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Preface

The workings of nature have always puzzled mankind, and its explanations of the physical

world range from questionable but ingenious to acceptable and elegant. After merely some

years of following the noble tradition of seeking such explanations, most likely of the former

kind, I can nevertheless say that the view from the shoulders of giants is majestic. The late

Carl Sagan wrote: science is a way of thinking much more than it is a body of knowledge.

Indeed, I feel that my perspective on things has changed. Think of putting on a pair of

glasses that let you see this world somewhat clearer and easier on the eyes. Their design

is quite peculiar, though, and you can never take them off.

One of the things that I have learned during my Ph. D. research is that prediction is

a tricky thing, fraught with errors and uncertainty. Should I have known this in 2003,

I might have been more critical of my predictions that I would not regret pursuing a

doctorate degree and that it would be actually possible to get one. Fortunately, I was

right about both, which is partly thanks to the excellent conditions set by Delft Univer-

sity of Technology, which funded the first two years of this research through the DIOC

programme “Transient processes in Hydraulic Engineering and Geohydrology”, and its

Water Resources Section, which financed the remaining two-and-a-half years.

The Royal Meteorological Institute of Belgium (Brussels, Belgium) and the National

Weather Service Hydrology Laboratory (MD, USA) are gratefully acknowledged for pro-

viding the hydrometeorological data that were necessary for my work. I was also helped

by having the following software codes kindly made available to me by their authors: the

Genetic Algorithm Optimization Toolbox by Chris Houck, Jeff Joines and Mike Kay 1,

the MOSCEM–UA algorithm by Jasper Vrugt, the Differential Evolution algorithm by

Rainer Storn 2, its self-adaptive variant by Janez Brest, and the HyMod model by Hoshin

Gupta.

Of course the completion of a Ph. D. thesis requires much more than financial resources,

data and software. For several essential — but at times elusive — phenomena such as

insight, inspiration and motivation I have relied on many people, some of whom I would

like to mention here.

1. http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/

2. http://www.icsi.berkeley.edu/∼storn/code.html
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viii Preface

The most valuable contributor to this work is Tom Rientjes. It has been many years since

I first stepped into your office, Tom. A lot of things have changed since then, but never

our mutual appreciation and respect. Those long and exhausting discussions during which

we together pushed this work to its present level will be sorely missed! I owe much to you

for my professional development, and I offer you my deepest gratitude for this and for our

friendship.

My promotor, Huub Savenije, has always supported me unconditionally. Huub, I sincerely

thank you for the freedom you provided me with, for your guidance and good advice, and

for the way you were able to make me regain my interest in, shall I say, pure hydrology.

In 2007, I received a travel grant from the Netherlands Organization for Scientific Research

(NWO) to stay for three months at the University of Arizona to discuss my work with

Hoshin Gupta. It has been a great privilege to meet you, Hoshin, and to have benefited

from your hospitality and guidance. Your philosophy and overview were crucial in putting

the pieces of my puzzle together.

I am grateful to Dimitri Solomatine for allowing me to follow his inspiring course on

hydroinformatics at UNESCO–IHE in 2004.

My wonderful colleagues in Delft have made that all-too-familiar environment a pleasant

and fruitful one for doing my research. My paranymphs Miriam Gerrits and Steven Weijs,

Fabrizio Fenicia, Zhang Guoping, Nguyen Ahn Duc, Robert Kamp, and all other Ph. D.

students and staff members I thank for entertaining discussions, helpful tips and lots of

fun. I nevertheless strongly benefited from having a change of scenery by staying in the

U.S.A. I wish to thank all my friends overseas, and Koray Yilmaz in particular, for all

the things I experienced and learned in Tucson and San Francisco.

My parents have enabled and encouraged my education, perhaps more than I often did.

Mom and dad, thank you for your love and support.

The final phase of my research was not always easy due to the overlap with a new job, but

fortunately one of the last things I did in Delft was meeting the lovely Zhao Yi. Thanks

for cheering me up and motivating me when I needed it, baby.

Time for a confession from this ‘hydrologist’: I have only once played the role of ex-

perimentalist during the entire period of my Ph. D. research. (To all the people that

subsequently want to accuse me of being afraid to get my hands dirty, I say this: you

are clearly blissfully unaware of the average number of bacteria that live on a computer

keyboard.) My justification is that I was captivated by the beauty of applying computa-

tional intelligence to hydrology. Being confronted with the paradigms and techniques of

two research fields and realizing their similar, different and complementary aspects have

taught me a lot. Speaking more broadly, I have found that being a part of the scientific

community also allows the upscaling of one’s thinking. It is comforting to join scientists
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from all backgrounds, countries and cultures in discussing in the common language of sci-

ence our collective efforts to better understand the world we live in, be it at conferences or

in the literature. Both have been excellent places for retreats whenever I needed to take a

step back and find a new perspective on my work. The iterative loop of questioning and

revising one’s own assumptions, methods or presentation can be endless — the question

rises when to stop and accept the work as finished. Accepting deadlines for my research

has always been slightly difficult for me, perhaps because in science there always seem to

be significant improvements lurking around the corner. Not entirely unfortunately, such a

deadline has presented itself for this thesis, so I beg the reader to judge mildly its contents.

Nico de Vos

September 2009, Schiedam
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Rainfall–Runoff Modeling

Challenges Regarding Hydrological Models and Data

The transformation of precipitation over a river basin into river streamflow is the result

of many interacting processes which manifest themselves at various scales of time and

space. This is due to the variety and the heterogeneity of media in which water travels.

The interaction of hydrology with other research disciplines such as atmospheric sciences,

ecology and geology showcases just how diverse these media can be. The highly dynamic,

nonlinear nature of most catchment systems is a reflection of the complex interaction

between the various processes at different scales. Clearly, effective system descriptions are

therefore not easily defined.

The issues of scale and heterogeneity make the definition of straightforward descriptions

and models of hydrological processes very challenging, and also complicate the gathering of

representative data from a catchment. Not only are measurements seldom without error,

the difficult questions present themselves of how well observed data represent system

behavior and how they translate to the quantities defined in the model representation of

the system.

No laboratory experiment can be constructed in which the complexity of a natural hy-

drological system is adequately replicated, which is why researchers focus on simulation

models of river basins. The challenge of Rainfall–Runoff (R–R) modeling originates from

the combination of the complexity of a catchment system and the difficulty to properly

and quantitatively express the information that is available about it. For these reasons,

R–R modeling is considered one of the greatest challenges in hydrology, even after more

than a century of research.

1
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Why Model the Rainfall–Runoff Transformation?

The R–R transformation involves many processes that are at the very core of hydrology.

R–R models that simulate these processes can therefore be used to advance the science,

because the accordance or conflict with observed values of models based on existing hy-

drological theories can confirm or negate these theories.

Another, more practical reason to model the R–R transformation is for prediction pur-

poses, ultimately to improve the quality or effectiveness of decisions related to water

management issues. Some examples of areas in which streamflow information is needed

are water resources assessment, flood protection, mitigation of droughts, channel or hy-

draulic construction design, assessment of contamination effects, ecological studies, and

climate change impact assessments.

Historical Overview

The first models that predicted runoff from rainfall were developed as early as halfway the

nineteenth century (e.g., the rational method by Mulvaney [1851]). Engineers interested in

design criteria for constructions based these theories on empirically derived relationships

and largely ignored the nonlinearities in R–R processes. Other methods were more focused

on the routing of runoff such as the well-known unit hydrograph method. A large number

of variations of this method exist that are all based on the idea of using a transfer function

to calculate runoff from effective rainfall (e.g., the Nash-cascade model).

The problem of estimating how much of the rainfall effectively contributes to the runoff

has always been the biggest challenge for modelers. As hydrological process understanding

and the possibilities offered by digital computers grew, they turned to simulation of river

basin behavior using so-called conceptual R–R models. Such models are based on a simple

mass balance and simplified descriptions of hydrological processes and media. Despite the

physical foundations of conceptual models, their parameters still need to be calibrated. A

very large number of conceptual models exist, of which popular examples are the American

Sacramento model, the Scandinavian HBV model, and the Japanese Tank model.

Physically-based and spatially distributed models of hydrological systems (e.g., SHE and

IHDM models) became more popular in the 1970s and 1980s with the advancements in

both computer power and accessibility. However, the large data demand and the com-

plexity of calibration and simulation are important reasons for the lack of popularity

of these models, even today. There are, however, simplified distributed models such as

TOPMODEL that attempt to strike a balance between complexity and practicality.

In the last two decades, the R–R model approaches mentioned above have still been under

development. With the development and application of modern data analysis, modeling

and calibration techniques, the empirical approach has broadened to what can be called
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data-driven R–R modeling. Conceptual models have also advanced because of better pro-

cess and model understanding and improved calibration strategies. Finally, increasing

computer power and new data sources such as remote sensing have helped to push the

boundaries of physically-based models.

Current Developments

Having explored the various modeling possibilities in the past, the awareness that each

model approach has its advantages and disadvantages has settled among hydrologists.

Conceptual models often prove to be effective because they offer a combination of sim-

plicity, transparency and good performance. Physically-based models are preferred when,

for example, predicting the effect of changes in a river basin. Finally, for short-term

streamflow forecasting, the accuracy of data-driven models is often unrivaled.

Nevertheless, the search for better R–R models is ongoing. The main drivers for develop-

ments in this field are:

1. Improved insights into both small-scale and large-scale processes of river systems

(and the interactions between them),

2. Increase in quantity and quality of data through new and enhanced measurement

techniques, along with improved abilities to extract information from data,

3. New views and paradigms in hydrological modeling methodology and philosophy,

4. Development of new modeling, calibration and data assimilation techniques.

Section 1.2 discusses the methodological and philosophical framework that has directed

this research (cf. point 3). This framework has some overlap with point 2 as well, as one of

the main ideas is to make better use of the information that is contained in the data. The

main driving force of this work, however, comes from point 4 in the form of computational

intelligence techniques.

1.1.2 Computational Intelligence

The field that is nowadays commonly called Computational Intelligence (CI) in fact

evolved from various research fields such as soft computing [Zadeh, 1994], machine learning

[Mitchell, 1997], evolutionary computing [Jong, 2006]. Nowadays, it also includes newer

techniques from, for example, chaos theory and swarm intelligence. In recent years, CI

has therefore increasingly become a generic term for a large diversity of techniques that

use — often a weak sense of — intelligence in their approach. What prevents CI from

being merely a hotchpotch of algorithms is the collective trait of its techniques to in-

telligently solve complex computational problems in science and technology [Palit and

Popovic, 2005]. Solomatine [2005] discusses the similarities and differences between vari-

ous research areas related to computational intelligence.
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CI is an emerging field in which theoretical developments are still rapidly evolving and

feedback from practical application is much needed. It is still unclear to what extent CI

will change the field of simulation modeling but both the similar and complementary

aspects of CI techniques and human problem-solving suggest a large promise. Examples

of similarities include the way artificial neural networks mimic the functioning of the

brain (albeit very rudimentary) and the use of fuzzy information such as words in a

problem-solving framework [Zadeh, 1996]. An important complementary aspect is the

increased computational ability of digital computers compared to human brains. The fact

that computer power increases still strengthens the belief that CI can lead to significant

developments in many fields of science.

In this work, two typical current exponents of CI are investigated: artificial neural networks

and evolutionary algorithms. Both techniques have been applied in hydrological modeling

in recent years and prove to be valuable alternatives to traditional approaches (more on

this in Chapter 2). In the hydrological research community there exists a clear and urgent

need to further investigate the application of such techniques in hydrological modeling in

order to explore their potential value and pitfalls, and to formulate guidelines regarding

their application.

1.2 Modeling Frameworks

In this section several frameworks from (hydrological) modeling are briefly presented that

serve as a philosophical–methodological foundation for this work.

1.2.1 Systems Approach

A system is a theoretically defined set of components that interact or are in some way

interdependent. The system is defined by the choices of system boundaries, and of which

components and interactions to consider. A hydrological catchment is classified as an open

system, meaning that the system interacts with an environment (e.g., a meteorological

system) in the form of exchange of mass and energy. After the system is defined, a model

of it can be built. According to Gupta et al. [2008], a model is

a simplified representation of a system, whose twofold purpose is to enable

reasoning within an idealized framework and to enable testable predictions

of what might happen under new circumstances

where

the representation is based on explicit simplifying assumptions that allow

acceptably accurate simulations of the real system.
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In the systems approach to R–R modeling, the modeler sees the hydrological catchment

from a holistic instead of a reductionist viewpoint. The overall complexity of the system

is considered a reason for not trying to separate its elements and processes but to regard

the system as the only appropriate level of complexity on which to model or from which

to deduce knowledge. Often this means that a so-called black-box approach is taken, in

which the processes and elements of the systems are regarded unknown — although they

not need to be. The only way of understanding the system is then to consider its input

and output, and attempt to relate the two. From this point of view, building a model

does not necessarily require knowledge of the physical principles involved.

1.2.2 Top-down Modeling

In the reductionist or bottom-up approach to modeling, a model is built starting from a

detailed description of its basic elements. These elements are often specified on the basis

of detailed experiments. A model can subsequently be built by linking the various (sub-

systems of) elements together until the appropriate level of system detail. The bottom-up

way of thinking has long been the dominant paradigm in hydrological modeling, but re-

cent literature shows that the top-down paradigm is considered a promising alternative

by many (e.g. Sivapalan et al. [2003b]; Young [2003]). The top-down paradigm follows the

opposite direction of bottom-up modeling, and is defined by Klemes̆ [1983] as the route

that

starts with trying to find a distinct conceptual node directly at the level of

interest (or higher) and then looks for the steps that could have led to it from

a lower level.

This paradigm strongly relates to the systems approach, although the latter does not imply

explaining the working of the system in terms of internal characteristics or processes at

finer scales [Sivapalan et al., 2003b].

1.2.3 Model Evaluation

Historically, there have been several changes in what is implied when hydrological modelers

stated that they want to improve their models. Compare, for example, the issues raised

on numerical statistics raised by Nash and Sutcliffe [1970], the quantitative uncertainty

framework by Beven and Binley [1992], the discussion on model accuracy, uncertainty and

realism by Wagener et al. [2001], and the diagnostic framework by Gupta et al. [2008],

which is discussed below.

The most common and straightforward approach to evaluate hydrological models is to

quantitatively evaluate model behavior by examining the difference between model output

and observed variables. A large variety of statistical measures can be calculated from

this difference that express the accuracy of a model. However, since there is uncertainty
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in both measurements and model (discussed below), hydrologists have understood the

value of providing the associated probability of model output. This information requires

uncertainty in the data and model to be quantified and this has proven to be a great

challenge for the hydrological community.

Qualitative evaluation of consistency in model behavior is another important aspect of

model evaluation. Examples of this range from visual inspection of expected patterns in

model output to model parameter sensitivity analysis. In recent years, several approaches

have been suggested that combine quantitative and qualitative information into a more

complete model evaluation framework. Examples are the GLUE method [Beven and Bin-

ley, 1992; Beven, 2006], the multi-criteria approach [Gupta et al., 1998], and DYNIA

[Wagener et al., 2003b].

Finally, there is qualitative evaluation of consistency in model form (structure) and func-

tion (behavior). This implies that certain model structures might be favored over others

based on, for example, their performance on past problems or their similarity to the per-

ceptual model (see Beven [2001b]) of the system at hand. Although subjective, this can

be a valuable contribution in model evaluation.

The above three forms of model evaluation are based on the framework presented by Gupta

et al. [2008], who argue that evaluation should be diagnostic in nature, i.e. focusing on

identifying which components of the model could be improved and how. It is for this

reason that model evaluation should focus not merely on a simple comparison of series of

model output and observed data of that variable, but on comparing signature information

through which the essence of model and data is extracted.

1.2.4 Issues of Uncertainty

All components of a hydrological modeling application are subject to uncertainty. The

three primary sources of uncertainty, as discussed by Y. Q. Liu and Gupta [2007], are as

follows.

1. Data — Observations of model input, states and output inherently contain mea-

surement errors, which can be divided into instrument errors (i.e., imperfect mea-

surement devices or procedures) and representativeness errors (i.e., incompatibility

between observed and model variables, for instance in terms of scale).

2. Model parameters — Parameters are conceptual aggregate representations of spa-

tially and temporally heterogeneous properties of the real system. They usually

cannot be easily directly related to observable real-world characteristics of a catch-

ment. Model calibration is usually applied to let model output comply to obser-

vations in an acceptable manner, as a result of which errors and uncertainties are

introduced.
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3. Model structure — Models are assemblies of assumptions and simplifications and

thus inevitably imperfect approximations to the true system. If these approxima-

tions are inadequate, large errors can be the result. Mathematical implementation

issues can also add to model structural uncertainty.

Future research not merely calls for objective, quantitative, and accurate estimations of

model output uncertainty, but also for a minimization of this uncertainty. Suggestions for

uncertainty estimation are widespread in recent literature (e.g., Beven and Binley [1992];

Thiemann et al. [2001]; Vrugt et al. [2003a, 2005]; Kuczera et al. [2006]). To accomplish

the minimization of uncertainty, however, much more radical steps are needed that relate

to the very fundamentals of hydrological modeling. Examples of this are acquiring new

and better hydrological observations, finding improved methods of extracting and using

information from observations, and improved hydrological models using better system

representations and mathematical techniques.

1.3 Research Objectives and Outline

The main objective of this research is to apply CI techniques to catchment-scale R–R

modeling in order to find improved methods of developing and evaluating such models.

A clear focus of this research is on making better use of the information contained in

both observations and model output. Three fields of application of CI techniques in R–R

modeling are explored for these purposes. They are listed below, along with more specific

objectives regarding their application.

1. Data-driven modeling — Find out if CI methods can model the R–R transformation

adequately and how well they compare to conceptual hydrological models (see

Chapters 3 and 5).

2. Parameter estimation — Apply CI parameter estimation algorithms to calibration

of both CI and conceptual models to test whether more information can be ex-

tracted from hydrological data in order to make better R–R models (see Chapters

4 and 5).

3. Data mining — Find and make use of dynamical patterns in hydrological data that

are commonly ignored in model evaluation (see Chapter 6).

Chapter 2 presents a short literature review of the three fields of application of CI men-

tioned above. In Chapter 3, a R–R model based on a well-known CI technique (an artificial

neural network) is developed. Some important issues regarding the development, calibra-

tion and performance of such models are highlighted and discussed. Chapter 4 presents the

application of evolutionary, multi-criteria algorithms to the calibration of artificial neural

network R–R models, along with a comparison with traditional single-criterion algorithms.
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A multi-criteria comparison of an artificial neural network model and a conceptual hydro-

logical model is subsequently presented in Chapter 5. In Chapter 6, a temporal clustering

approach was employed to identify periods of hydrological similarity. The results were

used to shown how the evaluation of a conceptual model can be improved to be more

diagnostic in nature and how subsequent improvements to the model structure can be

inferred. The conclusions and recommendations of this thesis are presented in the seventh

and final chapter.



Chapter 2

Computational Intelligence in Rainfall–Runoff

Modeling

2.1 Fields of Application

CI methods have become — and are still becoming — increasingly common in R–R

modeling. This chapter presents a brief overview of three typical applications of CI, all of

which are tested in the remainder of this work. Firstly, hydrological system identification is

discussed in Section 2.2. This application has a long history (see Dooge and O’Kane [2003])

but with the emergence of CI methods it is experiencing somewhat of a resurgence in the

form of what is nowadays commonly termed data-driven modeling. Secondly, Section

2.3 discusses the application of parameter estimation methods from CI applied to the

calibration of R–R models. Finally, in Section 2.4, some examples of data mining methods

related to R–R modeling are discussed. Usually data mining methods do not apply directly

to R–R problems but they can be used for pre-analysis of data or post-analysis of results.

2.2 Data-Driven Modeling

2.2.1 Knowledge-Driven versus Data-Driven

A common approach to simulate catchment systems is to model them based on process

knowledge. This so-called knowledge-driven approach aims to represent the real-world hy-

drological system and its behavior in a physically realistic manner, and is therefore based

on detailed descriptions of the system and the processes involved in producing runoff.

The best examples of knowledge-driven modeling are so-called physically-based model

approaches, which generally use a mathematical framework based on mass, momentum

and energy conservation equations in a spatially distributed model domain, and param-

eter values that are directly related to catchment characteristics. These models require

input of initial and boundary conditions since flow processes are described by differential

equations. Examples of physically-based R–R modeling are the Système Hydrologique

9
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Européen (SHE) [Abbott et al., 1986a, 1986b] and the Representative Elementary Wa-

tershed (REW) [Reggiani et al., 2000; Reggiani and Rientjes, 2005; Zhang and Savenije,

2005, 2006] model approaches. Physically-based modeling suffers from drawbacks due to

the complexity of the R–R transformation process in combination with limitations in rep-

resenting the small-scale spatial variability of meteorological inputs, physiographic charac-

teristics, and initial conditions in the model (see Rientjes [2004]). Examples of drawbacks

are excessive data requirements, large computational demands, and overparameterization

effects. This is what causes modelers to look for more parsimonious and simple model ap-

proaches that incorporate a higher degree of empiricism, but it is (still) not clear how far

this empirical approach should be taken (cf. Nash and Sutcliffe [1970] and Beven [2001a]).

Conceptual model approaches are a first step from physically-based model approaches in a

more empirical direction. These approaches use the principal of mass conservation in com-

bination with simplified descriptions of the momentum and energy equations. Conceptual

modeling commonly implies that the model domain is represented by storage elements,

either in a spatially lumped or semi-distributed manner. Well-studied examples of con-

ceptual modeling are the HBV model [Lindström et al., 1997], the TOPMODEL [Beven

et al., 1995b], and the Sacramento soil moisture accounting model [Burnash, 1995]. De-

spite their popularity, there has been much debate in the literature on how much model

complexity is warranted (e.g., Beven [1989]; Jakeman and Hornberger [1993]) and how

their performance can be best evaluated (e.g., Klemes̆ [1986]; Gupta et al. [1998]).

The data-driven approach to R–R modeling, on the other hand, is based on extracting

and re-using information that is implicitly contained in hydrological data without directly

taking into account the physical laws that underlie the R–R processes (of which the prin-

ciple of mass conservation is the most commonly implemented). The data-driven modeling

paradigm is strongly related to the systems approach (see Section 1.2) and has been around

since the very beginning of hydrological modeling. Basically, the first methods that tried

to approximate the transformation from rainfall to runoff were empirical methods that

relied on crude assumptions and subsequent fitting to data (see Beven [2001a] for a more

complete historical perspective). Roughly since the beginning of the 1990s, interest in

data-driven techniques has virtually exploded thanks to theoretical developments and an

increase in available computational power. The field of data-driven modeling comprises a

plethora of techniques, of which examples are discussed in Sections 2.2.3 and 2.2.4. Nowa-

days, traces of the data-driven paradigm can be found in many hydrological studies, but

the full power of its techniques (many of which are still rapidly evolving) is likely not yet

exploited, and insights into and experience with practical applications remain limited.

2.2.2 Advantages and Disadvantages

Data-driven R–R models are generally quickly and easily developed and implemented,

and are less affected by the drawbacks of knowledge-driven models. Because of their
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relative simplicity, simulation times often remain within reasonable limits. Moreover, their

flexibility requires little expert knowledge of the system or processes modeled.

The latter argument could also be used against them, because naturally the reliance on

data alone poses some difficulties:

• Because of their low transparency, which results from the inability to interpret their

internal workings in a physically meaningful way, data-driven models generally fail

to give useful insights into the system under investigation.

• Data inherently contains (measurement and scale) errors, which can translate to

serious model deficiencies.

• How to ensure that a data-driven model learns the correct relationships from the

data? Fitting a flexible model structure to data does not assure a reliable model.

• The range of application can be limited because empirical models only have valid-

ity over the range of the specific sample of the hydrological records that is used for

model calibration. Extrapolation results beyond this range are therefore often inac-

curate and uncertain. The same argument applies to situations in which a system

has changed.

For these and other reasons, physical insights should be incorporated into the model de-

velopment procedure where possible. Still, one might not be able to overcome the inherent

flaws of data-driven models. For an insightful discussion on the shortcomings and risks of

the data-driven paradigm, see the article by Cunge [2003].

2.2.3 Artificial Neural Networks as Data-Driven Models

A data-driven technique that has gained significant attention in recent years is Artificial

Neural Network (ANN) modeling. In many fields, ANNs have proved to be good in sim-

ulating complex, non-linear systems, while generally requiring little computational effort.

This awareness inspired hydrologists to carry out early experiments using ANNs in the

first half of the 1990s. Their promising results led to the first studies on the specific topic of

ANNs for R–R modeling (e.g., Halff et al. [1993]; Hjemfelt and Wang [1993]; Karunanithi

et al. [1994]; Hsu et al. [1995]; Smith and Eli [1995]; Minns and Hall [1996]). ASCE

[2000] and Dawson and Wilby [2001] give reviews on ANN modeling in hydrology. The

majority of studies proved that ANNs are able to often outperform traditional statistical

R–R techniques (e.g., Hsu et al. [1995]; Shamseldin [1997]; Sajikumar and Thandaveswara

[1999]; Tokar and Johnson [1999]; Thirumalaiah and Deo [2000]; Toth et al. [2000]; A. Jain

and Indurthy [2003]; Huang et al. [2004]) and to also produce good results compared to

conceptual R–R models (e.g., Hsu et al. [1995]; Tokar and Markus [2000]; Dibike and

Solomatine [2001]; de Vos and Rientjes [2007]). The field of R–R modeling using ANNs

is nevertheless still in an early stage of development and remains a topic of continuing

interest. Examples of ANN R–R modeling research in recent years include Minns [1998],
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Campolo et al. [1999], Abrahart and See [2000], Gaume and Gosset [2003], Anctil et al.

[2004], A. Jain and Srinivasulu [2004], Rajurkar et al. [2004], Ahmad and Simonovic

[2005], de Vos and Rientjes [2005], A. Jain and Srinivasulu [2006], de Vos and Rientjes

[2007], Han et al. [2007], Kamp and Savenije [2007], Srivastav et al. [2007], and de Vos

and Rientjes [2008a]. Still, more research is needed to support the discussion on the value

of these techniques in this field and to help realize their full potential, especially since

their black-box nature, their flexibility and their automatic adjustment to information

makes them prone to the risk of producing results that lack consistency or plausibility.

Chapters 3, 4 and 5 of this thesis discuss ANNs and their application to R–R modeling

in detail.

2.2.4 Other Data-Driven Model Techniques

Regression

A multiple linear regression model such as the example presented in Equation 2.1, can be

seen as a simple example of a data-driven technique. Regression is a so-called parametric

approach, meaning it requires a priori formulation of the form of the relationship between

the dependent variable Z and the independent variable X. This form is usually linear,

but regression can be extended to non-linear cases. The parameters of the model need to

be calibrated to best fit the observed data Z given the noise signal ε.

Z = a0 + a1X + ε (2.1)

Regression trees and model trees are variations on classical regression methods that consist

of local regression models for separate parts of the complete data set. A hydrograph, for

instance, can be classified into several categories, after which a separate regression model

is built for each category (e.g. Solomatine and Dulal [2003]).

Time Series Modeling

Time series modeling is a linear data-driven technique, whose general framework is de-

scribed by Box and Jenkins [1976]. Most time series contain an autoregressive (AR) com-

ponent that accounts for the delay in the series, and a moving average (MA) component

of a time series that is an expression of its memory. A difference term (I) can also be

added to account for trends in the series. In case the time series under investigation has

a clear correlation with another time series (e.g. like streamflow depends on rainfall), the

latter can be used as an additional exogenous (X) variable in the model. An example

formulation for such an ARIMAX model is as follows.

Zt−Zt−1 = µ + b1Zt−1 + b2Zt−2 + ... + w1Xt−1 + w2Xt−2 + ... + εt− a1εt−1− a2εt−2 (2.2)
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where µ is the average difference in Zt, and b, w and a are parameters.

The application of time series models for the forecasting of streamflow has a long history

(see W. Wang [2006]). Classical time series models like ARIMA, however, assume that the

time series under study are generated from linear processes, which is generally not the case

in hydrology. Some nonlinear regression-type time series models such as Autoregressive

Conditional Heteroscedasticity (ARCH) models have been tested in streamflow modeling

(e.g. W. Wang et al. [2005]).

Support Vector Machines

An increasingly popular technique from CI is the Support Vector Machine (SVM), devel-

oped by Vapnik [1998]. This nonlinear classification and regression technique has a strong

similarity to the ANN, and is theoretically reliable in extracting relationships from data

while ignoring noise. Examples of successful applications to R–R modeling include the

works by Dibike [2002], Liong and Sivapragasam [2002], Bray and Han [2004], Asefa et al.

[2002] and Chen and Yu [2007].

Fuzzy Methods

Fuzzy methods are based on a ‘fuzzy’ instead of the traditional ‘crisp’ representation of

information. The idea is to express information as a degree of truth (not to be confused

with uncertainty). Examples of application in R–R modeling can be found in, for instance,

Bárdossy and Duckstein [1995], Nayak et al. [2005] and Vernieuwe et al. [2005].

Genetic Programming

Genetic programming is an evolutionary method that can be used for regression purposes.

So far, only a few applications to R–R modeling have been reported in the literature (e.g.

Khu et al. [2001]; Babovic and Keijzer [2002]).

Data-Based Mechanistic Modeling

In Data-Based Mechanistic (DBM) modeling [Young and Beven, 1994; Young, 2001, 2003],

a model is built from a general class of model structures. DBM is an example of a stochas-

tic, top-down approach to modeling which is more parsimonious than most data-driven

techniques. Most importantly, DBM allows for a physical interpretation of the model. This

approach can be seen as trying to strike a balance between data-driven and knowledge-

driven modeling.
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Table 2.1: The five major characteristics complicating the optimization in conceptual R–R

modeling. Reproduced from Duan et al. [1992].

Characteristic Reason for Complication

1. Regions of attraction more than one main convergence region

2. Minor local optima many small “pits” in each region

3. Roughness rough response surface with discontinuous

derivatives

4. Sensitivity poor and varying sensitivity of response

surface in region of optimum, and nonlin-

ear parameter interaction

5. Shape nonconvex response surface with long

curved ridges

2.3 Parameter Estimation

2.3.1 Automatic Calibration Methods

Given the fact that hydrological models never perfectly represent the real world, the

parameters of the model are fine-tuned in a calibration procedure to match the model

output with observed data. The literature on this complex issue is vast, but a good

overview of recent developments in hydrological model calibration is presented in the

book of Duan et al. [2003]. Nowadays, modelers often use the capabilities and speed of

digital computers by applying automatic optimization algorithms to find well-performing

parameter values. Table 2.1 introduces the five main characteristics that were found by

Duan et al. [1992] that complicate the automatic calibration of conceptual R–R models,

the most important of which is considered to be the presence of many local optima.

Traditional optimization algorithms usually search by starting at a randomized or cho-

sen point in the parameter space and following a single path to find an optimum. Such

algorithms usually depend on local search mechanisms (e.g. following the gradient of the

response surface) and therefore run the risk of getting stuck in local optima or failing

because of any of the other characteristics mentioned in the table. Global optimization

algorithms have been developed in recent years that are claimed to search the parameter

space more extensively and efficiently. Most CI optimization algorithms have global opti-

mization capabilities and are therefore promising in dealing with the problems related to

R–R model calibration. The following subsections address the two main families of such

algorithms.
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2.3.2 Evolutionary Algorithms

Evolutionary algorithms are inspired by Darwin’s theory of evolution. The main idea is

to evolve a population of possible solutions to a given problem by applying principles of

natural selection:

• Selection – only the ’fittest’ members of a population are copied into the next

generation

• Crossover – members produce offspring by exchanging characteristics

• Mutation – a population member will occasionally randomly mutate (some of) its

characteristics

The population members are usually different models or model parameter sets, and the

fitness is expressed by the difference between model output and observations. The al-

gorithms use the rules mentioned above, and have their population size, the number of

generations, and the probabilities of crossover and mutation as most important settings.

Evolutionary methods have been shown to elegantly find globally optimal solutions to

many problems.

The most common evolutionary algorithms is the Genetic Algorithm (GA), introduced by

Holland [1975]. Many different implementations of the natural selection rules mentioned

above have been suggested for the GA. In Chapter 4 of this work, a traditional form of the

GA has been used to calibrate an ANN R–R model. A popular example of an evolutionary

algorithm developed in hydrology is the Shuffled Complex Evolution algorithm developed

by Duan et al. [1992]. A more recently introduced evolutionary algorithm is the so-called

Differential Evolution (DE) algorithm by Storn and Price [1997]. In this work, a variation

of DE is applied for the calibration of a conceptual R–R model. The results, along with

a detailed explanation of DE’s working are presented in Chapter 6.

In recent years, evolutionary algorithms have been applied frequently to a plethora of

optimization problems including R–R modeling. Well-known examples in R–R model cal-

ibration include Q. J. Wang [1991], Duan et al. [1992], and Franchini and Galeati [1997].

2.3.3 Biologically-Inspired Algorithms

A new and developing field in CI is the use of techniques inspired by the behavior of

groups of animals (e.g., the flocking of birds or schooling of fish). Typically, a population

of simple agents is modeled that are allowed to interact amongst themselves and with

their environment. This can lead to the emergence of global behavioral patterns, which is

often referred to as swarm intelligence. Groups of animals make use of this intelligence,

for example in their search for food. Inspired by this, researchers have developed swarm

intelligence techniques that search for optima on the response surface of functions. A

well-known example of such an optimization technique is Particle Swarm Optimization

[Kennedy and Eberhart, 1995]. Another example of a biologically-inspired algorithm is
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Ant Colony Optimization [Dorigo and Stützle, 2004], which searches the parameter space

in the way ants navigate using pheromone trails. Several successful applications of swarm

intelligence techniques in R–R modeling have been presented (e.g. Chau [2006]; Kashif

Gill et al. [2006]; Goswami and O’Connor [2007]).

2.3.4 Multi-Criteria Algorithms

A recent development in optimization is the development and application of multi-criteria

(MC) algorithms that are able to simultaneously optimize multiple criteria and present

the full range of trade-offs between them (the so-called Pareto front). The structure of

evolutionary algorithms allows them to be easily translated into effective forms for MC

optimization, and a number of MC evolutionary algorithms have been developed over

recent years (e.g., SPEA [Zitzler and Thiele, 1999], MOSCEM–UA [Vrugt et al., 2003a],

NSGA–II [Deb, 2001], MOPSO [Kashif Gill et al., 2006], and AMALGAM [Vrugt and

Robinson, 2007]). As a result, recent literature shows an increasing number of studies

that use MC algorithms for R–R model calibration (e.g., Gupta et al. [1998]; Yapo et al.

[1998]; Boyle [2000]; Boyle et al. [2000]; Vrugt et al. [2003a]; Khu and Madsen [2005];

Kashif Gill et al. [2006]; Tang et al. [2006]; Fenicia et al. [2007a]; de Vos and Rientjes

[2007, 2008b]). More discussion on MC theory and methods, along with applications and

results, can be found in Chapters 4 and 5.

2.4 Data Mining

2.4.1 Data Mining and Cluster Analysis

Data mining techniques are tools to facilitate the conversion of data into forms that pro-

vide a better understanding of processes that generated or produced these data [Babovic,

2005]. A variety of techniques can be used, but among the most common are clustering

algorithms. These algorithms automatically categorize information by finding clusters in

the data. This could be useful, for example when trying to find homogeneous parts of the

data, compressing the information in the data into a small number of discrete values, or

finding relationships in the data that were not foreseen.

2.4.2 Clustering Algorithms

One of the simplest examples of a cluster algorithm is the k-means algorithm. It is dis-

cussed in more details in Chapter 6, where it is used for temporal clustering of hydrological

data. It has also been used in R–R modeling for, for example, regionalization [Bhaskar

and O’Connor, 1989; Burn, 1989; Mazvimavi, 2003], and identification of spatial clusters

with similar seasonal flood regimes [Lecce, 2000].
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Related to k-means clustering is its fuzzy c-means clustering variant, which uses the

principle of fuzzy information to determine overlapping clusters. Choi and Beven [2007]

use it for finding periods of hydrological similarity and subsequent model conditioning,

and Xiong et al. [2001] for combining model outputs, for example.

Another interesting clustering algorithm is the Self-Organizing Map (SOM). It can be

used for clustering but is also a unique method for visualizing information in data. The

technique was used for clustering of watershed conditions by Liong et al. [2000], determi-

nation of hydrological homogeneous regions by Hall and Minns [1999], for finding periods

of hydrological similarity and subsequent local modeling by Hsu et al. [2002], and model

evaluation and identification by Herbst and Casper [2007].
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Chapter 3

Constraints of Artificial Neural Networks for

Rainfall–Runoff modeling

Modified from:

de Vos, N. J., Rientjes, T. H. M., 2005. Constraints of artificial neural networks

for rainfall–runoff modeling: trade-offs in hydrological state representation and

model evaluation. Hydrol. Earth Sys. Sci. 9, 111–126.

and

de Vos, N. J., Rientjes, T. H. M., 2008. Correction of timing errors of artificial

neural network rainfall-runoff models. In: Practical Hydroinformatics, Abrahart,

R. J., See, L. M., Solomatine, D. P. (eds.)., Springer Water Science and Technol-

ogy Library.

Abstract

The application of ANNs in R–R modeling needs to be researched more extensively in

order to appreciate and fulfill the potential of this modeling approach. This chapter re-

ports on the application of multi-layer feedforward ANNs for R–R modeling of the Geer

catchment (Belgium) using both daily and hourly data. The daily forecast results indicate

that ANNs can be considered good alternatives for traditional R–R modeling approaches,

but the simulations based on hourly data reveal timing errors as a result of a dominating

autoregressive component. This component is introduced by using previously observed

runoff values as ANN model input, which is a popular method for indirectly representing

the hydrological state of a catchment. Two possible solutions to this problem of lagged

predictions are presented. Firstly, several alternatives for representation of the hydrologi-

cal state are tested as ANN inputs: moving averages over time of observed discharges and

rainfall, and the output of the simple GR4J model component for soil moisture. A combi-

nation of these hydrological state representations produces good results in terms of timing,

but the overall goodness of fit is not as good as the simulations with previous runoff data.

Secondly, an aggregated objective function was tested that penalizes the ANN model for

having a timing error. The gradient-based training algorithm that was used had difficulty

19
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with finding good optima for this function, but nevertheless some promising results were

found. There seems to be a trade-off between having good overall fit and having correct

timing, so further research is suggested to find ANN models that satisfy both objectives.

3.1 Introduction

As discussed in Chapter 1, one of the main research challenges in hydrology is the devel-

opment of models that are able to accurately simulate a catchment’s response to rainfall.

Such models are capable of forecasting future river discharge values, which are needed

for hydrological and hydraulic engineering design and water management purposes. How-

ever, simulating the real-world relationships using these R–R models is far from a trivial

task since the various interacting processes that involve the transformation of rainfall into

discharge are complex, and they vary in space and time. Hydrologists have attempted

to address this modeling issue from two different points of view: using knowledge-driven

modeling and data-driven modeling (see Section 2.2).

In order to investigate the evolving field of ANN R–R modeling, several ANN design

aspects are investigated through a case study in this chapter. Multi-layer feedforward

ANN models are developed for forecasting short-term streamflow, and both hourly and

daily data sets from the Geer catchment (see Appendix A) are used to develop and to test

the ANN models. Particular attention is paid to the representation of the hydrological

state (i.e., the amount and distribution of water storage in a catchment) in ANN models.

Since the hydrological state greatly determines a catchment’s response to a rainfall event,

it is a critical model input. Previous discharge values are often used as ANN inputs,

since these are indirectly indicative for the hydrological conditions. In this chapter, the

negative consequences of this approach are discussed and several alternatives for state

representation are tested. Moreover, the shortcomings of current evaluation methods of

ANN models in the calibration phase are discussed.

3.2 Artificial Neural Networks

3.2.1 Introduction

ANNs are mathematical models that consist of simple, densely interconnected elements

known as neurons, which are typically arranged in layers (see Fig. 3.1). An ANN receives

signals through input units and these signals are propagated and transformed through

the network toward the output neuron(s). In this study, so-called feedforward ANNs are

used, in which information always travels in the direction of the ANN output without de-

lay. One of the key transformations performed by an ANN is multiplication with weights
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Figure 3.1: An exemplary feedforward ANN with one hidden layer. The input units are not

considered neurons since they do not transform data and merely pass information to the network.

Figure 3.2: Schematic representation of the structure of an ANN.

that express the strength of connections between neurons. During a calibration proce-

dure known as training, the internal pattern of connectivity between neurons — i.e., the

weights, and therefore the model’s response — is adapted to information that is presented

to the network. Section 3.2.2 addresses this training procedure in more detail.

A typical feedforward ANN with one hidden layer can be mathematically expressed by

the following set of equations:

zk =
m∑

j=1

yjwjk+bk

yj = f
(

n∑
i=1

xiv̇ij+aj

) (3.1)

where vij and wjk are weights and aj and bk the biases for the hidden and output neurons,

respectively. The function f is a so-called transfer function, for which a sigmoid function

is commonly chosen.
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Figure 3.2 presents the above in a structural view of an ANN with input vector x, one

hidden layer with an activation value vector y, and one output z1. The matrices V and

W are the weight matrices for the connections between the two layers.

Background information about the wide array of ANN techniques and details about their

workings can be found in many excellent textbooks such as Hecht-Nielsen [1990] and

Haykin [1999].

3.2.2 Training and Evaluation

ANNs are commonly trained by an optimization algorithm, which attempts to reduce

the error in network output by adjusting the network weights and the neuron biases.

The common approach to ANN training in function approximation applications such

as R–R modeling is to use supervised training algorithms. These algorithms are used in

combination with sample input and output data of the system that is to be simulated. The

weights are changed according to the optimization of some performance measure, which

is a measure of the degree of fit (or difference) between the network estimates and the

sample output values. The alteration of network weights in the training phase is commonly

stopped before the training optimum is found, because then the network is supposed

to have also learned the noise in the training data and to have lost its generalization

capability. This situation is referred to as overtraining of an ANN. Undertraining, on

the other hand, occurs when the training is stopped too early for the ANN to learn all

the information contained in the training data. Both situations are likely to result in

sub-optimal operational performance of an ANN model. It is for this reason that the

available data are commonly split in three separate data sets: (1) the training set, (2)

the cross-evaluation set, and (3) the evaluation set. The first provides the data on which

an ANN is trained. The second is used during the training phase to reduce the chance

of overtraining of the network. The minimization of the training error is stopped as soon

as the cross-evaluation error starts to increase. This point is considered to lie between

the undertraining and overtraining stages of an ANN, since a rise of the cross-evaluation

error indicates that the ANN loses its capability to generalize from the training data. The

latter of the three data sets is used to validate the performance of a trained ANN. This

so-called split-sampling method is also applied in this study, and all results are presented

for the evaluation data set.

The measures for evaluating model performance that are used in this chapter are the Root

Mean Square Error (RMSE), the Mean Squared Logarithmic Error (MSLE) [Hogue et al.,

2000], the Nash–Sutcliffe coefficient of efficiency, CNS [Nash and Sutcliffe, 1970], and the

Persistence Index, CPI [Kitanidis and Bras, 1980]. They are defined as follows.

MSLE =
1

K

K∑
k=1

(
ln Q̂k − ln Qk

)2

(3.2)
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CNS = 1−
F

F0

(3.3)

where

F =
K∑

k=1

(
Q̂k −Qk

)2

(3.4)

F0 =
K∑

k=1

(
Qk − Q̄

)2

(3.5)

CPI = 1−
F

Fp

(3.6)

where

Fp =
K∑

k=1

(Qk −Qk−1)
2 (3.7)

In these equations, K is the total number of data elements, Qk and Q̂k are the observed

and the computed runoffs at the kth time interval respectively, Q̄ is the mean value of the

runoff over time. F0 is the initial variance for the discharge time series, F is the residual

model variance, and Fp is the variance of the persistence model. The difference between

the CNS and CPI is that the scaling of F for the latter involves the last known discharge

value instead of the mean flow. This basically means that the model variance is compared

with the variance of a model that takes the last observation as a prediction. CNS and

CPI values of 1 indicate perfect fits. The RMSE is indicative for high flow errors and the

MSLE for low flow errors.

At the start of each training trial, ANN weights and biases have to be initialized. The

most-often applied method is random initialization. The goal of this randomization is

to force the training algorithm to search various parts of the parameter space, thereby

enabling a more robust overall optimization procedure and increasing the overall chances

of finding a global error minimum. A result of this approach is that the performance of an

ANN is often different for each training trial, even if it is trained using the same algorithm.

There are three reasons why training algorithms do not find the same parameter set for

each training trial when training starts in a different part of the parameter space. First

of all, there may be more than one region of attraction for the training set to which

the model can converge. Secondly, a training algorithm may not be able to find a global

optimum and get stuck in local optima, on flat areas or in ridges on the response surface.

Lastly, in case of applying cross-evaluation to prevent overtraining, the optimum in terms

of the training data will probably not coincide with the optimum for the cross-evaluation
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set. Therefore, an algorithm might be stopped before finding a global optimum due to

increasing cross-evaluation errors. In the case of random initialization, the performance of

an ensemble of training trials yields information on the parameter uncertainty of an ANN

model type in combination with a certain training algorithm. Presenting this uncertainty

allows for a more reliable and accurate comparison between combinations of ANN model

types and training algorithms. Performing and presenting only a single training trial

would be based on the assumption that a single trial represents a reliable indicator for the

average performance, but experience has learned that this assumption is risky since ANN

performance can vary considerably between training trials. Gaume and Gosset [2003],

aware of this issue, addressed it by presenting ANN performance using Box-and-Whisker

plots of the RMSE over an ensemble of 20 training trials. In this study, the mean and

standard deviations of the performance measures over an ensemble of 10 training trials

are presented. This ensemble size was found to be appropriate for quantifying parameter

uncertainty of the ANN models while keeping calculation times acceptable. Time series

plots and scatter plots are presented for the median of the ensemble.

3.2.3 Advantages and Disadvantages

ANNs have advantages over many other techniques since they are able to simulate non-

linearity in a system. They can also effectively distinguish relevant from irrelevant data

characteristics. Moreover, they are nonparametric techniques, which means that ANN

models do not necessarily require the assumption or enforcement of constraints or a priori

solution structures [French et al., 1992]. This, in combination with the fact that ANNs are

commonly automatically trained, makes that relatively little knowledge of the problem

under consideration is needed for applying them successfully. Lastly, because of their

compact and flexible model structure, ANNs have relatively low computational demands

and can easily be integrated with other techniques.

A disadvantage of ANNs, however, is that the optimal form or value of most network design

settings (such as the number of neurons in the hidden layer) can differ for each application

and cannot be theoretically defined, which is why they are commonly determined using

trial-and-error approaches [Zijderveld, 2003]. Another important drawback is that the

training of the network weights tends to be problematic, which is due to the following

reasons: (1) optimization algorithms are often unable to find global optima in complex

and high-dimensional parameter spaces, (2) overparameterization effects may occur, and

(3) error minimization in the training phase does not necessarily imply good operational

performance. The latter pertains to the representativeness of the training data for the

operational phase. For example, the training data should ideally reflect the distribution

of variables in the operational situation, and should not contain many errors.
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Figure 3.3: Daily runoff (Kanne) and rainfall (Bierset) from 1980 to 1991 and 1993 to 1997.

3.3 Case Study

3.3.1 Selected Data

Data from the Geer River basin were used for this research (see Appendix A). Figure

3.3 shows the daily catchment discharge in combination with rainfall at location Bierset

for the period 1980–1997 (without year 1992). Figure 3.4 shows the hourly data for the

period 1993–1997. Both the daily and hourly time series were divided into 55% for training,

25% for cross-evaluation and 20% for evaluation (also depicted in 3.3 and 3.4). All three

fragments of the time series start with a period of constant low discharge and rainfall.

The shapes of the discharge distributions over the three separate periods are similar for

both the daily and the hourly data.

3.3.2 Input Signals

The ANN type that is used for R–R modeling is the static multi-layer feedforward network

(see Figure 3.1). Static networks do not have the dimension of time incorporated in the

network architecture, as opposed to dynamic networks, which use feedback connections

or local memories in neurons. These static ANNs are nevertheless able to capture the

dynamics of a system in the network model by using so-called tapped delay lines. This

method presents a sequence of time series values (e.g., P (t) , P (t− 1) , . . . ,P (t−m)) as
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Figure 3.4: Hourly runoff (Kanne) and rainfall (Bierset) from 1993 to 1997.

separate network input signals. P (t) represents an input variable in time and m the size of

the time window. The number of input units thus increases with the size of this window.

The input signals to an ANN model should comprise all relevant information on the tar-

get output, and on the other hand, they should contain as little irrelevant information

as possible. However, in order to facilitate the training procedure, largely overlapping

information content of input signals should be avoided. Because an increased number of

input signals leads to a more complex network structure, the task of training algorithms

is being complicated, which is likely to have a negative effect on network performance.

In order to make a parsimonious selection of ANN inputs, the popular approach of ex-

amining the linear correlations between the input and output time series was followed.

Note that a non-linear technique such as an ANN, however, might be able to make use of

more information than is revealed by this linear technique. Figures 3.5 and 3.6 show the

correlation coefficients for various time lags between the time series of several observed

variables and the daily and hourly time series of runoff at Kanne. The autocorrelation

of the discharge time series is also presented. The minimum and maximum delays were

chosen in such a way as to enclose high values of the correlation for each variable, thereby

ensuring a high information content for each of the input signals. The catchment mean

lag time is around 8 hours, which can be concluded from the peak correlation between

the discharge time series and the rainfall series.
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Figure 3.5: Correlation between the daily runoff time series and various other time series

(rainfall, potential evaporation) for various time lags.
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Figure 3.6: Correlation between the hourly runoff time series and the rainfall time series for

various time lags.



28 Constraints of ANNs for R–R modeling

Because the transfer functions that were used in this study become saturated outside a

certain range, all input data are linearly scaled to a range of −1 to 1. The output of

this transfer function is bounded to the range of −1 to 1, which is why the output data

was scaled to a range of −0.8 to 0.7. The reason for setting these ranges narrow is to

enable the ANN to extrapolate beyond the training data range, since extrapolation can

be an important issue in the application of empirical methods such as ANNs. The output

data range is asymmetrical because it is more likely that the upper bound of the training

data range is exceeded than the lower bound. Even though previous research has shown

that this approach to the problem of extrapolation has limitations (e.g., Minns [1998]),

these measures will at least reduce the effects of the extrapolation problem where needed.

Moreover, no extrapolation issues are expected since the training periods of both the daily

and the hourly data contain the highest discharge values.

3.3.3 Training Algorithms

All ANNs were trained using supervised training algorithms that tried to minimize the

Mean Squared Error (MSE) objective function. The merits of using a good algorithm are

threefold: (1) better accuracy leads to better ANN performance, (2) faster convergence

leads to smaller calculation times, and (3) lower spread in the performance makes it

easier and more honest to evaluate and compare ANNs. Unfortunately, few algorithms

are able to combine these three merits. The most well-known training algorithm is the

backpropagation algorithm [Rumelhart and McLelland, 1986] that follows a steepest-

descent approach based on the first-order gradient of the response surface. Other popular

methods include the conjugate gradient algorithm [Fletcher and Reeves, 1964; Møller,

1993] and methods based on second-order gradients such as the Levenberg–Marquardt

(LM) algorithm (see Hagan and Menhaj [1994]). Alternatives which were not tested here

are the LLSSIM algorithm [Hsu et al., 1995] and algorithms based on global optimization

such as simulated annealing [Kirkpatrick et al., 1983] and GAs [Goldberg, 2000].

The algorithms that were tested in this research are the steepest descent backpropaga-

tion (SD), steepest-descent with variable learning rate and momentum (SDvm), resilient

steepest-descent backpropagation (RSD), Polak–Ribière, Fletcher–Reeves, and Powell–

Beale conjugate gradient (CG–P, CG–F, CG–B), Broyden–Fletcher–Goldfarb–Shannon

(BFGS), and LM algorithms. A so-called batch training approach was used for training

the ANNs: the whole training data set is presented once, after which the weights and

biases are updated according to the average error. Table 3.1 shows the one-step-ahead

forecast performance in terms of the mean RMSE and CNS, along with the number of

iterations of the various algorithms. The latter gives an indication of the convergence

speed of the algorithm. These indicative simulations were made with ANN models that

are typical for this application and very similar to the ones used later in this study.
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Table 3.1: Indication of ANN model performance using various training algorithms

Daily data Hourly data

Algorithm RMSE CNS Iterations RMSE CNS Iterations

SD 1.275 -1.868 1000 0.572 0.411 800

SDvm 0.926 -0.568 140 0.948 -0.502 20

RSD 0.690 0.223 30 0.279 0.871 80

CG–P 0.770 0.010 25 0.206 0.929 60

CG–F 0.519 0.519 60 0.185 0.941 80

CG–B 0.425 0.706 50 0.164 0.956 90

BFGS 0.567 0.427 30 0.182 0.942 100

LM 0.339 0.815 20 0.151 0.963 40

The LM algorithm outperformed the other algorithms in terms of accuracy and conver-

gence speed in all test cases. Moreover, the standard deviation of the LM algorithm was

very low: 0.012 for daily data and 0.001 for hourly data. The other algorithms show much

more spread in their performance measures (around 5 to 50 times more, depending on the

algorithm), indicating that the LM algorithm may be considered much more robust.

The above results show that ANN model performance can be very dependent on the ability

of optimization algorithms to find a good set of weights and biases, as also pointed out by,

for example, Hsu et al. [1995]. However, many studies on ANN R–R models have relied

on training algorithms such as the classic steepest-descent backpropagation algorithm,

variants of that with momentum and/or variable learning rate, or conjugate gradient-

based algorithms (see review by Dawson and Wilby [2001]). These results suggest that

studies using multi-layer feedforward ANNs for R–R modeling would benefit from using

more sophisticated algorithms such as LM.

3.3.4 Model Structure

Increasing the number of weights of an ANN by adding hidden neurons or layers, compli-

cates network training. ANNs with one hidden layer are commonly used in rainfall-runoff

modeling (see review by Dawson and Wilby [2001]) since these networks are considered to

offer enough complexity to accurately simulate the dynamic and non-linear properties of

the rainfall-runoff transformation. Preliminary test results showed that such ANNs indeed

outperform the networks with two hidden layers. The optimal size of the hidden layer was

found by systematically increasing the number of hidden neurons until the network perfor-

mance on the test set no longer improved significantly. Figure 3.7 shows the performance

of various ANN architectures in terms of the Nash–Sutcliffe coefficient. The ANN input

for these simulations consisted of daily data with a total of 13 signals, concerning poten-

tial evaporation at one station, rainfall at three stations, and previous discharges. The
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Figure 3.7: ANN performance (13 inputs, 1 output) for various hidden layer sizes. The squares

represent the mean Nash–Sutcliffe coefficients CNS , and the bars depict the 95% confidence

bounds.

LM algorithm was used for training. The results show that there is a point at which the

performance no longer increases (5 hidden neurons). Note that the 95% confidence bounds

widen as the number of hidden neurons increases. This implies that the training algorithm

is less likely to find optima as the dimensionality of the parameter space increases. Based

on extensive testing, it was found that the optimal number of hidden neurons should be

usually roughly around the square root of the number of input neurons.

ANN architectures with one output neuron were used throughout this study. The output

signal from this neuron was the discharge prediction for a certain lead time. In order

to make multi-step-ahead predictions (i.e., predictions with a lead time larger than one

time step), two methods were available: (1) re-inputting a one-step-ahead prediction into

the network, after which it predicts the two-step-ahead prediction, and so forth, and (2)

by directly outputting the multi-step-ahead prediction. The first method uses the ANN’s

own preliminary estimations as a source of information for further predictions, the latter

uses only the original data. Test results showed that for both the daily and hourly data

the two methods performed nearly similar up to a lead time of respectively 4 days and 12

hours. Because of its simplicity, the direct multi-step-ahead method was used. Sigmoid-

type functions are commonly used as transfer functions in hidden layers. The popular

hyperbolic tangent function (y = tanh(x)) was chosen here. The identity function (y = x)

was used as transfer function in the output neuron.



3.4. Results 31

� � � � � � � � � �
�

�

�

�

�

�

�

�

�

�

*
��
�

(#
��

.+���"��

�/0$�1��%���
!20�1��%��

!*3�1��%��

Figure 3.8: Scatter plot of predicted versus observed daily discharges (m3/s) for a one-day-

ahead forecast.

3.4 Results

3.4.1 Main Modeling Results

Figure 3.8 shows a scatter plot of the results of a one-day-ahead (t + 1) prediction of an

ANN model using the daily data from the Geer catchment. The input to the network

consisted of previously observed rainfall values at time instants t to t − 2 at the three

available measurement stations, potential evaporation at t − 3, and discharge values at

the catchment outlet from t to t − 2. The ANN architecture was: 13 − 5 − 1 (13 input

units, 5 hidden neurons, 1 output neuron). A detail of the observed and predicted time

series of the daily data is presented in Fig. 3.9. The ANN model proves to be able to

make one-step-ahead forecasts with good accuracy, considering the forecast lead time is

24 hours and the catchment mean lag time merely 8 hours (see Fig. 3.6). The biggest

drawback is that the model underestimates quite a number of moderate peak flows by up

to 40%. However, Fig. 3.9 also shows that the model’s timing of the peaks is quite good.

Low flows are mostly well simulated, even though these forecasts show more fluctuations

than the observed flow pattern. This is most likely due to the model overestimating the

effect of small rainfall events.

Scatter plots of simulation results based on hourly data are presented in Figs. 3.10 and

3.11. The first shows the results of a one-hour-ahead discharge forecast using an 18−5−1

ANN model with rainfall inputs from t− 5 to t− 19 and discharges from t to t− 2. The

latter presents the results of a six-hour-ahead forecast using a similar model (only the

time window of the rainfall is shifted to t to t − 14). Fig. 3.12 shows the mean and 95%

confidence bounds of CNS for increasing lead times. These results show that the ANN
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Figure 3.9: Observed and predicted daily time series of discharge (m3/s) for a one-day-ahead

forecast (detail; December 1, 1993 to December 1, 1994).

models are able to make good forecasts (in terms of the CNS) for short lead times, but

the performance decreases with increasing lead times. When forecasting 9 or more hours

ahead, the performance deteriorates even more rapidly. This is due to the fact that rainfall

up to time t, which are used as input signals, no longer contains significant information

on the forecasted discharge, because the catchment’s mean lag time is exceeded (cf. Fig.

3.6).

The scatter plot with low spread (Fig. 3.10), and the low RMSE and high CNS of the one-

hour-ahead forecast indicate excellent model performance, but the CPI does not (also see

Table 3.2). Moreover, the forecasts with longer lead times are not satisfactory, especially

when compared with the forecast based on daily data. A visual interpretation of the

simulation results, a representative detail of which is presented in Fig. 3.13, shows why:

the prediction of the ANN model is lagged in comparison with the observed time series.

This prediction lag effect is the result of using previously observed discharge values as

ANN inputs. The high autocorrelation of the hourly discharge time series causes the

autoregressive model component, which is implicitly contained in ANN models that use

previously observed discharge values, to become dominant. The ANNs give the most

weight to the latest discharge input (usually, Q at t) for calculating the forecast (Q at

t+L). In other words, the ANN models say that the best forecast for the discharge over a

certain lead time is close to the value of the currently observed discharge. In terms of most
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Figure 3.10: Scatter plot of predicted versus observed hourly discharges (m3/s) for a one-hour-

ahead forecast based on historical rainfall and discharge values.
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Figure 3.11: Scatter plot of predicted versus observed hourly discharges (m3/s) for a six-hour-

ahead forecast based on historical rainfall and discharge values.
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Figure 3.12: ANN performance in terms of the Nash–Sutcliffe coefficient CNS (with 95% con-

fidence bounds) for hourly multi-step-ahead predictions.

performance measures, this is indeed true for this case. As a consequence, ANN models

undervalue the information contained in other input signals.

The prediction lag effect is especially significant in forecasts with small lead times, but it

is also noticeable in more practically relevant forecasts with longer lead times. However,

the longer the lead time L becomes, the lower the correlation between Q at t and Q at

t+L will be. As a result, the ANN model will give more weight to the rainfall information,

which causes the prediction lags to decrease. Naturally, the overall performance in terms

of squared errors also decreases with longer lead times (see Fig. 3.12). All this can be

explored in more detail in Fig. 3.14, where forecast results for various lead times are

evaluated in terms of CNS (shown on the ordinate), and for various shifts in time of the

forecasted versus the observed time series (shown on the abscissa). The ANN models that

were used for these simulations are the same as in the previous simulations. The CNS

at zero shift corresponds to the actual performance of the models. The predicted time

series is subsequently shifted in time against the observed time series, after which CNS is

recalculated. The time shift at which the CNS coefficient is maximized, is an expression for

the mean lag in the model forecast. This is done for a number of different lead times (the

different lines). The idea for this method of timing evaluation is taken from Conway et al.

[1998]. What Fig. 3.14 shows is that the prediction lag increases with the lead forecast

time (i.e., the peaks are further to the left for longer lead times), but not proportionally.

Another thing that can be clearly observed is the dramatic decrease in CNS for longer

lead times, which can be read from the vertical line at a time shift of 0. The above proves

that the training on MSE or CNS can be inadequate and that there is much to be gained
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Figure 3.13: Observed and predicted hourly time series for a one-hour-ahead and a six-hour-

ahead forecast (detail; July 8 to July 13, 1993).

by correcting ANN models for timing errors.

The issue of lagged predictions in ANN model forecasts, and the relation with the in-

troduction of an autoregressive component by using previous discharge values, has been

rarely addressed in literature. Only a small number of researchers have explicitly discussed

timing errors (e.g., Minns [1998]) or attempted to resolve the issue (e.g., Varoonchotikul

[2003]; Abrahart et al. [2007]). Unfortunately, no adequate method for satisfactorily deal-

ing with prediction lags has yet been developed. Nevertheless, the problem is wide-spread,

as proven by various research results that indicate that lags indeed occurred in the ANN

model forecasts (e.g., Campolo et al. [1999]; Dawson and Wilby [1999]; Zealand et al.

[1999]; Thirumalaiah and Deo [2000]; Gaume and Gosset [2003]; A. Jain and Srinivasulu

[2004]).

The one-day-ahead forecast of the previously discussed daily-data models outperforms

the forecasts of the hourly-data models with a lead time of six hours and more (both

in terms of timing and CNS, cf. Figs. 3.8 and 3.11). The reason for this difference in

performance is that the cross-correlation between the daily rainfall and discharge series

is higher than that of the hourly series, while the autocorrelation of the daily discharge

series is lower than that of the hourly series (shown in Figs. 3.5 and 3.6). As a result, the

information content of the daily input data is more evenly spread over the various input

signals and the autoregressive component of the ANN R–R model does not become as
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Figure 3.14: ANN multi-step-ahead forecast performances in terms of the Nash–Sutcliffe coef-

ficient for various shifts in time of the forecasted versus the observed time series.

dominant that the forecasts show a consequent lag in time. It is important to realize that

the significance of the prediction lag effect depends on the distribution of the information

content of the various input time series (which is often related to the time resolution of the

hydrological series). Also, the severity of timing errors also depends on the requirements of

the forecasts: depending on the type of high flows that are common for a catchment, one

can prefer to have a better overall approximation of the flows (e.g., in case of prolonged

high flows), instead of more accurate timing (e.g., in case of flash floods).

Two sources of the prediction lag effect can be identified, each of which may be able to

suggest possible solutions. Firstly, there is the matter of ANN model input. If previous

discharge values are used for hydrological state representation of the system, pronounced

negative effects may be introduced in the form of prediction lags. Secondly, there is the

difficulty of evaluating ANN model performance, especially during the training phase. The

squared-error-based performance measure that was used for model training and evaluation

is clearly not always strict enough to result in a satisfactory R–R model, since it may

undervalue correct timing of the forecast. Both topics are addressed in the following two

sections respectively.
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3.4.2 On Hydrological State Representation

The hydrological state of a river basin prior to a rainfall event is important in governing the

processes by which a catchment responds to this rainfall and the proportion of the input

volume that appears in the stream as part of the hydrograph [Beven, 2001b]. The majority

of studies on ANNs in R–R modeling have used input signals that are merely indirectly

related to these hydrological conditions. For example, previous values of discharge or

water levels can be considered indirect indicators of the hydrological state of a catchment

and are therefore often used as model inputs (e.g., Hsu et al. [1995]; Minns and Hall

[1996]; Campolo et al. [1999]). This study proves that this may not be a good solution,

because the autoregressive model component that is thus introduced can become too

dominant, resulting in lagged model forecasts. Another possible source of information

for the hydrological state is the (weighted) cumulative rainfall over a preceding period

of time (e.g., Shamseldin [1997]; Rajurkar et al. [2004]). Air-temperature or (potential)

evaporation time series are also often used in combination with rainfall time series (e.g.,

Zealand et al. [1999]; Tokar and Markus [2000]). These evaporation and temperature data

can be considered to account for losses in the water balance of a catchment, thereby adding

to the information on the hydrological state. More direct indicators of the hydrological

state are variables related to soil moisture and groundwater levels. Recent studies by

Gautam et al. [2000] and Anctil et al. [2004] have shown that time series of soil moisture

measurements and estimations can be successfully used as ANN model input. de Vos

[2003] and de Vos et al. [2004] have proven the value of groundwater level time series as

ANN inputs.

Three alternatives for hydrological state representation are tested and compared in terms

of both squared error and timing in this work. Firstly, a time series of the non-decaying

moving average of the discharge (Qma) was used as ANN input. A moving average time

series of the discharge can also be considered to represent the hydrological state and has

the advantage over using discharge time series that the correlation with the ANN output

is lower. The near absence of lags in the daily-data model forecasts and the decrease of the

prediction lag effect with increased lead times (see Fig. 3.14) suggest that this approach

would improve timing accuracy. Based on trial-and-error runs using this variable as ANN

input for predicting discharge, a memory length of 192 hours (8 days) for the moving av-

erage of the discharge was used. Secondly, time series of the non-decaying moving average

of the rainfall (Pma) were constructed using a memory length of 480 hours. Lastly, the

simple soil moisture reservoir component of the GR4J lumped conceptual rainfall-runoff

model [Edijatno et al., 1999; Perrin et al., 2003] was used to produce a time series of es-

timated soil moisture (S). Note that this synthetic time series was generated prior to any

ANN modeling and was subsequently used as ANN input as substitute for measurements

related to soil moisture. The GR4J model component for soil moisture comprises a single

reservoir with either net outflow in the case where the potential evaporation (EP ) exceeds
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the rainfall intensity (P ):

S∗ = St−1 −
St−1 (2A− St−1) tanh

(
EP,t−Pt

A

)
A + (A− St−1) tanh

(
EP,t−Pt

A

) if (Pt ≤ EP,t) (3.8)

or net inflow in all other cases:

S∗ = St−1 +

(
A2 − S2

t−1

)
tanh

(
Pt−EP,t

A

)
A + St−1 tanh

(
Pt−EP,t

A

) if (Pt > EP,t) (3.9)

where S∗ can never exceed A. Finally, the percolation from the storage reservoir is taken

into account using the following formula:

St = S∗ ·

[
1 +

(
4S∗

9A

)4
]− 1

4

(3.10)

The hourly rainfall time series and temporally downscaled potential evaporation time

series served as input to the GR4J soil moisture model component. Downscaling of evap-

oration was simply done by taking 24 hourly values equal to the daily value. The filtering

effect of the soil moisture reservoir made the inclusion of further details in the downscal-

ing procedure, such as sinusoidal shapes for daily evaporation cycles, unnecessary. The

only parameter that needed to be defined is the reservoir’s maximum capacity A. Of the

several values that were tested, a maximum capacity of 400 mm produced the best results.

The best initial value for the storage in the reservoir was found to be 180 mm. The result

is presented in Figure 3.15. Anctil et al. [2004] have also used the GR4J model compo-

nent to create soil moisture time series, which too were subsequently used as ANN input.

Reference is made to their interesting paper, which gives a more extensive and in-depth

presentation on the topic of combining soil moisture modeling with ANN R–R modeling.

Tables 3.2 and 3.3 show that the simulations with Pma and the S time series are not

affected by any prediction lags. The performance as indicated by the CNS and CPI , how-

ever, is mediocre and only slightly better than using only the P time series as ANN

input. Using the Qma time series results in decreased (but still noticeable) prediction lags

compared to the simulations with Q, but the CNS and CPI also decrease. Similar CNS

and CPI results are produced by a combination of Pma, Qma and S, but the prediction

lag effect is almost eliminated. It is interesting to note that the test results show that

any combination of these variables with Q still results in prediction lags, suggesting that

the autoregressive component again dominates as a result of using Q as ANN input. In

the case of six-hour-ahead forecasts, however, the average prediction lag decreases from

−2 to −1 due to the additional information in the Pma, Qma and S model inputs. This
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Figure 3.15: Time series of simulated soil moisture using the GR4J soil moisture component.

Table 3.2: ANN model performance for one-hour-ahead forecast using various methods of

hydrological state representation (results over 10 training trials).

Input Time window Config. CNS σCNS
CPI σCPI

Avg. lag

P −5 to −19 15–4–1 0.513 0.047 −10.676 1.134 0.1

P −5 to −19
18–5–1 0.963 0.001 0.121 0.020 −1.0

Q 0 to −2

P −5 to −19
18–5–1 0.803 0.020 −3.557 0.494 −1.0

Qma 0 to −2

P −5 to −19
18–5–1 0.479 0.057 −11.403 1.398 0.0

Pma 0 to −2

P −5 to −19
18–5–1 0.560 0.022 −9.540 0.535 0.0

S 0 to −2

P −5 to −19

24–5–1 0.656 0.044 −7.238 1.054 −0.1
Qma 0 to −2

Pma 0 to −2

S 0 to −2

P −5 to −19

27–5–1 0.964 0.002 0.133 0.035 −1.0

Q 0 to −2

Qma 0 to −2

Pma 0 to −2

S 0 to −2
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Table 3.3: ANN model performance for six-hour-ahead forecast using various methods of hy-

drological state representation (results over 10 training trials).

Input Time window Config. CNS σCNS
CPI σCPI

Avg. lag

P 0 to −14 15–4–1 0.491 0.032 −0.258 0.079 0.0

P 0 to −14
18–5–1 0.791 0.006 0.482 0.015 −2.0

Q 0 to −2

P 0 to −14
18–5–1 0.682 0.012 0.213 0.029 −0.8

Qma 0 to −2

P 0 to −14
18–5–1 0.521 0.061 −0.185 0.150 0.0

Pma 0 to −2

P 0 to −14
18–5–1 0.558 0.054 −0.092 0.134 0.0

S 0 to −2

P 0 to −14

24–5–1 0.688 0.016 0.229 0.039 −0.1
Qma 0 to −2

Pma 0 to −2

S 0 to −2

P 0 to −14

27–5–1 0.806 0.014 0.518 0.035 −1.0

Q 0 to −2

Qma 0 to −2

Pma 0 to −2

S 0 to −2
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proves that even strongly dominant autoregressive model components can be suppressed

by using additional input signals, resulting in better forecast timing.

Figures 3.16 and 3.17 present details of the forecasted time series using the various hydro-

logical state representations. The simulations with Pma in Figs. 3.16(a) and 3.17(a) show

a consistent overestimation of low flows and an inaccurate reproduction of the shape of

the recession curves. Moreover, most peak flows are underestimated, especially in the six-

hour-ahead forecast. The models with S (Figs. 3.16(b) and 3.17(b)) underestimate high

peak flows, but reproduce low flows and recession curves reasonably well (although with

a slight overestimation). There are abrupt changes in the slope of the recession curve,

however, where a more gradual decrease of the discharge would be more accurate. This

is probably a result of using the simple GR4J model for creating the S time series, and

other soil moisture models or soil moisture measurements might produce better results.

The ANNs that used Qma as input (Figs. 3.16(a) and 3.17(a)) show good overall perfor-

mance but are subject to some inaccuracy due to fluctuations that occurred in periods

of low flows. They are best at simulating peak flows, even though more than half of the

peaks were still underestimated significantly (by 10% or more). Neither of the three al-

ternatives can be considered very adequate as sole representation of hydrological state.

However, the simulations with all three alternatives for hydrological state representation

(i.e., Pma, Qma, S) show that the ANN model attempts to combine the best of each

alternative (see Figs. 3.16(b) and 3.17(b)). This can be concluded from the reasonably

good overall performance (mainly resulting from the Qma input) and the correctly timed

forecasts (mainly resulting from the Pma and S inputs). A visual inspection shows that

for the one-hour-ahead forecast, the information from all input signals is approximately

equally weighted, and the six-hour-ahead forecast is slightly dominated by the informa-

tion contained in Qma. Figure 3.18 shows scatter plots of the one-hour-ahead and the

six-hour-ahead forecasts for this model type.

Note that in neither of the above simulations extreme peak flows are well approximated.

One of the reasons for this is that ANN models have difficulties dealing with the extremely

nonlinear catchment response in the case of wet catchment conditions in combination with

rainfall events. Another reason is that these ANN models attempt to simulate the complete

range of the hydrograph and therefore may undervalue the high peak flow errors, since

these flows occur only incidentally. Moreover, there are only a few examples of extreme

peak flows in the training data, and hence the model has only little information on these

types of events to which it can adapt.

Finding better ways of representing hydrological state is an important step toward better

ANN modeling of R–R processes. The various ANN input signals that serve as a way

of state representation can complement each other in terms of information content, but

they are also likely to have some information overlap. The ability to exploit the total
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Figure 3.16: ANN model results for one-hour-ahead forecasted discharge time series (m3/s)

using various methods of hydrological state representation (detail; July 3 to August 11, 1993).
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Figure 3.17: ANN model results for six-hour-ahead forecasted discharge time series (m3/s)

using various methods of hydrological state representation (detail; July 3 to August 11, 1993).
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Figure 3.18: Scatter plots of predicted versus observed hourly discharges (m3/s) for (a) a

one-hour-ahead and (b) a six-hour-ahead forecast based on P , Pma, S, and Qma inputs.

information content depends strongly on the training algorithm and the performance

measure that this algorithm is trying to optimize. The following section will discuss the

choice of performance measures in ANN training for R–R modeling.

3.4.3 Performance Measures for ANN Training

In order to prevent prediction lags, an aggregated objective function was tested that

punishes the ANN model for having a timing error. The timing error used is defined as

the time shift of the entire forecast time series for which the RMSE is at a maximum

(i.e., the peak in Figure 3.14), and is therefore a measure of the overall timing error of

the model. The time shifts over which this check is performed varied from −20 to +20

time steps.

Training was performed using aggregated objective functions, which consist of combina-

tions of the products of the RMSE, the MSLE and a timing error factor (TEf). The TEf

is 500 if the timing error is non-zero and 1 if the timing error is zero. The value of 500

was selected by trial and error from a set of arbitrarily chosen numbers. This way the

model is penalized for having a timing error other than zero. The idea for this method is

taken from Conway et al. [1998] who used a Genetic Algorithm to train ANN models for

predicting solar activity.

The ANN performance results in terms of mean and standard deviation over the best 40

out of 50 training trials for lead times of one and six hours are presented in Tables 3.4 and

3.6. The 10 worst-performing trials were deleted because they are outliers that are not

representative for the ANN model behavior. The results for the models trained using the
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Table 3.4: Evaluation performance of one-hour-ahead forecasts of ANN models that are trained

with various objective functions, including a timing correction factor. Presented are the mean

and standard deviation over 40 simulations.

Obj. Function CNS CPI TE MSLE

CNS 0.96± 0.00 0.13± 0.04 −1.00± 0.00 24.6± 2.3

MSLE 0.96± 0.00 0.13± 0.02 −1.00± 0.00 24.4± 1.1

CNS · TEf 0.52± 0.48 −10.5± 11.5 −0.89± 0.39 750± 800

MSLE · TEf 0.62± 0.37 −8.2± 9.0 −0.90± 0.50 586± 816

CNS · MSLE · TEf 0.89± 0.11 1.55± 2.56 −1.00± 0.00 115± 147

Table 3.5: Evaluation performance of one-hour-ahead forecasts of ANN models that are trained

with various objective functions, including a timing correction factor. Presented are only the best

models.

Obj. Function CNS CPI TE MSLE

CNS 0.97 0.23 −1.00 21.6

MSLE 0.97 0.17 −1.00 22.1

CNS · TEf 0.96 0.12 −1.00 22.8

MSLE · TEf 0.96 0.16 −1.00 23.8

CNS · MSLE · TEf 0.97 0.20 −1.00 21.7

Table 3.6: Evaluation performance of six-hour-ahead forecasts of ANN models that are trained

with various objective functions, including a timing correction factor. Presented are the mean

and standard deviation over 40 simulations.

Obj. Function CNS CPI TE MSLE

CNS 0.80± 0.01 0.51± 0.02 −1.05± 0.22 130± 9

MSLE 0.80± 0.01 0.49± 0.02 −1.15± 0.36 138± 9

CNS · TEf 0.18± 0.57 1.04± 1.43 −0.93± 1.87 1410± 2290

MSLE · TEf 0.31± 0.42 0.71± 1.05 −0.93± 1.87 875± 656

CNS · MSLE · TEf 0.46± 0.38 0.35± 0.93 −0.61± 1.16 632± 513



46 Constraints of ANNs for R–R modeling

Table 3.7: Evaluation performance of six-hour-ahead forecasts of ANN models that are trained

with various objective functions, including a timing correction factor. Presented are only the

best models.

Obj. Function CNS CPI TE MSLE

CNS 0.82 0.55 −1.00 123

MSLE 0.82 0.56 −1.00 115

CNS · TEf 0.78 0.46 0.00 150

MSLE · TEf 0.78 0.45 0.00 158

CNS · MSLE · TEf 0.79 0.47 0.00 141

timing error factor in the objective function show an improvement in timing only at the

cost of a degradation of other performance measures. The single best results out of these

trials according to expert judgment as presented in Tables 3.5 and 3.7, however, show

some promising results. Apparently, some solutions were found for a lead time of 6 hours

in which the ANNs are capable of making correctly timed forecasts, while maintaining

reasonably good performance in terms of other statistics. This proves that for six-step-

ahead forecast models, in which the influence of the last recorded observation is less than

in the one-step-ahead models, it is possible to find good optima that have correct forecast

timing in combination with good overall fit. The one-step-ahead forecasts seemed not to

be affected by the measures to prevent timing errors.

Unfortunately, the LM training algorithm has more difficulty in finding optima when

implementing timing in the objective function. This is probably due to the introduction

of the multiplication factor TEf, which makes the gradients of the objective functions

extremely irregular. The use of optimization algorithms that do not rely on gradients such

as the Genetic Algorithm, as used by Conway et al. [1998]) might alleviate this problem.

Further research on timing errors in ANN R–R modeling and on possible solutions was

conducted by Abrahart et al. [2007].

3.5 Summary and Discussion

The purpose of this chapter was to find whether multi-layer, feedforward ANNs can be

effectively used as R–R models, and to investigate the role of hydrological state represen-

tation in ANN R–R modeling. The results of the one-day-ahead forecasts using daily data

were promising and in accordance with the consensus that (at least in some cases) ANNs

are good alternatives for traditional R–R modeling approaches. However, the simulations

with hourly data were afflicted by lags in the ANN model forecasts. Previously observed

values of discharge are often used as ANN model inputs, since they are considered indi-

cators of the hydrological state. Such data, however, introduce an autoregressive model
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component in the ANN model. The results show that high autocorrelation of the discharge

time series may result in an uneven spread of the information content in network input.

This leads to the autoregressive model component becoming too dominant and the ANN

model producing a forecast that is very similar to the last known discharge, effectively

causing timing errors in the predictions. The prediction lag effect is especially significant

for short lead times, but also forecasts with longer lead times were affected by it. This

issue was discussed from two points of view: (1) hydrological state representation and

(2) model performance measures for ANN training. Firstly, instead of representing the

hydrological state using previous discharge, a number of alternatives was tested. The best

results, in terms of timing and overall fit, were obtained using a combination of hydrologi-

cal state representations: a moving average over the previous discharge, a moving average

over the previous rainfall, and the output of the simple GR4J soil moisture model. The

usefulness of the latter proves that complementary conceptual models can be valuable

additions to ANN model approaches. Secondly, it is concluded that not all differences

between modeled and observed hydrograph characteristics (e.g., timing, peak values, vol-

ume) can be adequately expressed by a single performance measure such as the MSE.

The use of a timing error statistic during ANN training as a method of increasing timing

accuracy of ANN rainfall-runoff model forecasts showed to be only partly effective since

the performance according to other performance measures is decreasing. There seems to

be a trade-off between the objectives of correct timing and good overall fit. However, some

weight sets were found that indicate the possibility of finding an acceptable compromise

between the two. The results from this chapter suggest ANN models will benefit from

using more than one performance measure in their training.
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Chapter 4

Multi-Criteria Training of Artificial Neural Network

Rainfall–Runoff Models

Modified from:

de Vos, N. J., Rientjes, T. H. M., 2008. Multi-objective training of artificial neural

networks for rainfall–runoff modeling. Wat. Resour. Res. 44, W08434.

Abstract This chapter presents results on the application of various optimization algo-

rithms for the training of artificial neural network rainfall-runoff models. Multi-layered

feedforward networks for forecasting discharge from two meso-scale catchments in dif-

ferent climatic regions have been developed for this purpose. The performances of the

multi-criteria algorithms MOSCEM–UA and NSGA–II have been compared to the single-

criterion Levenberg–Marquardt and Genetic Algorithm for training of these models. Per-

formance has been evaluated by means of a number of commonly applied objective func-

tions and also by investigating the internal weights of the networks. Additionally, the

effectiveness of a new objective function called Mean Squared Derivative Error, which

penalizes models for timing errors and noisy signals, has been explored. The results show

that the multi-criteria algorithms give competitive results compared to the single-criterion

ones. Performance measures and posterior weight distributions of the various algorithms

suggest that multi-criteria algorithms are more consistent in finding good optima than

single-criterion algorithms. However, results also show that it is difficult to conclude if

any of the algorithms is superior in terms of accuracy, consistency and reliability. Besides

the training algorithm, network performance is also shown to be sensitive to the choice of

objective function(s), and including more than one objective function proves to be helpful

in constraining the neural network training.

4.1 Introduction

R–R models are often calibrated using a single objective function that aggregates the

difference between an observed and a simulated time series such as river discharge. Various

49
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researchers, however, have argued that the model calibration problem is inherently multi-

criteria (MC) and that the single-criterion (SC) paradigm signifies a loss of information

with respect to the original hydrological signal (see Gupta et al. [1998]). SC calibration

therefore can be considered inappropriate if the dimension of the parameter space greatly

exceeds the single dimension of the objective function [Gupta et al., 2008]. Especially when

using automatic calibration algorithms, there is increased risk of finding parameter values

that are physically unrealistic and that compensate for faulty values of other parameters,

but also measurement errors and model structural errors [Sorooshian and Gupta, 1983b;

Boyle et al., 2000; Madsen, 2000]. MC calibration, on the other hand, can use multiple

model outputs such as river discharge, stream chemistry or storage variables, or a single

output using multiple objectives that reflect specific characteristics.

The use of multiple objectives has generally focused on so-called preference-based meth-

ods, in which weights are assigned to objective functions and the MC problem is simplified

as a SC one (e.g. [Madsen, 2000; Seibert, 2000; Cheng et al., 2002; Seibert and McDonnell,

2002; Rientjes, 2004]). Studies are also presented that use no-preference MC algorithms

for conceptual R–R model calibration (e.g., [Gupta et al., 1998; Yapo et al., 1998; Boyle

et al., 2000; Vrugt et al., 2003a; Khu and Madsen, 2005; Kashif Gill et al., 2006; Tang

et al., 2006; Fenicia et al., 2007a; de Vos and Rientjes, 2007, 2008b]). These studies show

that MC model calibration is effective in knowledge-based R–R modeling in the sense

that information contained in the data series is used more effectively, which generally

leads to improved model performance. Additionally, some insight is gained into why and

under what circumstances models fail (e.g., [Gupta et al., 1998; Boyle et al., 2000]). Still,

it is found that there is often a clear trade-off between model performance on different

response modes of a catchment as a result of inadequacies in the functioning of a model

[Wagener et al., 2003b].

This chapter presents a study on MC calibration in data-driven ANN modeling for R–

R simulation. Although model structures from ANN models differ fundamentally from

those of conceptual models, training of these models is in essence similar: model param-

eters are optimized by minimizing residual errors that represent the mismatch between

model output and observed data. While in conceptual modeling parameters often have

some interpretable physical meaning, in data driven R-R modeling such interpretation is

commonly missing. Recent research, however, on the ANN by for instance Wilby et al.

[2003]; Sudheer and Jain [2004]; A. Jain and Srinivasulu [2006] show that some physically

interpretable information can be found in ANN weights and hence confirm the similarities

between ANN training and conceptual model calibration. It is therefore reasoned that the

MC paradigm is also applicable to ANN R–R modeling and that it could lead to better

extraction and utilization of information in available time series. The hypothesis is that

an MC algorithm finds major optima on the response surface of multiple objective func-

tions, making it more likely to find a stable region that allows for consistency in model
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performance and thus improves model reliability.

The goals of this chapter are therefore (1) to test MC optimization algorithms for the

training of ANN R–R models (2) to assess effectiveness when compared to traditional SO

algorithms, (3) to test a number of combinations of objective functions for training of the

ANNs and (4) to compare the a posteriori weight distribution of ANNs after both SC

and MC training. ANN models are developed for the Leaf River basin and the Geer River

basin (see Appendix A). These models are trained with the SC Levenberg–Marquardt

(LM) and Genetic Algorithm (GA) algorithm and the MC NSGA–II and MOSCEM–UA

algorithms.

4.2 Artificial Neural Network Model Description

4.2.1 Input

The ANN models used in this chapter are again feedforward networks with one hidden

layer of neurons (see Figure 4.1 for an example). The transfer function that was used in

both the hidden and the output layer is the logistic function (Equation 4.1). Because of

the saturation and the output range of this function, all input data were linearly scaled

between −1 and 1 and the output data between 0 and 1.

f (x) =
1

1 + exp (−x)
(4.1)

4.2.2 Training

Just as in Chapter 3, the ANN models are trained based on a so-called supervised training

procedure which allows the network to simulate the hydrological system by examining

input-output examples from it. Work by Samani et al. [2007] and also the previous chapter

show that the popular steepest-descent backpropagation algorithm is sometimes easily

outperformed by second-order gradient algorithms and a wider consensus has been reached

that such algorithms are therefore preferable over first-order methods.

Any gradient-based algorithm, however, still commonly suffers from the issue that it is

essentially a local search method. It therefore carries a significant risk of getting stuck

in local optima. Research by Duan et al. [1992], Goldberg [2000] and [Deb, 2001] shows

the effectiveness of global, evolutionary-based algorithms in parameter estimation. The

Genetic Algorithm (GA) is the most popular evolutionary algorithm and has been suc-

cessfully applied to ANN training by, for example Rooij et al. [1996] and Sexton et al.

[1998]. It has also been used for so-called neuro-evolution, in which the dual problem of

parameter estimation and model structural optimization is solved simultaneously (e.g.
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Figure 4.1: Example of the type of feedforward ANNs used in this study. This is an ANN with

one hidden layer and one output neuron.

Dawson et al. [2006]). As opposed to gradient-based algorithms, it is shown that opti-

mization on evolutionary principles generally performs better in terms of accuracy and

consistency, although often at the expense of extra computational efforts. A description

on principles of a GA is ignored here and reference is made to the textbook of Goldberg

[2000].

SC algorithms that are tested in this research are the LM algorithm and GA. The stan-

dard implementation of LM in the MATLAB Neural Network Toolbox was used, with

no memory reduction settings. The GA as implemented in the Genetic Algorithm Opti-

mization Toolbox [Houck et al., 1995] was used, with tournament selection, arithmetic

crossover and non-uniform mutation. The two evolutionary-based MC algorithms that are

used are NSGA–II [Deb et al., 2002] and MOSCEM–UA [Vrugt et al., 2003a], and they

are discussed in more detail in Section 4.3. All evolutionary algorithms optimize weights

in the range between −8 and 8, which was considered sufficiently large to find reasonable

solutions. The LM algorithm was not bounded in its search range.

Randomness is introduced in the ANNs initialization, in which normally distributed ran-

dom values for the network weights are generated. Additionally, the evolutionary algo-

rithms occasionally use random operations in their procedure. The outcome of the re-

sulting randomness may be that different objective function optima are found for each

optimization run. This variability in parameter estimates can be interpreted as a measure
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of uncertainty of the combination of ANN model and training algorithm. Since random-

ness may have a pronounced effect on model performance in this research, all algorithms

are run over ensembles. For the SC algorithms the weights are independently re-initialized

and trained 20 times, while for the MC algorithms this ensemble size is set to 10. The

smaller number was chosen because a single MC algorithm run generally already produces

a significant number of solutions.

4.2.3 Evaluation

In this research, six numerical performance measures are considered for ANN model eval-

uation of which three are thought to give an expression of overall fit: the MRE, CNS and

CPI . The other three (M4E, MSLE and MSDE) are meant to evaluate specific character-

istics of a hydrograph. The following two paragraphs discuss the measures in each of the

two groups. Mathematical descriptions of the performance measures that were not already

presented in Chapter 3 are shown below. In these equations, K is the total number of

data elements, Qk and Q̂k are the observed and the simulated discharges at the kth time

interval respectively.

MRE =
1

K

K∑
k=1

∣∣∣Q̂k −Qk

∣∣∣
Qk

(4.2)

M4E =
1

K

K∑
k=1

(
Q̂k −Qk

)4

(4.3)

MSDE =
1

K

K∑
k=1

((
Q̂k − Q̂k−1

)
− (Qk −Qk−1)

)2

(4.4)

The Mean Relative Error (MRE) is a relative indicator of absolute model errors. The

well-known Nash–Sutcliffe coefficient of efficiency (CNS) [Nash and Sutcliffe, 1970] and

the Persistence Index (CPI) [Kitanidis and Bras, 1980] scale the mean squared error and

are therefore more indicative of performance on high flows. The CPI is especially useful

when previous discharge values are used as input to an ANN model since it evaluates

models in comparison to a persistence model, which is a model that presents the last

observation as a prediction (see [Anctil et al., 2004; de Vos and Rientjes, 2005]). The

CNS and CPI are not used here as objective functions during training but only serve as a

performance indicator after training on other objective functions.

The mean fourth-power error (M4E) is considered an indicator of goodness-of-fit to peak

flows, since large residuals are given a lot of importance. The mean squared logarithmic

error (MSLE), which is based on the logarithmic function by Hogue et al. [2000] (also see

Fenicia et al. [2006]) is more suitable for low flows due to the logarithmic transformation.
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In de Vos and Rientjes [2007], the Mean Squared Derivative Error (MSDE) objective

function is proposed. It expresses the difference between the first-order derivatives of

the simulated and the observed discharge, which is equal to the difference in residuals

between two successive time steps. The MSDE serves as an indicator of the fit of the

shape of the hydrograph, and it specifically penalizes for timing errors and noise [de Vos

and Rientjes, 2007]. Since this objective function does not take into account absolute

differences but only the shapes of the simulated and observed hydrographs, it should be

used in combination with residual-based functions such as the MRE or M4E. If only the

MSDE was used for model calibration, it would result in a model that approximates the

shape of the hydrograph but possibly has a large shift in flow magnitude. Note that the

MSDE is related to the well-known statistic that counts the number of sign changes in

the sequence of residuals, used by the National Weather Service [Brazil, 1988].

4.3 Multi-Criteria Training of ANN Rainfall-Runoff Models

4.3.1 Single-Criterion versus Multi-Criteria

In a SC model calibration approach, model performance is expressed by a single objective

function that reflects a subjective choice of highlighting a specific aspect of the hydrograph.

This objective function is then optimized to find what is regarded as the optimal model

parameters. MC methods, on the other hand, reveal a set of solutions that represent the

trade-off between the objectives involved, which is often referred to as the Pareto front.

This front is commonly visualized in two-dimensional Pareto plots. The benefit of this

approach is that more information from the data is used in the evaluation of the model,

and if a model performs well on multiple objectives it implies performance consistency and

thus the model is likely to be more reliable. Additionally, having identified MO trade-off

solutions, the choice of which solution is preferred has become a more objective one [Deb,

2001]. Finally, the nature of the trade-off between various objectives reveals information

on the adequacy of the model structure and parameters under investigation.

The above has been investigated in conceptual R–R modeling but not as much in data-

driven R–R modeling. In ANN R–R modeling many different model structures can be

selected, and the structures commonly have more weights than conceptual models have

parameters. Moreover, given the black box nature of ANN models, weights are commonly

thought to have little direct relation to real-world properties or measurable quantities,

which makes the a priori estimation of their reasonable ranges difficult. It is for these

reasons that ANN models are prone to the drawbacks that could arise when the training

procedure is simplified by using a single objective, perhaps even more so than knowledge-

based hydrological models.
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A literature review reveals that MC training of ANN R–R models has received little

attention and that its potential is not well assessed. In other research fields, however, a

small number of studies report on applications of MO algorithms in ANN model training.

Examples include Albuquerque Teixeira et al. [2000], Abbass [2003], Jin et al. [2004], and

Giustolisi and Simeone [2006], who all focused on simultaneous minimization of output

errors and optimization of the complexity of ANN model structure. The goal of using

the latter was to either find an optimal ANN architecture or to prevent overtraining of

the network. This work differs from such approaches in that it uses fixed ANN model

structures and that SC and MC training algorithms are tested for various combinations

of objective functions.

4.3.2 Multi-Criteria Algorithm Descriptions

In the following two paragraphs the NSGA–II and MOSCEM–UA algorithms are briefly

introduced. Both are based on evolutionary search procedures and are designed to solve

MC optimization problems. For detailed descriptions reference is made to the original

papers mentioned below and to the work of Tang et al. [2006] who tested and compared

MC evolutionary algorithms for calibration of conceptual R–R models.

The Non-dominated Sorting Genetic Algorithm II (NSGA–II) is proposed and discussed

in [Deb, 2001] and [Deb et al., 2002]. It uses the following evolutionary operators to create

an offspring population from the original parent population: binary tournament selection,

simulated binary crossover and polynomial mutation. The new population is selected from

the parent and offspring population by sorting individuals based on ranks that express

their degree of non-domination. In case of equal non-domination ranks, individuals in

lesser crowded regions of the Pareto space are preferred over the other individuals in order

to preserve the diversity of the population. The most important settings of the NSGA–

II algorithm are the population size and number of generations, and they were chosen

based on both experience with the algorithm and on trial-and-error. For all simulations of

ANN1 (i.e. the Leaf River basin model), NSGA–II uses 80 as population size and 1, 200

for number of iterations. For simulations with the more parsimonious ANN2 (i.e. the Geer

River basin model), a population size of 60 and 800 iterations has been selected, reducing

the number of function evaluations by a factor 2. The same settings are applied to the

SC GA optimization to make the comparison between the algorithms a fair one. Other

settings that are kept constant throughout this study are the probabilities of crossover

and mutation, which are set to 0.9 and 0.05 respectively, and the crossover and mutation

distribution indices, which are both set to 20. These values are found by testing some

common values as suggested by [Deb, 2001].

The MOSCEM–UA is developed by Vrugt et al. [2003a] and is based on the Shuffled

Complex Evolutionary (SCE–UA) algorithm [Duan et al., 1992]. It takes a uniformly
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distributed initial population of points and ranks and sorts them according to a fitness

assignment concept that is based on the work of Zitzler and Thiele [1999]. From the pop-

ulation, a number of complexes are constructed for which parallel sequences are started.

These sequences iteratively evolve the complexes based on the probabilistic covariance-

annealing method of the SCEM–UA algorithm [Vrugt et al., 2003b] to avoid clustering of

solutions in the most compromised region among the objectives. Finally, new complexes

are formed through a process of shuffling. The algorithm’s most important settings, the

population size and the number of complexes, were again chosen based on experience and

trial-and-error. For the ANN1 simulations the MOSCEM–UA algorithm uses 20 com-

plexes, 2, 400 random samples and 100, 000 draws. For ANN2 MOSCEM–UA uses 16

complexes, 1, 600 samples and 60, 000 draws. Other settings are the number of evolution-

ary steps before reshuffling (set at the number of points in each complex divided by 4)

and a scaling factor that determines the acceptance of new population members during

the evolution of the complexes (set at 0.5). These values are equal to the ones used by

[Vrugt et al., 2003a].

4.3.3 Combinations of Objective Functions

The set of objective functions that is used during MC calibration should ideally measure

different aspects of the differences between observed data and model simulations, so as

to extract as much useful information as possible from the data [Gupta et al., 1998].

Examples from the literature of objective function combinations that are based on a

distinction between flow magnitudes are peak flow versus overall fit [Yapo et al., 1998],

low flow versus peak flow versus overall fit [Khu and Madsen, 2005], and low flow versus

average flow versus high flow [Tang et al., 2006]. Another example is the work by Boyle

et al. [2000], who divided the hydrograph into a driven and a non-driven part, based on

whether or not there is precipitation in the system.

A common shortcoming of feedforward ANN R–R models is their inability to correctly

forecast the timing of peaks, as discussed by de Vos and Rientjes [2005, 2008a]. Since the

MSDE penalizes for such timing errors it is likely to be complementary to most other

objective functions, which is why it is tested in combination with the MRE. Another

combination of two seemingly complementary objective functions is that of the MSLE and

the M4E, since they represent the fit on low flows and high flows. The third combination

involves all four objectives functions: MSLE, MRE, M4E and MSDE.

A principal difference between MC and SC algorithms is that the former can optimize all

objective functions simultaneously while the latter only allows for separate optimization

of each objective function. To allow for a comparison of MC and SC results the following

approach was taken. For two-objective training, the SC algorithm is run three times: twice

for optimization of the two objective functions separately and once where an aggregate of
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the two objective functions in the form of their product is taken. The latter is meant to

approximate a single optimal trade-off point in Pareto space that values both objective

functions equally. For each of the training trials the weights are fixed and for the second

objective function the values on training and evaluation data are calculated. In the two-

dimensional Pareto plots the combination of both values of both objective functions are

subsequently presented (although the training was performed on only one or on the prod-

uct of two). A three-point approximation of the complete set of Pareto-optimal solutions

is hereby generated, allowing a comparison between SC and MC methods.

4.4 Case Study

4.4.1 Data and Models

Data sets from two different river basins have been used in this work (see Appendix A).

The first is from the Leaf River basin, located north of Collins, MS, USA. The second

data set is from the Geer River basin, which is located in the north of Belgium, North

West Europe, and is a subbasin of the river Meuse. Table 4.1 presents descriptions and

characteristics of both data sets.

In Chapter 3 the same data set was used and results revealed that ANN model perfor-

mance drastically improved when a time series of soil moisture was considered as model

input. Such a time series reflects the change of soil moisture storage in the catchment by

meteorological forcing. A synthetic time series has again been generated using the simple

soil moisture reservoir component of the GR4J lumped conceptual R–R model (see Sec-

tion 3.4.2). Time series of moving averages of rainfall with a window length of 10 days

have also been generated for both data sets.

Time series have been split into training and evaluation parts, which share similar statisti-

cal features (see Table 4.1). Since the training period contains the largest discharge value,

no extrapolation issues were encountered in the present study. Note that these implemen-

tations of the evolutionary algorithms were incapable of applying early stopping through

cross-evaluation in order to prevent overtraining. Hence, no cross-evaluation procedure

was followed for any of the algorithms in order to allow a fair comparison.

Table 4.2 shows the ANN architectures that have developed for the two data sets using the

methods described in Section 4.2. ANN1 is applied to the Leaf River basin while ANN2

is applied to the Geer River basin. Because of the larger size of the Leaf River basin

it has longer memory and additional input neurons and one extra hidden neuron have

consequently been defined. The increased complexity leads to the ANN1 model having

twice as many weights as ANN2.
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Figure 4.2: Pareto plots of a four-objective optimization run using NSGA–II on Leaf River

ANN1 model.
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Table 4.2: Description of the two ANN configurations used for simulations. Q is discharge, S

is soil water storage, G is groundwater heads, EP is potential evaporation, Pareal,MA is moving

average of areal rainfall, Pareal is areal rainfall.

Model Data Inputs Time window Configuration No. of weights

ANN1 Leaf River

Q [−1 0]

9–3–1 34

S [−1 0]

EP [−2]

Pareal,MA [−1 0]

Pareal [−1 0]

ANN2 Geer River

Q [0]

6–2–1 17

S [0]

G [0]

EP [0]

Pareal,MA [0]

Pareal [0]

4.4.2 Effects of Choice of Objection Functions

The results of MO training on four objectives (MSLE, MRE, M4E, MSDE) for ANN1 using

the NSGA–II algorithm are presented in the two-dimensional projections in Figure 4.2,

and they show the trade-off and correlations between the various objective functions. The

spread in the solutions in Figures 4.2(c) and 4.2(d) is quite large indicating a significant

complexity of a four-dimensional problem. Figure 4.2(c) shows a clear correlation between

the MSLE and MRE objective functions, even though they are supposed to represent

different hydrograph characteristics. Somehow this difference is ignored by the algorithm

and the shape of the four-dimensional front of Pareto solutions is strongly dominated

by the trade-offs between the MSDE and the MSLE and MRE functions and trade-off

between the MSLE and M4E (i.e., between errors on low flows versus high flows). These

results and the fact that the MSDE objective function represents an important indicator

of model performance, show that MC training using the MSDE can result in finding a set

of important solutions that is often overlooked.

Figure 4.3 shows a scatter plot from the evaluation period for the best solutions found

for each of the objectives of a training using NSGA–II on four objectives of ANN1. The

figure shows that MRE and MSLE commonly overestimate discharge observations while

MSDE commonly underestimates observations. M4E shows small scatter at low flows

while scatter increases at higher flows. Overall the scatter plot indicates that the four

solutions of the four-dimensional optimization are quite similar, indicating the region in

which the algorithm has found its solutions is small.

Numeric results of training ANN1 and ANN2 using various combinations of objective
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Figure 4.3: Scatter plot for Leaf River ANN1 model showing the single best solutions for

each objective function found by a four-objective training run by NSGA–II. Results over one

hydrological year from the evaluation period are presented. One out of every five solutions is

plotted for improved readability.
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functions and algorithms are presented in Tables 4.3 and 4.4 respectively. Note that the

mean and standard deviations apply to the best 80% of solutions found by the algorithm,

and individual solutions can still have higher or lower values for any of the objective

functions. This threshold of 80% was arbitrarily chosen to exclude poorly performing

solutions without disregarding many solutions. The results in Tables 4.3 and 4.4 are

considered a representation of the location and size of the region in which the algorithm

finds its well-performing solutions.

Most combinations of MRE and MSDE functions have higher accuracy than the train-

ing on MRE alone while the spread is also smaller. This indicates that the addition of

the MSDE function constrains the optimization to a smaller and better solution region,

thereby indicating the effectiveness of the function in ANN R–R training. Results fea-

turing the MSLE and M4E functions show that including more objective functions not

necessarily improves the quality of the training results. This is most obviously seen in the

results for ANN1, whereas ANN2 generally still improves by considering more objective

functions. It is assumed that this is most likely due to a strong trade-off between the

various objective functions (most notably the M4E). The nature of this particular com-

bination of model, data and objective functions results in a solution space with multiple

regions of attraction, and the effectiveness of the training algorithm becomes very deter-

mining for the quality of the training procedure. In this light, it is highly interesting that

the NSGA–II algorithm performs best on ANN1 when all objective functions are used.

Apparently, this algorithm is the only one able to deal with this complex solution space.

In summary, these results are an indication that the inclusion of multiple appropriate

objective functions can result in more reliable training of ANN models.

4.4.3 Performance of Training Algorithms

Tables 4.3 and 4.4 also allow comparison of the various algorithms and indicate that

LM is very powerful and often has the highest accuracy on most objective functions

for both ANN catchment models. Nevertheless, it is commonly outperformed by other

algorithms on the MSDE function. The GA may be considered the poorest performer and

has difficulty with optimizing the M4E function. NSGA–II outperforms MOSCEM–UA

on the Leaf River model (ANN1) but the two produce very similar results for the Geer

model (ANN2).

The above is shown in more detail in Figures 4.4 and 4.5, which show objective space plots

for combinations of objective functions, optimization algorithms, for ANN1 and ANN2

respectively. The criteria to compare algorithm performance from these figures are (1) the

closeness of the solutions to the origin (i.e. accuracy), (2) the similarity of the shape and

location of the evaluation results compared to the training results, and (3) low spread

of results. The latter two specifically indicate consistency and reliability. Following the
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Figure 4.4: Pareto plots of Leaf River ANN1 model performance after being trained on the

MRE and MSDE objective functions using single-criterion (a and b) and multi-criteria (c and

d) algorithms.
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description in Section 4.3.3, for SC optimization the figures show three training trials that

together approximate the front of Pareto solutions Note there are few solutions outside

the bounds of the plots where an algorithm got stuck in a very poor-performing local

optimum.

Figure 4.4 show objective space plots on the performance of model ANN1 after training

using, respectively, the LM, GA, NSGA–II and MOSCEM–UA algorithms on the MRE

and MSDE objective functions. The LM algorithm generally finds small solution regions

that are close to the origin, but no clear Pareto front is discernible since the algorithm has

some difficulty in optimizing the MSDE function. Even with the MRE·MSDE objective

function the MSDE is basically ignored, judging from the similarity with MRE training.

The nature of the MSDE likely causes the response surface of this objective function to

be very irregular and this causes the gradient-based LM to get stuck in local minima.

Figure 4.4(b) shows that the GA optimizes the MSDE function better than the LM

although solutions are often quite far from the origin and have large spread. This suggests

an inability of the GA to fine-tune its solutions to higher accuracy, a problem that is

common in GA optimization. The grey areas in Figures 4.5(c) and 4.5(d) delimit the

region in which the Pareto solutions fall that were found after 10 training runs with the

MC algorithms. This way, a region of Pareto solutions is found that is more representative

of algorithm performance than a single front of Pareto solutions found after a training

run. The dots represent results from evaluation. The MOSCEM–UA has many duplicate

solutions which is why fewer dots than NSGA–II are plotted in both Figures 4.4 and

4.5. The solutions indicate a trade-off between the MRE and MSDE although the spread

is low as opposed to the LM and GA results. The Figures 4.4(c) and 4.4(d) show that

the NSGA–II and MOSCEM–UA perform similar on the training data. The latter shows

slightly more consistency since the evaluation results are very similar to the training

results in terms of location and shape. A comparison between the subfigures of Figure

4.4 proves that both MC algorithms find a better set of trade-off solutions than the SC

algorithms, even when the product of both functions is taken in the latter case. The MC

algorithms also show to be more consistent in terms of both objective functions since both

training and evaluation solutions fall within a relatively small region.

Likewise, simulations were done for the more parsimonious ANN2 with the MSLE and

M4E functions for low and high flow, the results of which are shown in Figure 4.5. It

seems that LM again is quite consistent in finding accurate solutions in a small region.

However, a significant number of results are scattered in low accuracy regions, indicating

the algorithm gets stuck in local optima. Moreover, it is difficult to discern a clear front

of Pareto solutions which is unexpected given the theoretical trade-off between high-flow

and low-flow fit. The training with the MSLE·M4E objective function, on the other hand,

seems to give quite accurate and consistent results, proving that even a SC algorithm is

able to benefit from using multiple objectives in some way. LM generally outperforms the
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Figure 4.5: Pareto plots of Geer River ANN2 model performance after being trained on the

MSLE and M4E objective functions using single-criterion (a and b) and multi-criteria (c and d)

algorithms.
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Figure 4.6: Scatter plots for Leaf River ANN1 model showing the best solutions for MRE

found by various algorithms. Results over one hydrological year from the evaluation period are

presented. One out of every five solutions is plotted for improved readability.

GA in a similar way to what is shown in Figure 4.4. The GA shows a clear trade-off in

its Pareto solutions and has no outliers in bad-performing regions. It therefore seems to

search in the right region, but is not able to consistently produce accurate results judging

from the large spread in results.

When comparing the MC results in Figure 4.5(c) and 4.5(d) it can be observed that

the NSGA–II often finds Pareto solutions that are closer to the origin, indicating higher

accuracy (the left side of the gray polygon). Although the size of the gray area is large due

to some less accurate training runs, and while the evaluation results do not show a clear

trade-off, the majority of NSGA–II solutions has high accuracy and low spread. NSGA–II,

however, seems to give slightly less satisfying evaluation results. The MOSCEM–UA is

more consistent judging from its narrow Pareto region and the shape of the evaluation

results, but is slightly less accurate judging from the distance to the origin.

Figure 4.6 shows a scatter plot with the best solutions found by the four different algo-

rithms for the MRE objective function (the MC solutions were taken from the MRE versus

MSDE training results). The differences between the results of the various algorithms are

often just as large as those between the results for the various objective functions. The

latter, however, show more consistency, whereas the former are noisier. Nevertheless, this

suggests that the performance of ANN models can hinge just as much on the choice of

training algorithm as on the choice of objective function(s).
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4.4.4 Weight Analysis

The absolute values of the posterior weight distribution of the Geer River ANN2 model

trained on MSLE and M4E using SC and MC training algorithms are displayed in the

box-and-whisker plots of Figure 4.7. The weights on the connections between the various

inputs (see Table 4.2) and the two hidden neurons (indicated as HN1 and HN2) are

displayed in the first 12 columns. The next two columns show the weights on the bias

signals to the hidden neurons. The last three columns show the weights on the signals to

the output neuron from the two hidden neurons and the bias signal, respectively. Each

column contains two bars, which show the distribution for the best 20 solutions according

to the MSLE (left bar) and the M4E (right bar) of the training period.

The relative contribution of each of the input variables follows from the absolute values

of the weights. The previous discharge, soil moisture and precipitation often dominate,

whereas the groundwater and evaporation input variables generally gets assigned small

weights, thereby limiting their influence. Another interesting observation from Figure 4.7

is that there are significant differences between the optimized weight distributions found

by the various algorithms. The LM algorithm shows very large values and spread in values

for some of its variables, indicating that it often finds different solutions for each training

run. The GA has significant spread as well, and seems to have difficulty in deciding which

input variable should be assigned the biggest weights. MOSCEM–UA and NSGA–II to

some degree seem comparable in both their values and in their spread of solutions. On

the one hand, this is not surprising considering the resemblances in terms of objectives

between these algorithms (see Figures 4.4 and 4.5). On the other hand, the algorithms

work differently and the fact that both end up in the same solution region indicates that

this is a stable region of attraction.

When comparing weights of SC to MC optimization, results show that spread in the op-

timized weight distribution is largest for the SC algorithms. SC optimization also shows

large changes in sensitivity toward specific inputs while in MC optimization only a small

number of inputs have significant effect whereas other inputs have relatively small ef-

fect. When reviewing the results from Figures 4.6, this difference in sensitivity between

algorithms is reflected in the spread of results in the solution region. As such, the MC

algorithms seem to be more consistent and stable in their optimization, since only a few

relevant inputs appear to be sensitive and weight estimates are found in a more consistent

manner. Training on other objective functions (not shown here) showed similar differences

in spread between the algorithms.
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Figure 4.7: Posterior weight distributions of training results the ANN2 model. Figure (a),

(b), (c) and (d) show the LM, GA, NSGA–II and MOSCEM–UA results, respectively. The 17

columns represent the 17 ANN weights and the two bars in each plot the best 20 solutions for

the MSLE (left boxes) and M4E (right boxes). The boxes depict the median and upper and

lower quartiles. The whiskers show the most extreme values within 1.5 times the interquartile

range from the ends of the box. Circles are outliers.
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4.5 Summary and Discussion

Similar to MC calibration of conceptual hydrological models, trade-offs between objective

functions also manifest themselves in MC ANN training. By constraining the search for

optimal ANN weights by using MC training, solutions were found that offer a good com-

promise in performance on multiple objectives. In this research it is also shown that by

using multiple objectives more information can be extracted from the data. Results indi-

cate that by using MC training, more stable regions in the weight space can be identified

which result in more reliable models compared to SC training.

However, the comparison of the LM, GA, MOSCEM–UA and NSGA–II algorithms shows

that they all have their respective pros and cons. The LM algorithm often gives accu-

rate results but does not produce very consistent weights, suggesting low reliability. The

GA appears to find reasonably well-performing regions in the weight space but is often

unable to fine-tune to good optima, making it the poorest performer of the algorithms

tested. The MOSCEM–UA and NSGA–II algorithms find solutions that are commonly

better than the LM and GA algorithms. Specifically, they are able to consistently lo-

cate specific regions in the weight space in which good solutions can be found for several

objective functions. Nevertheless, most algorithms show significant spread in results and

sometimes even inconsistency in the performance and the a posteriori weight distributions

of the ANNs. This suggests that future research should consider that ANN performance

can have significant uncertainty due to inadequacies in optimization algorithms. Clearly,

there is a need to use sophisticated methods for optimization algorithms in ANN train-

ing. A possible alternative to the four algorithms presented in this chapter are so-called

memetic algorithms [Hart et al., 2005], which combine global and local search strategies.

Another alternative that is able to combine the strengths of individual algorithms is the

AMALGAM multialgorithm by [Vrugt and Robinson, 2007].

Additionally, in most of the examples presented in this chapter, the clear trade-off between

the MSDE and the traditional objective functions indicates that the MSDE objective

function exploits information that is usually ignored in hydrological model calibration.

Since MSDE penalizes for hydrograph shape errors, especially timing errors and noise,

it can be argued that this objective function can provide valuable information in model

calibration. Clearly, it is difficult and precarious to generalize beyond the results presented

here and more research on these issues is needed.



72 Multi-Criteria Training of ANN R–R Models



Chapter 5

Multi-Criteria Comparison of Artificial Neural

Network and Conceptual Rainfall–Runoff Models

Modified from:

de Vos, N. J., Rientjes, T. H. M., 2007. Multi-objective performance comparison

of an artificial neural network and a conceptual rainfall–runoff model. Hydrol.

Sci. J. 52(3), 397–413.

Abstract

This chapter presents a multi-criteria comparison between an artificial neural network

and the conceptual HBV R–R model. The popular NSGA–II algorithm was used for cal-

ibration of both models. A combination of three objective functions was used to evaluate

model performance. The results show that, for a small forecast lead time, the artificial

neural network outperformed the HBV model on the objective functions for low and high

flows, but the former was outperformed on a objective function related to the shape of the

hydrograph. As the forecast horizon increases, the HBV model more and more outper-

forms the ANN model on all objective functions. The main conclusion of this chapter is

that, although the differences between the two model approaches make a straightforward

and unequivocal comparison difficult, the multi-criteria approach enables a more reliable

evaluation of the two models than the single-objective approach.

5.1 Introduction

The most popular models for R–R modeling are conceptual models, which are based on the

principle of mass conservation and simplified forms of momentum and energy conservation

principles, as discussed in Chapter 2. Alternatively, data-driven modeling approaches such

as ANN models can be used. The usefulness of ANNs in runoff forecasting has been

researched extensively over the last decade (see Chapter 2), but the modeling community

is far from reaching a consensus on the matter.
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One of the drawbacks of ANNs is their apparent lack of physical interpretability. The

empirical and black box nature of the models raises doubts about the consistency of the

model with real-world processes and catchment characteristics. Do ANNs produce their-

often reasonably accurate-results for the right reasons? The previous chapters suggest a

multi-criteria viewpoint on the performance evaluation of ANNs. One of the issues that

has been explicitly addressed in this work is the timing errors that are frequently made

by ANNs, and the apparent trade-off between these timing errors and the overall fit of

the predictions (see also Abrahart et al. [2006]).

In recent years, several studies have compared ANNs and conceptual models (e.g., Hsu

et al. [1995]; Dibike and Solomatine [2001]; Tokar and Markus [2000]; Gaume and Gosset

[2003]). However, there is a clear lack of studies on the subject of comparisons between

ANNs and conceptual models using multiple criteria. Given the fact that the calibration

problem inherently involves multiple criteria [Gupta et al., 1998], the question arises

whether a multi-criteria view can shed new light on the performance differences between

ANNs and conceptual models.

The aim of this chapter is to quantitatively and qualitatively compare the performance

of an ANN and a conceptual R–R model for a meso-scale catchment in terms of multiple

criteria. Moreover, the trade-offs between various objective functions for the two types

of R–R models are investigated. The above is accomplished by calibrating a feed-forward

ANN model and the HBV conceptual model using the NSGA–II multi-criteria optimiza-

tion algorithm. Two different forecast horizons (i.e. 1 and 6 hours) are used for both

models.

5.2 Model Descriptions

5.2.1 Artificial Neural Network Model

The same ANN configuration was used as in Chapter 4. Figure 4.1 shows an example of

this type of ANN.

An analysis of linear correlation coefficients and the nonlinear average mutual information

(AMI) [Gallagher, 1968] between the discharge time series and various other time series

served as indication for the usefulness of certain variables as ANN input (see Table 5.1).

The AMI is based on Shannon’s theory of entropy [Shannon, 1948] and is defined as the

average of the mutual information:

I (x;y) = H (x)−H (x|y) (5.1)

where H(x) is the entropy of x, which is a measure of its uncertainty, and H(x|y) the

conditional entropy that expresses the information in x given that y is known. In an
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Table 5.1: ANN model input variables and time windows for the two different forecast horizons.

Note that only the rainfall input time window is different for the two models.

Input variables

Lead time Rainfall Mov. avg. Soil Previous Mov. avg.

rainfall moisture discharge discharge

1 hour t-11 to t-7 t0 t0 t-2 to t0 t0

6 hours t-6 to t-2 t0 t0 t-2 to t0 t0

equivalent but more practical formulation it can be seen how the AMI can be calculated

using the joint and marginal probability distribution functions of x and y:

I (x;y) =
∑
y∈y

∑
x∈x

p (x, y) · log2

(
p (x, y)

p (x) p (y)

)
(5.2)

High values of the AMI served as primary criteria for input selection.

By gradually adding neurons until the ANN’s mean squared error no longer decreased

significantly, an appropriate number of hidden neurons was found to be 3. The network

also contained biases, so the 11–3–1 network contained 40 parameters that had to be

calibrated. Details on the calibration procedure can be found in Section 5.3.

5.2.2 HBV Model

The HBV conceptual R–R model, originally developed by Bergström [1976], has been

applied in a large number of countries and over a large range of hydrological conditions.

A re-evaluation of the model with various modifications and additions, termed HBV–96,

is presented in Lindström et al. [1997]. The reader is referred to that paper for a detailed

review and analysis of the model.

In this study, a simplified version of the HBV–96 model is used. A lumped model structure

without a snow routine was transformed to be used for simulations with hourly time steps,

whereas the model is normally operated on daily time steps. Figure 5.1 shows a schematic

of the HBV model structure.

The HBV model has three state variables: soil moisture (S), upper zone storage (U),

and lower zone storage (L). The inputs to the HBV model are rainfall (P ) and potential

evaporation (Ep). The ρ parameter is multiplied with the rainfall to calculate the amount

of infiltration that will be added to S:

I = ρ · P (5.3)

The actual evaporation that is subtracted from S is calculated as
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Figure 5.1: Schematic of the HBV model structure.

Ea =


 Ep · (S/Epl),

Ep,

if S < Epl

if S ≥ Epl

(5.4)

Capillary flux from the upper zone to the soil moisture zone is calculated as

C = Cmax · (1− S/Smax) (5.5)

and the recharge from the soil moisture zone to the upper zone as

Ru = I · (S/Smax)
β (5.6)

The percolation from the upper to the lower zone (Rl) is a constant value, which is

calibrated. Subsequently, the response from U and L can be determined.

Qu = ku · U
1+α (5.7)

Ql = kl · L (5.8)

Finally, the sum of Qu and Ql is transformed through a triangular transformation function

with base length tf to get the discharge Q.

Table 5.2 shows a description of the various calibration parameters of the HBV model,

along with the ranges within which the parameters were calibrated. Different calibrated

values of the parameters of the HBV model were used for the one-hour-ahead and the

six-hour-ahead forecasts.
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Table 5.2: Description of HBV model parameters

Name Description and unit Prior range

ρ Rainfall correction factor [-] 0–1

Smax Maximum soil moisture content [L] 0–800

Epl Limit for potential evaporation [LT−1] 0–1

β Parameter in soil routine [-] 1–2

Cmax Maximum value of capillary flow [LT−1] 0–0.2

ku Recession coefficient upper zone [T−1] 0–0.1

α Response box parameter [-] 0–1

Rl Percolation [LT−1] 0–0.5

kl Recession coefficient lower zone [T−1] 0–0.01

tf Transformation function parameter [T] 1–16

5.3 Multi-Criteria Calibration Approach

5.3.1 NSGA–II Algorithm Settings

The NSGA–II algorithm was chosen as optimization algorithm (explained in Section

4.3.2). For the ANN calibration, the population size was chosen to be 80, and the number

of generations 800 (resulting in 64, 000 model evaluations). The conceptual model has

fewer parameters, so a population of 40 was found to be sufficient, along with a number

of 400 generations (resulting in 16, 000 model evaluations). The ANN model structure has

40 weights and the HBV 10 parameters, justifying the difference between the numbers of

model evaluations. Other parameters that are kept constant for all calibration procedures

are the probabilities of crossover and mutation, which are set to 0.9 and 0.05 respectively,

and the crossover and mutation distribution indices, which are both set to 20. These val-

ues were found by testing some commonly suggested values for these settings (e.g., Deb

[2001]).

Both the ANNs and the conceptual models are initialized by generating normally dis-

tributed random values for the parameters between reasonable ranges. It is partly be-

cause of this randomness that the optimization algorithms can find different optima in

the objective function response surface for each new calibration trial. Because of their

global perspective, however, methods such as GA are theoretically able to find global

optima with a high probability [Duan et al., 1992; Goldberg, 2000; Deb, 2001]. Here it is

therefore assumed that the NSGA–II algorithm is able to find acceptable optima and the

dependency on initial values is neglected. This assumption also seems warranted by the

results in Chapter 4.
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Figure 5.2: Time series of discharge at Kanne and rainfall at Bierset. The time series are split

into calibration and evaluation parts.

5.3.2 Objective Functions

Each of the objective functions used in this study is intended to cover a unique aspect of

the streamflow hydrograph. Unfortunately, correlations between them are inevitable and

the choice of which objective functions to use remains subjective. The objective functions

that were used in this study — Mean Squared Error, MSE; Mean Squared Logarithmic

Error, MSLE; Mean Squared Derivative Error, MSDE — are discussed in Chapters 3 and

4.

5.4 Case Study

5.4.1 Selected Data

The hourly Geer River basin data set were used for this research (see Appendix A). Figure

5.2 shows the hourly catchment discharge in combination with rainfall at Bierset for the

complete data period.

The simple soil moisture reservoir component of the GR4J lumped conceptual R–R model

[Edijatno et al., 1999; Perrin et al., 2003] was again used to produce a time series of
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Table 5.3: Descriptive statistics for the discharge data.

Min. Max. Mean Std. dev. Skewness Kurtosis

Calibration 0.80 10.74 1.80 1.04 3.60 20.3

Evaluation 1.00 9.90 1.74 0.86 4.11 25.2

simulated soil moisture (S, see Figure 3.15). Time series of the non-decaying moving

average of the discharge and the rainfall were also constructed. These procedures are

identical to the ones presented in Chapters 3 and 4.

The time series were split into calibration and evaluation periods (see Fig. 5.2), which

shared similar statistical features, as shown in Table 5.3. The calibration period con-

tained the largest discharge value, so no extrapolation issues were encountered in the

present study. No measure for preventing overfitting of the ANN models was used since

the use of a training algorithm based on evolutionary principles generally produces sub-

optimal solutions, thereby significantly reducing the risk of overfitting [Dawson et al.,

2006]. Moreover, the algorithm iterations were limited to a reasonably small number and

the results were inspected afterward to check for possible overtraining effects.

5.4.2 Results

Figure 5.3(a) shows Pareto plots of the three objectives for the calibration results of the

one-hour-ahead and six-hour-ahead forecasts of both the ANN and the HBV models.

Figure 5.3(b) shows the accompanying evaluation results. The similarity between the cal-

ibration and evaluation results for both models suggests that the calibration runs found

solutions in good regions of the parameter space that are capable of generalizing. The

results also clearly indicate a correlation between the MSLE and MSE in proportion to

the trade-off between the MSDE and these two functions. Apparently, with the MSDE

function different types of solutions are valued in comparison with the MSE and MSLE.

The MSDE function is physically interpretable as a measure for the shape of the hydro-

graph that especially penalizes timing errors and noisy approximations. From this it is

concluded that using the MSDE in a multi-criteria calibration procedure results in find-

ing a more diverse set of physically realistic model realizations than if the more common

combination of MSE and MSLE was used. This conclusion was also reached in Chapter

4.

The ANN model has a higher-dimensional parameter space compared to the HBV model,

which is why a more extensive calibration routine was performed (see Section 5.3). This

results in a more diverse set of solutions than for the HBV model, encompassing more

extreme solutions for all of the objective functions. On average, however, the ANN seems

to often outperform the HBV model in terms of the MSE and MSLE objective functions,
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Figure 5.4: Simulation details for one-hour-ahead forecasts of the ANN (a,b) and HBV (c,d)

models. Calibration (a,c) and evaluation (b,d) details are plotted for two extreme solutions and

one trade-off solution from each calibration Pareto front. Table 5.4 specifies the location of each

of these plotted solutions on the Pareto front.

while the opposite is true for the MSDE function. A comparison between the one-hour-

ahead and six-hour-ahead simulations shows that the HBV model performs better relative

to the ANN model as the forecast lead time increases. This indicates that the physical

principles underlying the HBV (e.g. the mass balance equation) help the model to maintain

forecasting capabilities for larger forecast horizons, while the ANN model as a data-driven

technique has increased difficulty in extracting the rainfall-runoff transformation from the

data.

These fundamental differences between the ANN and HBV are also clearly recognized in

the simulations shown in Fig. 5.4. These plots show calibration and evaluation details of

three Pareto solutions for the one-hour-ahead forecast of both models. One of the Pareto

solutions represents a trade-off between the three objectives. The two others were chosen

from the extremes of the Pareto front. Table 5.4 shows the coordinates of the solutions in

Pareto space.

Some general observations are that the ANN generally underestimates high peak flows but

performs well on low flows. The HBV, on the other hand, performs poorly on lower flows

and shows an inability to accurately simulate the recession limb of the hydrograph. The
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Table 5.4: Coordinates in Pareto space of the trade-off and extreme solutions plotted in Fig.

5.4. The bold numbers indicate low values and hence good extremes for the various objective

functions.

Objective functions

Model Solution MSE MSLE MSDE

ANN Trade-off 1.486 · 10−6 0.629 · 10−1 1.230 · 10−6

Extreme 1 0.914 · 10−6 0.202 · 10−1 1.479 · 10−6

Extreme 2 6.101 · 10−6 2.082 · 10−1 0.934 · 10−6

HBV Trade-off 1.325 · 10−6 0.405 · 10−1 0.785 · 10−6

Extreme 1 1.530 · 10−6 0.521 · 10−1 0.765 · 10−6

Extreme 2 1.387 · 10−6 0.391 · 10−1 0.854 · 10−6

extreme solutions show that a low MSDE sometimes leads to very poor performance in

terms of magnitude, especially for the ANN. The poorer ANN performance on the MSDE

seems to be largely due to noisy model output and to timing errors of ANN models.

The high autocorrelation in the hourly runoff time series, in combination with the fact

that the last known runoff value is used as an input to the ANN, results in the ANN

presenting an output that is very similar to the last known runoff input. This effectively

results in a timing error of the forecast, which is not always penalized due to the apparent

good overall fit. In Chapter 3 this problem is discussed in more detail. Conceptual models

are less prone to timing error effects and noisy output because of their fundamentally

different model structure. However, the HBV results show that the model is not able to

adequately simulate the recession limb of the hydrograph, which results in higher errors

of the MSDE. High MSDE values for the ANN and HBV therefore seem to be related to

different problems due to their specific model structures. The above proves that, while the

MSDE gives extra information on model accuracy, it still does not allow for a completely

effective numeric comparison of the ANN and the HBV models.

Figure 5.5 shows two hydrograph plots for the six-hour-ahead forecasts by both the ANN

and the HBV model. The one-hour-ahead plot is disregarded since it is very similar to

this figure, and its details have already been presented in Fig. 5.4. The gray area demarks

the ranges of the forecasts made by the various Pareto solutions that were found, and

the dots are the measurements. The big differences in the shape of these bounds reflect

the fundamental differences between the two model approaches. The ANN bounds are

wider because of the larger set of solutions, and they are skewed toward higher values

because of some extreme solutions that prefer a lower MSDE over low-magnitude errors.

The bounds of the HBV are more equally distributed around the measurements toward

high and low values. The HBV bounds again show the model’s inability to accurately

simulate the shape of the recession curve. Note that the bounds mentioned here are not
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meant to be a formal representation of the models’ uncertainty bounds. A more extensive

training procedure (cf. the ANN versus the HBV calibration) results in higher apparent

uncertainty estimates because of the larger spread of the Pareto solutions. This, however,

does not necessarily imply a more realistic uncertainty assessment for the ANN model.

5.5 Summary and Discussion

A multi-criteria comparison between the ANN and the HBV model using the NSGA–II

optimization algorithm indicates that a single-criterion approach in both model calibra-

tion and evaluation is inadequate for evaluating and comparing these different model

approaches. Using single objectives leads to disregarding information by drawing over-

simplified conclusions on model performance and this prevents a deeper understanding of

model approach and data. Moreover, by using the novel MSDE objective function, a more

diverse set of solutions was found in comparison with only traditional objective functions,

enabling a more extensive comparison of the models.

For one-hour-ahead forecasts, ANNs slightly outperformed the HBV model on the MSE

and MSLE, but not on the MSDE. When the forecast horizon was increased to 6 hours,

the HBV model outperformed the ANN model on all objective functions. However, the

reasons for the differences in objective function values between the ANN and HBV models

are different for each of the models. For example, the high MSDE for ANNs seems to be

related to timing errors and noisiness of the simulation, whereas the HBV model has

problems simulating the recession limb of the hydrograph. These conclusions show that

better and perhaps more objective functions are still needed to allow a completely effective

numeric evaluation of model performance.

The fundamental differences between the two model approaches tested here prevent

straightforward and unequivocal comparisons from being made. The HBV model has

physical laws, such as the mass balance equation, built into the model structure, whereas

the ANN is a data-driven technique. Nevertheless, the implementation of the multi-criteria

paradigm into both data-driven and conceptual modeling studies was shown to enable a

more reliable and robust calibration and evaluation procedure, and to enable a more

complete performance comparison of the two model approaches.
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(a)

(b)

Figure 5.5: Variability in hydrograph simulations based on Pareto solutions of the six-hour-

ahead forecasts af the (a) ANN model and (b) HBV model for the evaluation period. The dots

represent the observed runoff values.



Chapter 6

Diagnostic Evaluation of Conceptual Rainfall–Runoff

Models Using Temporal Clustering

Modified from:

de Vos, N. J., Rientjes, T. H. M., Gupta, H. V., 2009. Diagnostic evaluation of

conceptual rainfall–runoff models using temporal clustering. (submitted)

Abstract

Given the structural shortcomings of conceptual R–R models and the common use of

time-invariant model parameters, these parameters can be expected to represent broader

aspects of the R–R relationship than merely the static catchment characteristics they

are commonly supposed to quantify. In this chapter, the common assumption of time-

invariance of parameters is relaxed, and instead signature information about the dynam-

ics of model behavior and performance is sought. This is done by employing a temporal

clustering approach to identify periods of hydrological similarity, allowing the model pa-

rameters to vary over the clusters found in this manner, and calibrating these parameters

simultaneously. The diagnostic information inferred from these calibration results, based

on the patterns in the parameter sets of the various clusters, is used to enhance the model

structure. This approach shows how a diagnostic approach to model evaluation can be

used to combine information from the data and the functioning of the hydrological model

in a useful manner.

6.1 Introduction

The process of developing, calibrating and validating conceptual R–R models carries a

significant degree of subjectivity. This subjectivity follows mainly from the various ways

in which hydrological modelers can choose their preferred methods to evaluate model per-

formance. Gupta et al. [2008] argue that the purpose of all evaluation must be diagnostic

in focus, meaning that modelers need to identify those components of the model, which

85
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when assumed to be functioning normally, will explain the discrepancy between model

output and observed data. This can be approached through the identification of so-called

signature information from the data. In the same paper, the authors discuss how model

evaluation consists of three aspects:

1. Quantitative evaluation of model output, including statistical measures that ex-

press the difference between model output and observation time series.

2. Qualitative evaluation of model consistency, such as model sensitivity tests and

visual inspections of model behavior.

3. Qualitative evaluation of model form and function, which implies a subjective ex-

pression of the degree in which the model structure and working comply with the

real world system.

Quantitative model evaluation usually uses one or more statistical measures, in which

commonly (a) the difference between a series of measurement data and a series of model

outputs is transformed (e.g. power transformation, weighting), and then (b) the series of

transformed differences is aggregated into a single value (e.g. by taking the mean squared

error). These operations reflect a subjective choice by highlighting specific aspects of the

hydrograph. Gupta et al. [1998] argued that using too few such aspects implies a loss

of information since the calibration problem inherently involves many criteria. Following

the development of effective and efficient algorithms (see Tang et al. [2006]), the power

of the multi-criteria approach has been demonstrated in a number of hydrologic model

calibration studies (e.g., Yapo et al. [1998]; Boyle et al. [2000]; Vrugt et al. [2003a];

Khu and Madsen [2005]; Kashif Gill et al. [2006]; Fenicia et al. [2007a]; de Vos and

Rientjes [2007, 2008b]). However, in most multi-criteria approaches, when the residuals are

aggregated into each statistic the information regarding model behavior and performance

that is embedded in the time dimension is largely ignored. Arguably, it is questionable to

ignore the time dimension given the predominantly dynamic nature of catchment runoff

behavior.

Much research has been done to understand catchment runoff behavior and the mecha-

nisms of runoff production (e.g. Betson and Marius [1969]; Hewlett and Hibbert [1963,

1967]; Dunne and Black [1970a, 1970b]; Freeze [1972a, 1972b]; Kirkby [1978, 1988]). That

body of work indicates that the spatial domains over which runoff components are gener-

ated change over time. For example, in describing aspects that relate to runoff source areas

and the saturation excess mechanism, Hewlett and Hibbert [1967] stress the importance

of a belt of saturation lying along stream channels, that varies in width in response to

rainfall, and forms a critical zone from which subsurface water and groundwater emerge

to form the flood peak. These zones of saturation changes are largest during periods of

extensive rainfall but are commonly not observable during periods of dryness. As such,

meteorological forcings cause a catchment to have many response modes between high

and dry weather flows, and cause the spatial domains from which runoff is produced to
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change over time. In many storage-based conceptual models, the idea of changes in real

world source areas is implicitly considered through the form of the storage-discharge re-

lationship but changes in model parameter values to reflect dynamic changes that relate

to such mechanisms are rarely (if ever) made. This example clearly shows how in R–R

modeling complex dynamic relationships are commonly simplified and approximated by

using time-invariant parameters.

Given the obvious structural shortcomings of conceptual R–R models and the use of

time-invariant model parameters, it seems reasonable to proceed with a hypothesis that

these parameters may represent broader aspects of the R–R relationship than merely the

static catchment characteristics they are commonly supposed to quantify. By relaxing

the common assumption of time-invariance of parameters, one can therefore attempt to

obtain information from parameter variation about the dynamics of model behavior and

performance. Several studies have reported on the calibration and evaluation of models

with time-variant parameters, and on the subsequent extraction of information from the

results. Wagener et al. [2003b] investigated the identifiability and evolution of model

parameters over time for a very simple storage based runoff model using the DYNIA

approach. Using a moving time window of fixed length over which parameter sensitivity

and model performance were assessed, the approach suggested significant time variation of

parameters and also revealed that such information could be used to develop insight into

the model form and function. Choi and Beven [2007] used temporal clustering to identify

periods of hydrological similarity. They subsequently evaluated predictions of Monte Carlo

realizations of TOPMODEL parameter sets both within these periods and on multiple

objective functions. The behavioral parameter sets were shown to vary significantly over

both clusters and criteria. Moreover, no set was found that performed well on all clusters

or on all criteria, indicating deficiencies in model structure. Another approach in which

the time-invariance assumption of model parameters is relaxed, is to build models for

specific parts of the hydrograph and find optimal ways to combine the results of the local

models (e.g., Hsu et al. [2002]; Oudin et al. [2006]; Fenicia et al. [2007b]; Marshall et al.

[2007]).

6.2 Goals and Scope

In this chapter an approach is developed and examined to diagnostic evaluation and

improvement of a prior hydrological model structure by extracting temporal signature

information via an augmented calibration procedure. The approach is based on the premise

that deficiencies of the model structure cause the model parameters to vary with the

hydrological modes of the system (if allowed to do so) to compensate for the effects of the

model structural error. The main goals of this study are twofold: (1) to develop, test and
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discuss a method for identifying signature information in the form of time-variant model

parameter values for a R–R model of a meso-scale catchment and (2) to extract and use

diagnostic information from the modeling results to improve the model structure.

To accomplish the first goal, a temporal clustering approach was devised to partition

the historical data into several (here 12) periods of hydrological similarity. The model

parameters were then permitted to vary (in a discrete manner) with time, taking on

different values for each period of hydrological similarity, but remaining constant within

each period; i.e. in this example each parameter can take on one of 12 different values

over time, with the value corresponding to the temporal cluster mode active at that

time. The goal of the approach is to see if the parameter variation can be related in some

systematic manner to the magnitude of the system variables used to characterize periods of

hydrological similarity, and to thereby make diagnostic inferences leading to improvements

in the proposed hypothesis regarding the underlying structure of the system.

By applying the clustering procedure to observed data a physical basis is used in the

dynamic analysis, effectively overcoming a main shortcoming of the previously mentioned

approach by Wagener et al. [2003b] who used an arbitrary time window of fixed length.

The clustering procedure proposed here has similarity to the approach used by Choi

and Beven [2007], but extends it by the further logical step of actually interpreting the

clustering results diagnostically so as to make improvements to the model. Note also, that

the main goal is different from the approach mentioned above on combining local models.

Although employing similar principles, the goal is to improve on a preconceived model

structure rather than to identify and combine local model components.

The data set from the Leaf River catchment was used for this study (see Section A).

Roughly a third of the data (October 1, 1948 to September 30, 1962) was used for cal-

ibration, and the rest for model evaluation. In the absence of observations regarding

catchment storage, a synthetic time series of soil moisture was again generated using the

simple soil moisture reservoir component of the GR4J lumped conceptual R-R model

[Edijatno et al., 1999; Perrin et al., 2003].

6.3 Methods

6.3.1 Temporal Cluster Analysis

Introduction to Cluster Analysis

Cluster analysis is concerned with exploring data sets to assess whether or not they can

be summarized meaningfully in terms of a relatively small number of clusters of objects

which resemble each other and which are different in some respects from the objects

in other clusters [A. K. Jain et al., 1999; Everitt et al., 2001]. The concept has been
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applied in hydrology to cluster, for example, precipitation fields [Lauzon et al., 2006],

hydro-meteorological conditions [Toth, 2009], watershed conditions [Liong et al., 2000],

hydrological homogeneous regions [Frapporti et al., 1993; Hall and Minns, 1999], and also

in regionalization approaches [Burn, 1989; Srinivas et al., 2008]. In this work, an attempt

is made to find periods of hydrological similarity by temporal clustering of hydrological

data. By this approach, the information contained in the dimension of time is compressed

into a discrete set of clusters and its information can be meaningfully and conveniently

summarized.

Cluster Inputs

Four time series were chosen for the first cluster analysis: (1) the ten-day moving average

of the precipitation (Pma), (2) the GR4J-simulated soil moisture (S), (3) the natural

logarithm of the discharge (Qln), and (4) the first derivative of the discharge (dQ). These

variables represent information regarding the recent input, memory, output and dynamics

of the catchment, respectively. The logarithmic transformation of discharge is performed to

reduce the skewness of the discharge distribution. The input to the clustering algorithm

consists of the simultaneous variable values at each time t, so the algorithm had four

inputs. A second cluster analysis was also performed using (1) precipitation (P ), (2)

the ten-day moving average of the precipitation (Pma), and (3) the GR4J-simulated soil

moisture (S). Since this second analysis does not rely on knowledge of the output of the

catchment, it can be used in prediction mode.

Clustering Algorithm

The k-means clustering algorithm involves calculation of the centroid of a fixed number of

clusters. This is usually done as proposed by Lloyd [1982]. The method can be summarized

as follows.

1. Randomly choose k initial centroids C = {c1, . . . , ck}.

2. Set each cluster Ni to be the points in X that are closer to ci than to any other

centroid.

3. Set each ci to be the centroid of all points in Ni.

4. Repeat steps 2 and 3 until C is stable.

The proximity measure used to determine the closeness of points to centroids was the

Euclidian distance. The k-means++ seeding method [Arthur and Vassilvitskii, 2007] was

used to choose the initial centroids with a probability proportional to the density of points.

Arthur and Vassilvitskii [2007] show that this approach can significantly reduce errors and

improve convergence speed of the algorithm.

The a priori choice of the number of clusters was made by running the clustering procedure

for 2 to 30 clusters using fuzzy clustering and studying the partition coefficient and the
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Figure 6.1: The HyMod model structure.

Xie and Beni [1991] index for each of these runs. These validity measures are commonly

used for expressing the quality of a fuzzy clustering procedure. The number of clusters

was set to 12 based on the fact that both measures did not significantly improve for a

larger number of clusters. In comparison, Choi and Beven [2007] found 15 clusters to be

appropriate for their data set.

6.3.2 Conceptual Rainfall-Runoff Model

The five-parameter conceptual HyMod R–R model, shown in Figure 6.1, was used for this

study. This model is based on the probability distribution model by Moore [1985] and was

introduced by Boyle [2000]. It was applied more recently by Wagener et al. [2001] and

[Vrugt et al., 2003b] among others. HyMod consists of a simple two-parameter rainfall

excess model, in which it is assumed that the soil moisture storage capacity C varies across

the catchment and, therefore, that the proportion of the catchment with saturated soils

varies over time. The spatial variability of C is described by the following distribution

function:

F (C) = 1−

(
1− C (t)

Cmax

)bexp

(6.1)

where C is always smaller than Cmax. The routing component consists of a series of three

linear reservoirs for quick flow and one linear reservoir for slow flow. Table 6.1 describes

the HyMod parameters and presents reasonable ranges to be used in constraining their

calibration (cf. Vrugt et al. [2003b]). The additional parameters that are mentioned in

this table will be explained later in this chapter.
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Table 6.1: HyMod model parameters.

Name Description and unit Prior range

Cmax Maximum soil moisture content [L] 10–1500

bexp Spatial variability of soil moisture capacity (-) 0.01–1.99

A Quick/slow flow distribution factor (-) 0.01–0.99

Ks Residence time slow reservoir (T) 0.01–0.99

Kq Residence time quick reservoirs (T) 0.01–0.99

Additional parameters:

FRFC Rainfall correction factor (-) 0.5–1.5

Ls Length transformation function slow reservoir (T) 1–20

Lq Length transformation function quick reservoir (T) 1–40

6.3.3 Model Calibration

Traditional and Dynamic Calibration Approaches

The HyMod model is calibrated twice, once using a traditional calibration approach with

time-invariant parameters and once using a dynamic calibration approach with time-

variant parameters. In the latter procedure, the model parameters are allowed to take on

different values for each of the 12 different clusters, resulting in a number of degrees of

freedom equal to the number of parameters times 12. For both calibration approaches,

a single objective function was used to express the error over the entire calibration time

series. The dynamic calibration approach results in 12 parameter sets, each of which

optimizes model performance for the specific temporal cluster that the system is in. This

dynamic calibration is a rather brute force approach and the number of parameters that

is calibrated seems to conflict with principles of parsimony. Note, however, that the goal

of this calibration approach is to investigate the temporal variability of parameters, rather

than to find the best-performing model per se.

For both calibration approaches, the Normalized Root Mean Squared Error (NRMSE)

are used as objective function:

NRMSE =

√
1

K

K∑
k=1

(
Q̂k −Qk

)2

1

K

K∑
k=1

Qk

(6.2)

where K is the total number of data elements, and Q̂k and Qk are the simulated and the

observed discharges at the kth time interval respectively. Because the NRMSE is a nor-

malized error statistic, the performance on clusters of different lengths can be compared.
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Optimization Algorithm

Parameter optimization was performed using a self-adaptive variant of the Differential

Evolution (DE) algorithm introduced by Storn and Price [1997]. While relatively sim-

ple, the algorithm is powerful, and generally shows high accuracy and fast convergence

on many test problems (see Vesterstrøm and Thomsen [2004]). It has been applied to

hydrological model calibration by Shoemaker et al. [2007].

Several variants of the DE algorithm have been suggested. Here, the commonly used

DE/rand/1/bin strategy is selected, which can be summarized as follows. A population of

N individuals xi,G, i = 1, 2, . . . , N , each of which is a vector of D optimization parameters,

is evolved for a number of generations (indicated by G). The evolution is defined as a

process of three operations: mutation, crossover, and selection. Each individual xi,G is

mutated according to

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) , r1 �= r2 �= r3 �= i (6.3)

with randomly chosen indices r1, r2, r3 ∈ [1, N ]. F ∈ [0, 2] controls the amplification of

the difference vector (xr2,G − xr3,G) and is one of the two main control parameters of the

algorithm. If any component of a mutant vector falls outside the acceptable parameter

bounds, it is set to the bound value. Crossover is performed using the individuals and

their mutants according to

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1) (6.4)

where

uji,G+1 =


 vji,G+1,

uji,G,

if r (j) ≤ C or j = rn (i)

if r (j) > C and j �= rn (i)
(6.5)

for j = 1, 2, . . . , D. r (j) ∈ [0, 1] is the j th output of a uniform random number generator.

C ∈ [0, 1] is the crossover constant and is the second main control parameter of the DE

algorithm. rn (i) ∈ (1, 2, . . . , D) is a randomly chosen index which ensures that at least

one element of ui,G+1 comes from vi,G+1. Selection is performed according to a greedy

selection scheme:

xi,G+1 =


 ui,G+1,

xi,G,

if f (ui,G+1) is better than f (xi,G)

otherwise
(6.6)

for j = 1, 2, . . . , D. This way, the old individual is replaced only if the objective function

value of the new individual is better.
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A crucial issue for the efficiency and efficacy of the DE algorithm is the choice of values

for its control parameters F and C [J. Liu and Lampinen, 2002; Brest et al., 2006]. Here

the approach suggested by Brest et al. [2006] is followed, in which the control parame-

ters are evolved by placing them inside the vector associated with each individual. This

self-adaptive version has been shown to successfully find optimal control parameters for

different problems and consequently outperform other implementations of DE.

The population size for the traditional calibration procedure was set to 10 times the

dimension of the optimization problem (i.e., the numbers of parameters to be optimized).

The number of generations was limited to 250. For the dynamic calibration, the population

size was 5 times the dimension of the problem (i.e., the numbers of parameters to be

optimized times the number of clusters) and 1, 000 generations. To initialize the second

calibration procedure the initial parameter values were set close to the optimum found

during the traditional calibration, thereby speeding convergence.

6.4 Results and Analysis

6.4.1 Cluster Analysis

The clustering results in Figure 6.2 show the four-dimensional simulation data classified

into 12 clusters. The clusters have been numbered according to their rank in terms of

magnitude of soil moisture for convenience in presentation of subsequent results. The

figure shows that an increase of Pma (moving average of precipitation) generally results

in an increase of S (soil moisture), as is to be expected. Although there is likely to be

some overlap in the information content of these variables, the clarity (minimal overlap)

of the clusters in this plot indicates that the clustering algorithm has selected these two

dimensions as major variables for distinguishing between clusters. In a similar manner,

the obvious relationship between S and Qln (log discharge) has also been exploited by

the clustering algorithm. In contrast, the relationships between Qln and dQ (discharge

derivative) and between Pma and dQ, which more strongly reflect the high flow dynamics

of individual events, and the dimension of dQ, do not seem to have been strongly used

for cluster discrimination.

Similar results are observed for the three-dimensional prediction data (Figure 6.3), where

S and Pma again are the primary factors determining the shape and location of the

clusters. Here, in contrast with the simulation data, information on streamflow (Qln and

dQ) is missing and so the clustering algorithm appears to be using P (precipitation)

more actively as an indicator for distinguishing peak flow events (cluster 9, for example,

is poorly discernable in the S versus Pma subplot but very pronounced in the two other

subplots).
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Figure 6.4 shows the temporal clusters identified from the prediction data (not using

streamflow information) plotted along with the hydrograph for the evaluation period.

Given that the hydrograph information was not in the clustering procedure, and the fact

that these are evaluation period results, the close concurrence of the patterns indicates

that the temporal clustering has been quite successful. The periods of wetting and drying,

and the related runoff dynamics of the catchment are clearly reflected in the organization

of the clusters on both the event and seasonal scales.

After having analyzed the clustering procedure with both simulation and prediction data,

only the prediction clustering data is presented in the remainder of the chapter for reasons

of brevity. Consequently, the clustering and model setup uses no information from current

discharges and hence reflects a more challenging prediction scenario.

6.4.2 Model Performance

The HyMod model calibration and evaluation performance statistics for the two calibra-

tion approaches are presented in Table 6.2. Each row shows the NRMSE performance

for the portion of the data corresponding to one of the prediction clusters when either

the traditional or dynamic calibration strategy is employed. In interpreting these results,

please note that the larger cluster numbers indicate larger amounts of soil moisture stor-

age (catchment wetness; see Figures 6.2 and 6.3). The last row shows the same statistic

computed for the entire period. Despite having more degrees of freedom, and producing

smaller overall NRMSE (better overall model performance), the dynamic calibration has

resulted in worse evaluation period performance on clusters 2 to 8 which correspond to

drier periods. It appears that the dynamic calibration has found a solution that provides

better predictions for the high flows than on low flows, which are severely underestimated.

Moreover, the total discharge volume of the calibrated model was about 10% less than

the observed volume. The above indicates a shortage of water, especially in the slow flow

reservoir, and it is therefore assumed that the model receives too little net inflow by me-

teorological forcing. It appears that, in trying to minimize the overall period performance

statistic for the current model structure, the calibration process consequently has settled

on a trade off which emphasizes the fit of high flows over low flows.

To try and improve model performance, therefore, a rainfall correction factor (an addi-

tional parameter FRFC; see Table 6.1) was first added to the model to compensate for

measurement errors through multiplication with the rainfall (Equation 6.7); the enhanced

version of the model is given the name “HyMod–N1”. The use of a correction factor is not

uncommon in hydrological models and is used in, for example, the HBV model [Lindström

et al., 1997]. Recalibration using the traditional calibration method resulted in an optimal

value of Pcorr = 1.057, indicating that the rainfall data likely underestimate the actual

rainfall by almost 6%. Optimal values (using traditional calibration) for all parameters of
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Table 6.2: HyMod performance expressed over the clusters plus overall performances for cali-

bration and evaluation periods using dynamic (based on simulation clustering) and traditional

calibration procedures. Highlights indicate that the traditional or dynamic calibration approach

outperforms the other.

Calibration NRMSE Evaluation NRMSE

Cluster Traditional Dynamic Traditional Dynamic

no. calibration calibration calibration calibration

1 0.945 0.672 0.943 0.742

2 0.883 0.890 0.796 0.823

3 0.866 0.884 0.826 0.832

4 0.704 0.646 0.687 0.693

5 0.709 0.831 0.741 0.793

6 0.631 0.767 0.625 0.766

7 0.465 0.455 0.565 0.568

8 0.508 0.532 0.532 0.547

9 0.477 0.449 0.523 0.455

10 0.433 0.343 0.374 0.377

11 0.408 0.367 0.455 0.383

12 0.339 0.274 0.338 0.330

Total 0.836 0.702 0.793 0.773
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Table 6.3: Optimal parameter values found using traditional calibration for all HyMod model

variants.

Parameter HyMod HyMod–N1 HyMod–N2

Cmax 210 241 248

bexp 0.400 0.425 0.440

A 0.296 0.270 0.214

Ks 0.319 0.295 0.350

Kq 0.823 0.830 0.927

FRFC - 1.057 1.044

Ls - - 2

Lq - - 2

the original HyMod model and the enhanced HyMod–N1 model are presented in Table

6.3.

Pcorr = FRFC · P (6.7)

The five original parameters of the HyMod–N1 model were subsequently dynamically

re-calibrated in the same way as for the HyMod model, but with the additional FRFC

parameter kept constant. The assumption here is that the rainfall underestimation is of

a more structural nature, and the dynamic calibration should not abuse the potentially

influential FRFC parameter to compensate for other errors. The results presented in Table

6.4 clearly show that the trade-off between high and low flow performance has decreased.

The smaller calibration and evaluation period errors achieved by the dynamic calibration,

both overall and for each cluster, indicate that the rainfall correction factor has fulfilled

its purpose and is now allowing the dynamic character of the calibration process to be

better exploited.

In the next step of the diagnostic approach the information about functioning of model

structure that is implicitly contained in the variability of the parameters over the 12

clusters was made use of. The subplots in Figure 6.5 show the optimal values for each

parameter for each temporal cluster, found using the dynamic calibration procedure; the

horizontal line represents the time-invariant parameter value found using traditional cali-

bration. Of course, many patterns might be hidden in these results, and useful information

could be difficult to detect due to complex parameter interactions. Here a start is made

with the simple test of hypothesis that useful information can be extracted from each

individual dynamic parameter set and from their most obvious coincident patterns of

variation. Two patterns stand out clearly in Figure 6.5: the general tendency for the Ks

and Kq recession coefficients to be smaller than their “normal” (time-invariant) value,

and the tendency for both of these parameters to increase with increasing wetness.
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Table 6.4: HyMod–N1 performance expressed over the clusters plus overall performances for

calibration and evaluation periods using dynamic (based on simulation clustering) and tradi-

tional calibration procedures. Highlights indicate that the dynamic calibration outperforms the

traditional calibration.

Calibration NRMSE Evaluation NRMSE

Cluster Traditional Dynamic Traditional Dynamic

no. calibration calibration calibration calibration

1 0.946 0.658 0.932 0.665

2 0.881 0.656 0.773 0.696

3 0.799 0.808 0.776 0.765

4 0.794 0.607 0.756 0.635

5 0.755 0.723 0.788 0.685

6 0.646 0.529 0.627 0.502

7 0.437 0.454 0.537 0.554

8 0.501 0.402 0.530 0.425

9 0.509 0.484 0.525 0.428

10 0.418 0.335 0.366 0.368

11 0.403 0.338 0.471 0.372

12 0.324 0.262 0.327 0.333

Total 0.810 0.670 0.779 0.749
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Figure 6.5: Estimates of the optimal values of the 5 dynamic HyMod–N1 parameters for the

12 clusters. The lines show the optimal values found by the traditional calibration procedure.
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These patterns suggest that the slow and the quick flow reservoirs may be functioning

sub-optimally, and might be better represented using nonlinear recession rate dynamics.

However a test of this hypothesis did not lead to significant performance improvements.

Returning to Figure 6.5 it is noted that smaller values of the recession coefficients are

preferred during dry periods, but during wetter periods the recession coefficients are close

to the “normal” values. This observation provides the hint that the model is attempting

to restrict the reservoir storage outflow both at the beginning and at the end of each storm

event. This kind of behavior can be achieved by incorporating a triangular transformation

function before the flow reservoirs that results in a more gradual input to the reservoirs

(a moderating of the instantaneous rainfall impulse shocks); a similar modification was

proposed by Fenicia et al. [2008] to improve the structure of another hydrological model.

Implementation of this concept into HyMod–N1 results in the updated model structure

HyMod–N2. Two additional parameters, Ls and Lq, were introduced which represent the

base lengths of the triangular functions (see Table 6.1), and the weights that compose the

transformation function are calculated according to:

bi =
4i/L2

B
for i ∈ 1, 2, ..., L (6.8)

where

B =
L∑

i=1

bi (6.9)

When the HyMod–N2 model is recalibrated using the traditional (time-invariant param-

eter) calibration procedure the result is the overall and individual cluster performance

results shown in Table 6.5. Note that no dynamical calibration is used here, because the

test is whether the improved model structure has reduced the need for the parameters to

vary in time. The optimal (time-invariant) parameter values are again shown in Table 6.3

for easy comparison with the values obtained for the previous model structures. The re-

sults show that HyMod–N2 generally provides better performance than HyMod–N1 model

on both the calibration and evaluation data. This is not the case for several dry clusters,

but this may be due to the use of an objective function that focuses more on high flows.

Interestingly, a comparison of Tables 6.4 and 6.5 shows that the HyMod–N2 (with time-

invariant parameters) performs even better than the dynamically calibrated HyMod–N1

model on the evaluation data, supporting the hypothesis that the added transformation

functions indeed results in a more consistent model of the R–R process.

Figure 6.6 provides another performance comparison of the three model structure variants,

this time after calibration with the MOSCEM–UA multi-criteria algorithm [Vrugt et al.,

2003b]. The settings of the algorithm that were used are as follows: number of complexes

equal to the number of parameters to be calibrated, 100 random samples per complex
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Table 6.5: HyMod-N2 performance, expressed by clusters plus overall performances, for cali-

bration and evaluation periods using traditional calibration procedure. Highlights indicate that

the HyMod-N2 model outperforms the HyMod-N1 model.

Cluster Calibration Evaluation

no. NRMSE NRMSE

1 0.952 0.938

2 0.877 0.775

3 0.811 0.788

4 0.767 0.728

5 0.779 0.785

6 0.656 0.635

7 0.413 0.499

8 0.498 0.518

9 0.453 0.478

10 0.410 0.352

11 0.384 0.431

12 0.293 0.291

Total 0.760 0.723

and total number of draws equal to 2, 000 times the number of complexes. The two

objective functions used in the calibration are the Mean Squared Error (MSE) and the

MSE of the log-transformed discharges (MSLE), which emphasize errors on high flows

and low flows, respectively. The Pareto plot with the evaluation period results of the

model structures show improvements in the successive model iterations for both the MSE

and the logMSE. The improvements in the latter show that the HyMod–N2 is indeed

capable of outperforming the HyMod–N1 model on low flows, suggesting that the results

in Tables 6.4 and 6.5 are not fully representative of model performance because of the

use of a single objective function which focuses on high flows. Although a clear trade-off

between the two objective functions remains, the smaller spread of the solutions of the

HyMod–N2 model compared to the other models indicates that this model has a more

robust model structure. Finally, the parameter variability of the solutions found by the

MOSCEM–UA algorithm (not shown here) is slightly reduced with each successive model

structural iteration.

6.5 Summary and Discussion

This chapter has made a first step towards examining and understanding how to con-

duct diagnostic model evaluation by extracting temporal signature information via an
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Figure 6.6: Multi-criteria evaluation results for the three model structures after calibration

with the MOSCEM–UA algorithm.

augmented calibration procedure based on temporal clustering. Such an approach might

be used to recursively achieve diagnostic improvements of hydrological models. The re-

sults show that consistent patterns of parameter variation do indeed show up through the

application of this approach, and that analysis of these patterns can point towards po-

tential model improvements. In this work two iterations are explored resulting in updates

to the model structure, based on quite obvious patterns. More powerful alternatives to

this simple diagnostic approach are likely to exist. Nevertheless, the research presented

here illustrates one pathway to the development of a diagnostic approach to model eval-

uation. The study example shows how information from the data and the functioning of

the hydrological model can be combined in a useful manner to achieve improvements to

the working model hypothesis.

What can be concluded from this work is that, although process knowledge and perceptual

models of reality will probably remain the most important source of information for

model development and improvement, there is still much that can be gained through

careful scrutiny of data and model functioning. The issue to be better understood is how

such a diagnostic evaluation should be conducted — what are the strategies that will

generally lead to uncovering information that can be reliably and readily used for model

improvement. For this, a variety of model diagnostic approaches will need to be tested

and verified. Further research on the challenging step in which the calibration information
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is translated into model structural improvements could be especially beneficial. More

advanced data analysis or pattern recognition techniques could prove to be particularly

useful in this.

Other conclusions and recommendations are:

• The k-means clustering algorithm was shown to be effective in identifying hydro-

logically similar periods. Future research might benefit from the use of more sophis-

ticated clustering techniques such as fuzzy clustering or random forests [Breiman,

2001]. The rather subjective choices in the clustering procedure need to be further

investigated to find appropriate settings for hydrological applications.

• The self-adaptive DE optimization algorithm was found to be effective in hydrologic

model calibration. The algorithm obtained good solutions, within a reasonable

number of function evaluations, for both the traditional calibration and on the

more complex (higher dimensional) dynamic calibration.

• Although the self-adaptive DE algorithm is powerful, it does not provide estimates

of the parameter uncertainty of its results. A method that helps to assess the

uncertainty in the parameter estimates would significantly benefit the diagnostic

model evaluation.



Chapter 7

Conclusions and Recommendations

7.1 On Computational Intelligence in Rainfall–Runoff

Modeling

The previous four chapters have shown investigations on the application of CI techniques

in R–R modeling, and have indicated several specific advantages and disadvantages of such

techniques in the development and evaluation of R–R models. Although the assumptions

underlying this work and the shortcomings of the methods used prevent broad generaliza-

tions, this section will attempt to summarize and synthesize these findings with respect to

the frameworks mentioned in Chapter 1. The following three subsections present the con-

clusions of the main fields of application, and show in what way this work has advanced

the field of hydrological modeling.

7.1.1 Artificial Neural Networks as Data-Driven Models

• This work is among the first to call to attention timing errors issues in ANN R–R

models. Some of the ANN R–R models in Chapter 3 of this work suffer from timing

errors, which is shown to be the result of a dominating autoregressive component.

This component is introduced by using highly autocorrelated previously observed

runoff values as ANN model input. As a result, the ANN model in fact does little

more than presenting the model input as output. Most commonly-used objective

functions do not penalize such timing errors, which is why they often go unnoticed

and why they pervade the literature on ANN R–R modeling.

• This work is also among the first to investigate solutions to the timing error issue

(Chapter 3). Using a combination of alternative input variables for representing the

hydrological state of a catchment (for example, moving averages of rainfall time

series or soil moisture time series) and a proper objective function that penalizes

the model for having timing errors, the issue is shown to be somewhat alleviated.

• Chapter 5 presents the novel approach of comparing an ANN and a conceptual R–R

model using multiple criteria. The ANN model performed slightly better than the
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conceptual model for short-term forecasting, but was outperformed with increasing

forecast lead times.

7.1.2 Computationally Intelligent Parameter Estimation

• In this work, various results are presented that support the increasingly accepted

idea in hydrological modeling that using multiple criteria in the calibration and

evaluation of models is necessary to extract more information contained in data

and to better evaluate models.

- In Chapter 3, it is shown that not all differences between modeled and ob-

served hydrograph characteristics can be adequately expressed by a single

performance criterion since the results indicated that there seemed to be a

trade-off between the objectives of correct timing and good overall fit for an

ANN R–R model.

- Chapter 4 subsequently presents one of the first applications of MC optimiza-

tion algorithms to ANN R–R models. Similar to MC calibration of concep-

tual hydrological models, trade-offs between objective functions also manifest

themselves in MC ANN training. The results indicated that by using MC

training, more stable regions in the weight space can be identified which re-

sult in more reliable models compared to SC training.

- The case for MC calibration of both data-driven and conceptual hydrological

models in again made in Chapter 5, through one of the first MC comparisons

of such models. It was again shown that the use of single objectives leads

to disregarding information by drawing oversimplified conclusions on model

performance, preventing a deeper understanding of model and data.

• By comparing many different optimization algorithms for the training of ANN R–R

models, this work shows that the sensitivity of ANN model results on the method of

optimization are larger than usually expected by hydrological modelers. Whether

it be in differences between various local algorithms (Chapter 3), between local

and global algorithms, or between SC and MC algorithms (both in Chapter 4), the

choice of algorithm has large effects on model accuracy and uncertainty. Chapter 4

shows that there are also large differences in a posteriori weight values of the ANN

models after training using different algorithms.

• A new objective function was proposed in Chapter 4 of this work, which penalizes

a model for errors regarding hydrograph timing and shape by looking at differences

between the first derivatives of the simulated and observed times series. This Mean

Squared Derivative Error clearly complements traditional objective functions and

therefore helps in extracting more information from the data.

• The self-adaptive DE optimization algorithm was found to be effective in one of

its first applications in hydrologic model calibration (Chapter 6). The algorithm
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obtained good solutions within a reasonable number of function evaluations, for

both a low-dimensional and high-dimensional optimization problem.

7.1.3 Hydrological Clustering

• A temporal clustering approach is employed in Chapter 6 to identify periods of hy-

drological similarity. The model parameters were subsequently allowed to vary over

the clusters found in this manner, and these parameters were calibrated simulta-

neously. The parameter variability between the hydrologically similar periods was

subsequently used to make diagnostic inferences leading to improvements in the

proposed model structures. This diagnostic step represents a successful novel ap-

plication of clustering techniques that addresses the challenging and fundamental

hydrological issue of how to achieve improvements on the working model hypoth-

esis, and as such hints at new possibilities in hydrological modeling.

• The k-means clustering algorithm was shown to be effective in identifying hydro-

logically similar periods from a data set.

7.1.4 Synthesis

After using CI for (1) system identification, (2) parameter estimation, and (3) data mining

in R–R modeling, the overall conclusion is that applications of CI in R–R modeling show

a lot of promise. This supports the findings in recent literature, as presented in Chapter 2.

CI methods can be considered powerful thanks to, for example, their general effectiveness

in dealing with nonlinearity (e.g., ANNs as R–R models) and high-dimensionality (e.g.,

effectiveness of CI parameter estimation). Moreover, CI methods provide an alternative

viewpoint on hydrological data and models that is strikingly different from traditional

methods, and as such are able to extract information hitherto overlooked.

Nevertheless, there are some pitfalls of CI methods. For example, their application to

system identification in R–R modeling runs the risk of producing a model that is not well-

performing, robust or consistent if it is done without the use of process knowledge in model

development or evaluation (a clear example of this are the often-overlooked timing errors

of ANN R–R models). Better guidelines on data-driven model development and calibration

in R–R modeling would help, but most CI methods remain too flexible methods to be

considered realistic approximations of the natural system (data-driven models commonly

disregard the water balance, for example). The advantages of an approach in which models

are built on physical foundation but make use of sophisticated algorithms that exploit the

data better, are therefore obvious: the complementary characteristics of knowledge-driven

and data-driven modeling can then be optimally exploited. Recent research, including this

work, shows that by carefully combining both process knowledge, modeling experience
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and intuition (see [Savenije, 2009]), it is possible to forge new model development and

evaluation methods that combine the best of both worlds.

Regarding the calibration of hydrological models, CI parameter estimation techniques

seem to generally outperform traditional methods. Compared to traditional methods,

however, CI methods often have increased computational demands. This work has also

shown the desirability of MC calibration of models and how CI methods are effective in

this respect.

No formal quantification of uncertainty of model output has been performed in this work.

However, the issues related to parameter uncertainty discussed in Chapters 4 and 5 trans-

late qualitatively to the uncertainty of model output. Also, MC calibration can reduce

parameter uncertainty because of the increased amount of information that is extracted

from model and data. Moreover, the findings of Chapter 6 strongly suggest the possibility

of finding model structural improvements, which also leads to reduced model structural

uncertainty in R–R modeling.

This work has shown that even without the use of additional information or observations

from the field, current model evaluation practices can be significantly improved through

careful scrutiny of data and model functioning with CI methods. Two examples are the

MC approach presented in Chapters 4 and 5, and the diagnostic evaluation approach

of Chapter 6. Both these approaches are meant to extract information from data and

model that is commonly ignored when merely evaluating the difference between time

series of model output and observations using a single statistic. New methods of comparing

signatures of model and data such as these are valuable because they signify an improved

ability to judge the quality of hypotheses about the real-world hydrological system on

which the model is based. This ability is considered improved not only because it is more

accurate and reliable but ultimately a diagnostic tool through which one can find how

hypotheses can be improved.

7.2 Recommendations

• Considering (1) the rapid advances in the field of CI, and (2) the diversity of tech-

niques presented in this field, a most obvious recommendation is to keep exploring

the effectiveness of CI techniques for application to R–R modeling. Any of the

techniques mentioned in Chapter 2 can be used for application to hydrological

modeling, and there are (and there will be) many more suitable ones.

– As discussed in Chapter 2, many other variations on the traditional ANN exist

(e.g., recurrent networks, radial basis function networks, neuro-fuzzy neural

networks, wavelet neural networks, the spiking neural networks [Bothé, 2003]).

Also, several alternatives to ANN data-driven models exist such as Support
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Vector Machines and Genetic Programming models, which could shed more

light on the value of the data-driven approach to R–R modeling.

– Much progress has been made in the field of optimization over recent years.

With the increase in computational power and the development of, for exam-

ple, algorithms based on swarm intelligence (see Chapter 2), memetic algo-

rithms [Hart et al., 2005] and multialgorithms [Vrugt and Robinson, 2007], the

possibilities for complex model optimization have grown. High-dimensional

calibration problems such as ANN training or distributed R–R model cali-

bration can benefit from the application of such sophisticated algorithms. A

way to even more thoroughly explore the application of CI parameter estima-

tion methods to R–R modeling would be to simultaneously estimate optimal

parameter values and their probability distributions.

– The k-means algorithm that was used for clustering is a relatively simple one.

Examples of more powerful and informative alternatives are fuzzy clustering

algorithms, self-organizing maps and the more recently developed random

forests [Breiman, 2001].

• Proper development, calibration and evaluation of ANN R–R models continues to

be a complex and opaque field. Much more insight in the effects of, for example,

ANN model structures, objective functions, optimization algorithms, and initial-

ization methods is needed before the use of data-driven techniques such as ANNs

can either be recommended or discouraged as adequate alternatives to traditional

R–R models.

• Hybrid methods that combine the best of data-driven and knowledge-driven models

are valuable because they theoretically complement each other well. More research

is suggested after how to optimally accomplish such combinations.

• The step of translating the diagnostic information found by data mining in Chapter

6 into structural model improvements is far from trivial. An approach that can

find such translations in an objective way would be very valuable to hydrological

modeling. More research on this topic is therefore suggested.
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Appendix A

Study Sites and Data

A.1 Geer River Basin

The Geer River basin (Figures A.1 and A.2) is located in the north of Belgium, North

West Europe, and is a subbasin of the Meuse River basin. The basin area is 494 km2,

and its mean annual rainfall is approximately 810 mm. The perennial river has discharges

ranging from 1.8 m3/s in dry periods to peaks of around 15 m3/s.

Daily time series of rainfall at stations Waremme, Bierset and Visé, potential evaporation

at Bierset, groundwater levels at Viemmes, and streamflow at the catchment outlet at

Kanne were available for the periods 1980–1991 and 1993–1997. Areal rainfall was cal-

culated from the three rainfall time series using the Thiessen polygon method. The time

series for the two periods are connected into one time series, and the continuity of the

data is largely preserved because the second period starts under similar flow conditions,

and at the same point in the hydrological year where the first period ends. Hourly time

series of rainfall at station Bierset and streamflow at Kanne were available for the period

1993–1997.

These data were made available by the Royal Meteorological Institute of Belgium (Brus-

sels, Belgium).

A.2 Leaf River Basin

The Leaf River basin is located north of Collins, Mississippi, USA and has an area of ap-

proximately 1944 km2. Time series of mean daily streamflow, daily potential evaporation

estimates, and 6-hourly mean areal precipitation totals were available for the period 1948

to 1988. Mean annual precipitation of the basin is around 1400 mm and annual runoff

around 400 mm.

These data were made available by the National Weather Service Hydrology Laboratory

(MD, USA).
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Figure A.1: Location of the Geer basin. (Source: Google Earth.)

Figure A.2: Map of the Geer River basin, showing various measurement stations.
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Figure A.3: Location of the Leaf River basin. (Source: Google Earth.)
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SHE. 1. History and philosophy of a physically-based, distributed modelling system. J.

Hydrol., 87, 45–59.

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., and Rasmussen, J. (1986b).

An introduction to the European Hydrological System–Système Hydrologique Européen,
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Summary

Computational intelligence in rainfall–runoff modeling

The transformation from precipitation over a river basin to river streamflow is the result

of many interacting processes which manifest themselves at various scales of time and

space. The resulting complexity of hydrological systems, and the difficulty to properly

and quantitatively express the information that is available about them, determine the

challenge of Rainfall–Runoff (R–R) modeling. Accurate and reliable R–R models, however,

are important because they can be used for scientific hypothesis testing, or for making

prediction that can improve the quality or effectiveness of decisions related to water

management issues.

In recent years, Computational Intelligence (CI) has emerged as a promising field of

research. It has increasingly found application in R–R modeling (see literature review

in Chapter 2), and in the research community there exists a clear and urgent need to

further investigate the application of CI techniques. The main objective of this research,

therefore, was to use CI techniques in catchment-scale R–R modeling in order to find

improved methods of developing and evaluating such models. Three fields of application

are explored for these purposes: system identification, parameter estimation and data

mining. In Chapter 3, a R–R model based on a well-known CI technique, an Artificial

Neural Network (ANN) is developed. Some important issues regarding the development,

calibration and performance of such models are highlighted and discussed. Chapter 4

deals with the application of evolutionary, multi-criteria algorithms to the calibration of

ANN R–R models, along with a comparison with traditional single-criterion algorithms.

A multi-criteria comparison of an ANN model and a conceptual hydrological model is

subsequently presented in Chapter 5. In Chapter 6, a temporal clustering approach was

employed to identify periods of hydrological similarity. The results were used to shown

how the evaluation of a conceptual model can be improved to be more diagnostic in nature

and how subsequent improvements to the model structure can be inferred.

The following summarizes the investigations on each of the three applications.

1. Artificial Neural Networks as Data-Driven Models

In Chapters 3, 4 and 5, ANNs have been used as data-driven R–R models to

explore if CI techniques can simulate the R–R transformation adequately and how
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well they compare to conceptual hydrological models. The results show good model

performance, but also show that the application of ANNs is not without problems,

since they are quite sensitive to several subjective modeling choices. For example,

the choice of model input, structure or training algorithm has a big influence in the

accuracy and parameter uncertainty of the model (Chapters 3 and 4). Moreover,

ANNs sometimes appear to be sensitive to timing errors (Chapter 3). With respect

to conceptual models, ANNs show to be slightly better for short-term forecasting

but their performance decreases with increased forecast lead times (see Chapter 5).

All in all, the development, calibration and evaluation of ANN R–R models, and

the underlying uncertainties involved, which are subject to ANN model structure,

objective functions, optimization algorithms, initialization, et cetera, continues to

be a complex and opaque field. More insight in these issues is needed before the use

of data-driven techniques such as ANNs can either be recommended or discouraged

as adequate alternatives to traditional R–R models.

2. Computationally Intelligent Parameter Estimation

CI parameter estimation algorithms have been applied to calibration of both CI

and conceptual models to test whether more information can be extracted from

hydrological data and used to make better R–R models (see Chapters 4 and 5).

Throughout this study, the sensitivity of results on the method of optimization are

shown to be large. Whether it be in differences between various local algorithms

(Chapter 3), between local and global algorithms, or between single-criterion and

multi-criteria algorithms (both in Chapter 4), the choice of algorithm turns out to

have large effects on model accuracy and uncertainty. MC algorithms such as the

NSGA–II and MOSCEM–UA prove to be very valuable in R–R model calibration

since they exploit the information in model and data in a better way than , making

the models not only accurate but a lot more reliable (see Chapters 4 and 5). Their

usefulness naturally depends on the choice of objective functions. In this work, a

new objective function (the Mean Squared Derivative Error) was proposed that

penalizes a model for errors regarding hydrograph timing and shape. It was shown

to evaluate models in a uniquely different way compared to traditional objective

functions. Finally, the powerful self-adaptive Differential Evolution algorithm was

employed in Chapter 6 and showed to be effective in a model calibration proce-

dure. Generally, it was concluded that CI parameter estimation methods are more

effective compared to traditional techniques.

3. Hydrological Clustering

In order to find and make use of dynamical patterns in hydrological data that

are commonly ignored in model evaluation, data mining has been performed in

Chapter 6. A temporal clustering approach based on the simple k-means clustering

algorithm was successfully devised to partition the historical data into several peri-
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ods of hydrological similarity. The parameter variability between the hydrologically

similar periods was subsequently used to make diagnostic inferences leading to im-

provements in the proposed model structures. This diagnostic step represents a

successful novel application of clustering techniques that addresses the challenging

and fundamental hydrological issue of how to achieve improvements on the working

model hypothesis.

The overall conclusion of this work is that applications of CI in R–R modeling show a

lot of promise. CI techniques can be considered powerful thanks to, for example, their

general effectiveness in dealing with nonlinearity (e.g., ANNs as R–R models) and high-

dimensionality (e.g., effectiveness of CI parameter estimation). Moreover, CI techniques

provide an alternative viewpoint on hydrological data and models that is strikingly differ-

ent from traditional techniques, and as such is able to extract information hitherto over-

looked. Nevertheless, some pitfalls of CI techniques presented themselves. Therefore, there

are advantages to approaches in which models use the characteristics of both knowledge-

driven and data-driven modeling. This work shows that by correctly combining both

process knowledge, modeling experience and intuition, it is possible to forge new model

development and evaluation methods that combine the best of both worlds.

This work has shown that even without the use of additional sources of information

or observations from the field, current model evaluation practices can be significantly

improved through careful scrutiny of data and model functioning with CI techniques. Two

examples from this work include the MC approach presented in Chapters 4 and 5, and the

diagnostic evaluation approach of Chapter 6. Both these approaches are meant to extract

information from data and model that is commonly ignored when merely evaluating the

difference between time series of model output and observations using a single statistic.

New methods of comparing signatures of model and data such as these are valuable

because they signify an improved ability to judge the quality of hypotheses about the

real-world hydrological system on which the model is based. This ability is considered

improved not only because it is more accurate and reliable but ultimately a diagnostic

tool through which one can find how hypotheses can be improved.
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Samenvatting

Rekenkundige intelligentie in neerslag–afvoermodellering

De transformatie van neerslag op een rivierstroomgebied naar afvoer in de rivier is het

resultaat van de interactie van vele processen die plaatsvinden op verscheidene tijd- en

ruimteschalen. De hieruit voortvloeiende complexiteit van hydrologische systemen, samen

met tekortkomingen om de beschikbare informatie correct en kwantitatief uit te drukken,

maken van neerslag–afvoermodellering een uiterst moeilijke taak. Nauwkeurige en be-

trouwbare neerslag–afvoermodellen zijn echter belangrijk omdat zij gebruikt kunnen wor-

den voor het testen van wetenschappelijke hypothesen, en voor het verbeteren van de

kwaliteit of effectiviteit van beslissingen omtrent watermanagementsproblemen.

Recentelijk is Rekenkundige Intelligentie (RI) uitgegroeid tot een veelbelovend onder-

zoeksveld. Het wordt meer en meer toegepast in neerslag–afvoermodellering (zie het lit-

eratuuroverzicht in hoofdstuk 2), en in de wetenschappelijke gemeenschap bestaat een

duidelijke en urgente behoefte om de toepassingen van zulke RI-technieken verder te

onderzoeken. Het belangrijkste doel van dit onderzoek was daarom het toepassen van RI-

technieken in neerslag–afvoermodellering op stroomgebiedsschaal, zodat verbeterde meth-

oden voor het ontwikkelen en evalueren van zulke modellen gevonden kunnen worden. Drie

toepassingsgebieden zijn onderzocht om dit doel te bereiken: systeemidentificatie, param-

eterschatting en ‘data mining’. In hoofdstuk 3 wordt een bekende RI-techniek genaamd

Kunstmatig Neuraal Netwerk (KNN) gebruikt om een neerslag–afvoermodel te ontwikke-

len. Enkele belangrijke zaken omtrent het bouwen, het kalibreren en de prestaties van

zulke modellen worden uitgelicht en bediscussieerd. Hoofdstuk 4 presenteert de toepass-

ing van evolutionaire multi-criteria-algoritmes voor het kalibreren van KNN neerslag–

afvoermodellen, met daarbij een vergelijking met algoritmes gebaseerd op een enkel cri-

terium. In hoofdstuk 5 wordt vervolgens een multi-criteria-vergelijking tussen een KNN

en een conceptueel neerslag–afvoermodel behandeld. In hoofdstuk 6 wordt clustering in

de tijdsdimensie gebruikt om periodes van gelijkwaardige hydrologische toestand te iden-

tificeren. Deze informatie wordt vervolgens gebruikt om te laten zien hoe de evaluatie van

een conceptueel model meer diagnostisch van aard kan worden gemaakt en hoe dit kan

leiden tot verbeteringen van de modelstructuur.

Hieronder wordt het onderzoek aan de drie toepassingsgebieden samengevat.
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1. Kunstmatige Neurale Netwerken als neerslag–afvoermodellen

In hoofdstukken 3, 4 en 5 worden KNN gebruikt als data-gestuurde neerslag–

afvoermodellen om te onderzoeken of RI-technieken de neerslag–afvoertransformatie

adequaat kunnen simuleren en hoe goed ze zijn vergeleken met conceptuele hy-

drologische modellen. The resultaten laten goede prestaties zien, maar ook dat

de toepassing van KNN niet zonder problemen is: ze zijn behoorlijk gevoelig ten

opzichte van enkele subjectieve modelkeuzes. De keuze van modelinput, -structuur

en trainingsalgoritme heeft een groot effect op de nauwkeurigheid en de parame-

teronzekerheid van het model (hoofdstukken 3 en 4). Ook blijken KNN-modellen

gevoelig te zijn voor fouten in timing (hoofdstuk 3). In vergelijking met con-

ceptuele modellen laten KNN betere korte-termijnresultaten zien, maar naarmate

de voorspellingshorizon toeneemt, nemen hun prestaties af (hoofdstuk 5). Over

het geheel genomen is de ontwikkeling, kalibratie en evaluatie van KNN neerslag–

afvoermodellen, alsmede de daarmee samenhangende onzekerheden (die afhangen

van bijvoorbeeld KNN modelstructuur, doelfuncties, optimalisatiealgoritmes en ini-

tialisatie), een complex en ondoorzichtig veld. Er is meer inzicht nodig voordat

KNN aanbevolen of afgeraden kunnen worden als adequate alternatieven voor tra-

ditionele neerslag–afvoermodellen.

2. Rekenkundig Intelligente parameterschatting

RI parameterschattingsalgoritmes zijn toegepast op de kalibratie van zowel RI-

als conceptuele modellen om te testen of er zo meer informatie uit hydrologische

data gehaald kan worden (hoofdstukken 4 en 5). De resultaten in deze gehele

studie laten zien dat de gevoeligheid van resultaten voor de keuze van optimal-

isatiemethode groot zijn. Of het nu de verschillen tussen verschillende lokale al-

goritmes zijn (hoofdstuk 3), tussen lokale en globale algoritmes, of tussen enkel-

criterium- en multi-criteria-algoritmes (beide in hoofdstuk 4), the algoritmekeuze

heeft een groot effect op modelnauwkeurigheid en -onzekerheid. Multi-criteria-

algoritmes zoals NSGA–II en MOSCEM–UA laten hun waarde zien in de kalibratie

van neerslag–afvoermodellen omdat zij de informatie in model en data beter be-

nutten dan enkel-criterium-algoritmes. De modellen worden daardoor niet alleen

nauwkeuriger, maar ook betrouwbaarder (hoofdstukken 4 en 5). Het nut van deze

algoritmes hangt natuurlijk wel af van de doelfuncties die gebruikt worden. In dit

werk wordt een nieuwe doelfunctie voorgesteld die een model straft voor fouten in

de timing en de vorm van het afvoerverloop. De beoordeling door deze functie ver-

schilt op unieke wijze van traditionele doelfuncties. Ten slotte is het krachtige ‘self-

adaptive’ Differential Evolution-algoritme gebruikt in hoofdstuk 6, waarbij het liet

zien effectief te zijn voor modelkalibratie. Over het algemeen wordt geconcludeerd

dat RI parameterschatting krachtiger is dan traditionele technieken.

3. Hydrologische clustering
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Teneinde dynamische patronen in hydrologische data te vinden, en gebruik te

maken van deze vaak genegeerde informatie, is ‘data mining’ uitgevoerd in hoofd-

stuk 6. Er is een succesvolle clustering in de tijdsdimensie uitgevoerd met behulp

van het eenvoudige ‘k-means’ clusteringalgoritme, zodat de hydrologische data in

verschillende perioden van gelijke hydrologische toestand kon worden verdeeld. De

variabiliteit in parameters tussen deze periodes is vervolgens gebruikt om volgens

de diagnostische methode verbeteringen aan de modelstructuur af te leiden. Deze

diagnostische stap betekent een succesvolle nieuwe toepassing van clusteringtech-

nieken, welke het moeilijke en fundamentele hydrologische probleem aanpakt van

hoe een bestaande modelhypothese te verbeteren.

De algemene conclusie van dit werk is dat de toepassing van RI in neerslag–afvoermodellering

erg veelbelovend is. RI-technieken zijn krachtig vanwege bijvoorbeeld het feit dat zij effec-

tief omgaan met niet-lineariteit (bijv. KNN als neerslag–afvoermodellen) en hogere dimen-

sies (bijv. de effectiviteit van RI parameterschatting). Daarnaast benaderen RI-technieken

hydrologische data en modellen vanuit een totaal andere richting dan traditionele tech-

nieken en daardoor kunnen zij informatie ontdekken die tot nu toe gemist werd. Niettemin

blijkt de toepassing van CI-technieken enkele problemen te herbergen. Er hangen daarom

voordelen aan benaderingen die de eigenschappen van zowel kennis-gestuurde als data-

gestuurde modellen verenigen. Dit proefschrift laat zien dat door het correct combineren

van proceskennis, modelleerervaring en intüıtie, het mogelijk is om nieuwe methoden voor

modelontwikkeling en -evaluatie te smeden die het beste van beide werelden combineren.

Dit werk heeft laten zien dat, zelfs zonder het gebruik van nieuwe informatiebronnen

of veldobservaties, huidige methoden voor modelevaluatie significant verbeterd kunnen

worden door het nauwkeurig bestuderen van data en model met RI-technieken. Twee

voorbeelden hiervan zijn de multi-criteria-methode in hoofdstukken 4 en 5, en de diagno-

stische evaluatiemethode van hoofdstuk 6. Beide methoden beogen informatie uit de data

en het model te halen die normaal gesproken over het hoofd wordt gezien wanneer het

verschil tussen gesimuleerde en geobserveerde tijdseries in een enkele waarde uitgedrukt

wordt. Zulke innovatieve methoden zijn belangrijk omdat zij op nieuwe mogelijkheden

duiden in het beoordelen van de kwaliteit van een hypothese van een stroomgebiedssys-

teem, waarop het model is gebaseerd. Deze mogelijkheden zijn niet alleen nauwkeuriger en

betrouwbaarder, maar zelfs een diagnostisch hulpmiddel waarmee mogelijke verbeteringen

aan de hypothese kunnen worden gevonden.
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