, 2010] instead of Markov-Chain Monte Carlo based methods [e.g. 
Vrugt et al., 2008]. To realize an approach that meets the above constraints we 
developed a new flexible CHI approach in which only parts of a geophysical 
model are coupled to a groundwater model by introduction of additional coupling 
constraints depending on the hydrogeological interpretation of the geophysical 
models. 
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In the next section concepts of the applied sequential hydrogeophysical inversion 
(SHI) and the coupled hydrogeophysical inversion (CHI) approach are explained. 
Section 3 shows the application of both the SHI and CHI for a synthetic 
groundwater model with Time-Domain Electromagnetic (TDEM) data. The 
implementation of CHI for a real-world groundwater model and geo-electric data 
(ERT) is described in section 4. Results for both methods are given in terms of 
parameter estimates, parameter uncertainty, model misfit and computational 
effort. The paper concludes with a summary of the benefits and disadvantages of 
the presented coupling procedures. 
 

2. Methodology 
2.1 Geophysical Inversion 
Consider a dataset of geophysical observations assembled in vector 

gd  

� �TNg g
d ��� ,...,, 21�                                                 (2)  

The symbol �  denote the geophysical observations, e.g. apparent resistivities. 
Subscript Ng is the number of available geophysical observations. The 
geophysical model parameters to be estimated are assembled in vector � 

T
MM tr

ttrr )...,,,...,( 11��                                              (3)  
In this paper � contains a number of layer thicknesses and layer resistivities to be 
estimated for a 1D electrical resistivity model. Mr and Mt represent the number of 
parameters for each parameter type and their sum (Mr+Mt) is represented by Mg. 
 
The SHI starts with a geophysical inversion in which geophysical parameters in � 
are estimated by fitting the geophysical observations in dg. For this purpose we 
follow a well established iterative least-squares inversion approach [Tarantola 
and Valette, 1982; Menke, 1984), using linearized approximation with the first 
term of the Taylor expansion, we obtain  

)()( priortruegpriorgobsg Gged ��� ����                           (4) 

for an initial combination of geophysical parameters �prior that is sufficiently 
close to the true model �true for the linear approximation to be good. In short we 
write, 

ggg eGd ��� ��                                               (5) 

 where 
gd� represents the difference between the simulated geophysical forward 

response and the observed data, ��  symbolizes the parameter update and where 
Jacobian Gg contains all partial derivatives of the geophysical mapping  
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j

i
ij

dG
��
�

�                                                     (6) 

for every jth model parameter and every ith observation. The estimate of �true also 
needs to honor a number of parameter constraints. Four types of parameter 
constraints are used in this research: prior parameter constraints, prior depth 
constraints, vertical constraints and lateral constraints. These result in four 
additional operators I, Ph, Rp and Rh and contribute to the total geophysical 
observation error eg’. The implementation and derivation of these constraints is 
explained in more detail in Auken and Christiansen [2004]. When joining 
equation 4 and equations 9, 11, 15 and 19 in Auken and Christiansen [2004], the 
inversion problem can be written as 
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where ;�prior, ;�h-prior, ;rp and ;rh express the deviation with respect to the 
expected value for the prior parameter constraints, prior depth constraints, 
vertical constraints and lateral constraints, where eprior, eh-prior, ep and eh are the 
errors associated with these constraints. More compact equation 7 is 

''' ggg edG ��� ���                                          (8) 
The covariance matrix Cg’ of the joint geophysical observation error eg’ is 
expressed as 
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The geophysical model estimate est�  is updated as given in equation 10 

� � '''''' 111
gg

T
ggg

T
gest dCGGCG ��� ����                       (10) 

by minimizing the objective function 
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where <prior, <h-prior, <Rp, and <Rh represent the objective function component for 
the prior parameter constraints, depth constraints, vertical constraints and lateral 
parameter constraints, respectively. 
 
The posterior standard deviation of the estimated geophysical parameters is 
calculated based on a post-calibrated parameter covariance matrix, defined as 

� � 11 ''' ��� gg
T

ggest GCGC                                       (12) 

As all model parameters are estimated in logarithmic space, confidence intervals 
are subsequently calculated as the square root of the diagonal elements of Cgest 
using 

)),(exp()( ssCSTD gests ��                                    (13) 

 

2.2 Sequential Hydrogeophysical Inversion 
The traditional hydrogeological observations are listed in vector dh, 

� �TNh h
hhhd

1
,...,, 21�                                     (14)   

subscript Nh indicates the number of hydrogeological observations represented by 
h, which can include for instance head data and observed water fluxes. The 
hydrogeological parameters are listed by vector 

T
Mh

),...,,( 21 !!!! �                                        (15)   

where Mh represents the number of hydrogeological parameters; in this paper the 
parameters representing hydraulic conductivities and thicknesses of geological 
layers. As for the geophysical model, an iterative least squares approach is used 
to estimate the parameters listed in �. For the hydrogological data we write  

hhh eGd ��� �!                                            (16)   
where Gh is the Jacobian containing all partial derivatives associated with the 
hydrogeological forward mapping and where eh represents the observation errors 
of the hydrogeological data. 
The second step of the SHI is to calibrate the hydrogeological model using the 
traditional hydrologic data in vector dh and a number of estimated geophysical 
model parameters �est together with their posterior standard deviations. When a 
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petrophysical relationship is used, �est is first transformed to another property 
(e.g. hydraulic conductivity). This yields an additional set of hydrogeological 
observations comprised by vector sh, 

� �TestNestesth s
s ��� ,...,, 21�                                   (17) 

where Ns is the number of geophysical parameters that are used as observation to 
constrain the hydrogeological model parameters  (e.g. thickness of a geological 
layer). These observations are connected to the hydrogeological parameters as 
given in equation 18 

ssh eRs ��� �!                                               (18)   

where Rs is a matrix with the dimensions of vectors � and Ns, containing ones for 
the hydrogeological parameters that are constrained by the estimated geophysical 
parameters in sh and zeros for the hydrogeological parameters that are not 
constrained. se represents the posterior standard deviations associated with the 
geophysical parameters. This approach is analogous to the use of the prior 
parameter constraints in the geophysical inversion. The hydrogeological inverse 
problem can therefore be described as 
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or more compact as 

''' hhh edG ��� ��!                                           (20) 

 with parameter update 

� � '''''' 111
hh

T
hhh

T
hest dCGGCG ��! ����                       (21) 

where Ch’ is the joint observation error comprising the error covariance matrix Ch 
for the hydrogeological observations and Cs for the geophysical observations. 
Equation 21 minimizes the objective function SHI� in the SHI approach 
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Parameter uncertainty is calculated using a posterior parameter covariance matrix 
in the same way as for the geophysical inversion, described in the previous 
paragraph. 
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2.3 Coupled Hydrogeophysical Inversion (CHI) 
In contrast to the SHI, we perform one single inversion for both the geophysical 
and the hydrogeological model. For this we assemble the parameters of both 
model types in vector m,  

T
MM gh

m ),...,,,,...,,( 2121 ���!!!�                           (23) 

We introduce a number of so-called coupling constraints between the 
geophysical and hydrogeological parameters that are connected to the true model 
as 

ccc ermP �� ��                                               (24) 
where ec denotes the error associated with the coupling constraint. As cr�  is only 
related to estimable parameters, ce is unknown and has to be defined by the user. 
Its definition depends upon the confidence in the coupling constraint. In this CHI 
framework, ec plays a key role. Operator Pc can have many forms. For example, 
when we introduce two coupling constraints which implies that the 
hydrogeological parameters �1 and �2 (thicknesses of geological layers) have to 
be equal to respectively �1 and �2 (e.g. layer thicknesses), equation 24 takes the 
following form 
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When relationships between parameter groups � and � are defined a coupled 
inversion can be undertaken. Equation 26 is the result of combining equations 11 
and 16 with the coupling constraints in equation 24 
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which can be written more compactly as  

'' edmG ��� ��                                               (27) 
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Many of the entries in Jacobian G’ are equal to 0 as some of the hydrogeological 
parameter estimates are not affected by the geophysical observation and 
constraints and vice versa. The joint observation error e’ is denoted by 
covariance matrix C’ 
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The model estimate becomes 

                               (29) 

which minimizes the objective function 

chgtotal ���� ���                                          (30) 

where h�  is the hydrogeological data misfit and c� the objective function term 
associated with the coupling constraints.  
 
2.4 Implementation 

 
Figure 1 Implementation of the SHI (left) and CHI approach (right). � and � respectively 
indicate the geophysical and groundwater model parameters, where the bold formatted text 
mentions the specific software used in this paper. 
 
Figure 1 shows a visual summary and practical implementation of the SHI and 
the new CHI approach. Initial parameter values for the geophysical and 
groundwater models are given by a prior separate inversion for both models. The 
TDEM forward algorithm EM1DINV [HGG, 2008] is based on Ward and 
Hohmann [1988] and includes the modeling of low-pass filters [Effersø et al., 
1999] and the turn-on and turn-off ramps described in [Fitterman and Anderson, 

� � '''''' 111 dCGGCGm TT
est �� ����
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1986]. EM1DINV is also used to generate a forward response for the ERT data 
[Auken et al., 2002]. The geophysical model that is estimated for the TDEM is a 
1D resistivity model (Figure 2b), in which typically a number of layer 
thicknesses and layer resitivities are estimated. For the ERT data, this would be a 
number of 1D resistivity models (Figure 6a) tied by lateral constraints [Auken et 
al., 2002]. The ERT forward model is described in [Auken et al., 2002]. The 
groundwater model in the synthetic example was implemented in Matlab (PDE-
tool) and in MODFLOW [Harbaugh et al., 2000] for the real-world example. 
More details about the groundwater models are given in the next section. 
 

3. Example 1: Synthetic study TDEM 
3.1 Setup 
Our first application of the CHI approach considers a synthetic cross-sectional 
groundwater model and a TDEM sounding. The groundwater model consists of 
two layers, similar to the geological setup of the field study we discuss in the 
second example. The upper layer, with a thickness of 25 m, is considered to be 
clayey sand with a hydraulic conductivity of 10-5 m/s and the bottom layer 
represents limestone with a hydraulic conductivity of 10-2 m/s. Constant heads 
are applied as boundary conditions (right: 1 m; left: 0 m) and in the middle of the 
model domain a river is assumed to be located with a fixed head of 0. This results 
in flow from left to right and flow towards the river. Figure 2a marks 6 
observations, 4 head and 2 flux measurements. 

 
TDEM measures apparent resistivities by applying electrical pulses through a 
transmitter loop that produces a primary magnetic field. After the turnoff of each 
electrical pulse, a secondary magnetic field is generated that decays over time. 
The rate of change of the secondary field is recorded for a number of time gates 
and is converted into a series of apparent resistivities �, which represent the 
geophysical observations in this example. This procedure is repeated a number of 
times to obtain a data stack, based on which the measurement errors can be 
calculated. The geophysical model used in the synthetic example consists of 1 
layer thickness and 2 layer resistivities to be estimated using 30 “observed” 
apparent resistivities. The simplified 1D description of the geophysical model is 
used because of the negligible effect of the water table variation and unsaturated 
zone thickness in the model, compared to the geometry of the model and the 
TDEM resolution.  
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For the synthetic example we want to estimate 6 parameters, 3 for both the 
geophysical model and the groundwater model. To test the SHI and CHI, we 
generated 50 observation realizations of hydrologic data (heads and fluxes) and 
geophysical data (apparent resistivities) by adding uncorrelated noise to a model 
generated truth. The true parameter values are shown as black lines in Figure 3. 
The 50 sets of added noise had a standard deviation of 2 cm for the head 
observations and 10% of the measurement value for the fluxes. The measurement 
error added to the apparent resistivities had a standard deviation of ca. 3% of the 
measurement value and was based on a real-world TDEM sounding. This 
measurement error does not only reflect the standard deviation of the data stack, 
which typically shows much smaller standard deviations, especially for apparent 
resistivities measured at early time gates (less than 1 ms after pulse turn-off). 
However, this value of ca. 3% includes an additional error component to take in 
account the assumption of neglecting 3D effects and imperfect instrument 
specifications (e.g. filters, wave form of the applied pulses). This additional error 
component would typically yield correlated measurement errors. For example 
[Effersø et al., 1999] provide the effect of different low pass filters on the TDEM 
forward response. When these filters are not accurately included in the TDEM 
forward model the result would be a structural over- or underestimation of the 
apparent resistivities at early time gates. In this research, however, we do not 
investigate correlated errors and thus add uncorrelated measurement error to the 
TDEM data to be consistent with the Gaussian assumptions of least-squares 
inversion theory [Tarantola, 2005]. Different starting parameters were used for 
the calibration of the geophysical and groundwater model with each observation 
realization. 
 

 
Figure 2 Groundwater model (a) and TDEM model (b) setups. Crosses mark head observations, 
arrows represent the flux observations used for the CHI exercise.  
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Table 1 Model properties used in the synthetic example. 
Model Property Value 

Constant Head (west) [m] 1 
Constant Head (east) [m] 0 
Constant Head (river) [m] 0 

Error Head Measurements [m] 0.02 
Error Flux Measurements [%] 10 

Error TDEM Measurements [%] ca. 3%; based on a real sounding 
 
3.2 SHI/CHI – Geometric & Petrophysical Relationship 
To perform the CHI and SHI we employ two types of constraints, a geometric 
and a petrophysical constraint. The geometric constraint applies to the elevation 
of the interface between the clay and the limestone in the groundwater model 
(thickness_clay) and the depth of the first layer in the TDEM model (t1). The 
petrophysical coupling constraint applies to the hydraulic conductivity of the 
upper layer of the groundwater model (Kclay) and the electrical resistivity of the 
first layer in the TDEM model (r1), employing a relationship between the 
logarithmic values of hydraulic conductivity and electrical resistivity [Niwas and 
de Lima, 2003; Slater, 2007]. This latter value was arbitrarily chosen, but implies 
a decreasing hydraulic conductivity for a decreasing electrical resistivity, as 
hydraulic conductivity and electrical resistivity decrease for increasing clay 
content. A typical hydraulic conductivity for clay is 10-5 m/s [Fetter, 1994] and 
101 'm is a representative electrical resistivity [Kirsch, 2006], which results in 
an expected value of -6 for the petrophysical coupling constraint. 
 
The SHI starts with a geophysical inversion for the TDEM data after which the 
estimated resistivity model is used as an observation in the calibration process of 
the groundwater model. The weights of these observations are equal to the 
posterior standard deviation of the geophysical parameters (es), calculated with a 
posterior covariance matrix obtained after performing the geophysical inversion. 
For the SHI, the second line in equation 19 becomes 
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For the CHI we use the same type of coupling constraints involving the same 
geophysical and hydrologic parameters. However, now the geophysical 
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parameters are also part of the inversion and equation 24 is used for the coupling 
constraints. In this case equation 24 becomes  
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where the expected value for the geometric constraint is 0, whereas the 
petrophysical relationship is -6. The CHI is undertaken for varying values of ec, 
ranging from 10 to 0.01 for both constraints. 
 

3.4 Results 
We first performed a separate inversion for both the groundwater and the 
geophysical model for 50 observation realizations together with different starting 
parameters. In the last column of Table 2 the results are shown for the separate 
inversion, which represent the average parameter estimate, standard deviation, 
data fit and model calls for the 50 realizations. The thickness of the clay is not 
well determined in the groundwater model, showing a posterior standard 
deviation of ca. 15% with respect to the estimate. In the geophysical model the 
estimate of the first layer thickness has a standard deviation of about 8%.  
 
Table 2 Results of CHI, SHI and a separate inversion. Results of the CHI are given for an ce of 

0.01. 
Inversion result [CHI] [SHI] [Separate_Inversion] 
Log10 Kclay [m/s] -5.00 ± 0.3% -5.00 ± 0.4% -5.00 ± 1.1% 
Log10 Klime [m/s] -3.00 ± 1.7% -3.00 ± 1.5% -3.00 ± 1.8% 

Thickness_clay [m] 25.03 ± 6.9% 25.03 ± 7.1% 25.24 ± 15.1% 
������������� 1.00 ± 1.6% 1.00 ± 1.8% 1.00 ± 1.8% 
������������� 2.01 ± 2.1% 2.02 ± 2.2% 2.02 ± 2.2% 

t1[m] 25.03 ± 6.9% 24.91 ± 8.0% 24.91 ± 8.0% 
Average groundwater model runs 95 49 51 
Average geophysical model runs 95 33 33 

Misfit geophysics �g 0.77 0.79 0.77 

Misfit hydrogeology �h 0.71 0.81 0.81 
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The third column in Table 2 shows the results for the SHI, which indicate an 
improvement in the estimation of the groundwater model parameters compared 
with the separate inversion. The geophysical model parameters are the same as is 
the computational burden for both approaches. The parameter estimate for 
parameter thickness_clay clearly improves compared to the separate inversion as 
does the standard deviation which is now roughly equal to the uncertainty 
associated with the geophysical parameter t1. The posterior parameter standard 
deviations of the other parameters are also reduced, but not as significant as the 
hydrogeological parameters that were subjected to the coupling constraints. 

 
Figure 3 Parameter estimates (dashed red lines) for the synthetic example using a CHI with 
different ec values for 50 realizations. Groundwater model parameters are shown in the left 
column of figures, geophysical parameters on the right. The straight black line marks the truth 
and the blued dots ± 2 standard deviations associated with the estimate. The x-axis shows the 
standard deviation of the two types of coupling constraints that were used, the geometrical 
constraint [m] between thickness clay and t1 and the petrophysical constraint between log10 
Kclay and log10 r1 [-]. 
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Figure 3 shows the estimated geophysical and groundwater model parameter 
values for 50 observation realizations, where the black line indicates the true 
parameter value and the dots ± 2 standard deviations of the estimated parameters. 
These are shown for different values of ec used in the CHI. The differences 
between the estimated parameter values for each of these realization was caused 
by the different sets of measurement error that were added to the model-
generated observations. The estimated groundwater model parameters, especially 
Kclay and thickness_clay, show a big improvement in terms of reducing their 
uncertainty when the coupling constraint is given more weight (i.e. smaller ec). 
The estimated value also approximates the truth better, marked by some of the 
outliers in Figure 3. The geophysical model is less affected by the coupling 
procedure, but also shows an improvement. This is made clearer by the fourth 
column in Table 2. The benefit of the CHI is the reduction in parameter 
uncertainty (reflected by the posterior standard deviations) for both the 
geophysical and the hydrogeological models. It is important to note that the value 
for parameters thickness_clay and t1 now approximate its true value better. In the 
SHI a geophysical parameter estimate is imposed on the hydrogeological model 
that deviated from its true value by using t1 without any chance of feedback 
based on the hydrologic observations. This problem is resolved by using the CHI. 
 
The computational burden associated with the CHI increased from 82 (49+33) 
model calls to 95. In the CHI, note that for the calculation of the Jacobian-entries 
in G’ that are associated with the geophysical parameters and observations, only 
the geophysical model needs to be called; the same applies to the entries 
associated with the groundwater model parameters an hydrogeological 
observations. The increase in the computational burden for the CHI is caused by 
the number of optimization iterations, in which the geophysical and groundwater 
model parameters are updated, being the same, which is not the case if a separate 
inversion or SHI is conducted.  
 

 4. Example 2: Case study Risby landfill 
As second example we consider a steady-state, real-world groundwater model for 
Risby landfill located in Denmark, to which we refer as the Risby model. This 
model was developed by Christensen and Balicki [2010] to characterize the 
hydrogeological interaction between a landfill, a local stream and a regional 
aquifer that is used for water supply. [Christensen and Balicki, 2010] provide a 
thorough description and discussion of the assumptions underlying the setup of 
this model and its results. 
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For this particular case, we investigate the application of a SHI and CHI to 
inform the groundwater model with Electrical Resistivity Tomography (ERT) 
data that was collected near Risby landfill (Figure 4). For this purpose, we first 
list the basic properties of the Risby area and the Risby groundwater model, after 
which we conduct a simple linear sensitivity analysis for the different 
hydrogeological parameters in the groundwater model, followed by the 
application of a SHI and CHI to inform the groundwater model with the ERT 
data. 
 

 
Figure 4 An aerial overview of Risby landfill, the ERT profile, parameter PP1 and available 
boreholes and hydrogeological observation data at Risby landfill. 
 
4.1 Description of Risby Landfill 
An extensive historical overview of Risby landfill was provided by [Thomsen et 
al., 2011]. Figure 4a lists the key features of the study area, which are a landfill 
and a small brook called Nybølle stream. The geological setting of Risby landfill 
[Gazoty et al., 2011, Frederiksen et al., 2003; Højbjerg et al., 2008, Carl Bro 
A/S, 1988] comprises pre-Quaternary limestone bedrock overlain by Quaternary 
glacial deposits. The pre-Quaternary limestone surface is located between -10 
and +5 mamsl, corresponding to 20-30 m below the natural terrain surface. The 
Quaternary glacial deposits mainly consist of clay till, but intercalated sand 
lenses and sand layers are common. The sandy deposits range in thickness from a 
few centimeters to several meters. 
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Figure 5 Horizontal discretization of the Risby groundwater model and zonation of layer 1 (a) 
and the geological setup and boundary conditions used (b). 
 
4.1.1 Groundwater Model 
Figure 5a shows the horizontal grid discretization that was used to simulate 
groundwater levels near Risby landfill. The grid cell size is 50 m further away 
from the landfill and 12.5 m near the landfill. For the geological setup, 5 
continuous layers where chosen, where the 4 upper layers represent the glacial 
clay till and the latter layer the limestone aquifer. The top layer of the model, 
with its bottom elevation fixed at +15 mamsl was subdivided in three zones, 
which represent the extent of the upper sandy and clayey deposits together with 
the delineation of the northern part of the landfill (Figure 5a). 
 
Boundary conditions applied in the Risby model are shown in Figure 5b and 
consist of constant heads, derived from a commonly used regional groundwater 
model, referred to as the GEUS-model [Højbjerg et al., 2008]. The limestone was 
assumed to be impermeable at level -50 mamsl and a no flow boundary was 
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therefore assigned. The boundaries for the top layer and the remaining two clay 
layers were also set as no flow boundaries. qn and h in Figure 5b represent the 
assigned flux and potential at the boundary. qGEUS, hGEUS and rGEUS indicate that 
the specified flux, constant head values and recharge were extracted from the 
regional GEUS-model. Boundaries for the limestone were set as constant head 
boundaries with a potential equal to 14.9 m. The isopotential used, was the 
average simulated head in the limestone for the period 2001-2005 [Højberg et al., 
2008]. Boundaries for the sand-layer were prescribed flux boundaries. A flux of 
7.2="&-6 m3/s was applied for all cells along the boundary. 
 
In [Christensen and Balicki, 2010] the Risby model has been calibrated using 6 
parameters listed in Table 3, representing a uniform hydraulic conductivity for 
every geological layer, except for the uppermost layer which consist of three 
separate zones. The observation data consisted of 34 head measurements and 4 
flux measurements, the locations of which are shown in Figure 4. 
 
4.1.2 ERT Data 
The landfill and its surroundings were mapped using various geo-electrical 
profiles for which ERT and induced polarization data were collected in order to 
delineate the landfill, sand pockets and the thickness of the glacial deposits 
overlying the limestone aquifer [Gazoty et al., in prep.]. To demonstrate the SHI 
and CHI, we used the data associated with one of these ERT profiles north of the 
landfill; the location of the profile is shown in Figure 4.  

 
Figure 6a shows the inverted resistivity model for the ERT profile using a few 
layer laterally constrained inversion approach as discussed in paragraph 2.1. This 
ERT profile consists of 38 1D resistivity models with 3 layers. The parameters 
estimated for each of the 38 resistivity models (5 m spaced) comprise 3 layer 
resistivities (r1, r2 and r3) and 2 layer thicknesses (t1 and t2).  Lateral constraints 
were used with a factor of 1.2 for the layer depths (CRh) and a factor of 1.2 for the 
resistivities between neighboring resistivity models. At the location of the ERT 
profile, boreholes showed a depression in the limestone surface of ca. -10 mamsl. 
This depression has been interpreted as a buried Paleo-valley in the pre-
Quaternary landscape and its shape is not well captured with the available 
boreholes. Another characteristic are relatively thick sand layers at the eastern 
part of Risby landfill.  

 
In Figure 6a the limestone shows up as a bottom layer of relatively resistive 
material of ca. 100 -"+&�'����������������������	��������������������������
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are more abundant at the eastern part of the landfill as evidenced by the relatively 
high electrical resistivities of about 50 -%&�'��	���	��������������	���	���(�����
profile��1����������	�������	������#�����(����"&�'�������	���	���������������
western part of the profile, indicating predominantly clayey deposits. The 
presence of the landfill and the associated leachate plume might slightly affect 
this estimated resistivity. This component is disregarded in this paper as the scale 
of the inverted resistivity model is beyond the scale of the landfill and its 
contamination plumes, which have a typical layer thickness of 0.5 m, embedded 
within the top five meters of the glacial clay deposits at the western part of the 
profile [������	 
�	 ���	 ����	 �����
���	 
�	 ���	 ����]. Figure 6c shows the 
uncertainty associated with the parameters that are estimated in the ERT model, 
expressed by their standard deviation as a percentage of the parameter estimate. 
This analysis included all the information provided by the data and parameter 
constraints. Note light colours in Figure 6c indicate relatively poorly resolved 
parameters, e.g. r1, r2 and t1 at the western part of the profile.  
 

 
Figure 6 Inverted ERT model obtained after a separate geophysical inversion (a) and using the 
CHI with ec=0.2 (b) together with a parameter uncertainty analysis expressed by their standard 
deviation relative to the parameter estimate. A gray scale marks well (dark coloured) and 
undetermined parameters (light coloured) for the separate geophysical inversion (c) and a CHI 
with ec=0.2 (d). 
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4.2 Informing the Risby model with ERT data 
In order to conduct a SHI and CHI, we first assess whether the interpretation of 
the estimated ERT model in the previous section is related to any of the variables 
and parameters that are used in the Risby groundwater model. As mentioned 
before, 6 parameters were estimated in the original Risby model [Christensen 
and Balicki, 2010], that are listed in Table 3. For these parameters we conducted 
a local, linear sensitivity analysis (Figure 7). This analysis showed that the 
hydraulic conductivity pertaining to the clay-layer (Kclay) is the most sensitive 
parameter.  
 

 
Figure 7 Scaled Sensitivities for the parameters of the Risby model. 
 
To improve the estimate of Kclay we apply a petrophysical relationship described 
by Equation 19 with the use of an expected value of -9, as clay till has an 
approximate hydraulic conductivity of 10-8 m/d [Fredericia, 1990; Carlbro A/S, 
1988] and an electrical resistivity of about 10 'm [Kirsch, 2006]. This 
relationship implies higher electrical resistivity is accompanied by a smaller clay 
content, which again results in a higher hydraulic conductivity. r1 and r2 in 
resistivity model number 1 to 10 are coupled to the estimation of Kclay, as the area 
east of the ERT profile contained large sandy deposits embedded in the clay. As 
we are only using a 3 layer resistivity model the average electrical resistivity in 
this part of the domain would not reflect the resistivity of the clay appropriately. 
 
As the ERT model also informs us about the depth to the limestone, we introduce 
an additional parameter (PP1) in the groundwater model representing the top 
elevation of the limestone. PP1 represents a single pilot point [Certes and de 
Marsily, 1991] used to interpolate the elevation of the limestone surface together 
with the available borehole information. As expected, the sensitivity of this 
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parameter is very small with respect to the hydrogeological observations (Figure 
7). To demonstrate the effect of geometric coupling we use parameter PP1 in the 
inversion process. Parameters t1 and t2 in model number 14, 15 and 16 are 
coupled to the estimation of PP1.  

 
4.3 SHI 
The SHI starts with the estimated geophysical model shown in Figure 6a. The 
scale of the individual 1D resistivity models comprised by the ERT model is 
rather small (electrode spacing of 5m) compared to the grid cell size of 12.5 m in 
the groundwater model. For this purpose we have chosen to use the geophysical 
parameter estimates of several resistivity models to constrain the groundwater 
parameters. To constrain Kclay we use the average estimate for r1 and r2 
pertaining to resistivity model numbers 1 to 10. To constrain the estimation of 
PP1 we use the average sum of t1 and t2 pertaining to resistivity model number 
14, 15 and16. The weights associated with the constraints were based on the 
standard deviations of the geophysical parameter estimates calculated using 
equation 13.  
 
4.4 CHI – Geometric Coupling & Petrophysical 
Relationship 
We apply a CHI for the Risby model to find a well balanced estimate for r1 and 
r2 and Kclay using the petrophysical relationship described in paragraph 4.2, 
which is consistent with the hydrogeological interpretation of the ERT model. 
The same applies for the estimation of the depth to the limestone by introducing a 
geometric coupling constraint between parameters PP1, t1 and t2. The 
petrophysical coupling constraint is used for resistivity models 1 to 10, the 
geometric constraint for resistivity model 14, 15 and 16. 
 
4.5 Results 
The last column in Table 3 shows the parameter estimation results of a separate 
inversion for both the geophysical and the groundwater model. Most of the 
parameters in the groundwater model are estimated with a standard deviation of 
10%. When performing a SHI (Table 3, column 2), parameter uncertainty 
decrease for most of the parameters, except for Kclaytop, Ksandtop and PP1, but 
parameter estimates remain similar. One of the causes is the high standard 
deviation associated with the geophysical parameters that are coupled. In Figure 
6c these parameters also showed a relatively high standard deviation. As we used 
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this standard deviation to determine the weight of the constraints in the SHI, the 
constraint might be too weak to affect the estimation of the groundwater model 
parameters significantly. 

 
Figure 8 Parameter estimates (black straight line) and confidence bounds (red dashed lines) for 
different values of ec when performing a CHI using a petrophysical relationship between Kclay, 
r1 and r2 and a geometrical constraint between parameters PP1 and t1 and t2. The confidence 
bounds represent the parameter estimate ± 2 standard deviations.  

 
Figure 8 shows the result of the CHI. The parameter estimates for Kclay and r2 are 
affected when the weight of the petrophysical relationship is increased by setting 
the acceptable error ec to a smaller value. The geometrical constraint between 
PP1, t1 and t2 does not have a big impact on the geophysical parameters. 
However the estimate of PP1 does approximate the geophysical model better 
when the constraint is given more weight. The average depth to the limestone in 
the ERT model is about 25 m (t1+t2). In the groundwater model this depth is 
estimated to be 28.26 m ± 2% and 28.04 m ± 4% using a separate inversion and a 
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SHI, respectively. In the CHI this estimate becomes ca. 26.58 m ± 2%. Table 3 
shows that standard deviations of the groundwater model parameters for the CHI 
are almost equivalent compared to the SHI, but smaller compared with a separate 
inversion. 
 
 Figure 6b shows the inverted ERT model using the CHI with an ec of 0.2. 
Compared with the result of a separate geophysical inversion in Figure 6a, the 
estimated resistivity of layer 2 decreased significantly from an average of 75 'm 
to ca. 30 'm for the first 10 resistivity models. Those were the models for which 
the r1 and r2 were coupled to the estimation of Kclay in the groundwater model. 
Figure 6d shows the standard deviations associated with the estimated 
geophysical model obtained with the CHI. The parameter standard deviation of 
r2 indicates this parameter is not well-determined using the CHI as was the case 
in the separate geophysical inversion. r1 is determined with an approximate 
standard deviation of 10%. However, Figure 6d shows t1 is less well resolved for 
those model numbers where the petrophysical relationship was applied. The 
geometric coupling constraint does not show any effect on the estimated 
geophysical models in Figure 6. 
 
Table 3 Inversion results CHI and SHI for Risby landfill. 

Inversion result CHI(ec=0.2) SHI Separate_Inversion 
Log10 K_clay [m/d] -7.79 ± 2% -7.54 ± 2% -7.52 ± 3% 
Log10 K_sand [m/d] -3.96 ± 12% -4.26 ± 9% -4.25 ± 10% 
Log10 K_lime [m/d] -3.85 ± 1% -3.96 ± 3% -3.99± 16% 

Log10 K_risbyn [m/d] -2.20 ± 7% -2.33 ± 1% -2.39 ± 26% 
Log10 K_claytop [m/d] -5.93 ± 6% -5.81 ± 6% -5.80 ± 4% 
Log10 K_sandtop [m/d] -4.35 ± 8% -4.43 ± 7% -4.42 ± 2% 

PP1 [m] 26.58 ± 2% 28.03 ± 4% 28.26 ± 2% 
Average t1, model 14-16  [m] 4.53 ± 68% 4.55 ± 65% 4.55 ± 65% 
Average t2, model 14-16 [m] 20.16 ± 20% 20.22 ± 20% 20.22 ± 20% 

Average Log10 r1, model 1-������� 1.02 ± 9% 1.01 ± 8% 1.01 ± 8% 
Average Log10 r2, model 1-������� 1.44 ± 32% 1.88 ± 29% 1.88 ± 29% 

Groundwater model runs 210 63 91 
Geophysical model runs 3230 1520 1520 

Misfit geophysics �g 0.80 0.79 0.79 

Misfit hydrogeology �h 0.76 0.70 0.65 

 
Table 3 also lists the RMSE with respect to the geophysical and hydrogeological 
observations (respectively <g and <h), which was smaller than 1 for all 
simulations. No significant increase in data fit was noted, except a slightly higher 
<h for the CHI. When the imposed coupling constraints get more and more 
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strength (by decreasing ec) or when a larger number of coupling constraints is 
applied, this will ultimately result in an increase in both <g and <h.  
 
The last entry in Table 3 is the amount of model calls to perform the different 
kinds of inversion. The SHI was slightly more efficient compared to the separate 
inversion, as the calibration of the groundwater model was subjected to 
additional constraints. On the other hand, when a separate inversion is performed 
you do not used the geophysical model to inform the groundwater model with, so 
for this situation the 1520 geophysical model runs are not needed. The CHI 
required about twice as many geophysical and groundwater model runs compared 
to the separate inversion and ca. 3 times as many groundwater model runs 
compared with the SHI. 
 

5. Discussion and conclusions 
Most studies about coupled hydrogeophysical inversion (CHI) are performed by 
translating simulated hydrological state variables to geophysical parameter 
distributions. In contrast to these “state coupling” approaches, we developed a 
new method to perform a CHI for groundwater models with TDEM and ERT 
data, in which geophysical and hydrogeological parameters are coupled using 
geometric and petrophysical parameter coupling constraints. For a synthetic 
study the CHI resulted in improved parameter estimates and a reduction in 
parameter uncertainty for both the groundwater model and the geophysical model 
compared with a SHI and separate inversion. For another study, considering a 
real-world groundwater model and an ERT section, a local sensitivity analysis for 
the groundwater model parameters showed that the use of petrophysical coupling 
constraints is likely to be of more importance compared to the use of geometric 
coupling constraints in order to improve groundwater model parameter estimates 
through a CHI. For this second study, parameter uncertainty could not be reduced 
as well compared to a SHI and the computational burden associated with the CHI 
increased with a factor of ca. 2-3. However, the CHI clearly impacted the 
parameter estimates in both the groundwater model and geophysical model, 
resulting in consistent parameter estimates between the groundwater model and 
the geophysical model according to the hydrogeological interpretation of the 
geophysical model. This addresses the main advantage stated in Hinnell et al. 
[2010] of performing a CHI. Hinnell et al. [2010] point out that the formulation 
of a consistent framework for inference and solution between the geophysical 
model and hydrologic model is essential when performing a CHI. We believe our 
method would greatly increase the flexibility of defining such a framework, as 1) 
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a geophysical model does not necessarily relate completely to a relevant 
hydrologic process or property, 2) confidence associated with the hydrologic 
interpretation of a geophysical model can be tuned using different weights for the 
employed coupling constraints and 3) scale issues can be overcome by coupling 
several geophysical parameters to hydrologic parameters and vice versa. A 
similar CHI framework can be used with other types of optimization (e.g. 
Markov Chain Monte Carlo methods) by simply adding an additional coupling 
constraint component to the objective function that is minimized. To conclude, 
we would like to suggest some standard terminology for the types of CHI as was 
done for subdividing hydrogeophysical inversion in Ferré et al [2009]. A clear 
distinction should be made between state coupling and parameter coupling 
methods, whether time-lapse or static geophysical data has been used and to 
define the nature of the coupling (e.g. petrophysical coupling, geometric 
coupling).  
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Abstract 
Salt water intrusion models are commonly used to support groundwater resource 
management in coastal aquifers. Concentration data used for model calibration is 
often sparse and limited in spatial extent. With airborne and ground-based 
electromagnetic surveys, electrical resistivity models can be obtained to provide 
high resolution three-dimensional models of subsurface resistivity variations that 
can be related to geology and salt concentrations on a regional scale. Several 
previous studies have calibrated salt water intrusion models with geophysical 
data. These approaches, however, are normally limited to the use of the inverted 
electrical resistivity models only, without considering the measured geophysical 
data directly. This induces a number of errors related to inconsistent scales 
between the geophysical and hydrologic models and the applied regularization 
constraints. To overcome these errors and to apply a more consistent integration 
approach, we perform a coupled hydrogeophysical inversion (CHI) in which we 
estimate a small number of parameters for a salt water intrusion model using the 
raw geophysical measurement data.  We refer to this methodology as CHI-S, in 
which simulated hydrologic state variables are transformed to a geophysical 
model, after which a geophysical forward response is calculated and compared 
with the collected measurement data. In addition to existing applications of CHI-
S, our inversion framework allows for the estimation of some geophysical model 
parameters separately to take into account geophysical parameters that cannot be 
interpreted by the hydrologic model. This approach was applied for a semi-
synthetic example, based on a field site in Santa Cruz County, California, and a 
time-domain electromagnetic (TDEM) data set that was collected at this location, 
comprising 14 TDEM soundings.  For this area we developed a 2D cross-
sectional salt water intrusion model, for which we estimated five uniform aquifer 
properties (diffusion, dispersion, hydraulic conductivity, anisotropy and 
porosity). In addition to the hydrologic parameters, one petrophysical shape 
parameter and one geophysical parameter were estimated. These seven 
parameters could be resolved well by fitting more than 300 apparent resistivities 
that were comprised by the TDEM dataset. Except for four soundings all the 
TDEM data could be fitted close to an RMSE of 1. Two possible explanations for 
the poor fit of these four soundings, which are located close to the coast, are the 
assumption of spatial uniformity and neglecting 3D effects for generating the 
TDEM forward responses due to lateral concentration gradients and the presence 
of cliffs. 
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1. Introduction 
Salt water intrusion models are commonly used to quantify the impact of 
groundwater withdrawals and sea level rise on coastal freshwater resources 
[Lebbe et al., 2008; Giambastiani et al., 2007; Zhang et al., 2004]. Many coastal 
regions are densely populated, and there are growing concerns about the over-
exploitation of the available freshwater resources due to increasing water 
demands for domestic, agricultural and industrial use. Complex geological 
structures and the limited amount of information about the current level of 
saltwater intrusion are typical features complicating groundwater management. 
Past studies have demonstrated the ability of electromagnetic (EM) data to 
determine the extent of saltwater intrusion at many sites in the world [e.g. 
Fitterman and Stewart, 1986; Frohlich et al., 1997; Adepelumi et al., 2005; 
Goldman et al., 1991].  Levi et al. [2008] use Time Domain Electromagnetic 
(TDEM) data to differentiate between fresh, brackish, and saline water at sites in 
the Judea Desert, Israel. Other studies have combined EM data with structural 
information derived from other geophysical methods to map saltwater intrusion 
in aquifers in Spain [Duque et al., 2008], or to track the rate of saltwater intrusion 
in Oman [Abdalla et al., 2010].  EM methods have also been used to image 
hydrogeological structure for use in conjunction with hydrologic models 
[Fitterman and Stewart, 1986; Auken et al., 2006; Koukadaki et al., 2007]. These 
datasets are very appealing to hydrogeologists because of their high spatial 
resolution and the scale they represent. Applications of airborne EM surveys in 
coastal aquifers include salt water intrusion mapping in Florida [Langevin et al., 
2003], mapping of buried valleys [Auken et al., 2008] and mapping of a partially 
saltwater filled a cave system in Mexico [Supper et al., 2009]. 
 
Similar to Nenna et al. [2007], this paper is focused on the use of EM data for 
supporting water managers in coastal urban areas in Santa Cruz and Monterey 
Counties, California. In Nenna et al. [2007] EM methods are evaluated to act as 
non-invasive alternatives for the use of sentinel wells to monitor saltwater 
intrusion in coastal aquifer systems and to characterize the continuity of 
important confining units. In this paper we present a new framework, based on 
Pollock and Cirpka [2010], Kowalsky et al. [2005], Hinnel et al. [2010] and 
Lambot et al. [2009], to integrate EM data into salt water intrusion models using 
a coupled hydrogeophysical inversion approach in order to provide one integral 
tool to quantify and map saltwater intrusion that can be updated in real-time 
using EM and concentration data. 
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Currently a growing number of studies are devoted to the integration of 
geophysical data into hydrologic models [Vereecken et al., 2004]. Ferre et al. 
[2009] provide an overview of different integration techniques, which are more 
thoroughly discussed in Hinnel et al. [2010]. In this study we highlight two of 
these approaches which are a Sequential Hydrogeophysical Inversion (SHI) 
approach and a Coupled Hydrogeophysical Inversion (CHI) approach. In a SHI a 
geophysical inversion is performed after which a hydrologic model is calibrated 
using the estimated geophysical parameters as additional observations. [Hinnell 
et al., 2010] discusses a CHI framework in which a geophysical inversion is 
undertaken using a hydrological model as interpretation framework. This 
procedure can be subdivided in three distinct components, a hydrologic model, a 
geophysical model and a petrophysical relationship. In this approach a 
hydrologic model is used to simulate a hydrologic state variable (e.g. moisture 
content, solute concentration), which is subsequently translated into a 
geophysical parameter distribution using a petrophysical relationship [e.g. Topp 
et al., 1980; Archie, 1942] to simulate a geophysical forward response (e.g. 
apparent resistivity, electromagnetic wave velocity). We refer to this 
methodology as Coupled Hydrogeophysical Inversion-State (CHI-S). 
 
CHI-S has been successfully applied for estimating water content and solute 
concentrations with Ground Penetrating Radar (GPR) and Electrical Resistivity 
Tomography (ERT) data in Pollock and Cirpka [2010], Kowalsky et al. [2005], 
Hinnel et al. [2010] and Lambot et al. [2009]. In Bauer-Gottwein et al. [2009] a 
CHI-S approach is used for a salt water intrusion model and Time Domain 
Electromagnetic (TDEM) data, but this study was primarily focused on the 
limitation of standard 1D TDEM forward models to interpret the three- 
dimensional nature of subsurface anomalies caused by seawater intrusion and salt 
transport phenomena. 
 
This paper will primarily focus on the benefits of a CHI-S for TDEM datasets 
and salt water intrusion models. A limitation of existing CHI-S approaches is that 
these methods only include the estimation of hydrologic model parameters and 
petrophysical relationship parameters. This implies that the complete geophysical 
model is calculated from the simulations with the hydrologic model. In some 
cases the geophysical model includes parameters which cannot be estimated from 
the hydrologic model and need to be estimated separately to fit the geophysical 
measurement data satisfactorily.  
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This paper starts with a description of the theory and implementation associated 
with our CHI-S approach. Then an overview is given for the field site for which 
we apply the CHI-S, after which a description is provided with regards to the 
TDEM data, the salt water intrusion model and the setup for this specific 
application of CHI-S. 
 

2. Methodology 
2.1 Hydrologic Inversion 
To explain the CHI-S we start from the traditional approach to calibrate a 
hydrologic model. Consider a dataset of hydrologic observations, vector dh  

� �TNh h
hhhd ,...,, 21�                                              (1)   

Subscript Nh indicates the number of hydrologic observations represented by h, 
which can include for instance hydraulic head, water fluxes and concentration 
measurements. Next we consider the hydrologic parameters that need to be 
estimated, assembled in vector  

 T
Mh

),...,,( 21 !!!! �                                                 (2)   

where Mh represents the number of hydrologic parameters; in this paper the 
parameters represent uniform aquifer properties such as hydraulic conductivity 
and porosity.  
 
To estimate the hydrologic parameters we follow a well established iterative 
least-squares inversion approach [Tarantola and Valette, 1982; Menke, 1984), 
using a linearized approximation with the first term of the Taylor expansion, to 
obtain 

)()( priortruehpriorhhh Gged !!! ����                                (3) 

for a hydrologic forward model gh with an initial combination of hydrogeological 
parameters �prior that is sufficiently close to the true parameter values �true for the 
linear approximation to be good. In short we write 

hhh eGd �"�" !                                                  (4) 

 where hd" represents the difference between the simulated hydrologic forward 
response and the observed data, !"  symbolizes the hydrologic parameter update 
and Jacobian Gh contains all partial derivatives of the hydrologic forward 
mapping for every ith observation in dh with respect to each jth parameter in �. 
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In addition to the observations, the hydrologic inversion can be constrained by 
prior constraints and a variety of regularization constraints (e.g. smoothness). 
The implementation and derivation of such constraints can be found in Tarantola 
and Valette [2003], Auken and Christiansen [2004] and Doherty [2008]. The 
inversion problem can be written as  
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where operator I is the identity matrix and Rh is associated with the regularization 
constraints. >�prior and >rh represent the deviation from the expected value for the 
prior parameter constraints and regularization constraints. eprior and er are the 
errors associated with these constraints. More compact, equation 6 is 

''' hhh edG �"�"� !                                                  (7) 

The covariance matrix Ch’ of the joint observation error eh’ is expressed as 
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The hydrogeological model estimate est!  is updated as given in equation 9 

� � '''''' 111
hh

T
hhh

T
hest dCGGCG "�" ���!                                 (9) 

by minimizing the following objective function: 

2
1

1

1 '' ��
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T
hh

T
hh dCd�                                 (10) 

In equation 10, Nprior is the number of prior parameter constraints and Nr the 
number of regularization constraints. The posterior standard deviation of the 
estimated hydrogeological parameters is calculated based on a post-calibrated 
parameter covariance matrix, defined as 

� � 11 ''' ��� hh
T

hhest GCGC                                             (11) 
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To indicate the confidence with which parameters are estimated posterior 
parameter standard deviation are calculated as the square root of the diagonal 
elements of Chest using 

),()( ssCSTD hests �!                                            (12) 
 
2.2 Coupled Hydrogeophysical Inversion – State (CHI-S) 
In the CHI-S approach of Pollock and Cirpka [2010], Kowalsky et al. [2005], 
Hinnel et al. [2010] and Lambot et al. [2009] a complete geophysical model is 
generated based on the simulations of a hydrologic model. In this study, we also 
consider geophysical parameters that have to be estimated separately. For this 
purpose we subdivide the geophysical parameters into groups �u and �c, where �c 
are the geophysical input parameters that are calculated from the simulations 
made with the hydrologic model and where �u represents the geophysical 
parameters that are directly estimated. To perform a CHI-S, we consider another 
dataset containing geophysical observations 

� �TaNaag g
d ��� ,...,, 21�                                         (13)  

Ng indicates the number of geophysical observations represented by �a, which 
typically includes apparent resistivities for geo-electric and electromagnetic 
methods. In addition to the hydrologic parameters in �, we consider 2 additional 
groups of parameters  

T
uMuuu g

),...,,( 21 ���� �                                         (14)   
T

M p
pppp ),...,,( 21�                                             (15)   

Mg is the number of parameters in �u, which includes the geophysical parameters 
that are not coupled with the hydrologic model and p lists a number (Mp) of 
petrophysical parameters used to transform hydrologic state variables to a 
geophysical parameter. �, �u and p can be assembled in one parameter vector, 
named x. 

T
u px ),,( �!�                                                     (16)   

The operator Gh in equation 4 only describes the relationship between the 
hydrologic input parameters � and the hydrologic data in dh. An additional 
operator is required that describes the relationship between hydrologic input 
parameters and the geophysical data. This relationship comprises the use of a 
petrophysical relationship and a geophysical forward model to transform 
hydrologic states to geophysical parameter distributions. The petrophysical 
relationship can be described as following 

Psc ��                                                           (17) 
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where P symbolizes the petrophysical relationship and s a hydrologic state as 
hydraulic head or solute concentration. Subsequently a geophysical forward 
mapping is undertaken based on the parameters in �u and �c which describe the 
complete geophysical model �. 

�gg Gd �                                                            (18) 
In equation 18, Gg describes the geophysical forward model. Including the 
geophysical data into the inversion problem described in equation 6, we can 
formulate the CHI-S by 
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where Gc represents an operator to generate the hydrologic and geophysical 
forward response based on the parameters in x. Note that this operator is different 
for the various groups of parameters in x. For example, to calculate the partial 
derivatives for the geophysical parameters in �u with respect to the geophysical 
observations, the hydrologic mapping operator Gh and the petrophysical 
relationship P will not play any role in contrast to the calculation of the partial 
derivatives of the geophysical observations with respect to the hydrologic 
parameters. 
 
2.3 Implementation 

 
Figure 1 Inversion framework for a salt water intrusion model and TDEM data using a 
sequential (left) and coupled hydrogeophysical inversion approach (right). 
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The left panel of Figure 1 provides a visual description of a sequential 
hydrogeophysical inversion (SHI-S) framework and its implementation for a salt 
water intrusion model, which is investigated in previous studies [Langevin et al., 
2003; Macaulay and Mullen, 2007]. A SHI-S consists of three steps, in which 
first a geophysical inversion is performed, which yields an estimated distribution 
of geophysical parameters (e.g. electrical resistivities). The estimated 
geophysical parameters can act as observations for the salt water intrusion model 
by applying a petrophysical relationship between the estimated geophysical 
parameters and the simulated salt concentrations. The final step is to perform a 
hydrologic inversion in which the input parameters of a hydrologic model are 
estimated using the estimated geophysical parameters as observation data.  
 
The coupled hydrogeophysical inversion approach (CHI-S) begins with the 
calculation of the salt water intrusion model, after which the simulated salt 
concentrations are translated to a geophysical parameter distribution using a 
petrophysical relationship in order to generate a geophysical forward response 
that can be compared with the geophysical measurement data. Note that the 
geophysical parameter distributions include parameters, which are estimated 
directly in the CHI-S (�u). The CHI-S was implemented using the optimization 
software PEST [Doherty, 2010], which employs a Levenberg-Marquardt 
gradient-search algorithm. The SEAWAT computer program [Langevin and Guo, 
2006; Langevin et al., 2008] was used for simulating groundwater flow and salt 
concentrations.  
 
In this paper we use simulated salt concentrations to generate the parameter 
distributions for the TDEM model. For this purpose we employ Archie’s law 
[Archie, 1942].  

n
gw

nm
gw FSS ��� �� �#��                                           (20) 

where m is a cementation factor, which typically  ranges between 1.3 for 
unconsolidated sands and 2 for consolidated sandstones. Archie’s law also 
includes the water saturation S, but as we consider saturated groundwater flow 
only we assume S-n is 1. n is a factor that takes into account the large increase in 
electrical resistivity with decreasing saturation and has a value close to 2. As 
Archie’s law implicitly assumes that total porosity is equal to the effective 
porosity of the medium [Lesmes and Friedman��)&&+���?����$��	�������$������
���	�������	���������������-m is equal to the formation factor F. [Lesmes and 
Friedman, 2005] provide a thorough discussion about Archie’s law and more 
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complex alternatives to include for example surface conductivity as in [Winsauer 
and McCardell, 1953]. 
 
To generate TDEM forward responses, we used the EM1DINV software 
developed by Aarhus University [HGG, 2011]. The forward modeling algorithm 
used in EM1DINV is based on Ward and Hohmann [1988] and includes the 
modeling of low-pass filters according to Effersø et al. [1999] and the turn-on 
and turn-off ramps described by Fitterman and Anderson [1987]. 
 

3. Semi-synthetic case study: School 

 
Figure 2 Aerial map of the School-site (left), providing an overview of the TDEM sounding 
locations, boreholes and the cross-section for which the SEAWAT simulations are performed. 
 
For this research we study a field site located within the Pajaro Valley, a coastal 
watershed of 160 square miles located adjacent to the Pacific Ocean in Santa 
Cruz County, California. A map of the site is given in Figure 2, showing its main 
properties and the location of the TDEM soundings that were collected in this 
area. Pajaro Valley has been predominantly developed for agriculture since the 
late 1800s. About 84 percent of the water is used for agriculture and 16 percent is 
used for industrial and municipal water supply; almost all of the demand is 
supplied by ground water [Hanson, 2003].   
 
3.1 Hydrogeology 
At the School-site three major geological units can be distinguished that are 
relevant for groundwater flow. These geological units reside on top of relatively 
impermeable granite basement rock from the Cretaceous. From bottom to top 
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these three units are the Purisima Formation (poorly consolidated Miocene-
Pliocene marine deposits), the Aromas Sand (unconsolidated Pleistocene 
deposits) and the shallow Alluvium (unconsolidated Holocene dune deposits). In 
addition, the Aromas Sand can be subdivided into an upper and lower portion on 
the basis of lithology and geophysical characteristics [Hanson, 2003]. The 
aquifer system of Pajaro Valley consists of three principal aquifers: a deep 
aquifer at ca. - 90 mamsl comprised of the Lower Aromas Sand and Purisma 
Formation, a primary aquifer in the Upper Aromas Sands, and a water table 
aquifer comprised of the same unit [Bond and Bredehoeft, 1987; Hanson, 2003]. 
In this research we will only focus on the water table aquifer, comprised of the 
Upper Aromas Sand deposits and the shallow Alluvium.  
 
The Upper Aromas deposits are layered marine and terrestrial coarse-grained 
deposits separated by extensive fine-grained deposits that potentially restrict 
vertical movement of ground water and seawater intrusion.  Lowered 
groundwater levels caused by overdraft in the coastal areas have resulted in 
widespread seawater intrusion in the Aromas Sands, starting as early as 1947 
[Mann, 1988]. Since many of the wells in the coastal and inland sub-regions are 
screened at depths of 200 to 400 feet below land surface, a direct avenue is 
provided for seawater intrusion through the coarse-grained deposits of the 
shallower alluvium and Aromas Sand. Geophysical logs from monitoring wells 
indicate discrete zones of saline water that are related to seawater intrusion in the 
aquifer of the shallow Alluvium and the Upper Aromas Sand, but also indicate 
salt water intrusion in the deep aquifer system of the Lower Aromas Sand.  
 

 
Figure 3 Hydrogeological schematization of the School-site. 
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3.2 TDEM data 
At the School-site 19 TDEM soundings were collected on an old airstrip to 
obtain a transect of TDEM soundings which can be used for a 2D resistivity 
model representing electrical resistivity variations perpendicular to the coast. We 
will refer to the individual soundings as TDEM 1, TDEM 2, etc., where the 
increasing sounding number represents soundings respectively further away from 
the coast. TDEM data was collected using a Geonics ProTEM 47. For the 
measurements a 20-m double-turn transmitter-loop was used due to the limited 
width of the airstrip. Data was collected at ultra-high and very-high frequencies 
employing 20 time-gates for each frequency mode. Both offset and center-loop 
receiver configurations were used, but in this research we only use the center-
loop data as the offset receiver geometry produced more noisy data.  

 
Figure 4 Inversion results of the 14 TDEM soundings using A) a 3-layer electrical resistivity 
model, B) 25-layer smooth inversion and C) CHI-S inversion. 
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To process the TDEM data, we used the Sitem-software (HGG, 2011) and 2 
different methods to perform an initial inversion for the TDEM data. An 
overview of different approaches for the inversion and modeling of TDEM data 
can be found in Oldenburg [1990]. We applied a few-layer inversion in which a 
small number of layer thicknesses and layer conductivities were estimated for 
each sounding location. The second inversion method we used was a 25-layer 
smooth inversion using the EM1DTM code, in which layer thicknesses are fixed 
prior to inversion, after which EM1DTM estimates the electrical resistivity of 
each layer by minimizing both the data misfit and a number of smoothness 
constraints [Farquharson and Oldenburg, 1993]. The noise in the data was 
estimated to be 5% to take in account errors that result from neglecting 3D 
effects and imperfect instrument specifications (e.g. filters, wave form of the 
applied pulses) in addition to the standard deviations of measured field data. 
 
TDEM sounding 15-19 did not yield data of satisfactory quality, which can be 
attributed to environmental noise sources. Such noise sources can include buried 
debris and cables, but at the School-site the noise was primarily attributed to the 
presence of metal irrigation pipes. Figure 4a presents the inverted 3-layer 
resistivity models for TDEM sounding 1-14 as a function of the distance with 
respect to the coast. All electrical resistivity models show a first layer with a high 
resistivity, a second layer with a very low electrical resistivity and a third layer 
with a higher resistivity compared to the second layer.  
 
At the site we have an unsaturated zone of approximately 20 m thickness, 
consisting of dry sandy deposits, which typically have a high electrical resistivity 
�(���	�� ���� "&&�'�� @Kirsch, 2006].  Groundwater levels are expected to be 
close to ocean level. As the bottom of the first layer in Figure 4a occurs around -
10 mamsl, this first layer can be interpreted as a layer comprising both the dry 
deposits and the freshwater saturated aquifer. Furthermore we can distinguish a 
����������	�������#�	�� ���������	���� 	������#�����(� ����� ����"�'���A�#�������
setting of a coastal aquifer, this can only be interpreted as salt water saturated 
sediments. The final third layer in Figure 4a is remarkable as it shows an 
increased electrical resistivity compared with the layer above. As freshwater has 
a smaller density compared to salt water, this third TDEM layer must represent a 
geological unit with different hydrogeological properties preventing the salt 
water from going down in the deeper aquifer system. The electrical resistivity 
values indicate this third layer is likely to represent a freshwater saturated clay 
deposit. Note the 3-layer electrical resistivity model in Figure 4a assumes an 
infinite extension of the third layer, so no thickness can be derived for this clay 
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deposit. In Figure 4a we assigned an arbitrary thickness of 2m to this layer for 
visualization purposes. A gamma log at a nearby site (borehole PV-1 in Hanson 
[2003]) indicated clayey sand deposits with a thickness of ca. 5 m at an elevation 
of approximately -15 mamsl. In the geophysical inversion the electrical 
resistivity of this layer cannot be well resolved due to the overlying layer of 
seawater which is a very good electrical conductor blurring the signal pertaining 
to layers underneath. Moreover, this layer may be highly heterogeneous. As 
Nenna et al. [2011] show, the detection of this confining layer with TDEM is 
very powerful for risk assessment with regards to saltwater intrusion in coastal 
aquifers adjacent to Monterey Bay. In Figure 4a a dip can be seen associated with 
the clay layer. As the TDEM soundings are neither oriented perpendicular nor 
parallel to the coast, we do not know in which direction the dip is most 
significant. Based on the gamma log in PV-1 and the dipping rate of the Lower 
Aromas Sand documented in Hanson [2003] the dip in Figure 4a is likely to be 
oriented perpendicular to the coast. In this research we will only consider the 
water table aquifer and use the elevation of the third TDEM layer to represent the 
bottom boundary of this aquifer. Figure 4b shows the inversion result for the 25-
layer smooth model. The pattern is consistent with 4a, showing both the clay 
layer and the salt water saturated layer. Figure 4c will be discussed at a later 
stage, as it marks the result for the CHI-S. 

 

3.3 Salt water intrusion model 
The main purpose for the investigations at the School-site is to evaluate whether 
we can successfully retrieve the hydrogeological properties of this site using 
TDEM data only. For the School-site we developed a vertical 2D cross-sectional 
saltwater intrusion model to simulate saltwater intrusion due to the pumping 
activities near the Monterey Bay Academy and obtain a range of values for the 
key hydrogeological properties of the Upper Aromas Sand at this location.  
 
The model has a length of ca. 3700 m and a width equivalent to the width of the 
school property highlighted in Figure 2 corresponding to ca. 915 m. The 
assumption of a cross-sectional model with these dimensions implies the 
neglecting of groundwater flow parallel to the coast and the influences that are 
caused by groundwater pumping at locations close to the School site. For 
example, the land use around the School site comprises a lot of agriculture 
[Hanson, 2003], which uses groundwater for crop irrigation. For the salt water 
intrusion model we use the ocean as a west boundary for which we assume 
hydrostatic seawater conditions with a constant concentration Cs of 35 kg/m3 and 
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a hydraulic head of 0 mamsl. To control the water flux at the east boundary we 
apply a drain, which represents Gallighan Slough, set at a level of + 3 mamsl. 
The groundwater recharge rate applied on top of the model was equal to 0.35 ft/d 
which corresponds to 107 mm/yr. This value was based on earlier investigations 
by [CH2M/HILL, 2005]. No-flow conditions are specified for the bottom of the 
model. Bond and Bredehoeft [1987] indicated a marginal flow from the water 
table aquifer towards the deeper aquifer system but this process was disregarded 
in this research. The elevation of the bottom of the model was derived based on 
the inversion results of the TDEM soundings and one borehole at the School-site. 
The aquifer properties are represented by a uniform hydraulic conductivity, 
anisotropy, porosity, specific yield, dispersivity and diffusion value. These will 
be estimated in the CHI-S and will be elaborated more on in the next section.  
 
Table 1 Variables and input parameters for the SEAWAT-simulations 

Input Variables Numerical solution parameters 
Recharge [mm/yr] 107 Number columns 500 

Extraction rate School [m3/d] 950 Number layers 50 
�������3] 1025 Column size, dx 7 m 
�������3] 1000 Layer size, dz ca. 1-2 m 
Cs [kg/m3] 35   

�L��T [m] 0 Solver flow PCG 

Estimated Parameters  & Starting Values Head stop criterion 10-2 m 

Kh [m/d] 20 Flow stop criterion 10-2 m3 /d 

Kz /Kh [-] 0.1   

Sy [-] 0.285 Solver advective transport finite difference 

�L��T��L [-] 10, 0.1 Concentration stop criterion 10-4 kg/m3 

Dm [m-2/d] 10-4   

�s���res [-] 0.33, 0.045 Solver dispersion and source 
terms 

implicit finite 
difference 

m [-] 1.3 Time step length 20 d 

 
For this study, we did not possess much information about the exact pumping 
history at and near the School site. For the SEAWAT-model, we assume one 
single water supply well positioned at 1900 m from the coast, which corresponds 
approximately with one of the water supply wells at the School site.  Figure 8 in 
Bond and Bredehoeft [1987], shows a pumping rate between 7 and 28 L/s at this 
location. Recent daily extraction rates at the School site amount to ca. 445.4 
m3/d. However, using a cross-sectional model implies that the applied pumping 
rate is uniformly distributed along the coastline. The extraction rate should 
therefore not be seen as the exact pumping rate for the supply wells at the School 
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site, but as the average value of groundwater extraction per unit length of the 
coast. Note our model extends further inland as the length of the School site; 
about twice the length of the School site. Furthermore many other pumping wells 
are present around the School site [Hanson, 2003], which influence is not directly 
taken in account using the 2D model. In addition, we do not know the 
development of groundwater extraction over time. Based on the available data, 
we assumed a pumping rate of an equivalent line sink parallel to the coast of 900 
m3/d. This estimate is considered to be acceptable for this study as we use the 
School-site primarily for demonstrating the use of CHI-S for salt water intrusion 
models. 
 
Two stress periods were used for the simulations.  The length of the first stress 
period was 4 x 104 days, this being sufficient to allow the concentration field to 
reach equilibrium for the natural situation. The second stress period had a length 
of 67 years, equivalent to the period between the establishment of Camp 
McQuaid in 1943 [U.S Army Corps of Engineers, 1997] and the time the TDEM 
data was collected, in which we apply a uniform pumping rate of 950 m3/d. 
 

 
Figure 5 Concentration time series for a model with 50 (dashed) and 25 layers (solid), showing 
no significant signs of numerical dispersion due to a limited vertical discretization. For the 
SEAWAT-simulations we will therefore continue to use 25 layers. 
 
The model was discretized with 500 columns and 25 layers resulting in a cell size 
of 7 by 1-2 m. The transport equation was solved using an implicit finite-
difference scheme with upstream weighting. The lengths of transport steps were 
fixed at 20 days. To investigate the effect of numerical dispersion in our model 
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due to the grid discretization, we compared the simulations of the 25-layer model 
with a model using 50 layers. These simulations were performed for the 
parameter values listed in Table 1. The results of the comparison are plotted in 
Figure 5, showing only a marginal difference between both models. The 
reduction of the amount of layers was important to save computational time 
associated with the saltwater intrusion model and to simplify the generation of 
the TDEM forward responses. Based on Figure 5 we use 25 model layers for the 
SEAWAT simulations in this paper. 

 

3.4 Parameterization 
For the CHI-S we estimate three groups of parameters, parameters pertaining to 
���� ������	� ���	������ ������ ����� ���� 1BC-� ������ ��u) and parameters 
associated with the petrophysical relationship described in equation 20 (p). In 
Table 3 these parameters are listed together with their starting values and the 
group they belong to. The parameters for the salt water intrusion model are the 
following: hydraulic conductivity Kh [m/d], anisotropy Kz/Kh [-], specific yield 
Sy [-�����	�������s [-��������������������	��#����DL [m] and molecular diffusion Dm 
[m2/d].  
 
The hydraulic conductivity for sand has a large range. Freeze and Cherry [1979] 
for example provide a range of 103 - 105 m/yr  and Carsell and Parrish [1988] 
list an average of 29.70 ± 15.60 cm/hr. Translated to meters per day these ranges 
are 2.7 – 274 m/d and 7.1 ± 3.7 m/d, respectively. Aquifer pumping tests by 
Harding Lawson Associates [1994] at Ford Ord, located 30 km south of the 
School-site, recorded estimated hydraulic conductivities of ca. 200-300 ft/d or 
60-90 m/d for the Upper 180- foot aquifer, which is hydrostratigraphically 
similar to the water table aquifer at the School-site. As a starting value we will 
therefore choose a value of 20 m/d which is in between the average provided by 
Carsell and Parrish [1988] and the estimates by Harding Lawson Associates. Kz-

/Kh was set initially to 0.1 and is also an estimable parameter.  
 
7	����	���s and the Sy are estimated using the following relationship  

ressyS �� ��       (21) 
���	�� �res is the residual water content that is not drainable. We assumed a 
constant value for this parameter according to Table 3 in Carsell and Parrish 
[1988], who derive an average value of 0.045 for sandy soils based on 246 
samples collected at various sites. For the porosity we use a starting parameter 
value of 0.33, which yields a starting parameter value of 0.285 for Sy. The 
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dispersion was separated �����������������DL ����	��#�	��������	��#����DT��DT 
was set constant to 10% of the longitudinal dispersivity, which was set initially to 
a starting value of 10 m. The starting value for molecular diffusion was set to 10-4 
m2/d. 
 
Subsurface resistivities were generated from simulated concentration using the 
petrophysical relationship. However, the resistivity of the unsaturated zone and 
the resistivity of the freshwater-saturated clay layer were not linked to the 
simulated hydrologic model states. Inst����������	���������������u or based on 
the geophysical inversion results in Figure 4a. However these properties cannot 
be based upon the results of the hydrologic model. Table 2 lists in which way the 
electrical resistivity model is built up to generate a TDEM forward response 
during the CHI-S.  
 
Table 2 TDEM model configuration for CHI-S at the School-site. The last column shows 
whether the geophysical parameters are generated from the SEAWAT-������ ��c), separately 
�����������u) or based on the prior geophysical inversion results.  
TDEM layer 1 unsaturated zone �u 

TDEM layer 2 concentration layer 5 �c 
TDEM layer 3 concentration layer 6 �c 

| | �c 
TDEM layer 22 concentration layer 25 �c 

TDEM layer 23 clay not estimated, based on geophysical 
inversion 

 
TDEM layer 1 represents the unsaturated zone, whose thickness is calculated 
based on the hydraulic heads simulated in SEAWAT at the TDEM locations. The 
electrical resistivity of this layer is unknown and will be estimated during the 
CHI-S. Due to dry cells in the upper 3-4 layers in the SEAWAT-model, the 
concentration of layer 5 in the SEAWAT-model was used to obtain an electrical 
resistivity for TDEM layer 2 by employing Archie’s law. The bottom elevation 
of TDEM layer 2 corresponded to the bottom of SEAWAT-layer 5. This was 
subsequently done for TDEM layers 3 – 22 using the salt concentrations of the 
SEAWAT-model at the sounding locations. The thickness of all these TDEM 
layers was fixed according to the vertical discretization of the SEAWAT-model. 
TDEM layer 23 was used to take into account the presence of the clay, but its 
electrical resistivity was not an estimable parameter in the CHI-S. The electrical 
resistivity and top elevation of layer 23 were based upon the geophysical 
inversion results (Figure 4a). We considered these results to provide a proper 
estimate for the electrical resistivity of the clay as the SEAWAT-model does not 
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provide information about this parameter and the inclusion of this parameter in 
the CHI-S would increase the computational burden. 
 
The final parameter that was estimated was the cementation factor m, used in 
Archie’s law to calculate the formation factor together with the porosity (note 
that porosity is also an estimable parameter) for which we used a starting value of 
1.3. 
 

4 Results 
In Table 3 the parameter estimates are shown for applying the CHI-S for the 
TDEM soundings and the SEAWAT-model associated with the School-site. All 
parameters could be resolved fairly well marked by posterior parameter standard 
deviations of around 10 % with respect to the parameter estimates, except for the 
anisotropy and the electrical resistivity of the unsaturated zone. In the inversion 
both parameters were not very sensitive with respect to the geophysical 
observations.  
 
Table 3 Overview of estimated parameters used in the CHI-S for the School site 

Parameter Group Starting Value Estimated Value 
Kh [m/s]   20 19.64 ± 10 % 
Kz/Kh [-]   0.1 0.19 ± 22 % 

Sy [-]   0.285 0.32 ± 6 % 
�L [m]   10 8.23 ± 7 % 

Dm [m2/d]   10-4 7.98E-03 ± 11 % 
�s [-]   0.33 0.36 ± 6 % 
m [-] p 1.3 1.12 ± 5 % 

Resistivity unsaturated 
!�	������ �u 200 195.69 ± 37 % 

"����#�$�#��%�������������� Not estimated - - 
 
Hydraulic conductivity was expected to have slightly higher values, based on the 
aquifer pumping test results by Harding Lawson Associates [1994], but its value 
is well within the range provided by Freeze and Cherry. Anisotropy was expected 
to have a value of much less than 1, but we cannot judge whether 0.2 is too high 
or too low. Other studies in this area used anisotropy values of around 0.01 [e.g. 
Hydrometrics, 2009], but these studies are representative for larger scales and the 
deep aquifer system, where clay layers in the Aromas and Purisma Formation are 
represented using a larger vertical anisotropy. Porosity and specific yield (which 
was tied to the porosity through a fixed residual water content) fall within the 
range provided by Carsell and Parrish [1988]. This parameter was one of the 
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most sensitive parameters in this application. This makes sense as porosity not 
only controls how far the freshwater/saltwater interface moved inland but also 
has a major influence converting concentrations into electrical resistivities as it is 
part of the petrophysical relationship.  Longitudinal dispersivity was estimated to 
be around 8 m. Gelhar and Axness [1953] provide an indication of around 10% 
of the scale of the model, which would be around 5 meter using the depth of the 
aquifer as a representative scale. The estimated dispersivity is also larger 
compared to the gridcell sizes, the scale at which scale numerical dispersion acts.  
Diffusion was estimated around 8="& -3 m2/d. This process is often neglected as a 
contribution to the total dispersive flux [Bond and Bredehoeft, 1987]. The 
estimated value for Archie’s cementation factor is rather low, as a value for clean 
sand would be 1.3. The electrical resistivity of the unsaturated zone should be 
�����$�#��"&&�'�����������������������	��������1$���,� 
 
Figure 6 shows the fit between simulated and measured apparent resistivities for 
every sounding. As our model is highly simplified we do not expect to fit the data 
perfectly. The bottom right plot in Figure 6 shows the RMSE for each of the 
TDEM soundings, which should have a value of around 1. For sounding 1- 3 and 
sounding 14 the RMSE is significantly larger. The large misfit of sounding 1-3 
suggests a structural error in either the TDEM model or the saltwater intrusion 
model as the apparent resistivities at the first 6-7 time gates are consistently 
underestimated. This means the electrical resistivity of the upper part of the 
subsurface is underestimated at these particular soundings. Explanations are 
likely related to the assumption of uniform aquifer properties and a uniform 
electrical resistivity for the unsaturated zone.  
 
Furthermore we did not take into account 3D effects when generating the TDEM 
responses, as we used a 1D electrical resistivity model for each sounding, which 
does not take in account the lateral variations in electrical resistivity that fall 
within the footprint of the instrument. For soundings 1-3 these lateral variations 
might be important due to the shape of the saltwater/freshwater interface. 
Another factor which was not taken into account by the 1D TDEM models is the 
close position (less than 30 m from the TDEM-receiver) of TDEM sounding 1-3 
with respect to the cliffs that were present along the coast line. The presence of 
these cliffs (note their height is around +20 mamsl,) can be important as the 
resistivity of air is infinitely large. However, based on a number of 
undocumented TDEM forward responses, the assumption of uniform aquifer 
properties and the neglecting of 3D effects most likely caused the poor data fit 
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for TDEM sounding 1-3. The large RMSE for sounding 14 can be explained by 
poor data quality (note TDEM sounding 15-19 were not used for this reason). 
 

Figure 6 ��������� �������� ��� �$��	#��� ��E�	���� ��	���� 	������#������ �a for the 14 TDEM 
soundings. The bottom right figure indicates the residuals per TDEM sounding location in terms 
of the RMSE. 
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Figure 4c shows a similar plot as Figure 4a, in which the electrical resistivity 
models are plotted as a profile with respect to the coast. The bottom layer is the 
same in both figures, which represent the clay layer that is present at the site. The 
second commonality is the high resistivity of the top layer. However the amount 
of detail for the electrical resistivity in the aquifer is much higher. Also the 
electrical resistivity model resulting from the 25-layer smooth inversion showed 
a much less consistent pattern about the distribution of salt and fresh water in the 
aquifer. Of course this can be due to spatial heterogeneity, but also due to the 
definition of the smoothness constraints in the geophysical model. Given the 
simple SEAWAT-model, the data fit and the small amount of parameters which 
could be resolved well (Table 3), obviously the hydrologic model provided a well 
defined regularization framework for inverting the TDEM data. 
 
In Figure 7 we plotted the result of the SEAWAT-simulations for the calibrated 
model, representing the salt concentration distribution of the water table aquifer 
after 67 years of pumping at the School-site. 
 

 
Figure 7 Concentration distribution after 67 years of pumping (950 m3/d) at the School-site for 
the SEAWAT-model calibrated with the TDEM data using a CHI. 
 

6. Conclusion 
In this paper we investigated the application of a coupled hydrogeophysical 
inversion approach to estimate the hydraulic properties of a saltwater intrusion 
model with Time-Domain Electromagnetic (TDEM) data. In many areas TDEM 
data have been used to map salt-water intrusion in coastal aquifers.  In some 
studies TDEM data is used for the calibration of saltwater intrusion models, but 
for most cases only the estimated electrical resistivity models are used as 
observed data. This introduces a number of errors, including the inconsistency of 
scales between the geophysical and hydrologic model and improper geophysical 
regularization constraints. For this purpose we used the coupled 
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hydrogeophysical inversion approach of Pollock and Cirpka [2010], Kowalsky et 
al. [2005], Hinnel et al. [2010] and Lambot et al. [2009], which great strength is 
to perform a geophysical inversion given a certain hydrogeological interpretation 
of the geophysical model. We refer to this methodology as Coupled 
Hydrogeophysical Inversion – State (CHI-S) as these models translate simulated 
hydrologic state variables to a geophysical model. We modified these existing 
CHI-S frameworks as these methods do not include the direct estimation of 
geophysical model parameters that cannot be computed from a set of hydrologic 
simulations. However, these parameters might be essential to fit the geophysical 
data satisfactory.  
 
We employed our CHI-S approach for a field site in Santa Cruz County, 
California. In this region salt water intrusion has been occurring [Hanson, 2003] 
as a result of groundwater extraction. For this site we collected 19 TDEM 
soundings and developed a cross-sectional saltwater intrusion model in 
SEAWAT, representing the upper aquifer system. Based on a separate 
geophysical inversion of the TDEM data we could detect a confining geological 
unit, marking the hydrologic base of the upper aquifer. With the CHI-S we could 
successfully estimate parameter values for the main hydraulic properties of the 
aquifer, using the data of 14 TDEM soundings that comprised more than 300 
apparent resistivities.  
 
For most TDEM soundings the level of data fit was acceptable, however, a 
structural underestimation of apparent resistivities was found for the early time-
gates pertaining to three soundings located closest to the ocean. Explanations for 
this underestimation could be the assumption of uniform aquifer properties in the 
SEAWAT-model and the assumption of a 1D layered earth model for generating 
a geophysical forward response, which neglects lateral variations in electrical 
resistivity due to the presence of topography (e.g. cliffs) and the shape of the 
freshwater/saltwater interface. 3D approaches are available to generate a TDEM 
forward response [e.g. Bauer-Gottwein et al., 2009, Commer and Newman, 2004; 
Newman et al., 1986; Wang and Hohmann, 1993], but these often require an 
impractically large computational burden. The electrical resistivity models that 
resulted from the CHI-S provided a huge improvement in spatial resolution, 
which would be very difficult to obtain with a traditional geophysical inversion 
as the complex spatial correlation between geophysical parameters cannot be 
captured with standard regularization constraints.  
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To summarize the efforts of this research, we think our CHI-S approach provides 
a promising method to extract hydrogeological information that might be 
contained within existing and future TDEM datasets with which salt water 
intrusion models can be constrained. This could not only be important to simulate 
the past system state of a coastal aquifer, but also provides an opportunity to use 
TDEM data and salt water intrusion models consistently as a real-time 
monitoring tool to support current groundwater management. The CHI-S 
approach we developed in this paper could be simultaneously used with the CHI-
P approach that was developed in Herckenrath et al. [2011], in which 
geophysical parameters (P) are coupled with hydrologic model parameters (e.g. 
hydraulic conductivities) instead of the simulated hydrologic state variables. Both 
the CHI-S and CHI-P could offer a flexible tool to fully exploit the 
hydrogeological information contained within geophysical measurement data.  
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Abstract 
Temporal changes in water content can be directly related to the time-lapse 
signals retrieved using magnetic resonance sounding (TL-MRS) and relative 
gravimetry (TL-RG). Previous studies suggest that TL-RG measurements can 
potentially provide accurate estimates of aquifer characteristics in an aquifer 
pumping test experiment when used in a coupled hydrogeophysical inversion 
approach. However, these studies considered highly idealized conditions. The 
aim of this paper is twofold: 1) we investigate three major issues which likely 
limit the practical utility of TL-RG for pumping test monitoring: partially 
penetrating pumping wells in anisotropic aquifers, delayed drainage effects and 
typical data errors for TL-RG, 2) we introduce TL-MRS in a similar coupled 
hydrogeophysical inversion framework and compare the performance of TL-
MRS and TL-RG for pumping test monitoring. For this purpose we consider a 
virtual pumping test, for which we generate synthetic drawdown, TL-MRS and 
TL-RG observations and subsequently determine the aquifer parameters in an 
inverse parameter estimation approach. The inclusion of TL-RG and TL-MRS 
data did slightly improve parameter estimates for the specific yield and hydraulic 
conductivity when considering a fully penetrating well and minimal data error. 
Using more conservative TL-RG and TL-MRS data error estimates according our 
own field experience strongly limited the informative value of the TL-RG data; 
TL-MRS data was less affected by this. For a partially penetrating well under 
anisotropic conditions parameter uncertainty could be reduced more effectively 
compared to a fully penetrating well. Delayed drainage effects did not limit the 
ability of the TL-MRS and TL-RG data to reduce parameter uncertainty 
significantly. The incorporation of representative measurement error correlation 
in the TL-RG data neither affected its informative value. A local sensitivity 
analysis showed that observations were most sensitive to the pumping rate and 
the thickness, specific yield and hydraulic conductivity of the aquifer. The 
inclusion of TL-MRS data proved to be more effective to constrain the aquifer 
parameters compared with TL-RG. The inclusion of both TL-RG and TL-MRS 
had limited added value compared to TL-MRS only. We conclude that this 
particular application of coupled hydrogeophysical inversion has a limited 
potential for TL-RG, while TL-MRS appears to be a more promising method.  
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1. Introduction 
The application of geophysical techniques in combination with hydrologic 
models has gained much interest in recent years to map subsurface structures and 
to estimate hydrologic properties [Vereecken et al., 2006]. Hinnell et al. [2010] 
and Ferré et al. [2009] discuss the different types of (hydro)geophysical 
inversion approaches that are used. Hinnell et al. [2010] provides an extended list 
of references to case study applications using different types of coupling 
approaches. For example, geostatistical techniques can be employed to estimate 
hydrologic properties using the parameter correlation structure of geophysical 
models [Cassiani et al., 1998; Hubbard et al., 1999; Yeh et al., 2002; Chen et al., 
2004]. [Hyndman and Gorelick, 1996], [Chen et al., 2006] and [Linde et al., 
2006] are examples of studies were hydrologic parameters are estimated using 
both hydrologic and geophysical data. In many other studies geo-electrical 
[Kemna et al., 2002; Vanderborght et al., 2005; Cassiani et al., 2006] and 
electromagnetic data [Binley et al., 2001; Day-Lewis et al., 2003; Lambot et al., 
2004; Looms et al., 2008b, Knight, 2001; Huisman et al., 2003] are used to 
monitor temporal changes in water content or solute concentrations. 
 
Hinnell et al. [2010], Ferré et al. [2009], Kowalsky et al. [2005], Pollock and 
Cirpka [2010] and Lambot et al. [2006, 2009] describe a fully coupled 
hydrogeophysical inversion approach, in which a hydrological model is part of 
the geophysical inversion process and a single objective function is minimized 
which comprises both a geophysical and hydrological component. In other 
words, both the geophysical and the hydrologic model and their associated 
observations are used to constrain one another.  
 
An important hydrologic state variable that can be estimated using one of the 
above inversion approaches is soil water content. As soil water content is 
difficult to measure, an increasing number of techniques have been suggested to 
estimate water content and changes in water storage. The strength of most 
geophysical methods that have been proposed, are their non-invasive character 
and their ability to provide data with a high spatial resolution. Current employed 
techniques are predominantly geo-electric methods which estimate the electrical 
resistivity of the subsurface, e.g. electrical resistivity tomography (ERT), and 
methods which estimate the relative electrical permittivity of the subsurface 
based on the measured speed of propagated electromagnetic waves, e.g. ground 
penetrating radar (GPR). Geo-electric and wave propagation methods, however, 
do not measure water storage directly, as a petrophysical relationship [Archie, 
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1942; Topp et al., 1980] is needed to convert electrical resistivity and relative 
permittivity to soil water content. Furthermore, GPR can only be used in high 
resistivity sediments. 

 
Recently, Magnetic Resonance Sounding (MRS) and relative gravimetry (RG) 
have emerged as promising methods to map hydrogeological properties. RG is a 
well-established method to characterize geological structures as locating 
paleochannels and the delineation of buried bedrock [Carmichael and Henry, 
1977; Zawila et al., 1997]. Time-lapse RG (TL-RG) surveys have been 
performed to estimate regional water storage changes and specific yield 
[Montgomery, 1971; Pool and Eychaner, 1995, Jacob et al., 2009, Pool, 2008], 
record changes in land-surface elevation [Wessells and Strange, 1985], map 
properties of geothermal fields [Hunt, 1970; 1977] and monitor a natural gas 
reservoir [van Gelderen et al., 1999]. Furthermore, Poeter [1990] proposed 
gravity surveying during an aquifer pumping test to map heterogeneities in 
aquifer properties around the pumping well.  

 
MRS is well-known for its application in hospitals, where MRI (Magnetic 
Resonance Imaging) has been used for imaging and medical diagnosis [Bushong, 
2003; Körver et al., 2010]. Furthermore, MRS has been applied to characterize 
porosity and fluid properties of oil wells [Coates et al., 1999; Dunn et al., 2002]. 
For hydrogeological characterization purposes, MRS has been applied to estimate 
water content, hydraulic conductivity and transmissivity [Legchenko et al., 2002; 
Vouillamoz et al., 2002; Wyns et al., 2004; Lachassagne et al., 2005], providing 
information about aquifer boundaries, specific yield and the pore-size 
characteristics of the subsurface, which can be used to estimate hydraulic 
conductivity [Boucher et al., 2009; Chalikakis et al., 2008; Ezersky et al., 2010; 
Guerin et al., 2009]. As suggested by Lubczynski and Roy [2003], time-lapse 
MRS (TL-MRS), can be used as a monitoring tool, which has been applied by 
Descloitres et al. [2008] to monitor groundwater level fluctuations at the 
discharge point of a watershed in Southern India. In this paper we will use TL-
MRS by directly inverting for the change in MRS signal between two soundings 
at the same location for different times, rather than inverting for the collected 
MRS data at each separate sounding time. 
 
In contrast to GPR and geo-electrical methods, data retrieved with TL-MRS and 
TL-RG can directly be related to temporal changes in soil water content without 
the use of an empirical relationship like Archie’s law [Archie, 1942] and the 
Topp equation [Topp et al., 1980]. Both techniques could offer a cost-effective 
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alternative for monitoring wells to augment aquifer pumping tests in unconfined 
aquifers [Poeter, 1990; Damiata and Lee, 2006]. A major advantage of using a 
non-invasive geophysical method would be the higher flexibility with which 
water table drawdown can be measured (indirectly) at various locations around 
the pumping well.  
 
Two recent papers, Damiata and Lee [2006] and Blainey et al. [2007] 
demonstrate with synthetic datasets that water table drawdown during aquifer 
testing with a fully penetrating well could possibly be monitored with TL-RG 
measurements. In Damiata and Lee [2006] the signal-to noise ratios are 
investigated for such a virtual aquifer pumping test, given instrument accuracy of 
approximately 1 µGal with portable gravimeters and 0.01 to 0.1 µGal for fixed-
station (absolute) gravimeters. In Blainey et al. [2007] a coupled 
hydrogeophysical inversion was subsequently performed for the same synthetic 
example to complement the drawdown data and obtain better estimates for the 
specific yield and hydraulic conductivity. For their synthetic example a fully 
penetrating well was considered and the aquifer was assumed to be homogeneous 
and isotropic.  
 
In this study, we address three major issues that can significantly limit the 
practical use of TL-RG data to improve the determination of aquifer properties 
during pumping tests as described in Damiata and Lee [2006] and Blainey et al. 
[2007]: (1) partially penetrating pumping wells in anisotropic aquifers, (2) 
delayed drainage effects and (3) data error on the geophysical data. Moreover, we 
extend the coupled inversion approach described by Blainey et al. [2007] to 
assess the potential of TL-MRS data in this framework.  
 
Most pumping tests use a partially penetrating well in an anisotropic aquifer 
showing delayed drainage. One important reason for using only partially 
penetrating wells for thick unconfined aquifers is that the cost of screening their 
full thickness is significant. A second reason for only screening the bottom few 
meters of the borehole is to protect the well from contamination. In many cases, 
the aquifer consists of sedimentary deposits, which have an anisotropic hydraulic 
conductivity tensor [Boulton, 1970] where the horizontal hydraulic conductivity 
is much higher compared to the vertical. When aquifer tests are conducted under 
the conditions of a partially penetrating well in an anisotropic aquifer (we do not 
consider horizontal anisotropy [Ferre and Thomasson, 2010]), measured 
drawdown of the free water table can be significantly smaller compared with the 
drawdown of the piezometric head at the well screen. This will result in much 
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smaller TL-MRS and TL-RG signals and thus likely limit the applicability of 
both data types to estimate aquifer properties.  
 
Delayed drainage denotes non-instantaneous release of water from the 
unsaturated zone during the pumping test. Narasimhan and Zhu [1993] showed 
the importance of including effects of a time-dependent drainage from the 
unsaturated zone in models of flow to a well in unconfined aquifers and 
concluded that the rate at which water is released from the unsaturated zone has a 
similar time-scale at which pumping tests are conducted. This process will result 
in residual water content above the lowered water table, which influences the 
magnitude of the signal changes measured by TL-RG and TL-MRS. 

 
In the previous studies of Damiata and Lee [2006] and Blainey et al. [2007] the 
instrument precisions were used as the standard errors on synthetic data instead 
of typical data error levels as seen when measuring real data. In this study, we 
use typical data errors associated with TL-RG and TL-MRS measurements that 
can be obtained during field surveys with state of the art equipment. In this paper 
“measurement error” or “data error” refers to the standard deviation of the errors 
associated with the hydrogeological and the geophysical data. Recently, 
Christiansen et al. [2011a] and Jacob et al. [2009] published results of TL-RG 
surveys indicating with which accuracy TL-RG data can be collected. These 
studies indicate measurement errors in the order of 2-4 µGal. A survey by 
Chalikakis et al. [2008] showed MRS data can be obtained with measurement 
error of approximately 10 nV. 
 
To understand whether TL-MRS and TL-RG data have potential to estimate 
aquifer properties during unconfined pumping tests, we start with the 
reproduction of the modeling and inversion results shown in Blainey et al. 
[2007]. Subsequently a coupled hydrogeophysical inversion is performed for 16 
realizations of synthetic head, TL-RG and TL-MRS data. Then scenarios are 
analyzed in which we consider each of the three, previously mentioned practical 
issues, i.e. partially penetrating well, delayed yield and data error. One additional 
scenario is used to quantify the combined effect of these limiting factors, while a 
final scenario takes correlated measurement error for TL-RG data into account. 
Results are discussed in terms of objective function plots, parameter cross-
correlation and parameter uncertainty reduction. Finally, a sensitivity analysis is 
performed, to identify the impact of the pumping test design variables (and 
aquifer properties) on the magnitude of the geophysical signals. 
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2. Methods 
2.1 Virtual pumping Test 
 

 
Figure 1 Design of a pumping test (modified from [Duffield, 2002]). Parameters are defined in 
Table 1. 
 
Figure 1 shows a schematic overview of the pumping test configuration that was 
used for the analysis and Table 1 lists the design parameters for the different 
scenarios investigated in this paper. Scenario “Fully Penetrating” is the same as 
the scenario used in Blainey et al. [2007] and Damiata and Lee [2006]. The water 
table drawdown is modeled using an analytical expression derived by Moench 
[1997], implemented in the well-documented, widely used software WTAQ 
[Barlow and Moench, 1999]. Under the assumption of instantaneous release of 
water from storage in the unsaturated zone (instantaneous drainage), this model is 
equivalent to the solution by Neuman [1972, 1973].  
 
Delayed drainage effects were modeled with the approach by Boulton [1970] and 
Moench [1997]. In this approach, the decrease in water content in the unsaturated 
zone �"  [-] is modeled as an exponential function, using t [d] as the elapsed time 
since the time of drainage td [d]: 
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In Equation 1, the delay index 1/Dd [-] (listed in Table 1) specifies the rate of an 
exponential release of water from the unsaturated zone above the water table, 
with a maximum amount of drainable water content equal to the specific yield Sy 
[-]. �"  equals to Sy when instantaneous drainage is assumed. Values for 1/Dd 
have an approximate range of 0.5-2 days and mainly depend on the aquifer 
material [Moench, 1997; Rajesh et al., 2010; Boulton, 1970].  
 
Table 1 Parameter values and parameters used for the coupled hydrogeophysical inversion. 

 
 

2.2 Time-Lapse Relative Gravity 
2.2.1 Modeling TL-RG signals caused by water table drawdown 
During a survey with a relative gravimeter the vertical component of the 
gravitational acceleration is measured, which is defined as 

dxdydz
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&
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where G= 6.673·10-11m3kg-1s-2 is the universal gravitational constant, r [m] is the 
distance from the instrument to the volume element of density �  [kg/m3] and D 
the angle between the orientation of r and the vertical direction. In this paper, �  
changes due to removal of water during pumping. If storage effects due to the 
compressibility of water and the aquifer matrix are neglected, the subsurface 
density will only change between the initial and the pumped water table. Under 
these assumptions the change in gravity signal g" [FGal] is given by [Leirião et 
al., 2009] 

Property
Fully High Noise Partially Delayed Yield Partially Penetrating & Correlated

Penetrating Penetrating Delayed Yield &  Noise Gravity
High Noise 

Thickness of aquifer (D), m
Depth to initial water level (hi), m 
Hydraulic conductivity (Kh), m/s
Anisotropy Kh/Kz 1 1 10 1 10 1
Specific yield (Sy)
Radius of borehole, m

Fully Fully Partially Fully Partially Fully
Penetrating Penetrating Penetrating Penetrating Penetrating Penetrating

Screen interval, m below initial water level 0-50 0-50 40-50 0-50 40-50 0-50
Density of groundwater, kg/m3
Flow rate (Q), m3/s
Duration of pumping, d
Locations observation wells, m from pumping well
Locations RG observations, m from pumping well
Locations MRS observations, m from pumping well
Measurement error drawdown, cm
Measurement error TL-RG, µGal 2 4 2 2 4 4
Measurement error TL-MRS, nV 10 20 10 10 20 -
�������	
�����d   [Boulton, 1970], d 0 0 0 2 2 0

5

1000
0.06309

7
5, 8.3, 13.9, 23.2, 38.7, 64.6, 107.8, 179.8, 300
5, 8.3, 13.9, 23.2, 38.7, 64.6, 107.8, 179.8, 300

5, 179.8

0.1

Well type

Scenario

50
25

 10-4    

0.25
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This forward model is valid under the assumption of an unconfined aquifer, 
where the subsurface density change is equal to the density of water times the 
change in water content �" of the aquifer [Leirião et al., 2009]. As discussed 
earlier �"  depends on the specific yield, which has a typical value between 0.01 
and 0.3 for unconfined aquifers. hi is the initial water table [m], hf  the final water 
table [m], which is computed with the hydraulic model, and provides the 
integration bounds in the vertical direction. Subscript g denotes the x, y and z 
coordinate of the gravity instrument and w�  the density of water [kg/m3]. We use 
an arbitrary radius of 500 m (based on an instrument footprint analysis) as 
horizontal integration boundaries for Equation 3. A numerical integration was 
performed for Equation 3 using an adaptive recursive Simpson’s rule algorithm 
(function dblquad in MATLAB). The final water table hf is location-dependent 
and is calculated using WTAQ.  

 
2.2.2 RG Instrument 
As a Scintrex CG-5 relative gravimeter is commonly used for measuring TL-RG 
signals, we use the specifications of this instrument to generate synthetic test 
data. The Scintrex CG-5 uses a fused quartz spring mechanism that reacts to 
changes in gravitational force. Merlet [2008] documents an instrument accuracy 
of ca. 1 µGal for the Scintrex CG-5 relative gravimeter. 

 
Leirião et al. [2009] characterize the footprint of the relative gravimeter as a 
function of the depth to the target. At the reference station drawdown should be 
zero within the footprint of the instrument. For example, when the initial water 
table is at 20 m depth, approximately 90% of the gravity signal comes from a 
circular area with a radius of approximately 200 m. 

 
Christiansen et al. [2011a] provides a thorough discussion of various important 
corrections and precautions that need to be made when doing surveys with a 
relative gravimeter. For example, each time a measuring station is reoccupied, 
instrument heights should be the same. When the height of a gravimeter has 
changed only a few millimeters in between the station occupations, this will 
introduce an error which is comparable with the instrument resolution of 1 µGal. 
Furthermore corrections have to be made to account for e.g. instrument tilt, ocean 
loading, air pressure, tidal corrections and ground movement. However, the 
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magnitude of these processes still affects the accuracy with which the gravity 
signal is measured, as these corrections are not perfect. 
 
The measurements of relative gravimeters are also influenced by instrument drift, 
i.e. the zero position of the spring does not remain constant with time. Instrument 
drift effects are time dependent and are caused by the instrument properties. Drift 
effects cannot be identified separately and are typically approximated with a 
linear drift coefficient for time periods of a few hours. This coefficient has a 
value in the order of 20 µGal/hr. Contributions to this total drift can be 
subdivided into two groups: spring aging drift and transport drift, which are 
discussed more thoroughly in Christiansen et al. [2011a]. Assuming the drift to 
be linear can result in correlated measurement errors induced by imperfect 
corrections for e.g. ocean loading, as is depicted in Figure 4 in Christiansen et al. 
[2011a]. 

 
When measuring temporal changes in gravity signal g" , typically a gravity 
network is repeatedly measured. During such a survey, a reference station is 
selected where the change in gravity signal is assumed to be unaffected by mass 
changes induced by the pumping test. At the reference station the gravity value is 
usually set to zero. Gravity differences obsg�  are recorded with the gravimeter 
between the different stations of the gravity network. To calculate separate 
gravity values for each network station (or gravity observation point) we have to 
perform a network adjustment by solving Equation 4, in which gravity signals 

estg  [FGal] are estimated for the different network stations together with a linear 
instrument drift coefficient c [µGal/hr]. This is done by a least-squares fit of the 
differences in gravimeter readings obsg�  [FGal] between the stations and the use 
of a design matrix [aij] associated with the specific network configuration. The 
design matrix includes values of +1 or -1, 0 or the time difference [hr] between 
two gravity measurements, where n indicates the number of gravity differences 
that are measured and where m marks the number of gravity stations that is 
occupied. 
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After this least squares-adjustment a posteriori measurement error 
estg'  [FGal] 

(referred to as GRAV'  [FGal] throughout the rest of this paper) can be calculated, 
based on the residuals �  [FGal] and a weight matrix based on the measurement 
errors 

obsg' [FGal] associated with the individual gravimeter readings. To obtain 

the temporal change in gravity signal g" (Equation 3) at each gravity observation 
location, the same network has to be measured again at a later time in order to 
determine the change in estg . 

 
Christiansen et al. [2011a] reported measurement errors GRAV' of 2-3 µGal. 
Gehman et al. [2009] reported a measurement error of 4.76 µGal, based on the 
cumulative error associated with an instrument precision of 3 µGal and the error 
resulting from uncertainties in instrument height and corrections for surface 
water and instrument drift. However, Gehman et al. [2009] did not propagate the 
a priori errors associated with the gravimeter readings through the network 
adjustment procedure. Jacob et al. [2009] used an approach in which the 
observed variance in gravimeter readings per network station were used to 
calculate the weight matrix associated with obsg�  and reported a GRAV' ranging 
between 1.2-2.4 µGal. Using the same methodology for a 2 year survey, Jacob et 
al. [2010] published values of 2.5-5 µGal. 
 
To account for typical measurement errors in the analyses, we investigate 
uncorrelated gravity data with a measurement error GRAV'  of 2 µGal and a more 
conservative estimate of 4µGal. In addition to that, we also perform an analysis 
with correlated measurement errors, in which we include one of the typical 
problems associated with the assumption of a linear instrument drift, by adding a 
diurnal varying drift component that could not be captured with the linear drift 
coefficient [Christiansen et al., 2011a]. 
 

2.3 Magnetic Resonance Sounding 
2.3.1 Modeling TL-MRS signals caused by water table drawdown 
With Magnetic Resonance Sounding (MRS) the spins of the hydrogen protons of 
water molecules in the subsurface are excited with an external magnetic field and 
the signal response resulting from precession of the protons is measured, after the 
external magnetic field is switched off. The quantum mechanical phenomenon of 
nuclear magnetic resonance can be described by the Bloch-equations on the 
macroscopic level. The Bloch equations are the basis for modeling the MRS 
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signal due to the water content distribution in the subsurface [e.g. Legchenko and 
Valla, 2002]  
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where 00 B!) � , is the angular Larmor frequency of the Earth’s magnetic field 0B  
[T] at which the external magnetic pulse is applied. q=I= G denotes the excitation 
pulse length, where I is the current amplitude in the transmitter loop [A] and G [s] 
is the pulse duration. 0M  is the nuclear magnetization for protons in water at 
thermal equilibrium [A/m or J/T/m3], !  and �  are the gyromagnetic ratio for the 
protons (0.2675 rad/s/nT) and the free water content of the subsurface [-]. 
Subscript MRS denotes the x, y and z coordinate of the MRS instrument, and Txb(  
represents the magnetic field that would be created by a unit current in the 
transmitting antenna. For a coincident circular loop configuration (transmitter 
and receiver loops are the same) with a radius of a [m],

22 ))(cos())sin()sin()(cos( rrz
TxRx bbbbb ##�� ���� (( , where rb  and zb  are the 

radial and vertical components of the magnetic induction field [T/A], 
respectively. Angles �  and #  represent the inclination and the azimuth angle of 
the Earth’s magnetic field. In the following, we assume a resistive half-space. 
Finite subsurface resistivity can be taken into account when interpreting MRS 
data [Legchenko, 2004; Braun and Yaramanci, 2008]. However, for reasons of 
clarity and simplicity, we use the infinite resistivity earth model. Under this 
assumption, rb  and zb  can be expressed in terms of elliptic integrals [Legchenko 
and Valla, 2002], using a composite parameter  

22)(
4),,(
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where r and z are the distance and the depth with respect to the loop. The radial 
(br) and vertical components (bz) of the magnetic induction field are: 
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+  is the horizontal angle with respect to the magnetic north and also calculated 
based on the Cartesian coordinates.. Equation 5 was modified to simulate the 
temporal change in initial amplitude of the signal ( )0( �tE ), due to a change in 
water content �"  which depends on the water table drawdown and specific yield 
of the aquifer, resulting in   

� �dzdxdyzyxzzyyxxqKqE
yxh

yxh
MRSMRSMRS

f

i

% % %
&

&�

&

&�

"�����"
),(

),(

),,(),,,()( �  (12) 

with integration kernel: 
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In this paper we consider initial amplitude data E(t=0) only. An alternative 
approach is to invert for the relaxation constant T2

*, which can be correlated with 
the hydraulic conductivity of the aquifer [e.g. Mueller-Petke and Yaramanci, 
2010]. To calculate the TL-MRS-response, based on Equation 12, we use the 
same numerical integration method as was applied for the TL-RG forward model. 
During this numerical integral calculation, Equation 12 is evaluated for different 
combinations of x, y and z coordinates. When these coordinates are transformed 
to cylindrical coordinates, K can still be solved for in terms of elliptic integrals. 
The integration bounds for z are location dependent (x,y), as in our application 
the integration bounds for the depth are equal to the initial groundwater level (hi) 
and the water table during pumping (hf), which is calculated by the pumping test 
modeling software WTAQ. As we use temporal changes in MRS signal, 
Equation 12 is applied to account for the differences in MRS signal that are 
measured before and after pumping. We assume the change in TL-MRS signal is 
only caused by the amount of drained water that was stored between the initial 
and the pumped water table. 
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The MRS code was benchmarked against the analytical solutions presented in 
Legchenko and Valla [2002] for infinitely thin sheets of water with an infinite 
lateral extent at different depths. Figure 2 shows the values calculated with our 
numerical model together with the analytical solutions in Legchenko and Valla 
[2002], which are in good agreement. Major factors influencing the speed of our 
forward code were the integration bounds, the accuracy of the numerical integral 
evaluation and the depth at which the sheet of water is positioned. Legchenko and 
Schushakov [1998] provide the definition of proper integration bounds for the 
MRS forward model. 

 
Figure 2 Validation of numerical MRS-code (squares) against infinite sheet solution (smooth 
lines) presented in Legchenko and Valla [2002] for an infinite sheet of water at 1, 5 and 10 m 
beneath the MRS instrument for a circular loop (a= 50m) over an infinitely resistive halfspace at 
a 90H���������������������90=60000 nT). 
 

2.3.2 MRS Instrument 
For generating the TL-MRS observations we consider the properties of a 
NUMISplus system. The NUMISplus device consists of an oscillating current 
generator, a receiver, a MRS signal detector, a transmitter/receiver loop and a 
microprocessor. The transmitter generates the reference frequency equal to the 
Larmor frequency. The signal is recorded by the receiver at a frequency of 10-20 
kHz and from its envelope the parameters initial amplitude E(t=0) and relaxation 
time are estimated [IRIS Instruments, 2010]. The measured signals are affected 
by environmental noise sources caused by external electromagnetic interference 
such as electrical discharges in the atmosphere, magnetic storms, etc. 
Interference may also be due to the ambient noise produced by power lines and 
electric fences. Furthermore, the electrical resistivity of the subsurface induces 
attenuation of the signal as it also affects the calculation of the integration kernel 
(K) of Equation 12 [Legchenko and Valla, 2002; IRIS Instruments, 2010]. Note 
that this effect is not taken into account in our implementation as it is small for 
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moderate and high resistivities of the ground (> 100 Ohm.m). Measurements are 
often performed in the range of 0-4 s. For a sequence of pulse lengths (q), the 
noise, initial amplitude and relaxation time are measured. These pulse lenghts are 
often spaced denser for smaller values of q due to high spatial variation of the 
kernel function in the shallow parts. The parameters of the currently available 
NUMISplus system and other surface MRS equipments do not permit 
measurements of very short signals (earlier times than about 20 ms) 
corresponding to "bounded" water in the subsurface [IRIS Instruments, 2010]. As 
with RG, expected signal-to-noise ratios for MRS in a pumping test experiment 
are relatively small (compared to drawdown data). For MRS data errors were 
estimated from measurements in Denmark with a NUMISplus system presented by 
Chalikakis et al. [2008]. These results indicate that measurement errors of 10 nV 
can be achieved. However, in our field campaigns, we have experienced 
measurement errors of around 20 nV in good noise conditions. Figure 3 shows an 
example plot of a noise measurement during an MRS sounding in Denmark in 
terms of the mean amplitude of the MRS-signal. Note that the plot constitutes a 
single noise measurement (pre-stacked) and the two peaks represent the 
energizing pulses that are used to conduct the MRS-measurements. The pre-
stacked standard deviation of the noise is around 27 nV which is a perfect 
condition for a MRS survey. When the measurements are repeated a number of 
times (stacked) a post-stacked measurement error of 20 nV can be obtained. 

 
Figure 3 Noise measurements during an MRS sounding in Skive, Denmark. The pre-stacked 
standard deviation of the noise is around 27 nV, indicated by the mean amplitude of the 
retrieved MRS signal. Two peaks of 40 ms width represent the energizing pulses injected into 
the loop by the instrument (double-pulse measurement). 
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3. Coupled Hydrogeophysical Inversion 
A coupled hydrogeophysical inversion was carried out to estimate the specific 
yield Sy [-] and the hydraulic conductivity Kh [m/s] based on drawdown data, TL-
RG and TL-MRS data. This was done in order to evaluate the value of TL-RG 
and TL-MRS data for six different pumping test scenarios: (1) a fully penetrating 
well with low-noise geophysical data, (2) a fully penetrating well with high-noise 
geophysical data, (3) a partially penetrating well in an anisotropic aquifer, (4) a 
fully penetrating well in an aquifer showing delayed drainage effects, (5) a real-
world scenario of a partially penetrating well in an anisotropic aquifer showing 
delayed yield in combination with high-noise geophysical data and (6) TL-RG 
data with correlated measurement errors. Table 1 summarizes the properties for 
the six pumping tests scenarios that were investigated. For each of these 
scenarios, we generated 16 different realizations of synthetic drawdown, TL-RG 
and TL-MRS measurements for subsequent parameter estimation. 
 

3.1 Parameterization and Optimization Algorithm  
The applied coupled hydrogeophysical inversion approach proceeds in the 
following steps: first water table drawdown is simulated with a pumping test 
model, with Kh and Sy as input parameters. The simulated drawdown and Sy are 
then used to determine, respectively, the integration bounds and the change in 
water content �"  to calculate the change in the geophysical signals with the TL-
MRS and TL-RG forward models.   
 
The synthetic observations are subsequently perturbed with random data error, 
according to the expected measurement errors for each observation type. The 
gradient-search algorithm PEST [Doherty, 2010] was used to iteratively update 
specific yield and hydraulic conductivity until the optimal fit between the 
synthetic observations and simulated data is achieved. Parameter starting values 
were varied between 0.1 and 0.4 for Sy and -3.75 and -4.25 m/s for the log10 of 
Kh. 
 
To be consistent with Blainey et al. [2007] we consider 9 observation points for 
drawdown and gravity measurements at 5.0, 8.3, 13.9, 23.2, 38.7, 64.6, 107.8, 
179.8 and 300 m distance from the extraction well. Only two observation 
locations for the MRS-instrument are used, situated at 5 and 179 m from the 
pumping well. MRS data comprises initial amplitude data measured at 8 pulse 
lengths between 0.5-4.0 A=�, covering a similar range as measured by Chalikakis 
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et al. [2008] and example data in the NUMISplus manual [IRIS Instruments, 
2010]. 
 

3.2 Observations and Measurement Error 

 
Figure 4 Water table drawdown (a) and simulated TL-RG data (b) after seven days of pumping 
for a fully and partially penetrating well and the inclusion of delayed yield. (c) and (d) show the 
TL-MRS signal at respectively 5.0 and 179.8 m from the extraction well. Note this figure shows 
the synthetic data without the added measurement errors. Indicated by the dashed lines are the 
standard deviations of the measurement errors (‘Noise level’) that were used to generate the 
synthetic TL-RG and TL-MRS observations. 
 
3.2.1 Simulated Drawdown, TL-RG and TL-MRS signals for a 
pumping test 
Figure 4a shows the water table drawdown at the nine observation points 
obtained after 7 days of pumping given Kh=10-4m/s and Sy=0.25 for a fully 
penetrating well. Figure 4b visualizes the corresponding TL-RG response for all 
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measurement points (same as piezometers). Figures 4c and 4d show the TL-MRS 
signal obtained at respectively 5.0 m and 179.8 m from the pumping well. In the 
figures also the standard deviation of the added measurement errors are plotted 
(“Noise level”), which were used for the generation of the synthetic observations. 

  
The plots for the partially penetrating well in Figure 4 show a significantly 
smaller decrease in TL-MRS and TL-RG signal. The TL-RG signals are reduced 
by more than a factor of two for measurements close to the pumping well. Near 
the pumping well gravity changes are in the order of 10 µGal. The range of the 
received TL-MRS signal at 5 meters from the pumping well is reduced from 50-
150 nV to a range of 30-60 nV. 
 
3.2.2 Generation of synthetic observations 
To estimate Sy and Kh we generated 16 synthetic observation sets, including 
drawdown, TL-RG and TL-MRS data, to which random/uncorrelated 
measurement error was added. Table 1 lists the standard deviation of the applied 
data errors for the different observation types which were used per scenario. We 
assumed a measurement error of 5 cm for the drawdown data [Blainey et al., 
2007], 2-4 µGal for the TL-RG measurements and 10-20 nV for the TL-MRS 
measurements. 
 
In the scenario “Correlated Noise Gravity” we added correlated measurement 
error to the TL-RG data. For this purpose we generated a set of gravimeter 
readings (grel) with a measurement error of 4 µGal to which we added a linear 
drift of 20 µGal/hr and a sinusoidal drift component with a period of 1 day and 
amplitude of 5 µGal. The sinusoidal drift is assumed to represent errors in the 
various corrections applied to the TL-RG data and is unknown for any specific 
field application. RG measurements in a “star”-network are assumed 
[Christiansen et al., 2011a], where first a reference station “REF” is measured 
(not impacted by the pumping test), after which each of the 9 gravity observation 
locations Gi are occupied. The reference station is re-occupied after each station 
occupation (sequence REF-G1-REF-G2-…-G9-REF). Between every occupation 
we assume a time interval of 10 minutes, i.e. a total measurement period of 190 
minutes. For each of these network stations we estimate an individual gravity 
signal by solving Equation 4 (network adjustment), assuming a linear instrument 
drift. The unknown sinusoidal drift component results in correlated data errors. 
This procedure is executed for a time period before the pumping test starts and 
after 7 days of pumping. For the measurements after 7 days of pumping, we 
assume the sinusoidal drift component to have a 12-hour phase shift compared to 
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the pre-pumping survey. This numerical experiment results in one set of TL-RG 
observations with correlated errors. Note that error correlation in TL-RG surveys 
depends on the network configuration, the magnitude of the unknown drift 
components and the duration of the survey and will thus be different for every 
field experiment. 
 

3.3 Objective Function & Parameter Uncertainty 
For both the TL-RG and the TL-MRS we calculate the fit between the simulated 
and “observed” water table drawdown and geophysical data with the following 
objective function 
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where HEADSN  indicates the number of head data (9 in our case) and GRAVN  and 

MRSN  indicate the number of the different geophysical observations (9 for the 
TL-RG, 16 for the TL-MRS). h , GRAV and MRS indicates the simulated and 
observed head, TL-RG, and TL-MRS signals. h' , GRAV'  and MRS'  represent the 
standard deviation of the measurement error associated with the different 
observations. GRAVw  and MRSw  are subjective weights defining the trade-off 
between the geophysical and hydrological observation misfit, where

MRSGRAVHEADS www ���1 . 
 
Determination of the optimal value for GRAVw  and MRSw  in reducing parameter 
uncertainty was not pursued in this research. In order to perform such a weight 
analysis, a Pareto method can be employed as described in Christiansen et al. 
[2011b] and Moore et al. [2010].  Blainey et al. [2007], using a similar model 
setup, report that parameter uncertainty is not very sensitive to different nonzero 
values of GRAVw . However, they did observe a trend where larger values for GRAVw  
result in more accurate specific yield estimates and less accurate hydraulic 
conductivity estimates.  For this paper, we choose to use the same values for 
these subjective weights in order to respect their relative signal-to-noise ratios. 
For example, when TL-RG, TL-MRS and drawdown data are used, GRAVw  and 

MRSw  were assigned a value of 1/3. For more complex hydrological models the 
impact of GRAVw  can be of more significance. Still, the added measurement errors 
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could incorporate some degree of structural error, since the number of 
synthetically generated observations was small. This effect is reduced by 
performing the coupled hydrogeophysical inversion for 16 different observation 
realizations. Parameter uncertainty and parameter cross-correlations are 
subsequently estimated based on the posteriori covariance matrix for the 
calibrated parameter sets [Doherty, 2010]. 
   
Figure 5 shows 15 objective function plots pertaining to three different situations 
when no measurement errors are added to the synthetically generated 
measurements. The first column of plots in Figure 5 shows the individual 
objective function components associated with the drawdown, TL-RG and TL-
MRS data and the combined objective function for a fully penetrating well when 
assuming unrealistically low data errors for the TL-RG and TL-MRS data 
(respectively 0.4 µGal and 2 nV) to illustrate how drawdown and geophysical 
data constrain one another. The plot associated with the drawdown component 
indicates that the hydraulic conductivity is well determined in contrast to the 
specific yield. Plots for the TL-RG and TL-MRS component show a nearly 
similar shape, illustrating that hydraulic conductivity and specific yield cannot be 
determined with MRS and RG data only. The combined objective function shows 
a clear improvement in the objective function surface highlighting a clear global 
minimum in comparison with the more stretched surfaces for the individual data 
types. The second column of plots in Figure 5 pertains to a fully penetrating well 
where we assume a measurement error of 5 cm for drawdown data and 
respectively 2 µGal and 10 nV for the gravity and MRS observations. The 
combined objective function surfaces do not vary significantly from the one 
associated with the drawdown objective function component as the signal-to-
noise ratio for the geophysical data is much lower compared to the drawdown 
data. The third column of plots in Figure 5 applies to a partially penetrating well 
in anisotropic conditions. The plots for the TL-RG and TL-MRS data show a 
similar pattern compared with the fully penetrating well. The drawdown 
objective function plot shows that the hydraulic conductivity cannot be resolved 
as well as for the fully penetrating well. Combining the drawdown and 
geophysical data in this situation could potentially be very powerful as the 
objective function valleys associated with the geophysical data have a different 
orientation compared with the drawdown component, allowing for a well-defined 
global minimum. However, the information contained in the geophysical data is 
reduced, due to much smaller signal-to-noise ratios. This causes the combined 
objective functions in Figure 5 (column 3, row 4 and 5) to have a nearly similar 
shape as the drawdown objective function. 
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Figure 5 Objective function surfaces for the drawdown, gravity and MRS objective component 
together with the combined objective function surfaces for a fully and partially penetrating well 
with a Sy=0.25 and Kh=10-4 m/s. Weights for each data type that contribute to the objective 
function are plotted underneath. The first column of plots pertains to TL-MRS and TL-RG data 
with unrealistically small measurement errors (0.4 µGal, 2 nV). The second column represents a 
fully penetrating well in combination with typical signal-to-noise ratios (0.05 m, 2 µGal, 10 nV) 
for the different data types. The third column represents a partially penetrating well in 
combination with typical signal-to-noise ratios for the different data types, clearly showing a 
different orientation of the objective function surface pertaining to the drawdown and the 
geophysical data. 
 

4. Inversion Results 
4.1 Fully Penetrating Well 
To assess to what extent the addition of the TL-MRS and TL-RG observations 
improve the estimation of the specific yield and hydraulic conductivity, cross-
correlation values between the specific yield and hydraulic conductivity and their 
uncertainty are listed in Table 2 for each of the scenarios discussed in this paper. 
Note that the values listed in Table 2 are average values pertaining to the 
inversion results of 16 different observation realizations that were used to 
calculate each scenario listed in Table 1. For a fully penetrating well, parameter 
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cross-correlation indicates that both parameters can be identified separately, since 
its value is significantly smaller than 1.00. However, due to low sensitivity of the 
specific yield with respect to the drawdown measurements [Blainey et al., 2007], 
the uncertainty range for this parameter is rather large. When introducing TL-
MRS or TL-RG measurements in the inverse process, which are more sensitive 
to the specific yield of the aquifer, parameter cross-correlation drops from -0.86 
to respectively -0.80 and -0.82. This also results in a decrease of the uncertainty 
ranges for the specific yield and hydraulic conductivity with approximately 30%; 
average parameter estimates do not change significantly for the different 
calibration datasets. Parameter uncertainty bounds, calculated based on the 
posteriori covariance matrix, show the “true” aquifer properties were captured 
within 2 standard deviations of the estimated parameter values.  
 
Table 2 Inversion results showing data misfit, parameter cross-correlation, estimated values, 
uncertainty ranges and uncertainty reduction percentages for the hydraulic conductivity and 
specific yield for different observation data sets and each scenario described in Table 1.  

 
 
Table 2 shows that the uncertainty range associated with the specific yield drops 
from 0.022 to 0.016 when TL-RG observations are incorporated. Blainey et al. 
[2007] reported values of respectively 0.020 and 0.012 with and without the use 
of TL-RG measurements. Parameter uncertainties listed in Table 2 are slightly 
higher due to the larger amount of measurement errors added to the drawdown 
(0.05 m instead of 0.045 m) and TL-RG observations (2 µGal instead of 1 µGal). 
Table 2 shows the same potential, if not more, for the inclusion of TL-MRS 
observations in reducing parameter uncertainty for this setup of aquifer testing. 
Parameter uncertainty for the specific yield dropped to 0.014. Therefore a last 

Calibration dataset RMSEa Cr-Corrb  Khc Parameter   Uncertainty Syc Parameter Uncertainty Scenario
Sy-Kh  (m/s) uncertainty (%)d reduction [%]e  (-) uncertainty (%)d reduction [%]e

Truth - - 1·10-4 - - 0.25 - - Truth
Heads 0.82 -0.86 9.99·10-5 ± 2.35·10-6 2% - 0.251 ± 0.022 9% -
Gravity 0.77 1.00 1.07·10-4 ± 2.60·102 >> 100 % - 0.259 ± 2.248 >> 100 % -

MRS 0.86 0.99 1.07·10-4 ± 1.96·10-4 >> 100 % - 0.278 ± 0.339 >> 100 % -
Heads & Gravity 0.86 -0.80 1.00·10-4 ± 1.79·10-6 2% 24% 0.250 ± 0.016 6% 27%
Heads & MRS 0.92 -0.82 9.98·10-5 ± 1.58·10-6 2% 33% 0.252 ± 0.014 6% 34%

Heads & Gravity & MRS 0.92 -0.77 1.00·10-4 ± 1.45·10-6 1% 38% 0.251 ± 0.013 5% 42%
Heads 0.82 -0.86 9.99·10-5 ± 2.35·10-6 2% - 0.251 ± 0.022 9% -

Heads & Gravity 0.93 -0.84 9.99·10-5 ± 2.08·10-6 2% 11% 0.252 ± 0.019 8% 12%
Heads & MRS 0.95 -0.85 1.00·10-4 ± 1.73·10-6 2% 26% 0.250 ± 0.016 6% 28%

Heads & Gravity & MRS 0.92 -0.84 1.00·10-4 ± 1.74·10-6 2% 26% 0.251 ± 0.016 6% 27%
Heads 0.83 -0.87 9.99·10-5 ± 2.43·10-6 2% - 0.251 ± 0.023 9% -

Heads & Gravity 0.86 -0.83 1.00·10-4 ± 1.89·10-6 2% 22% 0.250 ± 0.018 7% 24%
Heads & MRS 0.93 -0.83 9.98·10-5 ± 1.60·10-6 2% 34% 0.252 ± 0.015 6% 35%

Heads & Gravity & MRS 0.92 -0.79 1.00·10-4 ± 1.49·10-6 1% 39% 0.251 ± 0.014 5% 41%
Heads 0.76 -0.97 1.01·10-4 ± 5.91·10-5 58% - 0.250 ± 0.057 23% -

Heads & Gravity 0.83 -0.96 1.04·10-4 ± 4.97·10-5 33% 42% 0.247 ± 0.036 14% 38%
Heads & MRS 0.90 -0.93 9.74·10-5 ± 3.02·10-5 31% 49% 0.254 ± 0.033 13% 43%

Heads & Gravity & MRS 0.83 -0.92 9.94·10-5 ± 2.91·10-5 29% 51% 0.251 ± 0.032 13% 44%
Heads 0.77 -0.98 1.02·10-4 ± 4.46·10-5 44% - 0.250 ± 0.061 25% -

Heads & Gravity 0.92 -0.97 1.00·10-4 ± 3.61·10-5 36% 19% 0.250 ± 0.052 21% 15% Partially Penetrating &
Heads & MRS 0.92 -0.97 1.00·10-4 ± 2.81·10-5 27% 37% 0.249 ± 0.041 16% 34% High Noise & Delayed yield

Heads & Gravity & MRS 0.96 -0.97 1.00·10-4 ± 2.76·10-5 27% 38% 0.251 ± 0.040 16% 34%
Heads & Gravity 0.84 -0.84 1.00·10-4 ± 1.97·10-6 2% 16% 0.250 ± 0.018 7% 17% Correlated Noise Gravity

a Root Mean Square Error,b Cross-correlation,c Mean ± 2 standard deviations,drelative to the estimated parameter value,epercentual decrease of parameter ucertainty

Fully  Penetrating

High Noise

Delayed yield

Partially Penetrating
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inversion exercise was conducted in which drawdown, TL-RG and TL-MRS 
observations were included. This yielded an accuracy of 0.013 in determining the 
value for the specific yield, which is a reduction of approximately 50% of the 
original uncertainty range (when only head data comprises the calibration 
dataset). Similar values apply for the estimation of the hydraulic conductivity. As 
Table 2 shows, improvements are small relative to the estimated parameter 
values.  
 
4.2 Partially Penetrating Well in an Anisotropic Aquifer, 
Measurement Error & Delayed Yield 
Based on our experience, 2 µGal and 10 nV are very optimistic estimates for the 
data errors encountered during field surveys with MRS and RG. For this purpose 
we investigate the effect for measurement errors of respectively 4 µGal and 20 
nV on the parameter estimation results in scenario ‘High Noise’. Table 2 shows a 
smaller decrease in parameter correlation and parameter uncertainty reduction, 
especially for the TL-RG observations. Only 12 % of improvement can be made 
in terms of parameter uncertainty reduction, which is small assuming the highly 
idealized conditions associated with this synthetic study. The MRS-data suffers 
less from the increased data errors and results in a ca. 30% uncertainty reduction.  

 
When a partially penetrating well is considered under anisotropic aquifer 
conditions, water table drawdown and geophysical signals are considerably 
smaller (Figure 4). When compared to the previous pumping scenario, the cross-
correlation between the specific yield and hydraulic conductivity changes from -
0.86 to -0.97 if aquifer properties are estimated with water table drawdown data 
only. When TL-RG and TL-MRS measurements are introduced, with a 
measurement error of respectively 2 µGal and 10 nV, specific yield uncertainty 
ranges are reduced with ca. 40%, being more effective compared to a fully 
penetrating well. This can be explained by the lower information content of the 
drawdown data. Average parameter estimates for Sy and Kh deviate more from 
the true values when including the geophysical data, although the “true” aquifer 
properties are captured within two standard deviations of the estimated parameter 
values. 

 
The inclusion of delayed yield does not have a large influence on the inversion 
results, considering the fact we use a rather large time delay index 1/ad of 2 days. 
This can be explained by the fact that we use drawdown, TL-MRS and TL-RG 
data obtained after 7 days of pumping; indicating the soil above the water table 
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had enough time to release the drainable water. Inversion results are roughly the 
same compared to the fully penetrating well assuming instantaneous drainage. 

 
In scenario 5, we see an improvement in parameter estimates of 15 % for the TL-
RG data. For the TL-MRS observations this value was around 30%. However 
parameter cross-correlation only decreased slightly for the inclusion of both data 
types. Including both TL-RG and TL-MRS data yielded similar results compared 
with the inclusion of TL-MRS and drawdown data only. 
 
In the final scenario ‘Correlated Noise Gravity’ we analyze the impact of 
correlated measurement errors for TL-RG. Comparing with the scenario “High 
noise’, there is no significant difference in the results. Parameter estimates are 
perfect and uncertainty ranges are comparable. While we could fit the data with a 
RMSE of 0.93 in the ‘High Noise’ – scenario, now this value is 0.84. Also the 
gravity component of the objective function remains unchanged. This could be 
explained by the smaller standard deviation of the added data error (for 
generating the correlated noise we assumed 4 µGal for the measurement error on 
the gravimeter readings, after which we performed the network adjustment). 
Obviously the correlated component of the TL-RG measurement error has no 
significant impact, as its component could be well captured assuming a linear 
drift in the timeframe in which we assume the TL-RG data to be collected.  
 
4.3 Sensitivity Analysis for Pumping Test Design and 
Aquifer Properties 
The previous section showed that the effectiveness in reducing parameter 
uncertainty by including TL-MRS and/or TL-RG data strongly depends on the 
pumping test design and configuration. To explore the additional value of TL-
MRS and TL-RG data for aquifer testing in a more general way, we conducted a 
local sensitivity analysis for parameters governing the pumping test design and 
aquifer properties with respect to the observed water table drawdown and 
geophysical signal changes. This sensitivity analysis was performed for the 
drawdown, TL-RG and TL-MRS observations with respect to the seven different 
pumping test design and configuration variables that were used in the scenario 
“Partially Penetrating” (Q, Kh, hi, Kh/Kz, Ds, D, Sy, which are defined in Table 1 
except for Ds which represents the depth to the top of the well-screen with 
respect to the initial water table). These sensitivities are calculated using [Hill, 
1998] 
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where hss , GRAVss , MRSss  are the scaled sensitivities for the individual drawdown, 
TL-RG and TL-MRS observations. p is the parameter value for the reference run 
(partially penetrating well, Table 1), p"  the parameter change. h , GRAV  and 
MRS  represent the simulated drawdown, TL-RG and TL-MRS signals for the 
reference run and h" , GRAV" and MRS"  symbolize their change compared to 
the reference run. As the sign of the sensitivities for each data type was constant 
with respect to the different pumping test design parameters, we then calculate 
the sum of these scaled sensitivities (

jS ) for each separate observation group 
according to 
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i
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1

 with  MRSGRAVHEADSj ,,�                        (18) 

where Nj represents the number of observations associated with every 
observation group (drawdown, TL-RG and TL-MRS).  
 
Figure 6 shows the calculated sensitivities for the seven pumping test 
configuration parameters with respect to the total sum of water table drawdown 
observations (HEADS) and the geophysical signal changes (TL-RG, TL-MRS). 
Larger values for the hydraulic conductivity, anisotropy, aquifer depth and depth 
to the pumping well screen will cause a smaller drawdown, which results in a 
smaller TL-RG and TL-MRS signal. When the pumping rate is increased, more 
water mass is withdrawn resulting in larger drawdown and larger TL-RG and TL-
MRS signals. Water table drawdown does not depend on the initial water table. 
However, both geophysical methods are sensitive for this characteristic, as 
stronger signal changes are observed, when mass and water content changes 
occur closer to the instrument. The TL-RG signal is shown to be more sensitive 
to the initial water table in comparison with the TL-MRS signal.  Figure 6 shows 
an opposite sensitivity for the specific yield with respect to water table drawdown 
and the observed geophysical signal changes. Obviously, the higher water 
content that is released per volume of the subsurface outweighs the smaller 
drawdown that occurs. This opposite sign of the sensitivity causes the decrease in 
cross-correlation during the previously executed calibration exercises. According 
to Figure 6, the most dominant or sensitive pumping test variables are the 
extraction rate, anisotropy, hydraulic conductivity and the specific yield. 
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Figure 6 Sensitivity of drawdown, TL-MRS and TL-RG data pumping test design and 
configuration variables. The original parameter values are those pertaining to the partially 
penetrating well, listed in Table 1. 

 

5. Discussion and conclusions 
For a pumping test, we have evaluated the inclusion of TL-RG and TL-MRS data 
to improve parameter estimates during unconfined aquifer testing using a coupled 
hydrogeophysical inversion approach. This was done by generating synthetic 
observations of drawdown, TL-RG and TL-MRS data, to be used for parameter 
estimation. In response to the optimistic conclusions and intentions in Blainey et 
al. [2007] and Damiata and Lee [2007], we first investigated the impact of three 
issues that will reduce the signal-to-noise ratio for TL-RG and TL-MRS 
measurements that could limit their additional value in the inversion process. 
These are (1) a partially penetrating well in an anisotropic aquifer, (2) typical 
data errors for TL-RG and (3) delayed yield. Furthermore, we applied the same 
coupled hydrogeophysical inversion framework for data acquired with TL-MRS, 
which was subjected to the same analysis used for TL-RG.  
Simulated forward responses and objective function plots showed small signal-
to-noise ratios for both TL-RG and TL-MRS data for different pumping test 
configurations. For a fully penetrating well, considering instantaneous drainage 
and minimum geophysical data errors, parameter uncertainty could be reduced 
successfully with the incorporation of TL-RG and TL-MRS measurements, 
although these reductions are small relative to the parameter estimates. 
Incorporation of more conservative data error estimates for the TL-MRS and TL-
RG observations, respectively 20 nV and 4 µGal, resulted in a significant 
decrease of the additional value of TL-RG data. When analyzing a partially 
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penetrating well, parameter uncertainty could be reduced more effectively with 
the inclusion of TL-MRS and TL-RG data when compared to a fully penetrating 
well. Inclusion of delayed yield did not influence the parameter estimation results 
significantly; however, this is also an effect of the specific setup of the synthetic 
study as we used measurements at a time interval where delayed yield effects are 
small. A scenario including a combination of the three signal-to-noise ratio 
reducing issues, showed only a marginal improvement in parameter estimates for 
TL-RG. The informative value of the TL-MRS data was less affected by these. 
Finally, we show that typical correlated measurement errors associated with TL-
RG data are not likely to influence its potential to improve the estimation of 
aquifer parameters. In contrast to TL-RG, we have not conducted simulations for 
TL-MRS data with correlated measurement errors. A local sensitivity analysis 
indicated that the hydraulic conductivity, thickness and specific yield of the 
aquifer are the most sensitive factors, together with the extraction rate. 
 
 The findings of this study suggest a limited applicability of a coupled 
hydrogeophysical inversion with TL-RG data for practical pumping tests, but 
inversion results proved to be more optimistic than we expected beforehand, 
especially for the partially penetrating well. The inclusion of TL-MRS data 
appears more promising compared to the TL-RG data, as parameter uncertainty 
could be reduced by ca. 30 % for most of the investigated scenarios in this work. 
Due to consistency reasons with Blainey et al. [2007] and Damiata and Lee 
[2007], we did not account for one major characteristic of practical pumping tests 
in our simulations, which is the fact that drawdown data often comprises a few 
time series rather than several drawdown measurements in space. Another 
important issue that was not included in this study are structural model errors, 
such as those due to a heterogeneous aquifer, a slightly variable pumping rate and 
the estimation of other aquifer parameters that are unknown (e.g. delay index, 
anisotropy, aquifer thickness).  

 
As the TL-RG and TL-MRS signals observed during a pumping test will be small 
in terms of signal-to-noise ratio, a model study as presented in this paper is a 
necessity to assess the potential for additional TL-MRS and TL-RG observations 
to improve the estimates of aquifer parameters for a real-world pumping test 
using the coupled inversion procedure described here. This should be combined 
with accurate noise measurements for both techniques at the location were the 
pumping test is conducted. When these tests indicate whether acceptable 
sensitivities can be obtained for the geophysical data with respect to the aquifer 
parameters that are estimated, this could yield a great benefit as TL-RG and TL-
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MRS surveys are often much cheaper to conduct compared with the installation 
of a monitoring well and no drilling is involved with these type of measurements. 
Another advantage of including the geophysical data, in addition to the existing 
drawdown observation locations, would be the reduction of the required accuracy 
for the drawdown measurements, which allows for a greater flexibility of picking 
the monitoring well locations and the use of monitoring wells that already exist at 
the site. As the geophysical data can yield a high spatial resolution dataset, this 
information would not only be suited to constrain the parameter estimation 
process, but can also provide much more information about the shape of the 
water table depression around the pumping well due to the spatial variability of 
the aquifer properties.  
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