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What we’re talking about is late night and early morning low clouds
with a chance of fog, chance of showers into the afternoon
with variable high cloudiness and gusty winds
Gusty winds at times around the corner of Sunset and Alvorado
Yeah, I know, things are tough all over
When the thunder storms start increasing over the
Southeast and South Central portions of my apartment, I get upset
And a line of thunderstorms was developing in the early morning
ahead of a slow moving coldfront, cold blooded
with tornado watches issued shortly before noon Sunday
for the areas including the western region of my mental health
and the northern portions of my ability to deal rationally
with my disconcerted precarious emotional situation
It’s cold out there
Colder than a ticket taker’s smile at the Ivar Theatre, on a Saturday night
Flash flood watches covered the southern portion of my disposition, yeah
There was no severe weather well into the afternoon
except for kind of a lone gust of wind in the bedroom
A high pressure zone covering the eastern portion of a small
suburban community with a 1034 millibar high pressure zone
and a weak pressure ridge extending from my eyes down to my cheeks
cause since you left me baby and put the vice grips on my mental health
well, the extended outlook for an indefinite period of time
until you come back to me, baby, is high tonight, low tomorrow
and precipitation is expected
Emotional Weather Report-Tom Waits
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1 Introduction

1.1 Background

The hydrologic - or water– cycle is the continuous movement of water between the
earth and the atmosphere, which plays an important role in our climate system (Figure
1.1). When precipitation (e.g. rain, snow) reaches the land surface, it becomes of in-
terest for hydrologists. On the land surface it can either collect on the land and
become surface water (e.g. streams, rivers, lakes) or infiltrate to become soil moisture
or even percolate further to the groundwater reservoir. Continuously, water is also re-
leased back to the atmosphere via evapo(transpi)ration (from soil, vegetation, streams
and oceans). How precipitation is distributed over the different hydrological variables
(e.g. surface water discharge, soil moisture, groundwater) depends on the spatial and
temporal variability of precipitation, the land surface characteristics and on the cur-
rent hydrological state of the land surface. All these hydrological processes have their
own spatial and temporal scale (Figure 1.2). Considering the hydrologic cycle, the
linkage between hydrology and meteorology is evident. As science moves on and new
techniques are developed within both disciplines, continuous feedback between them
is of great importance and can be mutually beneficial. Meteorologists need expertise
from hydrologists about the unsaturated zone to improve their climate models. On
the other hand meteorologists can provide hydrologists with valuable hydrometeo-
rological information like precipitation fields from radar, evapotranspiration fields
from satellites and weather (temperature, rainfall, wind) forecasts.

Computer simulation models that simulate (part of) the hydrological cycle are an
important tool for hydrologists to understand and describe the hydrological system.
If these models succeed in achieving accurate results, they can predict what happens
to the hydrological system if for example climate (e.g. precipitation, evaporation) or
water management and land use changes: the so-called scenario analysis. In the last
30 years the number but also the complexity of hydrological computer models has
grown tremendously, due to more powerful computers, geographical information sys-
tems (GIS) and remote sensors (Bergström and Graham, 1998). Catchment models
can be classified as physically-based or conceptual (semi-empirical), depending on the
degree of complexity and physical completeness in the formulation of the structure
(Beven, 1989; Refsgaard, 1996, 1997; Refsgaard and Henriksen, 2004). Furthermore,
models are classified as lumped or distributed depending on the degree of discreti-
sation when describing the terrain in the basin. A distributed hydrological model
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Figure 1.1 The hydrologic cycle, a schematic overview of the continuous movement of water between
earth and atmosphere (by Tom Schultz, Department of Natural Resource Ecology and
Management (NREM), Iowa State University).

is defined by Reed et al. (2004) as ”any model that explicitly accounts for spatial
variability inside a basin and has the ability to produce simulations at interior points
without explicit calibration at these points”. Today, most hydrological models are
distributed to some degree.

1.2 Problem outline and research questions

As more spatially-distributed information about land surface characteristics becomes
available and computer capacity increases, the distributed hydrological models are
also developed at higher spatial resolutions. Potentially, these high resolution models
can give us insight into the hydrological processes in more detail. However, a major
problem plaguing these high-resolution models is over-parameterization and lack of
validation resources. At the same time, hydrometeorological information based on
remote sensing techniques like meteorological rainfall radar and evapotranspiration
derived from satellites has become more easily available and its quality has greatly
improved over the years. These operational spatially-distributed data can serve as
improved input and validation data for distributed hydrological models and could
improve the accuracy of these models. Accuracy in this thesis is defined as ”faithful
measurement” or ”representation of the truth”, not in the mathematical sense of pre-
cision.
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Figure 1.2 Schematic relationship between spatial and temporal process scales for a number of hydro-
logical processes (Blöschl and Sivapalan, 1995; Grayson and Blöschl, 2000)

Meteorologists are also developing and improving numerical weather prediction models
(NWPs) that provide (among other variables like wind, temperature) rainfall fore-
casts. Typical of these forecast data is that they consist of a number of model out-
comes that are all equally likely to occur (Persson, 2001). These so called ”ensemble
members” provide insight into the reliability of the model outcomes. Reliability is this
thesis is defined as ”trustworthy” or ”consistency”: if the ensemble members show a
small spread they are more reliable than if they show a large spread. The ensemble
members of NWPs could be used by hydrologists to make forecasts of the hydrological
system and provide insight into the reliability of the model outcomes. However, in
practice these data are not commonly used by hydrologists. Reasons for this lack of
use are outstanding questions of which the following form the research questions of
this thesis:

1. What is the added value of meteorological radar with respect to rain gauges?

2. What is the effect of spatial variability of daily rainfall on modelled interior
catchment response?

3. Can remotely sensed evapotranspiration improve the accuracy of the prediction
of spatially-distributed soil moisture by a distributed hydrological model?

4. Is it feasible to accurately predict the spatial distribution of soil moisture by
using rainfall forecasts of a numerical weather prediction model as input for a

13



distributed hydrological model, and, if so, up to how many days?

Furthermore a coherent framework to integrate hydrometeorological variables into
spatially-distributed models does not exist. Therefore the Hydrological Now- And
Forecasting System (HNFS) was developed (Figure 1.3). Three major parts can be
distinguished within this system.

• improved model input (e.g. high resolution distributed rainfall)

• assimilation of observed hydrological variables that are available on an irregular
basis in order to improve the accuracy of the model (e.g. remotely sensed data
from satellites)

• implementation of forecasted input variables (e.g. rainfall forecasts) in order to
obtain forecasts of the hydrological system.

To answer the research questions fieldwork had to be done in order to obtain input
as well as validation data. Besides, software tools for the HNFS system had to be
developed.

1.3 Thesis focus

This thesis focusses on physically based spatially-distributed hydrological models.
Moreover, existing model codes are used and models which are operational. It is the
scope of this thesis to investigate (i) whether operational remote sensing data that
provide spatially-distributed hydrological information can improve the accuracy of
these models and (ii) whether rainfall forecasts could provide accurate forecasts of
the hydrological model. It is not the scope of this thesis to calibrate these models.

Within the hydrological system, this thesis focusses on soil moisture as hydrological
variable. Insight into the spatial distribution of soil moisture within a catchment
is of great interest for e.g. farmers and water boards. Accurate prediction of its
current and short- to medium- term (∼ 9 days) spatial distribution (i.e. now- and
forecasting), is helpful for optimizing irrigation gifts, hydrological drought forecasting
and the assessment of catchment wetness for flood control. Moreover, for climate
models insight into the spatial distribution of soil moisture is of importance because
of its influence on the partition of the components of the energy balance of the earth
surface.

Operational remote sensing data embraces an enormous amount of data. In this
thesis we focus on (i) daily rainfall fields from meteorological radar and (ii) thermal
satellite images in association with a surface-energy-balance-algorithm that provides
daily fields of latent heat flux (i.e. evapotranspiration).

14



VMC

d
e

p
th

lead time

ra
in

fa
ll

 [
m

m
]

radar

raingauges

satellite information

in-situ measurements

ECMWF rainfall forecast

soil moisture forecast

radar

raingauges

radar

raingauges

lead time

ECMWF rainfall forecast

soil moisture forecast

d time

ECMWF rainfall forecast

soil moisture forecast

rainfall input data assimilation forecast

Figure 1.3 Hydrological Now- Forecasting System (HNFS)

1.4 Method

To be able to answer the research questions 1 and 2, the spatial small scale variability
of daily rainfall was studied during 2004 within the area ”Lopikerwaard” (135 km2:
Figure 1.4), using a dense network of 30 rain gauges. Meteorological radar data, as
well as data from the country wide network of rain gauges were supplied by the Royal
Netherlands Meteorological Institute (knmi). To investigate the added value of me-
teorological radar, we applied three different geostatistical methods to develop high-
resolution daily rainfall fields with either rain gauges only or a combination of rain
gauges and meteorological rainfall radar. The effect of spatial variability of daily rain-
fall on modelled interior catchment response was studied by applying several rainfall
input scenarios to an operational distributed hydrological model of the Lopikerwaard.
Because the Lopikerwaard has homogenous land surface characteristics and due to
shallow groundwater tables evapotranspiration reduction rarely occurs, this area was
less interesting to investigate research question 3. Therefore, the area ”Langbroeker-
wetering” (70 km2: Figure 1.4) was chosen. This area is located along the rim of the
Holocene Rhine-Meuse delta (Berendsen and Stouthamer, 2000), which onlaps cover-
sands and sandur outwash deposits in front of a Saalian ice-pushed ridge (Busschers
et al., 2007). Within this area there is a large variability in elevation, soil type and
land use. To be able to generate accurate high-resolution rainfall fields a network of
15 rain gauges was set up within this area. To investigate whether remotely sensed
evapotranspiration can improve the prediction of spatially-distributed soil moisture
by a distributed hydrological model, we used an operational hydrological model that
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Langbroekerwetering
Lopikerwaard

Figure 1.4 Location of the two study areas within The Netherlands: Lopikerwaard (135 km2) and
Langbroekerwetering (70 km2).

was based on a recently developed model code (metaswap) and satellite images
(from two different satellites for the same two days in 2006) that were transformed
into evapotranspiration fields using an often-used surface energy balance algorithm
(sebal). At 5 locations the soil moisture was measured at variable depth in order to
retrieve validation data for metaswap. To study the feasibility to accurately predict
the spatial distribution of soil moisture by using rainfall forecasts of a NWP, we used
ensemble rainfall forecasts from the European Centre for Medium-Range Weather
Forecasts (ecmwf) during the period March-November 2006 that were provided by
the knmi. These rainfall forecasts were used as input for the hydrological model of
the Langbroekerwetering. Model outcomes of the forecasted spatially-distributed soil
moisture up to 9 days ahead were compared with model runs that used measured
rainfall as input.

1.5 Thesis outline

The formulated four research questions are addressed in subsequent chapters. Each
chapter is based on an article that has been published or submitted to an international
peer reviewed journal. This means that the chapters have their own introduction and
end with conclusions. In Chapter 6 the main results of this dissertation are given
and these are placed and discussed in a broader perspective. Also some practical
applications of the HNFS are shown and some considerations about future catchment
modelling are given. This introduction together with Chapter 6 can be read indepen-
dently and should provide the reader with the main results of this dissertation.
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2 Automatic prediction of high-
resolution daily rainfall fields for
multiple extents: the potential
of operational radar

Schuurmans, J.M, M.F.P. Bierkens, E.J. Pebesma & R. Uijlenhoet (2007), Automatic
prediction of high-resolution daily rainfall fields for multiple extents: the potential of
operational radar. Journal of Hydrometeorology 8, pp. 1204 - 1224

Abstract

This study investigates the added value of operational radar with respect to rain
gauges in obtaining high-resolution daily rainfall fields as required in distributed
hydrological modelling. To this end we combine data from the Netherlands oper-
ational national rain gauge network (330 gauges nation wide) with our own exper-
imental network (30 gauges within 225 km2). Based on 74 selected rainfall events
(March-October 2004) the spatial variability of daily rainfall is investigated at three
spatial extents: small (225 km2), medium (10,000 km2) and large (82,875 km2). From
this analysis it is shown that semivariograms show no clear dependence on season.
Predictions of point rainfall are performed for all three extents using three different
geostatistical methods: (i) ordinary kriging (OK; rain gauge data only), (ii) kriging
with external drift (KED) and (iii) ordinary colocated cokriging (OCCK), the latter
two using both rain gauge data and range-corrected daily radar composites - a stan-
dard operational radar product from the Royal Netherlands Meteorological Institute
(knmi). Focus here is on automatic prediction. For small extent rain gauge data alone
perform better than radar while for larger extents with lower gauge densities radar
performs overall better than rain gauge data alone (OK). Methods using both radar
and rain gauge data (KED and OCCK) prove to be more accurate than using either
rain gauge data alone (OK) or radar, in particular for larger extents. The added value
of radar is positively related to the correlation between radar and rain gauge data.
Using a pooled semivariogram is almost as good as using event-based semivariograms,
which is convenient if the prediction is to be automated. An interesting result is that
the pooled semivariograms perform better in terms of estimating the prediction error
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(kriging variance) especially for the small- and medium extent, where the number of
data points to estimate semivariograms is small and event-based semivariograms are
rather unstable.

2.1 Introduction

Rainfall is the main input variable for hydrological models. Hydrologists use spatially-
distributed hydrological models to gain insight into the spatial variability of soil
moisture content, groundwater level as well as the discharge of catchments. As the
spatial information on surface elevation, land use and soil properties increases, hy-
drologists increase the spatial resolution of these models. However, up to now the
spatial resolution of the rainfall input information lags behind. To properly model
soil moisture content and groundwater level at high-resolution, hydrologists require
rainfall information to be at high-resolution as well.

The rainfall information that is readily available for hydrologists in The Nether-
lands comes from both rain gauges and meteorological radar. All the rainfall data are
collected and distributed by the Royal Netherlands Meteorological Institute (knmi).
There are two rain gauge networks, of which the network with the highest density has
approximately 1 gauge per 100 km2 with daily rainfall measured. The operational
radar product employed in this research is a processed composite field of daily rainfall
with a resolution of 2.5 km × 2.5 km from two C-band Doppler radars.

If operationally available rainfall data, i.e. rainfall fields from radar and rain gauge
data, could be used to predict high-resolution rainfall automatically, hydrologists
would probably be more willing to use these in their modelling. In this study we
therefore focus on using operational radar products that can be readily obtained
from the knmi over the internet. Moreover, we concentrate on prediction procedures
that can be automated, i.e. they have to be reliable and robust such that without
additional intervention daily predictions are guaranteed. Of course, at the same time
the resulting predictions have to be sufficiently accurate to be of any use.

Consequently, the main objective of this study is to provide for automatic predic-
tion of rainfall at a high (within a radar pixel) spatial resolution using operational
daily rainfall products. Our most important research question is: what is the added
value of operational radar with respect to rain gauges in terms of rainfall prediction?

To predict at a high spatial resolution we need information about the spatial
variability of daily rainfall at a small extent. Therefore we have set up an experimental
high density rain gauge network of 30 rain gauges within an area of 225 km2 in the
middle of the Netherlands. Although we know that there is a space-time correlation
in rainfall we restrict ourselves to daily rainfall for two reasons. First, within the
Netherlands we have a relatively slow hydrological response to stratiform-dominated
rainfall, which means that a temporal resolution of one day is already very informative.
Second, the operational radar products we use in this study are available at a daily
time step. We selected 74 rainfall events and studied for each event the spatial
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variability of rainfall at three different extents: the small- (225 km2), medium- (10,000
km2) and large- (82,875 km2) extent, i.e. the meso-γ and meso-β scale (Orlanski,
1975). We used three geostatistical prediction methods, one using rain gauge data
only and the other two combining rain gauge and radar data, and compared the
results.

The organization of this chapter is as follows. In Section 2.2 we describe the
data and the event selection procedure. In Section 2.3 the methods are described,
starting with variogram modelling, followed by the three geostatistical prediction
methods used. The results are given in Section 2.4, starting with the variography
(i.e. spatial variability) of rainfall, followed by a case study to show the prediction
methods used and finally the cross-validation results are shown. Section 2.5 deals with
the uncertainties of this study. In Section 2.6 we summarize the main conclusions.

2.2 Data and data processing

2.2.1 Rain gauge network

We used two different kinds of rain gauge networks; one permanent network which is
operated by the Royal Netherlands Meteorological Institute (knmi) and one exper-
imental network. Figure 2.1 shows the location of all the rain gauges of these two
networks. The largest network consists of 330 stations and has a density of approxi-
mately 1 station per 100 km2. This network is maintained by volunteers who report
the rainfall depth daily at 0800 UTC. These data are available on-line at the knmi .

The experimental high-density network consists of 30 tipping bucket rain gauges
within an area of 225 km2 in the central part of the Netherlands. The choice for
this particular area was based on the fact that several other hydro-meteorological
experiments are ongoing within this area as well (Cabauw Experimental Site for At-
mospheric Research-CESAR), which may be mutually beneficial. Different from the
HYREX (HYdrological Radar EXperiment), which took place in the UK between
May 1993 and April 1997 (Moore et al., 2000), the purpose of our network was not
to give the best estimate of mean rainfall over a radar pixel but in addition to asses
the small-extent variability of rainfall, i.e. to estimate the semivariograms of the rain
fields, in particular for short lag distances. Therefore, at five locations two rain gauges
were placed at very close distance (1-5 meter) from each other, a setup that is also
recommended by Krajewski et al. (2003). The rest of the gauges were set up in such
a way that we had many different inter-gauge distances. Krajewski et al. (2003) state
that knowledge of rainfall structure at spatial extents between a few meters and a few
kilometers is still poor. The operational rain gauge network in the Netherlands only
gives information for distances larger than approximately 10 km, which implies that
prediction of high-resolution rainfall fields (smaller than 10 km) is very uncertain.
Our high density experimental network can be compared with the high density net-
works of HYREX, which had 49 tipping bucket rain gauges within 132 km2 (Moore
et al., 2000), and the network of Iowa Institute of Hydraulic Research, which has 15
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Figure 2.1 Locations of weather radars and rain gauges in The Netherlands: 2 C-band Doppler
radars, volunteer network with 330 rain gauges (temporal resolution of 1 day), automatic
network with 35 tipping bucket rain gauges (temporal resolution of 10 minutes) and
experimental network with 30 tipping bucket rain gauges (equipped with event loggers).
The three spatial extents studied are also shown.

rain gauges with separation distances ranging from 10-1000 meters (Krajewski et al.,
1998). Our network is therefore unique in The Netherlands and provides valuable
information on the spatial structure of rainfall at short distances.

For the experimental network we used ARG100 tipping buckets (developed by
the Centre for Ecology and Hydrology in the UK), which are designed to reduce their
sensitivity to wind speed and direction, through their aerodynamic design. We placed
the rain gauges in open area, free from obstacles. All gauges were equipped with event
loggers, that record the momentary tipping event, storing the time and date of each
event with a time resolution of 0.5 seconds. The nominal rainfall accumulation per
tipping was 0.2 mm, but a laboratory-derived intensity dependent correction was
made (Appendix 1). Approximately every month the loggers were read out and the
rain gauges maintained.
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2.2.2 Radar data

The knmi operates two C-band Doppler radars, one at De Bilt and one at Den Helder
(Figure 2.1), which both record 288 pseudo CAPPI (800 m) reflectivity fields each day
(i.e. every 5 minutes) after removal of groundclutter (Wessels and Beekhuis, 1997).
The resolution of these fields is 2.5 km × 2.5 km. The measured radar reflectivity
factor Z [mm6 m−3] of each resolution unit is converted to surface rainfall intensity
R [mm h−1] using the Marshall-Palmer Z-R relationship, which has been found to be
most suitable for stratiform dominated rainfall events (Battan, 1973):

Z = 200 · R1.6 (2.1)

For both radars, the surface rainfall intensities are accumulated from 0800 UTC
until 0800 UTC the next day, for each pixel. It is known that there is a distance-
related underestimation of surface rainfall by weather radars due to spatial expansion
of the radar beam and due to attenuation of the radar signal. Also overestimation due
to the bright band (vertical profile of reflectivity) may occur. Therefore, data from
the rain gauges of the volunteer network, from the same period, are used to perform
a range correction for each radar separately every day (Holleman, 2004). This is a
range dependent bias correction and is done as follows (Holleman, 2003). Colocated
radar (R) and gauge (G) observations form the variable RG, which is only calculated
if both the radar and rain gauge measured more than 1 mm rainfall.

RG ≡ 10 log(
R

G
) (2.2)

The available RG values are plotted as a function of distance from the radar (r) and
a parabola is fitted through these data:

RG(r) = a + b · r + c · r2 (2.3)

with a, b and c being the fitting parameters After the range correction, a composite
field is constructed by averaging the pixel values of the two radars up to a radius
of 200 km away from each radar. Within a radius of 15 km from one radar, the
information of the other radar is used. This composite radar field is an operational
product of the knmi and is used in this study.

2.2.3 Event selection

The rain gauges of the experimental network were installed at the beginning of 2004.
Between March and October 2004 we selected the 74 events with mean daily rainfall
depth of all rain gauges of the experimental network exceeding 1 mm. Rainfall was
accumulated from 0800 UTC until 0800 UTC the next day to match the measuring
period of the volunteer network and the weather radar. Krajewski et al. (2003) and
Steiner et al. (1999) have already mentioned the problems that can occur with rain
gauges and we experienced these same problems, resulting in the fact that seldom all
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30 rain gauges of the experimental network yielded reliable data simultaneously. We
performed a quality check to filter outliers. For each event we made box-and-whisker
plots, showing the distribution of the data. Data from rain gauges further than 1.5
times the interquartile range from the nearest quartile were marked as “suspicious”
points. Only if it was clear from the fieldwork that these rain gauges showed prob-
lems (e.g. clogged up, problems with logger) they were removed from the data set,
otherwise the outlier was attributed to spatial variability of the true rainfall field.

2.2.4 Data transformation

For kriging a (multivariate) Gaussian distribution of the data is preferred. In that case
the kriging predictor is the same as the conditional mean and the kriging variance
is the same as the variance of the conditional distribution, which makes it possi-
ble to calculate exceedence probabilities from kriging predictions (Goovaerts, 1997).
To approximate a Gaussian distribution, we tried both a log-transformation and a
square-root transformation on the data. Only measurements with non-zero rainfall
were taken into account and were normalized for each event. Figure 2.2 shows these
transformations for the three different extents.As the square-root transformation gave
the best results in approximating a Gaussian distribution at all three extents, we chose
this transformation for further study.

2.3 Methods

2.3.1 Variogram estimation

The semivariogram, from now on simply called the variogram, describes in terms
of variances how spatial variability changes as a function of distance and direction
(Isaaks and Srivastava, 1989). The variogram is needed for kriging. To get insight
in the multi-extent spatial variability, we distinguished three different spatial extents
(Figure 2.1); small extent (225 km2), medium extent (10,000 km2) and large extent
(82,875 km2). The extent is defined in this study as the area over which predictions
are made, following Bierkens et al. (2000).

In case of no failure, we had data from 30 rain gauges at the small extent, 103
rain gauges at the medium extent (including the 30 from the small extent network)
and 330 rain gauges at the large extent (including the 103 from the medium extent
network).

Individual variograms
For each of the 74 events we calculated the experimental variogram of the square-root
transformed rain gauge data. The experimental variogram is calculated as half the
average squared difference between the paired data values, so in case of square-root
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transformed rain gauge measurements G(xi):

γ̂(h) =
1

2N(h)

N(h)∑
i=1

(G(xi) − G(xi + h))2, (2.4)

in which N(h) is the number of point pairs and h the separation distance. The
maximum separation distance considered is taken as 1/3 of the extent, i.e. 8, 50 and
150 km for the small-, medium-, and large extent respectively. The reason for that is
that point pairs with a larger separation distance are too highly correlated (Journel
and Huijbregts, 1978). Up to the maximum separation distance we chose 15 distance
intervals into which data point pairs were grouped for semivariance estimates. To
assure that the kriging equations have a unique and stable solution, i.e. to force
the variogram to be semi-positive definite, we have to fit a suitable variogram model
(Isaaks and Srivastava, 1989) to the experimental variogram. Among several models,
we chose the widely used spherical variogram model, defined as:

γ(h) =

{
C0 (1 − δk (h)) + C

(
3h
2a

− h3

2a3

)
0 ≤ h ≤ a

C0 + C h > a,
(2.5)

in which the Kronecker delta function δk (h) is 1 for h = 0 and 0 for h > 0. The
parameter C0 is the nugget variance, C is the partial sill and a is the range of the
spherical variogram model. The parameters of the spherical variogram models were
fitted automatically with non-linear regression, using weights N(h)/h2 with N(h) the
number of point pairs and h the distance. This criterion is partly suggested by theory,
and partially by practice (Pebesma, 2004). When it was not possible to fit a unique
variogram model, the range was forced to be beyond the extent. All geostatistical
operations were carried out using the package gstat (Pebesma, 2004) within R (R
Development Core Team, 2004).

Pooled variograms
Without the experimental rain gauge network, hydrologists should extract informa-
tion about the small scale rainfall variability from the knmi network. As mentioned
in Section 2.2 these networks do not give insight into the spatial variability of rainfall
at distances smaller than approximately 10 kilometers. To be able to make high-
resolution predictions of rainfall in spite of that, we computed a single pooled vari-
ogram for each extent based on all the 74 selected events, including the information of
the experimental rain gauge network. For each event we performed kriging predictions
using both the individual variogram model for that event as well as the pooled vari-
ogram model and compared the results. This way we can draw conclusions whether
it is permitted to use one standard variogram model, which would be helpful for
automated prediction.

2.3.2 Prediction methods

This section introduces briefly three geostatistical prediction methods that were used
for this study. The first method uses only rain gauge information while the second and
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third method use both rain gauges and radar information but in a different manner.
For more detailed information readers are referred to Isaaks and Srivastava (1989),
Goovaerts (1997) and Cressie (1993).

Ordinary kriging
Geostatistical prediction is based on the concept of a random function, whereby the
unknown values are regarded as a set of spatially dependent random variables. Krig-
ing is a generalized least-squares regression technique that allows one to account for
the spatial dependence between observations, as revealed by the variogram, in spatial
prediction. Kriging is associated with the acronym B.L.U.P., meaning “best linear
unbiased predictor” (Cressie, 1993). It is “linear” as the estimated values are weighted
linear combinations of the available data. It is “unbiased” because the expectation of
the error is 0 and it is “best” as it minimizes the variance of the prediction errors. The
ordinary kriging prediction of square-root rainfall (R̂OK) at the unsampled location
x0 is a linear combination of the n neighboring square-root transformed rain gauge
observations G(xi):

R̂OK(x0) =
n∑

i=1

λiG(xi) (2.6)

The weights λi must be such that the predictor R̂OK is (1) unbiased, i.e. giving
no systematic under- or over-estimation, and (2) optimal, i.e. with a minimal mean
squared error. These weights are obtained by solving:





∑n
j=1 λjγ(xi − xj) − µ = γ(xi − x0) i = 1, . . . , n

∑n
j=1 λj = 1,

(2.7)

with µ being the Lagrange parameter accounting for the unbiasedness constraint on
the weights. The only information needed to solve the kriging system (Eq. 2.7) are
the semivariogram values, which can be calculated from the fitted variogram model
(Eq. 2.5).

Kriging with external drift
Beyond using information from the rain gauges G(xi) only, kriging can use secondary
information to improve the kriging prediction (Goovaerts, 1997). In case of rain-
fall, an informative secondary data source is the square-root rainfall estimated by
the weather radar (R). We used two kriging algorithms that incorporate exhaus-
tively sampled secondary data:(1) kriging with external drift (KED) and (2) ordinary
colocated cokriging (OCCK).

KED is comparable to universal kriging (kriging with a trend): we assume that
we know the shape of the trend and kriging is then performed on the residuals while
the trend parameters are implicitly estimated. In universal kriging the trend is often
a function of internal variables (coordinates) while in KED the trend surface is based
on a trend through the secondary data (external variables). Mathematically they are
identical. Although the trend can be a polynomial regression through several external
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variables, we only considered radar R(x) as secondary data in a linear trend model:

m(x) = a0 + a1R(x) (2.8)

The trend coefficients (a0 and a1) are implicitly estimated through the kriging system
within each search neighborhood using generalized least squares. In our case the
search neighborhood was not fixed but depended on the available data points. At
maximum 40 neighboring points are taken into account. The kriging with external
drift prediction of square-root rainfall (R̂KED) at the unsampled location x0 is:

R̂KED(x0) =
n∑

i=1

λiG(xi), (2.9)

The weights of kriging with external drift are obtained by solving the system:





∑n
j=1 λj γres(xi − xj) + µ0 + µ1R(xi) =

γres(xi − x0) i = 1, . . . , n

∑n
j=1 λj = 1

∑n
j=1 λjR(xj) = R(x0),

(2.10)

with µ0 and µ1 being the Lagrange parameters accounting for the unbiasedness con-
straints on the weights. Kriging with external drift is performed using γres being the
variogram of the residuals from the trend.

Ordinary colocated cokriging
Another algorithm for taking into account secondary information is ordinary colo-
cated cokriging (OCCK). Different from KED in which the secondary data provide
information on the trend only, in OCCK the secondary data, which are now considered
as a random variables as well, influence the kriging prediction directly. In addition,
OCCK accounts for the global linear correlation between primary and secondary vari-
ables, whereas with KED the secondary information tends to influence strongly the
prediction, especially when the estimated slope or intercept of the local trend model
is large.

A more or less similar and more well-known kriging method using secondary in-
formation is ordinary cokriging (OCK). Several studies have used OCK to merge rain
gauge and radar rainfall, e.g. Creutin et al. (1988); Fiorucci et al. (2001); Krajewski
(1987); Seo et al. (1990a); Seo et al. (1990b). Goovaerts (2000) incorporated ele-
vation as secondary information and tested several kriging methods that account for
secondary data. OCCK is preferred to OCK for the following four reasons (Goovaerts,
1997): (1) OCCK avoids instability caused by highly redundant secondary data; (2)
OCCK is faster than OCK as it calls for a smaller cokriging system; (3) OCCK does
not call for a secondary covariance function at distances larger than 0; (4) OCCK
does not require modelling of the cross covariance function by using the Markov-type
approximation, i.e. dependence of the secondary variable on the primary is limited
to the colocated primary datum.
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The ordinary colocated cokriging prediction of square-root rainfall (R̂OCCK) at
the unsampled location x0 is a linear combination of the n neighboring square-root
transformed rain gauge observations G and one colocated square-root transformed
radar observation R:

R̂OCCK(x0) =
n∑

i=1

λiG(xi) + ξR(x0), (2.11)

with the constraint that the weights (
∑n

i=1 λi + ξ) sum to one.

In case the expected value of the primary and secondary data are not equal, Eq.
2.11 must be adjusted, so the secondary data are bias corrected. In our case we
assumed the expected values of the rain gauges and radar to be the same because
the operational radar are already bias corrected (Section 5.22.2.2). The ordinary
colocated cokriging weights are obtained by solving the system:





∑n
j=1 λj γGG(xi − xj) + ξ γGR(xi − x0)+

µ = γGG(xi − x0) i = 1, . . . , n

∑n
j=1 λj γGR(x0 − xj) + ξ γRR(0)+

µ = γGR(0)

∑n
j=1 λj + ξ = 1,

(2.12)

with µ being the Lagrange parameter accounting for the unbiasedness constraints on
the weights, γGG the direct variogram of the rain gauge data, γGR the cross variogram
of rain gauge and radar data and γRR the direct variogram of the radar data.

The three variograms are modelled as a linear combination of the same basic
model, the fitted spherical variogram model of the normalized square-root trans-
formed rain gauge data (Eq. 2.5). The direct variogram of the rain gauges (γGG)
was calculated by multiplying the standardized variogram with the variance of the
square-root transformed rain gauge measurements. The direct variogram of the radar
data (γRR) was calculated by multiplying the standardized variogram by the variance
of the square-root transformed radar data. The cross variogram (γGR) was calculated
by multiplying the direct variogram of the rain gauges (γGG) with the correlation
between the colocated square-root transformed rain gauge and radar data, assuming
the Markov-type approximation (Goovaerts, 1997).

2.3.3 Back transformation and zero Rainfall

Rainfall can be considered as a binary process, it either rains or it does not. As shown
in Figure 2.2 the measurements of non-zero daily rainfall closely follow a Gaussian
distribution after a square-root transformation. Kriging performs best when data
are (multivariate) Gaussian distributed and we therefore applied kriging to the non-
zero, square-root transformed (non-standardized) rainfall measurements. This means
that the ordinary kriging prediction and colocated cokriging prediction are “best” in

27



standard deviation of non−zero rainfall [mm]
10 15

large extent

medium extent

small extent

50

Figure 2.3 Box-and-whisker plots of the standard deviation of non-zero rainfall at the three spatial
extents for the 74 events. The black dot denotes the median, solid boxes range from the
lower to the upper quartile, dashed whiskers show the data range. Data that are further
than 1.5 times the interquartile range from the nearest quartile are shown as open bullets.

predicting the square-root rainfall given that it rains. To obtain back-transformed
rainfall values we cannot simply take the square of the kriging prediction based on
the square-root transformed rainfall data. The reason for this is that if a Gaussian
distribution is squared, it becomes positively skewed, resulting in a mean larger than
the median. Simply squaring the kriging prediction of square-root transformed rainfall
data would underestimate the conditional mean of rainfall, especially in case of large
kriging variances. In order to backtransform prediction values we therefore calculated
the percentiles of the conditional distribution of square-root transformed rainfall,
assuming this distribution to be Gaussian with mean equal to the kriging prediction
and variance equal to the kriging variance. After that we backtransformed (squared)
these percentiles, whose rank and percentile value do not change with transformation.
From this new distribution function we calculated the mean and the variance.

By not considering the number of zeroes in the data set valuable information
would be lost. Therefore we forced the predicted rainfall values to contain the same
percentage of zero’s as in the data set. The predicted rainfall amounts were arranged in
increasing order and a threshold was calculated that corresponded with the percentage
of zeroes in the rainfall data set. All the prediction locations with rainfall smaller than
this threshold were set to zero.
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2.4 Results

2.4.1 Variograms

To compare the spatial structure of each event in one plot we calculated the variograms
of the normalized (i.e. variance equals one) square-root transformed rainfall data. The
variance in rainfall however, differs between both the events and extents. Figure 2.3
shows in a box-and-whisker plot for each extent the standard deviation of non-zero
(non-normalized and non-transformed) rainfall for all the 74 events. This figure shows
a positive trend in the variability of non-zero rainfall from small to larger extent.

Figure 2.4, 2.5 and 2.6 show for each event the normalized experimental variograms
of the square-root transformed daily rainfall, as well as the automatically fitted spher-
ical variogram model of respectively the small-, medium-, and large extent. In Figure
2.4 the fitted variogram model for 17 and 21 August (0817 resp. 0821) is outside the
plotted semivariance range. During those days there was a high semivariance between
point pairs with the smallest separation distance, causing our automated procedure
to fit a variogram model with a large nugget. Due to the larger data availability at
larger extents, the experimental variograms become less ambiguous and the variogram
models fit better. Figure 2.7 shows the fitted ranges of the spherical variogram models
for each event for the small-, medium-, and large extent. This figure shows a large
variability in fitted ranges across events, but a seasonal effect is not clear. Figure
2.7 also shows the fitted range of the spherical variogram model for the small- and
medium- extent to be often 25 and 150 km respectively, which are the values that
were enforced when the non-linear variogram fitting procedure was not successful.

Figure 2.8 shows the experimental pooled variograms as well as the fitted spherical
variogram models of the small-, medium-, and large extent. For the medium- and
large extent we fitted a nested spherical variogram model, i.e. a sum of two spherical
variogram models (Deutsch and Journel, 1998). The parameters of the fitted spherical
variogram models are given in Table 2.1.

The pooled variogram model was calculated using normalized square-root trans-
formed daily rainfall data. For the kriging prediction, the nugget and sill of the
variogram model should be multiplied by the variance of the square-root transformed
daily rainfall data.

Table 2.1: Parameters of fitted pooled spherical variogram models. C1 and a1 are resp. the partial
sill and range of the first variogram model. In case of a nested variogram model C2 and
a2 are resp. the partial sill and range of the second variogram model (see Eq. 3.2).

Parameter Small Extent Medium Extent Large Extent
C0 0.172 0.035 0.053
C1 1.270 0.473 0.281
C2 – 8.994 0.795
a1 [km] 10 20 23
a2 [km] – 1040 156
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Figure 2.4 Small-extent normalized variograms of square-root transformed daily rainfall with fitted
spherical model for each of the 74 events in 2004 (header in “month month day day”, e.g.
0306 means 6 March). For 17 and 21 August 2004 the automatically fitted variogram
model is outside the plotted semivariance range.
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Figure 2.5 Medium-extent normalized variograms of square-root transformed daily rainfall with fit-
ted spherical model for each of the 74 events in 2004 (header in “month month day day”,
e.g. 0306 means 6 March).
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Figure 2.6 Large-extent normalized variograms of square-root transformed daily rainfall with fitted
spherical model for each of the 74 events in 2004 (header in “month month day day”, e.g.
0306 means 6 March).
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Figure 2.8 Pooled variogram models of small-, medium-, and large extent, calculated from the stan-
dardized non-zero square-root transformed daily rainfall data. For the medium- and large
extent a nested spherical variogram model is fitted.

33



420

430

440

450

460

470

480

mm

Figure 2.9 Total rainfall [mm] during March-October 2004 at small extent according to daily range
corrected radar.

2.4.2 Rainfall prediction

Case study
Figure 2.9 shows the accumulated daily composite range corrected radar field for the
period March-October 2004 at the small extent. During this period, 22 radar images
were either missing or incomplete. From this figure is can be seen that even for an
accumulation period of 7 months, there still is a difference of 10% rainfall within the
small extent. This corroborates our argument that for The Netherlands a temporal
resolution of one day is important even at small extent.

To demonstrate the kriging methods described in the preceding paragraphs we
selected two of the 74 rainfall events, 4 April 2004 and 1 May 2004. Figure 2.10
shows the composite range corrected radar fields for the selected dates. These two
events were chosen because they represent two different rainfall types with different
correlation between rain gauge data and radar. The event of 4 April 2004 is an
example of a stratiform event as it rains over a large area and extremely high rainfall
areas can not be detected. The event of 1 May 2004 is an example of a convective
event as the rainfall area is smaller and high rainfall values are present.

Figure 2.11A shows the prediction of rainfall depth at the small extent for 4
April 2004 according to respectively the range corrected radar, the ordinary kriging
prediction, kriging with external drift prediction and the ordinary colocated cokriging
prediction. The kriging predictions are made at a high-resolution point grid with
distances of 100 meters. For the medium- and large extent we only used the 40
nearest data points instead of the complete data set for kriging. For this event the
correlation between the rainfall measured by the rain gauges and the colocated radar
at the small extent was 0.16. Because of this low correlation, the trend surface of
the radar has a very small effect on the KED prediction. For the ordinary colocated
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Figure 2.10 Composite range corrected radar fields of 4 April 2004 (left) and 1 May 2004 (right).

cokriging prediction however, the radar field can be clearly seen. This is due to the
fact that for each prediction location within a radar pixel this same colocated radar
value is taken into account (Eq. 2.11). Within the radar pixel itself, the rainfall
depths are interpolated. To overcome the problem of sudden transitions in rainfall
depth from one radar pixel to the other, the radar field can be pre-smoothed before
executing the KED or OCCK. We retrieved good results by smoothing the radar with
inverse distance interpolation using the four closest grid cell center points of the radar
field.

Figure 2.11B shows the rainfall fields using the same kriging methods for the 1
May 2004 event. For this event the correlation between the rainfall measured by the
rain gauges and the colocated radar at the small extent was 0.84.

In the Figures 2.11A and B we show the predicted rainfall depths using OK, KED
and OCCK for the small extent. We assumed that for all events it rained throughout
the whole small extent so we did not have to cope with the problem of zero rainfall.

To illustrate how our method deals with zero rainfall, we show the rainfall depths
of the different methods for 1 May 2004 at the large extent in Figure 2.12. During
this event 114 rain gauge stations out of the 211 reported zero rainfall. We forced the
same percentage (54 %) of the prediction locations to have zero rainfall. From this
figure it can be seen that with using ordinary kriging (OK) rainfall is predicted in
the northern part of the Netherlands where the radar did not detect rainfall, whereas
in the southern part ordinary kriging does not predict rainfall where the radar does
detect rainfall. KED and OCCK combine the two sources of information, but in a
slightly different manner. In this case, the predictions of both methods follow the
spatial rainfall structure as shown by the radar. The rainfall measured by the rain
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Figure 2.11 Prediction of rainfall depth at small extent according to the range corrected radar
(radar), ordinary kriging (OK pred), kriging with external drift (KED pred) and ordi-
nary colocated cokriging (OCCK pred) for A: 4 April 2004 (radar-rain gauge correlation
is 0.16) and B: 1 May 2004 (radar-rain gauge correlation is 0.84). Green triangles show
the rain gauge locations.

gauges in the northern part of the Netherlands was so low that it was set to zero.

Cross validation
To compare the accuracy of the three different kriging forms (OK, OCCK and KED)
as well as the use of either the individual variogram models or pooled variogram
models, we used cross-validation. The idea of cross-validation is to remove one data
point at a time from the data set and re-predict this value from the remaining data.
For each extent and event we performed cross-validation, using the three different
kriging forms. For ordinary kriging as well as ordinary colocated cokriging we used
both the individual variogram model of that event (Figure 2.4) as well as the pooled
variogram model (Figure 2.8) of that extent. Finally, we calculated for each event
the root mean squared error (RMSE) resulting from the cross-validation calculations.
In our case study of 74 events, we had 7 incomplete radar fields, due to technical
malfunction or maintenance of one of the radars. These events were not taken into
account in the cross-validation. The distributions of the root mean squared error
resulting from the cross-validation using the different kriging methods are plotted in
box-and-whisker plots (Figure 2.13). We also calculated the RMSE of the difference
between the rainfall measured by the rain gauges and the colocated radar pixel and
these results (radar) are shown as well in Figure 2.13. Figure 2.13 shows that taking
into account radar as secondary variable, using either KED or OCCK, leads to better
results than only taking into account data from rain gauges for the medium and large
extent. Also, for the medium and large extent radar performs better than rain gauge
data alone (OK). For the small extent however, the rain gauge data alone perform
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Figure 2.12 Prediction of rainfall depths for The Netherlands at 1 May 2004 according to the range
corrected radar (Radar), ordinary kriging (OK), kriging with external drift (KED) and
ordinary colocated cokriging (OCCK).
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better and the added value of taking into account radar is not so clear. This is not
surprising as we have a dense network of rain gauges at the small extent. The use of
a pooled variogram model for all events instead of individual variogram models for
each separate event makes little difference. For the small extent the pooled variogram
model performs less than the individual variogram models whereas for the medium
and large extent it is the other way around.

Figure 2.14 shows the ratio between the RMSE as calculated with OK and KED
(ratio.RMSE.ok.ked, shown as +) as well as the ratio between the RMSE as calculated
with OK and OCCK (ratio.RMSE.ok.cck, shown as o) as a function of the correlation
between rain gauges and radar for the small-, medium-, and large extent. If the ratio
is higher than 1, it means that KED or OCCK performs better than OK. Again we
see that the larger the extent, the higher the added value of the radar. Figure 2.14
also shows the positive effect of the correlation between radar and rain gauge and the
ratio of RMSE, especially at the medium and large extent.

We also looked at the z-score of the cross-validation exercise, which is the residual
divided by kriging standard error. The z-score should have zero mean and unit vari-
ance. If the mean z-score deviates from zero this means we have a biased prediction,
and if the variance is higher than 1 we underestimate the kriging variance. For each
event we calculated the mean z-score using the 3 different kriging methods. The re-
sults are shown in a box-and-whisker plot (Figure 2.15). It can be seen that for almost
all events and kriging methods, the mean z-score is close to zero, except for OCCK.
This is probably due to our assumption that the expected value of the rain gauge
data and radar data are the same. Figure 2.16 shows in a box-and-whisker plot the
variance of the z-score that we calculated for each event using the 3 kriging methods.
It is most striking that the pooled variogram used for both OK and OCCK leads to
lower z-score variances and thus better estimation of the prediction error variance.

2.5 Discussion

In this section we deal with some remaining uncertainties and possible improvements
of the methods presented in this chapter.

This chapter deals with daily rainfall. For hydrological applications it would be
interesting to also be able to generate high spatial resolution rainfall fields with a
higher time resolution, e.g. 3 hours. In that case the main problem we would have to
cope with is the reduction of the amount of rain gauge measurements, as the largest
operational rain gauge network in The Netherlands consists of volunteers who only
report the daily rainfall depth. Consequently the present range correction of the
weather radar cannot be performed on a higher time resolution, as this method uses
the volunteer network as well. With a low density rain gauge network our method to
correct for zero rainfall is also not suitable because an individual rain gauge reporting
zero rainfall would have too much influence. Besides the decrease in rain gauge
stations we would also have to deal with the following problems: (i) the correlation
between rainfall measured by the rain gauges and radar is known to decrease at
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Figure 2.13 Box-and-whisker plots of the root mean squared error (RMSE) of the square-root trans-
formed residuals from the comparison between operational radar and rain gauges (radar)
[mm0.5] as well as the root mean squared error (RMSE) of the square-root transformed
residuals from the cross validation using three kriging methods [mm0.5] (ordinary kriging
OK; ordinary colocated cokriging OCCK and kriging with external drift KED). For both
ordinary kriging (OK) and ordinary colocated cokriging (OCCK) we used the individual
variograms (indiv) as well as the pooled variograms (pooled).

small time scales, especially when (e.g. in convective rainfall) there is a large space -
time variability of rainfall; (ii) re-estimation of the variogram models as it is known
that for rainfall averaged over larger spatial scales and integrated over longer periods
the correlation distance is typically larger; (iii) re-consideration of the square-root
transformation of rainfall data to make its distribution closer to Gaussian. Possibly
for shorter periods a logarithmic transformation would be more suitable. For shorter
time steps, the spatial continuity of radar measurements becomes a major advantage
compared to rain gauge networks. This however does not preclude the thorough
radar data processing (e.g. correction for Vertical Profile of Reflectivity (VPR) and
attenuation) required to improve as far as possible the radar data quality. Besides all
the advantages of using radar data, it is important to recognize the inherent limitations
of radar data quality, especially as a function of range. The average range limit to
keep in mind for hydrological use of weather radar is of the order of 80 km.

Results from HYREX show that distributed hydrological models are sensitive to
rain gauge location and hence to the spatial variability of rainfall over the catchment,
especially during convective rainfall (Bell and Moore, 2000). In the Netherlands,
convective rainfall mainly occurs during summer as a result of local ascent of warm
air and is characterized by heavy rainfall with a small spatial extent and a short
duration. During winter time stratiform rainfall events dominate, caused by frontal
systems. They have a larger spatial extent than convective rainfall, as well as a
longer lifetime. For this reason, our initial purpose was to divide the events into
two rainfall types (convective and stratiform) and to pool the variograms for each
rainfall type, instead of using only one pooled variogram model for each extent. To
identify convective areas we applied the algorithm proposed by Steiner et al. (1995)
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Figure 2.14 Ratio of the RMSE as calculated with ordinary kriging and kriging with external drift
(RMSE.OK/RMSE.KED, shown as +) as well as the ratio of the RMSE as calculated
with ordinary kriging and ordinary colocated cokriging (RMSE.OK/RMSE.CCK, shown
as ◦) as function of the correlation between rain gauges and radar for the small-, medium-
, and large extent. Dashed line represents the value one.
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Figure 2.15 Box-and-whisker plots of the mean z-score from the cross validation using three kriging
methods (ordinary kriging OK; ordinary colocated cokriging OCCK and kriging with
external drift KED). Dashed line represents the value zero. For both ordinary krig-
ing (OK) and ordinary colocated cokriging (OCCK) we used the individual variograms
(indiv) as well as the pooled variograms (pooled).
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Figure 2.16 Box-and-whisker plots of the variance of the z-score from the cross validation using three
kriging methods (ordinary kriging OK; ordinary colocated cokriging OCCK and kriging
with external drift KED). Dashed line represents the value one. For both ordinary krig-
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to 5-minute CAPPI radar fields using the same criteria as stated in their paper. In
case the majority of the grid cells within the extent were identified at least 10 times
as convective during that day, we labelled the event as convective, otherwise it was
classified as stratiform. However, when we pooled the variograms per rainfall type
we did not find sufficient differences between the form of the pooled variograms to
justify the separated modelling. Further research is required to investigate whether a
separate modelling of stratiform and convective events is required and if so, how to
better distinguish between stratiform and convective events.

Although we are aware of the directional variability in rainfall fields we did not
consider anisotropy in our variogram model fits, mostly because we had too little data
points within our small extent. The 30 data points we had at maximum for each event
at the small extent are the absolute minimum to fit an omnidirectional variogram, but
provide insufficient information to estimate directional variograms. This was also the
case for the medium extent. An additional reason not to use directional variograms
is that estimating them and fitting suitable models, is difficult to reconcile in an
automatic fashion. Moreover, using a kriging method that takes into account the
secondary data of the radar, will take into account the existing anisotropy present in
the radar image.

Kriging predictions were made using either the individual variogram models or the
pooled variogram model. We did not take into account the quality of the variogram
model fit. This can be done by using for instance markov-chain Monte Carlo tech-
niques (Diggle et al., 1998). Probably, the effect on kriging prediction would not be
large if we have enough data but it becomes relevant for sparse rain gauge networks.

We applied OCCK assuming that the Markov-type approximation (Goovaerts,
1997) holds, in order to make the automatic prediction procedure faster. It should be
possible to automatically calculate and fit the cross-covariance function and imple-
ment this in the OCCK procedure. This is however beyond the scope of this chapter.

Kriging with external drift as applied in this chapter, assumes the secondary data
to be free from errors. A possible improvement could be to use external drift kriging
with uncertain covariates (Van de Kassteele and Stein, 2006).

Prediction techniques such as kriging tend to smooth out the local variability of
rainfall, especially further away from the data locations. Kriging variances provide
a measure of local uncertainty but give no insight into the joint spatial distribution
of rainfall uncertainty. Because the hydrological system is non-linear, the use of
smoothed rainfall fields could lead to a biased hydrological response when used as
input for hydrological models. Therefore it would maybe be better to stochastically
simulate rainfall fields and use an ensemble of simulated rainfall fields as input. In
Appendix 2 we show how sequential simulation with colocated cokriging could be
used.
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2.6 Conclusions

We show that kriging with external drift and ordinary colocated cokriging successfully
take into account radar as secondary information source and are more accurate than
ordinary kriging (rain gauge information only), especially for larger extents with lower
densities of rain gauges. The added value of radar is positively related to the correla-
tion between the rainfall measured by the rain gauges and the colocated radar pixel.
The use of a pooled variogram model instead of an individual variogram model for
each event does not lead to loss of accuracy in rainfall prediction, so these pooled vari-
ogram models can be used when there is lack of data or when an automatic prediction
procedure is implemented without variogram estimation.

We also show that the pooled variogram is preferred over event-based variograms
in terms of correct assessment of prediction uncertainty (z-score variance of 1) for the
small- and medium extent cases, where the number of data is small and event-based
variograms are rather uncertain. Another conclusion is that KED and OK are more
robust with respect to mean z-scores (on average zero) than OCCK. This may be due
to a bias in the radar data.
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hydrological model
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rainfall on interior catchment response of a distributed hydrological model. Hydrology
and Earth System Sciences, 11, pp. 677-693

Abstract

We investigate the effect of spatial variability of daily rainfall on soil moisture, ground-
water level and discharge using a physically-based, fully-distributed hydrological model.
This model is currently in use with the district water board and is considered to rep-
resent reality. We focus on the effect of rainfall spatial variability on day-to-day
variability of the interior catchment response, as well as on its effect on the gen-
eral hydrological behaviour of the catchment. The study is performed in a flat rural
catchment (135 km2) in the Netherlands, where the climate is semi-humid (average
precipitation 800mm year−1, evapotranspiration 550mm year−1) and rainfall is pre-
dominantly stratiform (i.e. large scale). Both range-corrected radar data (resolution
2.5×2.5 km2) as well as data from a dense network of 30 rain gauges are used, observed
for the period March–October 2004. Eight different rainfall scenarios, either spatially
distributed or spatially uniform, are used as input for the hydrological model. The
main conclusions from this study are: (i) using a single rain gauge as rainfall input
carries a great risk for the prediction of discharge, groundwater level and soil moisture,
especially if the rain gauge is situated outside the catchment; (ii) taking into account
the spatial variability of rainfall instead of using areal average rainfall as input for
the model is needed to get insight into the day-to-day spatial variability of discharge,
groundwater level and soil moisture content; (iii) to get insight into the general be-
haviour of the hydrological system it is sufficient to use correct predictions of areal
average rainfall over the catchment.
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3.1 introduction

Rainfall is often defined as being the key variable in hydrological systems. Consid-
ering the question how the spatial variability of rainfall influences the hydrological
state, most studies have focussed on the effect on catchment discharge (e.g. Obled
et al., 1994; Arnaud et al., 2002; Bell and Moore, 2000; Shah et al., 1991). Obled
et al. (1994) conclude from their study (using TOPMODEL for a rural catchment
of 71 km2) that the spatial variability must be taken into account more because it
improves the estimation of the basin average incoming volume, rather than because
of some dynamic interactions with flow-generating processes. Arnaud et al. (2002)
(using 3 different rainfall-runoff models for 4 fictitious catchments of 20–1500 km2)
however, found that rainfall variability can lead to significant different discharge, not
for extreme events but for the more frequent events. This was also concluded by
Shah et al. (1991): under “wet” conditions, good predictions of runoff can be ob-
tained with a spatially averaged rainfall input but under “dry” conditions, spatial
variability of rainfall has a significant influence. They suggest this is caused by the
spatial distribution of soil moisture which controls the runoff production. Bell and
Moore (2000) also show the importance of taking into account the spatial variability
of rainfall, especially in case of convective rainfall events, which show high spatial
variability. O’Connell and Todini (1996) point out the need to study the influence of
space-time rainfall variability on the hydrological system in real catchments, but up
to now not much attention has been given to the influence of rainfall variability on
groundwater level and soil moisture content within the catchment.

A promising method to capture the variability of rainfall is meteorological radar.
Real-time radar products are now readily available in many western countries in the
world (e.g. Gekat et al., 2004; Krajewski and Smith, 2002; Carpenter et al., 2001).
There is, however, only limited use of these products in operational hydrology. One
of the reasons for this lack of use could be the uncertainty about the radar estimated
rainfall field accuracy. Goodrich et al. (1995) noted that even though the spatial
variability of rainfall may have significant influence on discharge, rainfall is usually
assumed to be uniform in the application of hydrological models of small catchments.
This is also the case in the Netherlands where often data from a single rain gauge
(even outside the catchment area) are used as input for hydrological model studies.

The main objective of our study is to determine how spatial variability of daily
rainfall affects soil moisture, groundwater level and discharge as calculated by a
physically-based, fully-distributed hydrological model. This is done for two purposes.
First, to assess the effect of rainfall spatial variability on the day-to-day variability
of the interior catchment response, i.e. to obtain a good insight in the current hydro-
logical situation of a catchment, which is of great importance to water boards (e.g.
operational water management) and agriculture (e.g. irrigation, sowing). Second, to
assess its effect on the general behaviour of the hydrological system (e.g. groundwa-
ter and soil moisture climatology, water balance), which is important for planning
strategies. A secondary objective is to determine how well operational radar products
can capture the spatial variability of the daily rainfall for the purpose of hydrological
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modelling.

The study area is a rural catchment of 135 km2 in the middle of the Netherlands.
For this study area an operational fully-distributed, physically based hydrological
model is available from the controlling district water board. Also, operational radar
images as well as data from a dense network of rain gauges are available for the study
area. Interpolated rainfall fields using data from the dense rain gauge network as
well as operational radar and a combination of those two are used to describe the
spatial variability of daily rainfall for the period March to October 2004. We consider
daily rainfall as this is the time resolution for which the radar-estimated rainfall fields
are range-corrected in the Netherlands. We anticipate that for small mountainous
catchments the spatio-temporal structures of rainfall fields are important, particular
at small temporal aggregation. However, daily rainfall fields are sufficient for the
Netherlands, because rainfall is predominantly stratiform and discharge is ground-
water flow dominated. The different daily rainfall scenarios are used in a sensitivity
analysis, i.e. as input for the hydrological model while comparing the calculated maps
of groundwater level and soil moisture as well as the discharge hydrographs. We
hypothesize that the sensitivity of the interior catchment response calculated by the
model reflects the real interior catchment response. We only performed a sensitiv-
ity study and did not perform a separate calibration for each rainfall scenario. The
reason is that we wanted to investigate solely the effect of different rainfall input on
the outcomes of our hydrological model, while a calibration of the model parameters
for each rainfall scenario would mask the effect of different input on the hydrological
variables.

The characteristics of the catchment and the hydrological model are described
in Section 3.2. In this section we also provide details about available rainfall data
in the Netherlands. Section 3.3 deals with the way we analyzed the data, how we
interpolated the rain gauges and describes the rainfall scenarios we used. The results
are given in Section 3.4, considering discharge, groundwater and soil moisture, while
Section 3.5 concludes the chapter with conclusions and discussion.

3.2 Model and data

3.2.1 Study area

The Lopikerwaard catchment (135 km2) is located in the middle of the Netherlands.
Climate is semi-humid (average precipitation 800 mm year−1, evapotranspiration 550 mm
year−1) and rainfall is predominantly stratiform (i.e. large scale). Figure 3.1a shows
the exact location. The area is flat with a median surface level about −1m N.A.P.
(reference sea level, Figure 3.1b). Data about the surface level were extracted from
the AHN (actual altitude database Netherlands), which is obtained by laser altime-
try. The main soil type is alluvial clay deposited by rivers and peat. The main land
use type is agricultural grassland (70%). There are a few small villages in the area
which in total occupy about 15% of the area (Figure 3.1c). The Lopikerwaard is
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Figure 3.1 (A) Location of Lopikerwaard catchment within the Netherlands; (B) Surface level of the
Lopikerwaard catchment in meters + N.A.P. (reference sea level); (C) Land use in the
Lopikerwaard catchment; (D) Subcatchments within the Lopikerwaard catchment with
the corresponding pumping stations, area-size of each subcatchment is given in square
kilometers.

divided into four subcathments as shown in Figure 3.1d, in which the area-size of
each subcatchment is given in square kilometers. In each subcatchment groundwater
levels are controlled by a dense network of drainage ditches where water levels are
controlled by weirs and pumps. Four pumping stations (Keulevaart, Pleyt, Hoekse
Molen, Koekoek) discharge the rainfall surplus to either the river Hollandse IJssel in
the north or the river Lek in the south.

3.2.2 Hydrological model

Groundwater flow and soil moisture dynamics in the Lopikerwaard were modelled us-
ing the simgro model code. We refer to Querner (1997) for more detailed information
of simgro. simgro provides for physically based finite element modelling of regional
groundwater flow in relation to drainage, water supply and water level control. sim-
gro based models simulate flow of water in the saturated zone, the unsaturated zone
and the surface water network in an integrated manner.
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In simgro, the groundwater system is hydrogeologically schematized into a num-
ber of layers, with horizontal flow (Dupuit assumption) in water-conveying layers
(aquifers) and vertical flow in less permeable layers (aquitards). Hydrogeological in-
formation, such as hydraulic transmissivity, vertical flow resistance, layer thickness,
storage coefficient and porosity, is required for each layer. The boundary conditions
for the aquifers can be either prescribed heads (Dirichlet condition) or prescribed
fluxes (Neumann condition).

The flow of water in the unsaturated zone is described by a one-dimensional
storage-output model. The unsaturated zone is considered to have two reservoirs;
a root zone and an unsaturated zone in between the root zone and the saturated
zone. Transient flow is approximated by a series of steady states (pseudo dynamic
simulation). The spatial discretization in finite elements defines the nodal subdo-
mains. Within each nodal subdomain, the soil type and the type of land use must
be defined. One nodal subdomain can have different types of land use but only one
soil type. The combination of soil type and land use defines the thickness of the root
zone and important characteristics of the unsaturated zone such as groundwater level
dependent capillary rise, storage coefficient and field capacity. The calculated soil
moisture is the amount of water in the root zone divided by the root zone thickness
and is thus best comparable with volumetric soil moisture content.

The precipitation and Makkink reference evapotranspiration (Winter et al., 1995)
are input variables for simgro. The reference evapotranspiration is multiplied by
a crop factor to obtain the potential evapotranspiration. The actual evaporation is
calculated by simgro as a linear function of the soil moisture state.

The Lopikerwaard model is an operational hydrological model that is used by the
controlling district water board (Holleman et al., 2005). The Lopikerwaard model was
schematized in simgro using 17 350 nodes. The model node distance is at maximum
150–200m. The existing drainage network was modelled using smaller node distances.
The model was run for 12 years (1989–2001) and the model results were discussed
with local experts from the water board (plausibility test). On the basis of this test
some adjustments were made to the model. Hereafter, the model was calibrated on
3 parameters (storage coefficient, transmissivity and drainage resistance) using an
automatic calibration technique (see Zaadnoordijk, 2003). This calibrated model was
used for this study. We ran the model once for the period March–October 2004 (using
one rain gauge within the catchment as input) and the outcomes were set as the initial
conditions of the subsequent model runs.

3.2.3 Meteorological input data

Rain gauges
In the Netherlands there are two permanent rain gauge networks, which are operated
by the Royal Netherlands Meteorological Institute (knmi). The largest network con-
sists of 330 stations and has a density of approximately 1 station per 100 km2. This
network is maintained by volunteers who report daily rainfall depth at 08:00 UTC.
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Figure 3.2 Locations of rain gauges and weather radars in the Netherlands; volunteer network with
330 rain gauges (temporal resolution of 1 day), automatic network with 35 tipping bucket
rain gauges (temporal resolution of 10 min), experimental network with 30 tipping bucket
rain gauges (equipped with event loggers) and 2 C-band Doppler radars.

An additional national network consists of 35 automatic rain gauges and has a density
of approximately 1 station per 1000 km2 and a temporal resolution of 10 min. Within
the catchment of interest, we maintained an experimental high-density network for
almost 8 months, that consisted of 30 tipping bucket rain gauges, all equipped with
event loggers. The experimental network was set up to provide valuable information
on the spatial structure of rainfall at short distances. For this study we mainly used
our experimental network. Figure 3.2 shows the location of all the rain gauges of the
three networks.

Radar
The knmi operates two C-band Doppler radars, one at De Bilt and one at Den Helder
(Figure 3.2), which both record 288 pseudo CAPPI (800 m) reflectivity fields each day
(i.e. every 5 min) after removal of ground clutter (Wessels and Beekhuis, 1997). The
resolution of these fields is 2.5×2.5 km2. The measured radar reflectivity factor Z of
each resolution unit is converted to surface rainfall intensity R using the Marshall-
Palmer Z-R relationship, which has been found to be most suitable for stratiform
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dominated rainfall events (Battan, 1973):

Z = 200 × R1.6 (3.1)

For both radars, the surface rainfall intensities are accumulated from 08:00 UTC until
08:00 UTC the next day, for each pixel. It is known that there is a distance-related
underestimation of surface rainfall by weather radars due to spatial expansion of the
radar beam and due to attenuation of the radar signal. Also overestimation due to
the bright band (vertical profile of reflection) may occur. Therefore, data from the
rain gauges of the volunteer network, from the same period, are used to make a range
correction for each radar separately every day (Holleman, 2004). After the range
correction a composite field is constructed by averaging the pixel values of the two
radars up to a radius of 200 km away from each radar. Within a radius of 15 km from
one radar, the information of the other radar is used. This composite radar field is
an operational product of the knmi and is used in this study.

Evapotranspiration
From the 35 stations with automatic rain gauges (Figure 3.2) also reference evapo-
transpiration data are available. The reference evapotranspiration is computed using
the Makkink equation for grass (De Bruin, 1987), which is an empirical equation
that requires only temperature and incoming short wave radiation. The data used
in this study are 24 h accumulated reference evapotranspiration data over the period
00:00 UTC until 24:00 UTC, which is also an operational product of knmi .

To adjust for the difference in accumulation period between the rainfall and evap-
oration data, we used evaporation data from one day earlier than the rainfall data.
This can be justified by the fact that evaporation occurs mainly during daytime.

3.3 Methods

3.3.1 Introduction

We used 8 daily rainfall input scenarios for the period March to October 2004, of
which 5 are spatially uniform and 3 are spatially variable rainfall fields. Details are
given in Sect. 3.3.3. Using the 8 rainfall scenarios as input to the hydrological model
we performed a sensitivity study on the output, i.e. the following variables:

• discharge: for all the pumping stations (Figure 3.1) we analyzed the average
daily discharge resulting from the different rainfall scenarios;

• groundwater: we analyzed the development of groundwater level in time for
all nodes for each rainfall scenario. From these time series we selected 1 day
with highly variable rainfall to study the spatial variability of groundwater level
within the catchment;

• soil moisture: for soil moisture we performed the same analysis as for ground-
water.
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Figure 3.3 Spatial variation (range of values) of accumulated rainfall (March to October 2004) for
all 8 scenarios. Spatially uniform scenarios only have one value.

3.3.2 Rainfall prediction

For rainfall prediction on each model node, we used the geostatistical interpolation
technique Kriging, which is based on the concept of random functions, whereby the
unknown values are regarded as a set of spatially dependent random variables. For a
theoretical description readers are referred to Isaaks and Srivastava (1989), Goovaerts
(1997) and Cressie (1993).

For 74 daily rainfall events with mean rainfall depth of at least 1mm, we calculated
the individual variograms of the standardized non-zero rainfall from the experimental
network (Chapter 2). From these 74 individual variograms we also calculated the
pooled variogram and fitted a spherical variogram model, which we used for the
Kriging calculations:

g(h) =

{
C0 (1 − δk (h)) + C

(
3h
2a

− h3

2a3

)
0 ≤ h ≤ a

C0 + C h > a,
(3.2)

in which the Kronecker delta function δk (h) is 1 for h=0 and 0 for h≥0. The nugget
variance (C0) is 0.172, the partial sill (C) is 1.270 and the range (a) is 10 km (see
Table 2.1).

We used two different kriging techniques for the prediction of rainfall fields. Or-
dinary kriging was used to interpolate the measurements of the rain gauges of the
experimental network. To combine both the rain gauges and the radar, we used ordi-
nary colocated cokriging (Goovaerts, 1997). In the latter, radar is used as secondary
data that influence the kriging prediction directly. Colocated cokriging accounts for
the global linear correlation between rain gauges and radar. For more details on the
spatial prediction methods we refer to Chapter 2.

3.3.3 Rainfall scenarios

The following scenarios of daily rainfall were used as input for the hydrological model
to study its sensitivity:

(1) uni cabauw; spatially uniform rainfall fields using only the rain gauge station
Cabauw from the automatic knmi network. This station is located within the
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Figure 3.4 Spatial distribution of total rainfall from March to October 2004 as derived by (A) ordi-
nary kriging (mean value 492 mm), (B) operational radar (mean value 490 mm) and (C)
ordinary colocated cokriging (mean value 487 mm).

Lopikerwaard catchment and would therefore be a logical choice for hydrological
studies if no other data were available.

(2) uni bilt; spatially uniform rainfall fields using only the rain gauge station De
Bilt from the automatic knmi network. Station De Bilt is a well known rain
gauge station in the Netherlands (close to knmi headquarters) and is often used
in hydrological studies without any consideration. This is mainly due to the fact
that these data are easily available, free and central in the Netherlands, which
in general gives the impression that it is a representative station.

(3) var okraing; spatially variable rainfall field, using ordinary kriging to make point
predictions using all the rain gauges of the experimental network.

(4) uni okraing; same as scenario (3), but spatially uniform. Each day, the areal
average of the daily spatially variable rainfall field is calculated, providing a
spatially uniform rainfall field.

(5) var radar; spatially variable rainfall field, using the operational radar data of
knmi.

(6) uni radar; same as scenario (5), but spatially uniform.

53



date [dd−mm−yy]

a
v

e
ra

g
e

 d
a

il
y

 d
is

ch
a

rg
e

 [
m

3
/m

in
]

0

100

200

300

uni_cabauw

01−03−04

01−05−04

01−07−04

01−09−04

uni_bilt var_okraing

var_rarradar var_cckraing

0

100

200

300

uni_okraing

01−03−04

01−05−04

01−07−04

01−09−04

0

100

200

300

uni_rarradar uni_cckraing

Figure 3.5 Hydrographs of pumping station Koekoek for all the rainfall scenarios.

(7) var cckraing; spatially variable rainfall field, using ordinary colocated cokriging
to make point predictions using all the rain gauge stations of the experimental
network as well as the operational knmi radar data.

(8) uni cckraing; same as scenario (7), but spatially uniform.

For the time series running from March to October 2004 there were 22 days (10%)
with missing or incomplete radar images. No radar image means no scenario 5 until
8 for these days. In that case we used scenario 3 or 4 (ordinary kriging).

Figure 3.3 shows the total rainfall amount for the period March to October 2004
for all 8 scenarios, that was calculated by summing up the daily rainfall input of each
model node. In Figure 3.3 the spatially variable scenarios therefore show a range of
values whereas the spatially uniform scenarios only have a single value. The total
rainfall amount of station Cabauw stands out as it is about 10% less than the other
uniform rainfall fields. Nevertheless, this rain gauge station is the only rain gauge
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Figure 3.6 Hydrographs of pumping station Hoekse Molen for all the rainfall scenarios.

station of the automatic knmi network located within the Lopikerwaard catchment
and would have been a logical choice for hydrological studies.

Figure 3.4 shows the spatial distribution of the total rainfall from March to October
2004 as derived by ordinary kriging (scenario 3), operational radar (scenario 5) and
ordinary colocated cokriging (scenario 7). We see that even over a relatively large
period of 7 months, there are differences in rainfall of 50 to 100mm over distances of
about 15 km. The operational radar data show most spatial variability, followed by
the rainfall fields obtained by ordinary colocated cokriging and ordinary kriging, as
could also be seen in Figure 3.3. We also see in Figure 3.4 that for the three spatially
variable rainfall scenarios, the smallest amount of total rainfall fell in the mid-south
and the largest amount of rainfall fell in the west of the Lopikerwaard catchment.
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Table 3.1: Percentage of days within March–October 2004 the discharge threshold value is exceeded.
Threshold values vary per pumping station and are given underneath their names.

Scenario Hoekse Molen De Pleyt Keulevaart De Koekoek
15m3 min−1 65m3 min−1 65m3 min−1 115m3 min−1

uni cabauw 8 9 7 10
uni bilt 17 19 17 22
var okraing 15 17 11 17
uni okraing 13 15 10 16
var rarradar 16 17 12 15
uni rarradar 14 16 11 16
var cckraing 15 17 11 17
uni cckraing 12 14 11 16

3.4 Results

3.4.1 Discharge

With the hydrological model, we calculated for each rainfall scenario the average daily
discharge of all the main pumping stations in the Lopikerwaard (Figure 3.1d) for the
period March to October 2004. We select two pumping stations, the one belonging
to the largest subcatchment (Koekoek) and the one belonging to the smallest sub-
catchment (Hoekse Molen), to show the hydrographs that result from the different
rainfall scenarios. Figures 3.5 and 3.6 show the hydrographs for all rainfall scenarios
of respectively pumping station Koekoek and Hoekse Molen. The hydrographs clearly
show that for both pumping stations the rainfall scenario uni bilt deviates most from
the other scenarios. This holds true for all 4 pumping stations. Two major differences
in the hydrographs are caused by a rainfall event in the beginning of May that was
registered in the Lopikerwaard but not in De Bilt and a rainfall event in the beginning
of July that was registered in De Bilt but was less prominent in the Lopikerwaard.

For all 4 pumping stations we analyzed the hydrographs and calculated the mean
and standard deviation of the average daily discharge. The results are given in
Figure 3.7. Most prominent are the results from the two rainfall scenarios that used
only a single rain gauge, uni cabauw and uni bilt. Using only rainfall data from sta-
tion Cabauw leads for all pumping stations to lower discharges and lower variation in
discharge. Using only rainfall data from station De Bilt gives about the same mean,
but yields a higher variation in discharge for all pumping stations. Between the spa-
tially variable and spatially uniform rainfall scenarios we see little difference in the
discharge statistics.

We also looked at the occurrence of high discharge. For each pumping station we
defined a threshold value for the discharge, that more or less equals the sum of the
mean and standard deviation of the discharge. Table 3.1 shows the percentage of days
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within the period March–October 2004 (212 days) that discharge threshold values were
exceeded, with the threshold values given underneath the pumping stations. From
this table we see again that for all subcatchments the rainfall scenario based on only
data from station Cabauw (uni cabauw) leads to a lower amount of discharge peaks,
while using data from only station De Bilt leads to a higher amount of discharge peaks
in comparison to the other rainfall scenarios.

Although we cannot find structural differences in the time series statistics of dis-
charge between spatially variable and spatially uniformed rainfall scenarios, there are
certainly differences in discharge on specific days. These differences are caused by the
spatial distribution of rainfall.

3.4.2 Groundwater

For one randomly selected node, number 15552 located in the northwest, we show
the development of groundwater level in time for all rainfall scenarios (Figure 3.8).
As we saw in the hydrographs, the development of groundwater level in time using
rainfall scenario uni bilt differs most from the other rainfall scenarios. Again, the
main differences are found around May and July. Using data only from station De
Bilt results in lower groundwater levels in May and higher groundwater levels in July
in comparison to the other scenarios.

We analyzed the development of groundwater level in time for all nodes. Figure 3.9
shows the spatial distribution of the mean temporal groundwater level and Figure 3.10
shows the spatial distribution of the standard deviation of the temporal groundwater
level. Note that the maps clearly show the imprint of the drainage network as a result
of the artificially maintained water levels. To show the small differences between
the spatially uniform and spatially variable scenarios, the spatial distribution of the
difference (variable minus uniform scenarios) is shown as well. For all scenarios the
spatial pattern of mean temporal groundwater level is more or less the same, although
uni cabauw and uni bilt both show slightly lower groundwater levels in the eastern
part of the Lopikerwaard. Using spatially variable instead of spatially uniform rainfall
scenarios leads to slightly (2 cm) higher mean groundwater levels in the west and east
and slightly (2 cm) lower groundwater levels in the middle part of the Lopikerwaard
if we use information from the rain gauges. Using information from the radar leads
to slightly (2 cm) lower groundwater levels in the west and slightly higher (2–4 cm)
groundwater levels in the eastern part of the Lopikerwaard. The spatial pattern
of the standard deviation of the temporal groundwater level of uni bilt differs most
from the other scenarios, showing an overestimation of the temporal variation of
groundwater level. Uni cabauw leads to slightly lower standard deviations. Using
spatially-distributed rainfall scenarios instead of spatially uniform scenarios leads to
higher standard deviations in the north and lower standard deviation in the south.

To get an impression of the effect of the different rainfall scenarios on day-to-
day spatial variability, we selected one day with highly spatially variable rainfall.
Figure 3.11 shows the rainfall within the Lopikerwaard for all rainfall scenarios at 1
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Figure 3.7 Mean and standard deviation of the average daily discharge for all 4 pumping stations in
the Lopikerwaard for the period March–October 2004.

May 2004. Figure 3.12 shows its effect on the groundwater level (m from ground level)
throughout the Lopikerwaard for all the rainfall scenarios. Again, rainfall scenario
uni bilt differs most from the other rainfall scenarios. At 1 May 2004 we see that the
groundwater level within the Lopikerwaard using rainfall scenario uni bilt is much
lower than if we use rainfall information from the catchment itself, even if we use
only one rain gauge (uni cabauw). The spatially variable rainfall scenarios all show a
different spatial pattern of groundwater level than the corresponding spatially uniform
rainfall scenarios. Using spatially variable rainfall scenarios leads at 1 May 2004 to
deeper groundwater levels in the north-eastern part of the Lopikerwaard.

3.4.3 Soil moisture

Again, we use node number 15552 to show the development of the soil moisture content
in time for all scenarios (Figure 3.13). Similar to the hydrographs and groundwater
the development of soil moisture content in time using scenario uni bilt differs most
from the other scenarios. Again, the main differences occur around May and July.
Using data only from station De Bilt results in lower soil moisture contents in May
and higher soil moisture contents in the beginning of July in comparison to the other
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Figure 3.8 Development of groundwater level [m from ground level] in time of node number 15552
for all rainfall scenarios. The location of node number 15552 is given in lower right corner.

rainfall scenarios. The spatially variable rainfall scenarios yield at specific days higher
peaks than the corresponding spatially uniform rainfall scenarios.

Also for soil moisture we analyzed its development in time for all nodes. The
results are similar to that of groundwater and not shown here. The spatial pattern
of the mean temporal soil moisture content is for all the rainfall scenarios more or
less the same. The temporal variance in soil moisture content is overestimated when
using rainfall information from station De Bilt in comparison to the other rainfall
scenarios. For the other scenarios, the spatial pattern of temporal variation of soil
moisture content is more or less the same.

To get insight in the day-to-day variability of soil moisture, Figure 3.14 shows the
effect of the 1 May rainfall event (Figure 3.11) on the soil moisture content within
the Lopikerwaard. The soil within the Lopikerwaard using rainfall scenario uni bilt is
much drier than if we use rainfall information from the catchment itself, even if we use
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Figure 3.9 Spatial pattern of mean groundwater level [m from ground level] during March–October
2004 for all rainfall scenarios. For the spatially variable scenarios the spatial pattern of
the differences (variable minus uniform) to the corresponding spatially uniform scenarios
are shown.

60



only one rain gauge (uni cabauw). The spatially variable rainfall scenarios all show
a different spatial pattern of soil moisture than the corresponding spatially uniform
rainfall scenarios. Using spatially variable rainfall scenarios leads at 1 May 2004 to
higher soil moisture content in the western part and lower soil moisture content in the
north-eastern part of the Lopikerwaard. This corresponds with the spatial pattern of
rainfall (Figure 3.11). For all scenarios, the lowest soil moisture contents correspond
with the urban areas of the Lopikerwaard (Figure 3.1b).

3.5 Conclusions and discussion

In this study we show that at specific days the spatial variability of daily rainfall
has a major effect on discharge and spatial distribution of groundwater level and
soil moisture content of the catchment. However, for the general behaviour of the
hydrological system the use of uniform areal average rainfall suffices. Above all, this
study shows that there is a great risk in using a single rain gauge, especially when
located outside the catchment, for the prediction of discharge, spatial distribution of
soil moisture and spatial distribution of groundwater level. For the general hydro-
logical behaviour, this study corroborates the conclusion stated by Obled et al. (1994)
that the spatial distribution of rainfall must be taken into account more because it
improves the basin-average incoming volume rather than because of some dynamic
interactions with flow-generating processes. However, for particular days, incorpo-
rating spatially variable information on rainfall is of great importance for the spatial
distribution of interior catchment response.

Operational radar products proved to be a good method to capture the spatial
variability of daily rainfall. The total amount of rainfall for the period March–October
2004 as estimated by the operational radar corresponds to the total amount found by
the kriged rainfall fields based on 30 rain gauges within the catchment. The spatial
variation (range of values) of the total rainfall was found to be higher for radar than
for the kriged rain gauges. This is, among other factors influencing radar-estimated
rainfall accuracy, maybe also caused by the fact that the dense network of rain gauges
was not equally distributed over the catchment. However, based on the results of spa-
tial prediction of soil moisture content and groundwater level at 1 May 2004 (Figs. 3.14
and 3.12) we can conclude that the same pattern is produced using either one of the
spatially-distributed rainfall scenarios. Also considering the hydrographs and the dis-
charge statistics, we can conclude that using radar-estimated rainfall input leads to
similar (or slightly more varying) discharges as using a dense network of rain gauges.
This shows that standard range-corrected radar products are sufficiently informative
about the spatial variability of rainfall to be used in hydrological applications.

This study uses a hydrological model to study the sensitivity of spatially variable
rainfall on interior catchment response. This can of course only be done if the model
reflects the true catchment response. As often mentioned for this kind of studies, the
results are dependent on the spatio-temporal variation of rainfall and the characteris-
tics of the catchment, or in this case the characteristics of the hydrological model. It
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is known that there is a space-time correlation in rainfall variability. Krajewski et al.
(1991) found that basin response shows higher sensitivity with respect to the temporal
resolution than to spatial resolution of the rainfall data. This study shows that even
for daily rainfall it is important to take account of the spatial rainfall variability, if
one aims to predict the internal hydrological state of the catchment.

The spatial variability of rainfall as well as the sensitivity of the hydrological
model to this spatial variability is often neglected in hydrological studies. Failing to
consider spatial variability of rainfall adequately will lead to errors in the values of the
model parameters (e.g. storage capacity, drainage resistance) which will be wrongly
adjusted to compensate for errors in the rainfall input data. Wrong conclusions about
the hydrological reaction of a specific area due to e.g. climate change can be one of
the consequences. This study clearly shows the danger of using rainfall information
from a single rain gauge, which is still common practice in hydrological engineering,
because of cost considerations or because of reluctance of using operational radar
data (e.g. because its predictive quality is often discussed). With this study we show
the potential and necessity of using the operational radar products in hydrological
studies.
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Figure 3.10 Spatial pattern of temporal standard deviation of groundwater level [m] during March–
October 2004 for all rainfall scenarios. For the spatially variable scenarios the spatial
pattern of the differences (variable minus uniform) to the corresponding spatially uniform
scenarios are shown.
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different rainfall scenarios.
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Figure 3.13 Development of soil moisture content in time of node number 15552 for all rainfall
scenarios. The location of node 15552 is given in lower right corner.
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4 Remotely sensed latent heat fluxes
for improving modelled soil moisture
predictions: a case study

Schuurmans, J.M, F.C. van Geer & M.F.P. Bierkens (2008), Remotely sensed latent
heat fluxes for improving modelled soil moisture predictions: a case study. Submitted
to Remote Sens. Environ.

Abstract

This chapter investigates whether the use of remotely sensed latent heat fluxes im-
proves the accuracy of spatially-distributed soil moisture predictions by a hydrological
model. By using real data we aim to show the potentials and limitations in practice.
We use (i) satellite data of both aster and modis for the same two days in the sum-
mer of 2006 that, in association with the Surface Energy Balance Algorithm for Land
(sebal), provides us the spatial distribution of daily ETact and (ii) an operational
physically based distributed (25 m x 25 m) hydrological model of a small catchment
(70 km2) in The Netherlands that simulates the water flow in both the unsaturated
and saturated zone. Firstly, model outcomes of ETact are compared to the processed
satellite data. Secondly, we perform data assimilation that updates the modelled soil
moisture. We show that remotely sensed ETact is useful in hydrological modelling
for two reasons. Firstly, in the procedure of model calibration: comparison of mod-
elled and remotely sensed ETact together with the outcomes of our data assimilation
procedure points out potential model errors (both conceptual and flux-related). Sec-
ondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment
of soil moisture. As both aster and modis images were available for the same days,
this study provides also an excellent opportunity to compare the worth of these two
satellite sources. It is shown that, although aster provides much better insight in
the spatial distribution of ETact due to its higher spatial resolution than modis, they
appeared in this study just as useful.
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4.1 Introduction

Insight into the spatial distribution of soil moisture within a catchment is of great
importance for e.g. farmers and water boards. Accurate prediction of spatially-
distributed soil moisture is helpful for optimizing irrigation gifts, hydrological drought
forecasting and the assessment of catchment wetness for flood control. Physically
based spatially-distributed hydrological models have the potential to provide this
insight. As more spatially-distributed information about land surface characteris-
tics becomes available and computer capacity increases, the distributed hydrological
models are also developed at higher spatial resolutions (Bergström and Graham,
1998). Potentially these high resolution models can give us insight into the hydro-
logical processes in more detail. However, the possibilities to calibrate those models
or to validate the accuracy of the model predictions is often limited by the number of
(distributed) measurement data. In most cases only observations of groundwater are
available at a few points, while in-situ measurements of soil moisture are rare. Dis-
charge data, if available, give only integrated hydrological information of an area. A
data source that does provide spatially-distributed soil moisture data, or soil moisture
related data, are satellites. This chapter focusses on satellites that are equipped with
thermal bands. Models that are based on the surface energy balance like for instance
sebs (Su, 2002) and sebal (Bastiaanssen et al., 2005) can convert thermal band
satellite images into images of actual evapotranspiration. These products can be used
for model verification or model calibration, as was demonstrated by Immerzeel and
Droogers (2008).

The purpose of this study is to answer the question: ”Can remotely sensed la-
tent heat fluxes (i.e. actual evapotranspiration, ETact ) improve the accuracy of the
prediction of spatially-distributed soil moisture as made by a distributed hydrological
model?”. We will answer this question by using a real case study, by which we aim
to show the potentials and limitations of our approach for hydrological model vali-
dation in practice. Outcomes of an operational physically based distributed (25 m
x 25 m) hydrological model of a small catchment (70 km2) in The Netherlands are
compared with satellite (both aster and modis) based ETact for the same two days
in summer 2006. The Surface Energy Balance for Land (sebal) is used in this study
to process the satellite data. We use an operational physically based distributed (25
m x 25 m) hydrological model that simulates the water flow in both the unsaturated
and saturated zone, from now on referred to as metaswap. It is not the scope of
this study to calibrate this model. In order to improve the model predictions of soil
moisture we assimilate ETact into our model, using a statistical correction method
that weighs the error of both hydrological model based and satellite based ETact. In
an earlier study we already assimilated ETact into a spatially-distributed hydrological
model (Schuurmans et al., 2003). Although promising, the results of this former study
remained unverified, as was pointed out by Pipunic et al. (2008). In this study we
use soil moisture measurements from 5 locations within the catchment, as well as
validation data of sebal from The Netherlands, in order to get insight into the error
of both hydrological model based and satellite based ETact rather then using different
(unknown) weighing factors as we did in our previous study. As both an aster and
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modis image were available for the two days (8 June and 17 July), this study also
provides an excellent opportunity to compare the worth of these two satellite sources.

The remainder of this chapter is organized as follows. Section 4.2 gives a descrip-
tion of the catchment and the data that are used in this study. Section 4.3 deals
with the methods; first the, for this study, most important principles of our hydro-
logical model (metaswap) are given as well as some validation results considering
soil moisture and groundwater level. The method section continues with a brief de-
scription of the sebal algorithm and finally the data assimilation procedure and its
parameterization are described. Results from the comparison between metaswap
and sebal based ETact as well as the outcomes of our data assimilation method are
shown in Section 4.4, which are discussed in Section 4.5. In Section 4.6 we state
the main conclusions of this study and give some recommendations to improve the
hydrological model used.

4.2 Study area and data

4.2.1 Study area

Our study area is called the ”Langbroekerwetering” and lies in the central part of
The Netherlands (Figure 4.1A). The Langbroekerwetering (∼ 70 km2) is located along
the rim of the Holocene Rhine-Meuse delta (low elevation, peat and clay of the last
4000 years: Berendsen and Stouthamer, 2000), which onlaps coversands and sandur
outwash deposits in front of a Saalian ice-pushed ridge (high elevation, 150.000 years
old: Busschers et al., 2007). Figure 4.1B shows the elevation together with the location
of the rain gauges and the soil moisture measurements, land use and soil types of the
Langbroekerwetering. For a description of the soil types we refer to Table 4.1. At the
higher elevations with coarse sand forest dominates the area, while in the lower area
grassland dominates. Within the area some small villages (built-up area) are located.
The landuse map is derived from the Dutch national land-cover database LGN (Oort
et al., 2007; De Wit and Clevers, 2004).

Table 4.1: Description of soil types within study area (Wösten et al., 1988) as well as the indexed
error zone (see Section 4.3.3).

soil unit description error zone
7 drift sand 5
8 podzol in loam poor fine sand 3
9 podzol in loamy fine sand 3
12 enkeerd in loamy fine sand 4
14 podzol in coarse sand 5
16 light clay 2
17 clay with heavy clay layers 1
18 clay on peat 1
19 clay on sand 2
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Figure 4.1 A: Location of study area within the Netherlands and the location of the two rainfall
radars. B: surface level [m + mean sea level] with rain gauge and soil moisture measure-
ment locations, land use and soil types (see Table 4.1) of study area.

4.2.2 Data

Rainfall
The daily rainfall fields that are used as input for our hydrological model are a com-
bination of meteorological radar (Figure 4.1A) and rain gauges within and closely
around the model area. The interpolation method used is a geostatistical method
that combines radar estimates with rain gauge observations. The method makes use
of colocated cokriging and is explained in more detail in Chapter 2. Figure 4.2A shows
the spatial distribution of the total rainfall during March–November 2006 within the
study area. There is up to 200 mm difference over 8 months within 15 km, which is
even more than what we found in 2004 in another equally sized catchment (50–100
mm over 7 months, see Chapter 3). Figure 4.2B shows the time series of the spatial
mean rainfall within the study area and the reference evapotranspiration.

Evapotranspiration
Our hydrological model uses Makkink (De Bruin, 1987; Makkink, 1957; Winter et al.,
1995) reference evapotranspiration (ETref ) as input. The variables needed to calculate
ETref (Equation 4.1) were measured in De Bilt (Figure 4.1A) by the Royal Nether-
lands Meteorological Institute (knmi). The knmi delivered daily values of ETref ,
which we assumed to be spatially uniform over the model area. Further details about
the evapotranspiration simulation in our hydrological model can be found in Sub-
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Figure 4.2 Spatial distribution of total rainfall [mm] March–November 2006 (A) and time series of
the spatial mean of rainfall within the study area and the reference evapotranspiration
(B).

section 4.3.1. To investigate whether remotely sensed daily ETact can improve our
hydrological model, we use both aster (Advanced Spaceborne Thermal Emission and
Reflection radiometer) and modis (MODerate resolution Imaging Spectroradiometer)
satellite measurements of summer 2006 in association with the Surface Energy Bal-
ance Algorithm for Land (sebal). This provided us with images of ETact that have
a spatial resolution of 15 m x 15 m for aster and 250 m x 250 m for modis. Both
satellite sources were available at 8 June and 17 July 2006. More details about sebal
can be found in Subsection 4.3.2.

Soil moisture
At 5 locations within the study area we measured soil moisture (Figure 4.1B: SK,
SZ, GD, WL and LB). The soil moisture locations were selected such that they lie
within different soil types. At each location we measured soil moisture at 5 depths:
5, 10, 15, 30 and 50 cm below surface. Measurements were done using 20 cm ech2o
probes (EC-20), which use the capacitance technique (an electromagnetic technique
comparable to time domain reflectometry (TDR)) to derive the dielectric permittivity
of a medium (Bogena et al., 2007). The sensors were placed vertically to avoid water
stagnation. All measurements were done in duplo with ∼ 1 m horizontal distance
between the sensors. The output of our ech2o sensors, volumetric moisture content
(V MC [cm3 cm−3]), was measured with a temporal resolution of 5 min. For each
location we performed a calibration with observed V MC (Appendix 3). According to
the manufacturer the accuracy is ∼ 2% with soil specific calibration. The application
of electromagnetic sensors to conductive media, such as saline soils, certain clay soil
and organic soils is hindered due to significant attenuation effects of the desired signal
(Bogena et al., 2007). Czarnomski et al. (2005) concluded that the EC-20 performed
nearly as well as a TDR probe in a field experiment. In Section 4.3.1 we show the
soil moisture measurements together with the modelled soil moisture.
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Groundwater
There are several observation wells within the study area that are measured twice a
month. The measured hydraulic heads are compared to the modelled groundwater
levels. A map with the results per observation well are given in Section 4.3.1.

4.3 Methods

4.3.1 Hydrological model

This section starts with a short description of the model code of metaswap, focussing
on the land-plant-atmosphere interaction that is important for the later assimilation
of ETact in metaswap. After that, validation results of the model concerning soil
moisture and groundwater level are given.

MetaSWAP code
The model used in this study is a coupled groundwater (saturated zone) and unsatu-
rated zone model, referred to as metaswap from now on. The groundwater model is
based on the modflow model code (McDonald and Harbaugh, 1983). The unsatu-
rated zone model, is a quasi steady-state model that uses a sequence of steady-state
water content profiles for dynamic simulation (Van Walsum and Groenendijk, 2008).
The steady-state water content profiles were obtained by running a steady-state ver-
sion of the swap model (Van Dam, 2000) off-line. The model area is divided into
svat-units (Soil Vegetation Atmosphere Transfer), which are smaller or equal to the
size of the modflow cell. One modflow cell can be coupled to several svat-units.
The svat-units form parallel vertical columns, which are divided into a root zone and
a subsoil layer. metaswap distinguishes 21 different soil types. For each soil type
the model has predefined sub-layers with corresponding soil physical parameters (Van
Genuchten parameters) to be able to convert pressure head to soil moisture content.
Only vertical flow according to Richards’ equation is taken into account. All lateral
exchanges are assumed to take place in the saturated zone. The thickness of the root
zone is user specified (Table 4.2).
In our model, the size of the modflow cells is 100 m x 100 m. The svat-units have
a resolution of 25 m x 25 m inside the study area and 100 m x 100 m outside the
study area, within the model boundaries (Figure 4.1A). The groundwater model is
schematized into 7 layers. For more specifications of the groundwater model we refer
to Appendix 4.
A flux that is of importance for soil moisture, and which is influenced also by the
soil moisture conditions is evapotranspiration. Our model uses Makkink (De Bruin,
1987; Makkink, 1957; Winter et al., 1995) reference evapotranspiration (ETref [mm
day−1]) as input (spatially uniform), which is an empirical equation that only takes
into account the incoming short wave radiation and air temperature (Equation 4.1).
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The measured ETref in this study comes from De Bilt.

λρETref = 0.65 · s

(s + γ)
· K↓, (4.1)

in which λ is the latent heat of vaporization (2.27 E+06 J kg−1), ρ is the density of
water [kg m−3], s is the gradient of the vapor pressure curve [mbar K−1], γ is the psy-
chometric constant (0.66 mbar K−1 at sea level) and K↓ [W m−2] the incoming short
wave radiation. The potential evapotranspiration (ETpot [mm day−1]) is calculated
by multiplying ETref with a crop factor (cf [-]: Equation 4.2), which is related to the
land use type and can vary throughout the season (Feddes, 1987).

ETpot = cf · ETref (4.2)

The actual evapotranspiration (ETact [mm day−1]) is equal or a fraction of ETpot

depending on the soil moisture conditions and the land use type (Equation 4.3).

ETact = FR · ETpot, (4.3)

in which FR is the called the Feddes reduction factor from now on. Figure 4.3 shows
the so called Feddes-reduction curve (Feddes et al., 1978), which gives the relation
between FR and the soil moisture pressure head. The values of the critical pressure
heads (h1 until h4) can be defined for each land use type, see Table 4.2. It must be
noted that the choice of these values is one of the uncertainty sources in the model.
Between h1 and h2 the evapotranspiration is reduced due to oxygen deficiency in the
root zone (too wet soils), but this is neglected in our model, except for maize (see
Table 4.2). Between h2 and h3 (the latter is called the reduction point) evapotranspi-
ration is not hampered by soil moisture conditions. Whether h3 equals h3l, h3h or an
linear interpolation in between these two values, depends on the potential transpira-
tion rate (default h3l if ETpot = 1 mm day−1; h3h if ETpot = 5 mm day−1). Between h3

and h4 (latter is called wilting point) the evaporation is reduced due to soil moisture
deficit. The root zone is divided into 10 equal sized sub-layers, assuming a constant
root density, and the reduction function is applied to each sub layer. The final mod-
elled ETact is the mean of those 10 sub layers. The model takes also interception
evaporation into account. It is possible to define an interception capacity for each
land use type. In this study only for forest an interception capacity is defined. The
interception capacity for pine forest is 1.0 mm m−2 throughout the season and 0.3-1.0
mm m−2 for deciduous forest depending on the season.

Parameterization and validation
In the following validation results of metaswap are given. First for the unsaturated
zone (soil moisture) and then for the saturated zone (groundwater level).
Figure 4.4 shows for all soil moisture measurement locations the measured (both left
and right side) and modelled volumetric moisture content at the 5 different depths.
According to the measurements at location SK the upper layers (5 & 15 cm) are
modelled too wet; 30 & 50 cm are modelled well and 70 cm is again too wet. However,
we experienced during fieldwork that these data should be used carefully. Besides the
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Figure 4.3 Feddes reduction factor (FR) as function of pressure head: between h1 and h2 there is
reduction of potential evaporation because of oxygen deficit of root. Between h2 and h3

ETact equals ETpot. Between h3 (h3l and h3h correspond to resp. ETpot = 1 mm day−1

and ETpot = 5 mm day−1 ) and h4 there is evapotranspiration reduction due to water
deficit. After (Feddes et al., 1978)

Table 4.2: Root zone thickness (rz [m]), crop factors (cf [-]) and predefined pressure heads [m] (Taylor
and Ashcroft, 1972) of Feddes curve (Figure 4.3) for the land use types within the study
area and their areal percentage. Only land use types with an areal percentage higher
than 2 % are taken into account.

land use % area rz cf h1 h2 h3h h3l h4

grass 54 0.3 1.0 0 0 -2 -8 -80
maize 6 0.6 0 - 1.3 -0.15 -0.3 -3.25 -6 -80
built-up 8 0.3 0.05 0 0 -3.2 -8 -80
pine forest 8 1.0 1.0 0 0 -3.2 -8 -80
deciduous forest 20 1.0 1.0 0 0 -3.2 -8 -80

fact that the measurements are done in heavy clay, which can lead to significant
attenuation effects (Bogena et al., 2007), we observed clay cracks that were formed
in these soils during severe drought. For location SZ, the model is wetter than the
measurements at all depths. The dynamics of the measurements are however modelled
well for the depths 5 & 15 cm. In the deeper layers the measurements show much
less dynamics than the model shows. For location GD the model represents the
measurements quite well during the wet periods. However during drying out of the
soil the model remains too wet. At location WL the model is too wet, except for the
period in July where the modelled soil moisture at 5 and 15 cm is modelled dryer than
was measured. In the forest, at location LB, the model is too dry for the upper layers.
At 50 and 70 cm the model is slightly too wet, except for the dry period. It must be
mentioned that especially the upper layer of LB contains a lot of organic material,
which can decrease the accuracy of measurement considerably (Bogena et al., 2007).

For a description of the groundwater part of the model and its parameterization
we refer to Appendix 4. Our model has constant head boundaries, which are the
output of a larger model (from which this model was cut) after it was run for 5 years
(2001 - 2006). The results of this 5-year model run are compared with measurements
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Figure 4.4 Time series of volumetric soil moisture content [cm3 cm−3] per measurement location
and per depth according to model (black solid line) and measurements (left side:grey
solid line, right side: grey dotted line)
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Figure 4.5 Bubble plot of bias in phreatic (A) and confined (B) groundwater during 2001 - 2006 [cm].
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dry) are represented by white dots. Locations of the soil moisture measurements are
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from observation wells within the study area, of which most are measured twice a
month. Figure 4.5 shows bubble plots of the bias (mean difference between model
and measurement) in cm for respectively the phreatic and confined groundwater level.
Positive bias values, meaning the model is too wet, are indicated as black dots, neg-
ative bias values (model too dry) are indicated as white dots. Figure 4.5 shows that
the majority of the dots is black, indicating that the modelled groundwater level is
too high.

4.3.2 SEBAL

In the following sebal is only briefly explained, for a complete description we refer
to Appendix 5. The Surface Energy Balance Algorithm for Land (sebal) is based on
the surface-energy balance (Equation 4.4).

Rn = G0 + H + λρE, (4.4)

in which Rn [W m−2 ] is the net radiation; G0 [W m−2 ] is the soil heat flux; H
[W m−2 ] is the sensible heat flux and λE [W m−2 ] is the latent heat flux that is
associated with actual evapotranspiration (ETact ) by the latent heat of vaporization
(λ) and ρ is the density of water [kg m−3].

The instantaneous energy balance, at time of satellite overpass, can be partly (Rn

and G0) solved with satellite data and ground based meteorological data. Having Rn,i

(subscript i stands for instantaneous) and G0,i the remaining problem is the division
between the (instantaneous) sensible (Hi) and the (instantaneous) latent heat flux
(λEi), which can be expressed by the (instantaneous) evaporative fraction (Λi [-])
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Λi =
λEi

Rn,i − G0,i

=
λEi

λEi + Hi

=
Rn,i − G0,i − Hi

Rn,i − G0,i

(4.5)

If Hi is solved for each satellite pixel, λEi is the residue of the energy balance.
sebal computes Hi using a so-called ”self calibration” procedure. The coldest pixel
is selected in the satellite image, where it is assumed that Hi=0 (and λEi = Rn,i-
G0,i), and the warmest pixel is selected where it is assumed that Hi = Rn,i-G0,i (and
λEi=0).

The temperature difference between the land surface and the atmosphere at ref-
erence level (∆T ) that is needed to match the value of H at a given aerodynamic
resistance is calculated. For the cold pixel ∆T=0, for the warm pixel ∆T is solved
iteratively using equations that are based on the Monin-Obukhov Similarity Theory.
After that a linear relationship is fitted for the ∆T–Ts relationship (Ts is surface
temperature based on satellite image), which is thus image specific.

With the ∆T -Ts relationship, together with the wind velocity uz2 that is based on
the interpolation method Meteolook (Voogt, 2007), the sensible heat flux Hi can be
calculated for each pixel of the satellite image. λEi follows from solving the energy
balance, Equation 4.4. This means that the instantaneous evaporative fraction (Λi)
is known for every satellite pixel. sebal assumes that the daily evaporation fraction
is the same as the instantaneous evaporation fraction. This means that if the daily
net radiation (Rn,24) and daily soil heat flux (G0,24) are known, the daily latent heat
flux λE and thus the daily evaporation E is known for each satellite pixel.

The roughness length that is needed for sebal, comes from the Royal Netherlands
Meteorological Institute (knmi). This map is based on the Dutch national land-cover
database LGN (Oort et al., 2007; De Wit and Clevers, 2004), as is the land use map
in our hydrological model. The roughness map is slightly modified with an orographic
correction and a small time correction for agricultural land use, using NDVI.

4.3.3 Data assimilation

This section describes the data assimilation method we used. Firstly, the different
steps of the assimilation procedure are described. Thereafter details about the para-
meterization of these steps for this case study are given.

Data assimilation method

Step 1: new ETact

Each day a satellite image is available we have information about ETact [mm day−1]
from both metaswap and sebal (resp. ETact,m and ETact,s). For ETact,m we also
include the interception evaporation (in the model this is calculated independently
from ETact). If we know the standard error of the metaswap and sebal based ETact

(resp. SEETact,m and SEETact,s), we can make the following statistical correction of
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ETact per model node that gives us a new, updated value of ETact (ETact,new):

ETact,new = ETact,m +
SE2

ETact,m

SE2
ETact,m

+ SE2
ETact,s

· (ẼTact,s − ETact,m) (4.6)

The values of ETact,s should be in the range of ETact,m in order to be of value in
the next step, where we are interested in the updated evapotranspiration reduction.
However, we found that ETact,s is overall higher than ETact,m. Therefore, we scale
ETact,s, assuming that the spatial variability of evapotranspiration reduction shown

by sebal (ETact,s

ETpot,s
) is correct, but that ETact,s is biased due to a bias in ETpot,s. In

Equation 4.6 ẼTact,s is the bias corrected (i.e. scaled) ETact,s given in Equation 4.7,
in which ETpot,m and ETpot,s are the spatial mean ETpot according to respectively
metaswap and sebal within the total model area.

ẼTact,s =
ETact,s

ETpot,s

· (ETpot,s + ETpot,m − ETpot,s) (4.7)

The statistical correction (Equation 4.6) weighs ETact,m and ETact,s based on their
confidence: if SEETact,m is high, the updated value ETact,new will tend to ETact,s and
vice versa. In Equation 4.6 we state that (i) ETact,m is unbiased and (ii) that the
error in ETact,m is temporally variable but its variance is constant in time.

Step 2: new pressure head for root zone
With ETact,new we can derive a new Feddes reduction factor, FRnew [-] (see also
Equation 4.3):

FRnew =
ETact,new

ETpot,m

, (4.8)

in which ETpot,m [mm day−1] is the ETpot according to the model. With FRnew,
in combination with the svat-unit specific parameters of the Feddes curve (Figure
4.3 and Table 4.2), we can determine a new pressure head for the root zone of each
svat-unit (hrz,new).

Step 3: new pressure head for zone 2
Besides a new initial pressure head of the root zone, metaswap also needs a new
initial pressure head for the zone between root zone and phreatic groundwater level
(zone 2), called hz2,new.

Step 4: new groundwater levels
metaswap also needs new initial groundwater levels.

Parametrization
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Step 1: new ETact

Table 4.5 shows the values that were needed to make the bias correction of ETact,s

(Equation 4.7). At maximum 0.5 % (aster image on 8 June) of the satellite pixels

retrieved a negative corrected ETact (ẼTact,s), which was set to zero. To determine
SEETact,m we calculated ETact according to metaswap for the situation that we have
the measured instead of the modelled V MC. We can determine SEETact,m at five
locations, as we have five soil moisture measurement locations. At each location the
V MC was measured in duplo at five different depths (5, 15, 30, 50, 70 cm). For each
depth we took the mean of the duplo measurements. Because the model uses pressure
heads instead of V MC, we used the Van Genuchten equation (Equation 4.9), which
is an analytical function to calculate V MC from the pressure head (Van Genuchten,
1980). We rewrote this equation to Equation 4.10 with which we retrieved at each
location a time series of the pressure head for the five different depths.

Θ(h) =

{
Θr + Θs−Θr

(1+|αh|n)m h ≤ 0

Θs h > 0
(4.9)

In Equation 4.9 Θ(h) is V MC [cm3 cm−3] at pressure head h [cm]; Θr and Θs

are respectively the residual and saturated soil moisture content [cm3 cm−3]; α (> 0)
[cm−1] is related to the inverse of the air-entry pressure; n (> 1) [-] is a measure of
the pore-size distribution; and m = 1 − n−1 [-]. By taking the inverse of Equation
4.9, we get:

h =

{ −(Θr + [〈( Θs−Θr

Θ(h)−Θr
)m−1 − 1〉n−1 · 1

α
] Θ(h) ≤ Θs

h = 0 Θ(h) > Θs

(4.10)

metaswap distinguishes 21 different soil types. For each of these soil types the
model has predefined sub layers and corresponding soil physical Van Genuchten pa-
rameters, which are needed in Equations 4.9 and 4.10. In Table 4.3 these parameters
are given for the 10 different soil types in our study area. With Table 4.2, that relates
the pressure heads with FR, a time series of FR could be determined for each depth.
Using Equation 4.3, we can derive a time series of ETact at each depth. To define a
value for ETact of the entire root zone (ETact,rz), we used a weighted average of the
depths, depending on the root zone thickness (Equation 4.11). At the measurement
locations, we only have two different root zone depths: 30 cm (SK, SZ, GD, WL) and
100 cm (LB).

ETact,rz =





1
6
· ETact,5cm + 2

6
· ETact,15cm + 3

6
· ETact,30cm rz = 30cm

1
20

· ETact,5cm + 2
20

· ETact,15cm + 3
20

· ETact,30cm

+ 4
20

· ETact,50cm + 10
20

· ETact,70cm rz = 100cm
(4.11)

With ETact,rz we can determine the error in ETact,m (ETact,m − ETact,rz) for each
soil moisture measurement location (Figure 4.6) and calculate SEETact,m . The error
in ETact,m as derived here is a conservative estimation of the model error because the
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possible measurement error of the soil moisture probes are counted as model error.
We state that the derived SEETact,m at each location is representative for a part of
the model area (error zone), as we have only five measurement locations but want to
apply the statistical correction method to all svat-units. Table 4.1 shows to which
error zone the different soil types in the study area are classified, which is based on
the soil physical parameters. Table 4.4 shows the values of SEETact,m , as well as the
error zones for which the five measurement locations are representative.

SEETact,s is assumed to be spatially uniform because sebal is good in detecting
the relative spatial variation of ETact within an area. Because we had no measure-
ments of ETact within the study area it was not possible to calculate the SEETact,s

ourselves. However, data are available (source: www.waterwatch.nl) of a validation
study in The Netherlands where in 1995 weekly ETact measurements of sebal are
compared to eddy-correlation measurements (306 measurements). This study shows
a value for SEETact,s of 1.5 - 1.9 mm week−1. Assuming this error is random, and
choosing the upper bound, we get SEETact,s = 1.9√

7
= 0.72 mm day−1.

Step 2: new pressure head for root zone
To apply step 2 of the data assimilation method, the following problems must be
overcome, which are mainly caused by the rigid shape of the Feddes curve:

• in our hydrological model FR is seldom higher than 1 because the model cannot
evaporate more than the potential evapotranspiration (it can happen when ad-
ditional interception evaporation occurs). Because we now use ETact,new, which

is a combination of ETact,m and ẼTact,s, FRnew can be higher than 1;

• if FRnew > 1, which pressure head between h2 and h3 of the Feddes curve should
be chosen?,

• in case FR before update (FRm) was equal to 1 and FRnew < 1, the soil moisture
content can drop considerably, hypothetically from h2 to somewhere between h3

and h4.

To overcome the above listed problems we defined four updating scenarios for soil
moisture:

• scen 1: FRm = 1 and FRnew >= 1: no update of soil moisture. hrz is not
updated because there was and is no evapotranspiration reduction;

• scen 2: FRm < 1 and FRnew >= 1: soil becomes wetter. In contrast to our
previous study (Schuurmans et al., 2003) we do not take the reduction point
(h3) but make a linear interpolation between h2 and h3 of the Feddes curve,
based on the value of FRnew.We set a minimum and maximum value for FR,
(FRmin resp. FRmax). If FRnew ≥ FRmax then hrz,new = h2, if FRnew = FRmin

then hrz,new = h3 (reduction point);
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• scen 3: FRm = 1 and FRnew < 1: soil becomes dryer but only in case a
buffer threshold is crossed. In this scenario a buffer is implemented, in order to
make the assimilation method more robust. The wetter the svat-unit is before
update, the more FRnew may differ from 1 before a new pressure head is defined;

• scen 4: FRm < 1 and FRnew < 1: soil becomes either dryer or wetter. In
this scenario an update of hrz takes place somewhere between h3 and h4 of the
Feddes curve.

For scenario 2 FRmin was set to 1, FRmax was set to 15. The choice of the value
FRmax is based on the comparison that was made between metaswap and sebal
based ETact. We want to avoid that the soil moisture of metaswap becomes suddenly
very high so we chose a value that was rare. For scenario 3 we implemented a buffer,
which is given in Equation 4.12, in which f determines the robustness of the filter.

FRnew ≥ f(Θh3 − Θhrz)

1 − Θhrz

+ 1 ⇒ FRnew = 1 (4.12)

Figure 4.7 shows an example of the critical threshold of FRnew (above which it is
set to one) as function of Θhrz (just before update) for 5 different values of f (Θh3

= 0.40; Θsat = 0.55). The closer Θhrz is to Θsat, the more FRnew may differ from 1
before an update of the root zone pressure head occurs. In this study we chose f = 0.3.

Step 3: new pressure head for zone 2
With the analytical Van Genuchten-Mualem equation (Mualem, 1976), which gives
the relation between hydraulic conductivity and pressure head, we can calculate the
hydraulic conductivity Khrz,new that corresponds with hrz,new(Equation 4.13).

Kθ =

{
Ksat · SeL · 〈1 − (1 − Se

1
m )m〉2 h ≤ 0

Ksat h > 0,
(4.13)

in which Ksat is the hydraulic conductivity at saturation [cm d−1], L [-] is an
empirical pore-connectivity parameter, and Se [-] is the effective saturation given by:

Se =
θ(h)−θr

θs−θr
= 1

(1+|αh|n)m h ≤ 0 (4.14)

At phreatic groundwater level K = Ksat. For zone 2 we derive Khz2,new by taking
the geometric mean:

Khz2,new =
√

Khrz,new · Ksat (4.15)

Khz2,new is transformed to a corresponding pressure head (hz2,new) by using a pre-
defined lookup-table with pressure heads and hydraulic conductivities. If the phreatic
groundwater level is within the root zone, hz2,new = hrz,new.
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Step 4: new groundwater levels
For the initial groundwater levels we used the groundwater levels before update as
initial field.

Table 4.3: Soil physical (Van Genuchten) parameters of the soils (depth bottom [m]) in the study
area: Θs is the saturated water content [cm3 cm−3], Θr is the residual water content [cm3

cm−3], Ksat is the saturated hydraulic conductivity [cm d−1], α (> 0) is related to the
inverse of the air-entry pressure [cm], n (> 1) is a measure of the pore-size distribution
[-] and L is an empirical pore-connectivity parameter [-].

soil sublayer depth bottom Θs Θr Ksat α n L
7 1 100 0.36 0.01 13.21 0.0224 2.167 0
8 1 0.3 0.43 0.01 17.46 0.0249 1.507 -0.14
8 2 100 0.36 0.01 3.3 0.0224 2.167 0
9 1 0.5 0.43 0.02 9.65 0.0227 1.548 -0.983
9 2 100 0.38 0.02 3.89 0.0214 2.075 0.039
12 1 0.9 0.43 0.02 9.65 0.0227 1.548 -0.983
12 2 100 0.38 0.02 3.89 0.0214 2.075 0.039
14 1 0.15 0.43 0.01 17.46 0.0249 1.507 -0.14
14 2 100 0.32 0.01 43.55 0.0597 2.059 0.343
16 1 0.25 0.42 0.01 1.17 0.0118 1.224 -4.795
16 2 100 0.49 0 2.22 0.0107 1.28 -2.123
17 1 0.25 0.55 0 15.46 0.0532 1.081 -8.823
17 2 100 0.57 0 13.28 0.0171 1.11 -4.645
18 1 0.25 0.55 0 15.46 0.0532 1.081 -8.823
18 2 0.6 0.57 0 3.32 0.0171 1.11 -4.645
18 3 100 0.86 0 2.75 0.0127 1.274 -1.832
19 1 0.25 0.43 0 2.25 0.0096 1.284 -2.733
19 2 0.6 0.49 0 2.22 0.0107 1.28 -2.123
19 3 100 0.38 0.02 3.89 0.0214 2.075 0.039

Table 4.4: Standard error of the model based ETact (SEETact,m) [mm day−1] per measurement lo-
cation, which are assumed to be representative for a part of the study area, indicated as
the error zone (see Table 4.1)

SK SZ GD WL LB
error zone 1 2 3 4 5
SEETact,m 0.69 0.78 0.94e-02 0.41 0.69

4.4 Results

This section starts with a comparison between the metaswap and sebal based ETact

(ETact,m resp. ETact,s). After that the results of spatially updated soil moisture due
to our data assimilation method are given.
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Figure 4.6 Time series of error in ETact (ETact,m − ETact,rz) [mm day−1] for each soil moisture
measurement location.
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Figure 4.7 Example of the critical threshold of FRnew(above which it is set to one) as function of
Θhrz (just before update) for 5 different values of f (Equation 4.12: Θh3 = 0.40; Θsat =
0.55).
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4.4.1 ETact comparison

Figure 4.8 shows the spatial distribution of ETact, ETpot, ẼTact,s (Equation 4.7) and
FR for 8 June 2006 according to sebal (aster and modis) and metaswap. Figure
4.9 shows the same but then for 17 July 2006. Values for ETref as well as the spatial
mean values of the other variables in Figures 4.8 and 4.9 are given in Table 4.5.

For 8 June ETact,s is overall higher than ETact,m due to an overall higher ETpot.
After a bias correction of 2.5 and 2.74 mm for respectively aster and modis the
ETact values compare well. This day both sebal and metaswap show little to none
evapotranspiration reduction, except for metaswap in the northeastern part of the
study area (FR images in Figure 4.8). The spatial variation of ETpot,m is due to the
difference in crop factors. For the major part of the study area (at least 82 %, Table
4.2) ETpot,m is equal to ETref , because the crop factor is 1.0. The built-up areas are
clearly distinguishable, which is caused by the fact that built-up areas have a very low
”crop factor” (0.05). The aster image reveals more spatial variation than the modis
image, which is due to its higher spatial resolution (15 m x 15 m for aster and 250
m x 250 m for modis). In both the aster and modis image, areas with forest and
built-up areas are recognizable as areas with a relatively high and respectively low
ETpot value.

For 17 July we applied a bias correction of 1.96 and 2.09 mm for respectively aster
and modis in order to make the ETact values of sebal and metaswap comparable.
This day both sebal and metaswap show evapotranspiration reduction within the
area, but their spatial distribution differs. metaswap shows a high spatial variability
in ETact. In the northeast, the area at the high elevation with coarse sand and
forest, ETact is very low, even zero at some places. In the middle part there is
hardly any evapotranspiration reduction, and in the southeastern part there is again
evapotranspiration reduction. The ETpot within metaswap shows hardly any spatial
variation, because the major part has the same crop factor, except for areas with
maize, which have a crop factor of 1.3 that time of year according to metaswap
and the built-up areas with a ”crop factor” of 0.05. In contrast to metaswap, where
there are clearly 3 regions, sebal shows more an overall evapotranspiration reduction.
Both in the aster and modis images, built-up areas are recognizable as areas with
a relatively low ETact.

4.4.2 soil moisture update

Table 4.6 shows for each satellite image, the percentage of metaswap nodes for each
update scenario (Section 4.3.3). Scenario 3 is split into 3a and 3b: 3a no update
of soil moisture because of buffer, 3b update in spite of buffer. Figure 4.10 shows a
spatial plot of the update scenarios for the aster and modis images of 8 June and 17
July 2006. Although aster shows much more spatial variability in ETact, due to its
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Figure 4.8 Spatial plot of ETact and ETpot [mm day−1] as derived by SEBAL from ASTER and
MODIS images and by METASWAP as well as the bias corrected ETact SEBAL images
for 8 June 2006.

Figure 4.9 Same as Figure 4.8 but for 17 July 2006.
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Table 4.5: Comparison between ET [mm day−1] as derived by sebal (aster and modis) and
metaswap: ETref according to Makkink, spatial mean of respectively ETpot and ETact

(ETpot and ETact) and the spatial mean ETact after bias correction (ẼTact: Equation
4.7).

8 June 17 July
variable aster modis metaswap aster modis metaswap
ETref – – 3.38 – – 5.40
ETpot 5.53 5.77 3.03 6.96 7.09 5.00
ETact 5.51 5.77 2.94 4.43 4.58 3.33

ẼTact 3.05 3.05 – 3.22 3.25 –

higher spatial resolution than modis, in the spatial pattern of the update scenarios
there is hardly any difference between aster and modis.

On 8 June, both with aster and modis, about half of the study area (∼ 40−50%)
has no update of the root zone pressure head (scen 1) because both ETact,m and
ETact,new are equal or higher than ETpot. The other half of the lower part of the
study area becomes, despite the buffer, dryer after update (scen 3b) because ETact,new

indicates evapotranspiration reduction. About 10% of the study area, at the high
elevations with coarse sand and forest, the root zone pressure head is updated within
the segment of evapotranspiration reduction (scen 4: pressure head update between h3

and h4, Figure 4.3), because both ETact,m and ETact,new indicate evapotranspiration
reduction.

17 July shows a completely different picture: in the major part of the study area (∼
80%) the root zone pressure head is updated within the segment of evapotranspiration
reduction (between h3 and h4, Figure 4.3), because both ETact,m and ETact,new indicate
evapotranspiration reduction. About 10 % of the study area has no soil moisture
update (scen 1) because ETact,m and ETact,new show no evapotranspiration reduction.
These are clearly the built-up areas, that have a very low ETpot because of the very
low ”crop factor”. Another 10 % of the study area becomes, despite the buffer, dryer
after update (scen 3b) because ETact,new indicates evapotranspiration reduction.

Table 4.6: Percentage METASWAP nodes for each soil moisture update scenario for each day a
satellite image was available. Scenario 3 is divided in 3a (no soil moisture update due to
buffer) and 3b (update of soil moisture in spite of buffer).

source scen 1 scen 2 scen 3a scen 3b scen 4
aster 8 June 2006 54 2 0 33 11
aster 17 July 2006 11 0 0 13 76
modis 8 June 2006 40 0 0 47 13
modis 17 July 2006 12 0 0 12 76

Figure 4.11 shows the spatial difference of the root zone storage between the
unperturbed and updated metaswap run using either aster or modis images of 8
June 2006 and 17 July 2006. The difference is plotted 1 day after update, 10 days
after update and at the end of the modelling period (1 Nov 2006). Negative values
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Figure 4.10 Spatial plot of update scenarios of our data assimilation method (DA) using both ASTER
and MODIS images of 8 June and 17 July 2006. Scenario 1 and 3a (no update soil
moisture) are indexed as blue respectively light green areas, scenario 2 (soil becomes
wetter with DA) is orange, scenario 3b (soil becomes dryer with DA) is dark green and
scenario 4 (either wetter or dryer but within the evapotranspiration reduction) is red.

(indicated with blue in the figure) mean that the root zone storage in the updated
model run is higher than in the unperturbed run, so metaswap becomes wetter after
update. The opposite is true for the positive difference values, which are indicated
with red in the figure.

For 8 June the overall modelled soil moisture in the lower area decreased after im-
plementation of our data assimilation method, especially within the soil units 19 & 12.
Considering the time series of measured and modelled soil moisture at the 5 measure-
ment locations (Figure 4.4) this seems to be realistic. However, the 5 measurement
locations are point measurements and it is hard to identify their representativeness
over the whole study area. In the higher region of the study area the modelled soil
moisture is slightly increased in the areas that are indicated as scenario 2 (Figure
4.10). However, Figure 4.8 shows that for the entire northeastern part (indicated
with scenario 4 in Figure 4.10) the evapotranspiration calculated by metaswap is
higher than the evapotranspiration calculated by sebal. The reason that despite
this, the soil moisture is not increased is due to the fact that ETact,new is a linear

combination of both ETact,m and ẼTact,s. Because ETact,m is extremely low in this
period, ETact,new is also low, which means the increase in root zone storage is only
marginal.

17 July is an interesting day with evapotranspiration reduction for both metaswap
and sebal, but with a different spatial distribution. This day three different regions
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Figure 4.11 Spatial difference of the root zone storage [m] between unperturbed and updated model
run using either ASTER or MODIS images of 8 June 2006 and 17 July 2006 after 1 day,
10 days and at the end of modelling period (1 Nov 2006). Negative values (blue) mean
METASWAP becomes wetter after update, positive values (red) mean METASWAP
becomes dryer after update.

in the spatial pattern of the differences between ẼTact,s and ETact,m can be distin-
guished:

• region 1: the northeastern part where ẼTact,s > ETact,m;

• region 2: the middle part where ETact,m > ẼTact,s;

• region 3: the southwest part where ẼTact,s > ETact,m.

In region 1 both sebal and metaswap show evapotranspiration reduction but
the amount of reduction shown by metaswap is extremely high. Still, there is hardly
any increase of the soil moisture content, which is due to the reason explained above
(low ETact,new value).

In region 2 soil moisture is reduced, which seems plausible considering the modelled
and measured soil moisture (Figure 4.4).

In region 3 the modelled soil moisture is increased. Both sebal and metaswap
show evapotranspiration reduction but the sebal based reduction is lower. This is
the most difficult area for which to decide whether this is plausible or not. The soil
moisture measurement location SK is situated at the border of soil unit 19. This is an
area with heavy clay that showed severe clay cracks during this period that in reality
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could reduce the evapotranspiration of grass (that roots mainly in the upper part).
Besides, the soil moisture measurements of the upper layer should be handled with
care.

4.5 Discussion

Differences between ETact,s and ETact,m are caused by either an error in ETact,s or
and error in ETact,m. An error in ETact for its part can be caused by either an error
in ETpot or in the evapotranspiration reduction factor (FR). metaswap and sebal
use a completely different method to determine the evapotranspiration. metaswap
is based on Makkink which is much less physically based than sebal. Makkink only
takes into account the atmospheric demand, not the aerodynamic part. It is therefore
explicable that Makkink underestimates ETpot and thus ETact. Winter et al. (1995)
concluded that Makkink resulted in monthly evaporation that agreed reasonable with
the energy budget, but that it showed high variance in daily values and is therefore
less useful for daily estimates. This could cause the overall difference between ETpot,s

and ETpot,m of ∼ 2 mm day −1 that we found for 8 June and 17 July, both for aster
and modis.

In areas with forest metaswap shows for both days severe evapotranspiration
reduction in contrast to sebal. It could be discussed whether sebal maybe overes-
timates ETact in areas with forest. However, increasing the crop factor in metaswap
is no solution for solving the evapotranspiration reduction in the northeastern part of
the study area. We found that increasing the crop factor of forest only led to a faster
dry out of the soil and thus lower ETact values in an earlier stage. This prevented us
from increasing the crop factor of forest.

We hypothesize that the big difference between ẼTact,s and ETact,m in the northeast
region of the study area (forest dominated, groundwater level is v 60 m below surface)
is caused by a conceptual error in metaswap. Evapotranspiration in forests is a
complex process, mainly because of changes in root water uptake under stress. This
has been the subject of many studies. The essence is that trees have special ways of
water conservation allowing them to keep evapotranspiration going during dry spells.
Trees, but also some small plants like dandelion, radish and carrot, use water in a
much more complex way than is implemented in this model, the so-called ”hydraulic
redistribution” or ”hydraulic lift” (Warren, 2007; Lee et al., 2005; Dawson, 1996;
Caldwell et al., 1998). This was also concluded in Feddes et al. (2001). Deep rooted
plants take in water from deeper moist soil layers (e.g. groundwater table) and exude
that water during the night into the drier upper soil layers. Tap roots (a straight
tapering root that grows vertically down) can also transfer rainwater from the surface
to reservoirs deep underground and redistribute water upwards after the rains. Lee
et al. (2005) found in Brazil that trees could store 10% of the annual precipitation as
deep as 13 meters. In some cases taproots can reach down more than 100 times the
height of the plant above ground.
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Despite the big difference between ETact,m and ẼTact,s in the northeastern part
of the study area, the soil moisture content of the root zone becomes hardly any
higher after data assimilation. It should therefore be questioned (i) whether ETact is
a good variable to update the soil moisture content of the root zone if in reality the
evaporation process of forests is much more complex and (ii) a different, non-linear
assimilation method should be applied.

4.6 Conclusions and recommendations

4.6.1 Conclusions

The results of this study show that with the satellite based ETact images we can
indicate areas with structural errors in our hydrological model. Together with the
observation wells and soil moisture measurements, we are able to identify the possible
causes of error, being either flux related or model-concept related. In this case study,
despite the lower spatial resolution of the modis images, they appeared just as useful
as the aster images.

We showed that assimilation of ETact resulted in a spatial pattern of soil moisture
adjustment that we consider to be realistic, apart from the area with forest and deep
groundwater level. However, due to a lack of other spatially-distributed validation
data it is hard to prove this. Although we installed soil moisture sensors at five
different locations this appeared not to be enough to validate the accuracy of the
spatially-distributed soil moisture update. In the future it would therefore be neces-
sary to collect more spatially-distributed information to verify the improvements in
hydrological models made by assimilation of ETact data derived from satellites.

Only during periods with evapotranspiration reduction, there is a linkage between
soil moisture and ETact, which makes it useful to use satellite based ETact in order
to improve the accuracy of soil moisture as calculated by our hydrological model.
Besides, the temporal resolution of satellite based ETact is not guaranteed to be the
same as the return period of the (polar orbiting) satellite because of cloud conditions.
This makes a regular online adjustment of modelled soil moisture content not feasible.

Data assimilation updates state variables of the hydrological model but does not
solve the underlying cause of error in the hydrological model that leads to the differ-
ence between modelled and remotely sensed ETact. Data assimilation should therefore
not be considered as a replacement for model calibration.

4.6.2 Recommendations

Based on the results of this study we make some recommendations regarding how the
hydrological model that was used in this study could be improved.

Considering the fact that in The Netherlands almost 70% of the annual rainfall
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(v 800 mm year−1) evaporates, this is a flux that is important to estimate accu-
rately. As we stated in the beginning of the discussion section, it is explicable that
Makkink underestimates ETact because it only takes into account the atmospheric
demand, not the dynamic part of the evapotranspiration process. In 1990 the Food
and Agriculture Organization of the United Nations (FAO) reviewed several methods
to calculate crop evapotranspiration. A panel of experts recommended the adoption
of the Penman-Monteith (P-M) combination method as a new standard for reference
evapotranspiration (Allen et al., 1998). Penman-Monteith (P-M) is a physically based
equation for evapotranspiration and takes into account the atmospheric demand as
well as the difference in crop canopy and aerodynamic resistance. The practical draw-
back of the implementation P-M because of its considerably larger number of variables
than Makkink has become less problematic since now methods such as MeteoLook
(Voogt, 2007) have been developed, which makes a number of the P-M variables avail-
able at each point in space. Hopefully, with implementation of P-M into metaswap,
the values of metaswap and sebal based ETact will lie in the same range of values.

Due to the rigid shape of the Feddes curve problems occur in the implementation of
our data assimilation method (Section 4.3.3, step 2). A solution could be to make the
relationship between soil moisture (or pressure head) and actual evapotranspiration
S-curved, like is often done with the Jarvis method (Jarvis, 1976). The Jarvis method
can then be implemented in P-M surface resistance to account for the effect of soil
moisture availability on ETact.

Finally, we believe that the current land-plant-atmosphere interaction concept
of metaswap, that reduces the potential evapotranspiration by the soil moisture
availability in a root zone with constant depth, is not applicable to forest areas because
of reasons mentioned in the discussion. A different model concept should be tested
and implemented, as was also recognized by Feddes et al. (2001).
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5 Ability to forecast regional soil
moisture with a distributed hydro-
logical model using ECMWF rain-
fall forecasts

Schuurmans, J.M & M.F.P. Bierkens (2008), Ability to forecast regional soil moisture
with a distributed hydrological model using ECMWF rainfall forecasts. Accepted for
publication in Journal of Hydrometeorology

Abstract

This study mimics an online forecast system to provide 9 day ahead forecasts of
regional soil moisture. It uses modified ensemble rainfall forecasts from the numerical
weather prediction model of the European Centre for Medium-Range Weather Fore-
casts (ecmwf), which are provided by the Royal Netherlands Meteorological Institute
(knmi). Both the individual ensembles as well as the mean of the ensembles are used
as input for a hydrological model of a 70 km2 study area during March–November
2006. The outcomes are compared to the model run with high resolution rainfall
fields (based on 14 rain gauges within the study area and meteorological radar) as
input. It is shown that the total spatial mean rainfall is forecasted very well for all
lead times. The measured rainfall (spatial mean) shows a distribution with peaks at
0–1 mm day−1 and > 10 mm day−1. These peaks are underestimated by the ensem-
ble mean of the forecasts and this underestimation increases with lead time. This is
not the case when ensemble members are used. Besides, the modelled uncertainty
in rainfall by ecmwf underestimates the true uncertainty for all lead times and the
number of rainfall events (thresholds 0.1, 0.5 and 1.0 mm) is overestimated. Absolute
temporal mean bias values in root zone storage (i.e. soil moisture) larger than 1 mm
start to show for lead times over 3 days. The lower- and upper bounds of bias at
a lead time of 9 days are respectively ∼ -4 mm to 7 mm (negative values meaning
the forecasted soil moisture is underestimated). The bias in root zone storage shows
a spatial pattern that represents the spatial pattern of total rainfall: areas with less
rainfall than spatial average show a negative bias and vice versa. Local differences
within this spatial pattern are due to land use and soil type. Our results suggest that
ensemble forecasts of soil moisture using ensemble rainfall forecasts from ecmwf are
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of practical use for water management, even at regional scales.

5.1 Introduction

Insight into the spatial distribution of soil moisture within a catchment is of great
importance for e.g. farmers and water boards. Accurate short- to medium-range pre-
diction of spatially-distributed soil moisture is helpful for optimizing irrigation gifts,
hydrological drought forecasting and the assessment of catchment wetness for flood
control. Because rainfall is one of the most important input variables in hydrological
models, the accuracy of the soil moisture prediction highly depends on the accuracy
of the rainfall forecast.
Recent studies successfully used ensemble rainfall predictions from numerical weather
prediction models (NWPs) in hydrological models (e.g. De Roo et al., 2003; Gouweleeuw
et al., 2005; Olsson and Lindström, 2008; Pappenberger et al., 2005; Roulin and Van-
nitsem, 2005; Roulin, 2007). However, these studies all focus on the prediction of
discharge.
In this study we use rainfall forecasts from the Ensemble Prediction System (eps)
of the European Centre for Medium-Range Weather Forecasts (ecmwf) as input for
a spatially-distributed hydrological model focusing on soil moisture, instead of dis-
charge. The ecmwf eps system produces 6 hourly rainfall output in the form of
an operational run, a control run and 50 ensembles. The operational run is the full
model run at high resolution. The control run has the same input conditions as the
operational run but for calculation time reduction the model resolution is lower. The
50 ensembles are produced by perturbing the initial state of the control run. All en-
semble members are equally likely to occur (Persson, 2001). The scope of this study
is to verify the ability to forecast the spatial distribution of soil moisture using eps
rainfall forecasts.
Our hydrological model simulates the water flow in both the unsaturated and satu-
rated zone of a 70 km2 catchment in The Netherlands. Within this catchment rainfall
is measured using meteorological radar and 14 rain gauges. ecmwf forecasts, pro-
vided by the Royal Netherlands Meteorological Institute (knmi), are compared with
measured rainfall from radar and rain gauges. Ensemble hydrological model runs are
performed using each ensemble member of the rainfall forecast as input. Also the
ensemble mean is used as input for our hydrological model. Output from both fore-
casting systems are compared with output from the hydrological model forced with
the observed rainfall data.
The remainder of this chapter is organized as follows. Section 5.2 starts with a de-
scription of the ensemble soil moisture prediction system. The study area is described
in Subsection 5.2.2. Details about the hydrological model are given in Subsection
5.2.3. Subsection 5.2.4 describes the rainfall data used, both measured rainfall as well
as the rainfall forecasts. Section 5.3 gives the results, both for the rainfall accuracy
(Subsection 5.3.1) and for the soil moisture accuracy (Subsection 5.3.2). Section 5.4
lists the main conclusions of this study and points out the opportunities for further
research.
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5.2 Method and data

5.2.1 Ensemble soil moisture prediction system

Six hourly ecmwf eps rainfall forecasts during the period March-November 2006 are
provided by the Royal Netherlands Meteorological Institute (knmi). We accumulated
these forecasts to daily forecasts with a time span of 06 UTC – 06 UTC, resulting
in 9 daily rainfall forecasts (lead times 1 to 9 days). These daily forecasts (both the
individual ensemble members and the ensemble mean) are compared with measured
rainfall that has a time span of 08 UTC - 08 UTC (rainfall fields estimated with both
radar and rain gauges). The error caused by the 2 hours difference in time span is
investigated (Section 5.2.4)
We use two different soil moisture forecast systems:

1. each ensemble member of the rainfall forecast is used as input for the hydro-
logical model. This gives each day 50 realizations of soil moisture for lead time
1 day (lt1) up to 9 days (lt9);

2. the ensemble mean of the rainfall forecast is used as input for the hydrological
model. This gives each day one realization of soil moisture for lead time 1 day
(lt1) up to 9 days (lt9).

The reason why we use these two different soil moisture forecast systems is because
the unsaturated zone of our hydrological model is a non-linear system. The compu-
tational costs of system 2 are significantly lower than those of system 1. Therefore
it is interesting to investigate the difference between the mean of the soil moisture
ensemble members calculated with system i and the soil moisture calculated with
system ii. However, if we want to show the reliability (i.e. consistency) of predicted
soil moisture or want to make probabilistic forecasts we need to run system 1.

The model is also run with measured (spatially variable) rainfall as input, which
we will call the ”true run” from now on. Results of forecasted soil moisture are
compared to the true run per lead time. For each forecast run the initial values from
the true run were set for the unsaturated and saturated zone. The input for reference
evapotranspiration was set at their observed values. In reality this should also be set
at the forecasted values. However, we are interested in the effect of rainfall forecast
and these results should be considered as the upper bound of skill of the system.

5.2.2 Study area

Our study area is called the ”Langbroekerwetering” and lies in the central part of
The Netherlands (Figure 5.1A). The Langbroekerwetering (∼ 70 km2) is located along
the rim of the Holocene Rhine-Meuse delta (low elevation, peat and clay of the last
4000 years: Berendsen and Stouthamer, 2000), which onlaps coversands and sandur
outwash deposits in front of a Saalian ice-pushed ridge (high elevation, 150.000 years
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Figure 5.1 A: Location of study area within the Netherlands and the location of the two rainfall
radars. B: surface level [m + mean sea level] with rain gauge and soil moisture measure-
ment locations, land use and soil types (see Table 5.1) of study area.

old: Busschers et al., 2007). Figure 5.1B shows the elevation together with the location
of the rain gauges and the soil moisture measurements, land use and soil types of the
Langbroekerwetering. For a description of the soil types we refer to Table 5.1. At the
higher elevations with coarse sand forest dominates the area, while in the lower area
grassland dominates. Within the area some small villages (built-up area) are located.
The landuse map is derived from the Dutch national land-cover database LGN (Oort
et al., 2007; De Wit and Clevers, 2004).

5.2.3 Hydrological model

The model used in this study is a coupled groundwater (saturated zone) and unsatu-
rated zone model, refered to as metaswap from now on. The groundwater model is
based on the modflow model code (McDonald and Harbaugh, 1983). The unsatu-
rated zone model is a quasi steady-state model that uses a sequence of steady-state
water content profiles for dynamic simulation (Van Walsum and Groenendijk, 2008).
The steady-state water content profiles were obtained by running a steady-state ver-
sion of the swap model (Van Dam, 2000) off-line. The model area is divided in
svat-units (Soil Vegetation Atmosphere Transfer), which are smaller or equal to the
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Table 5.1: Description of soil types within study area (Wösten et al., 1988).
soil unit description
7 drift sand
8 podzol in loam poor fine sand
9 podzol in loamy fine sand
12 enkeerd in loamy fine sand
14 podzol in coarse sand
16 light clay
17 clay with heavy layers
18 clay on peat
19 clay on sand

size of the modflow cell. One modflow cell can be coupled to several svat-units.
The svat-units form parallel vertical columns, which are divided into a root zone and
a subsoil layer. metaswap distinguishes 21 different soil types. For each soil type
the model has predefined sub-layers with corresponding soil physical parameters (Van
Genuchten parameters) to be able to convert pressure head to soil moisture content.
Only vertical flow according to Richards’ equation is taken into account. All lateral
exchanges are assumed to take place in the saturated zone. The thickness of the root
zone is user specified. In this study we use a thickness of 0.3 m for grassland and
built-up area, 0.6 m for maize and 1.0 m for forest.
In our model, the size of the modflow cells is 100 m x 100 m. The svat-units have
a resolution of 25 m x 25 m inside the study area and 100 m x 100 m outside the
study area, within the model boundaries (Figure 5.1A). The groundwater model is
schematized into 7 layers. For more specifications of the groundwater model we refer
to Appendix 4.
A flux that is of importance for soil moisture, and which is influenced also by the
soil moisture conditions is evapotranspiration. Our model uses Makkink (De Bruin,
1987; Makkink, 1957; Winter et al., 1995) reference evapotranspiration (ETref ) as
input (spatially uniform). The measured ETref in this study comes from De Bilt.
The potential evapotranspiration (ETpot) is calculated by multiplying ETref with a
crop factor that is related to the land use type and can vary throughout the season
(in our model 1.0 throughout the season for grassland and forest; 0–1.3 for maize and
0.05 for built-up area). The actual evapotranspiration (ETact) is equal or a fraction of
(ETpot) depending on soil moisture conditions and land use type. In forest areas also
interception evaporation occurs. The interception capacity for pine forest is set to 1.0
mm m−2 throughout the season and 0.3–1.0 mm m−2 for deciduous forest depending
on the season.

5.2.4 rainfall data

The measured rainfall is a combination of meteorological radar and rain gauges within
and closely around the model area. The interpolation method used is a geosta-
tistical method that combines radar estimates with rain gauge observations. The
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method makes use of colocated cokriging and is explained in more detail in Chap-
ter 2. Figure 5.2A shows the spatial distribution of the rainfall accumulated during
March–November 2006 within the study area. There is up to 200 mm difference over
this 8 month period within 15 km, which is even more than that found in 2004 in
another equally sized catchment (50–100 mm over 7 month: Chapter 3). Figure 5.2B
shows the time series of the spatial mean rainfall within the study area and the ref-
erence evapotranspiration.
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Figure 5.2 Spatial distribution of accumulated rainfall [mm] March–November 2006 (A) and time
series of the spatial mean of rainfall within the study area and the reference evapotranspi-
ration (B).

The ecmwf eps rainfall forecasts within the Netherlands were interpolated by the
knmi to a regular 0.5 degrees x 0.5 degrees grid. For this study we used the forecasts
at 0 UTC with a time step of 6 hours nearest to De Bilt (Figure 5.1) and accumulated
these to daily rainfall. As mentioned in Section 5.2.1, the time span of the forecasts
is 06 UTC–06 UTC, while the time span of the measured rainfall is 08 UTC–08 UTC.
We investigated the error caused by the difference in time span using the automatic
rain gauge at De Bilt that recorded hourly data. Figure 5.3 shows per day the amount
of rainfall that should be added to the time span of the 06 UTC–06 UTC to get the
same amount during 08 UTC–08 UTC (solid line). The measured rainfall (08 UTC–08
UTC) is also shown (dashed line). In 10 % of the days the difference was not zero,
and the maximum was 6.5 mm. This difference is ignored in this study.

5.3 Results and Discussion

5.3.1 ECMWF rainfall accuracy

Figure 5.4 shows the cumulative rainfall distribution of the measured (spatial mean)
and forecasted (ensemble mean) rainfall per lead time. Table 5.2 shows the total rain-
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Figure 5.3 Difference in rainfall depth [mm] due to the difference in time span between the forecasts
and the measured rainfall (solid line) as well as the measured daily (08 - 08 UTC) rainfall
(dashed line). Data come from rain gauge station De Bilt (hourly data).
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Figure 5.4 Cumulative rainfall distribution of the measured (spatial mean) and the forecasted (en-
semble mean) rainfall per lead time.

fall amount during the study period of measured and forecasted rainfall. The total
amount of rainfall during the study period is forecasted within 3% of the measured
rainfall, except for lt1 (7% less than measured rainfall).
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Table 5.2: Total rainfall during March–November 2006 according to measurements (spatial mean)
and forecasts (ensemble mean) for lead time 1–9 days.

measured lt1 lt2 lt3 lt4 lt5 lt6 lt7 lt8 lt9
612 567 629 612 623 621 629 626 611 609

measured
forecast: lt 1
forecast: lt 2

forecast: lt 5

forecast: lt 3

forecast: lt 6

forecast: lt 8
forecast: lt 7

forecast: lt 4

forecast: lt 9

rainfall [mm]

1 2 3 4 5 6 7 8 9 10 >10
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Figure 5.5 Percentage of days as function of rainfall amount for the measured (spatial mean) and
forecasted rainfall per lead time. Figure A is based on ensemble mean, Figure B is based
on ensemble members.

The distribution of measured and forecasted daily rainfall over different ranges is
shown in Figure 5.5. Figure 5.5 A is based on the ensemble mean, Figure 5.5 B is
based on the ensemble members. Most of the days (∼ 60%) the spatial mean mea-
sured rainfall within the study area was between 0–1 mm day−1, followed by > 10
mm day−1 (∼ 10%). Figure 5.5 A shows that for the forecasted rainfall based on
ensemble mean, the percentage of days with 0–1 mm day−1 gradually decreases with
increasing lead time. This phenomena also occurs for events with > 10 mm day−1.
However, when using the ensemble members, the forecasted rainfall follows more or
less the distribution of measured rainfall for all lead times. This suggests that it is
better to use the ensemble members, as the ensemble mean is apparently to smooth
a representation of rainfall variability. This smoothing effect increases with lead time
which is due to the larger spread between ensemble members, making the ensemble
mean closer to climatological mean.

Figure 5.6 shows a medley of statistics for forecasted rainfall; i.e. bias, root mean
squared error (RMSE), mean absolute error (MAE) and correlation (r2) between mea-
sured (spatial mean) and forecasted rainfall are plotted per lead time. Also the en-
semble spread (temporal mean standard deviation of ensemble members), which is a
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Figure 5.6 Rainfall forecast statistics per lead time; bias, root mean squared error (RMSE), mean
absolute error (MAE) and correlation (r2) between ensemble mean rainfall forecasts and
spatial mean measured rainfall. Also the ensemble spread (temporal mean) is shown.
RMSE, MAE and r2 are calculated using both the ensemble mean (.mean) and the indi-
vidual ensemble members (.ens).

measure for the rainfall forecast reliability, is shown per lead time. For completeness,
we also included RMSE, MAE and r2 calculated from the ensemble members. The
RMSE and MAE of the ensemble mean increase with lead time and the correlation
decreases. The bias however remains more or less constant around zero with lead
time, which means that under- and overestimation of rainfall are compensated as
could also be seen from Figure 5.4.

As expected the RMSE and MAE of the ensemble members is higher than the
RMSE and MAE of the mean, while r2 is lower. In fact, if observations and ensemble
members are assumed to be realizations of the same underlying stochastic process,
and the bias is zero, RMSE of the ensembles members should in theory be

√
2 (∼1.4)

as large as that of RMSE of the ensemble mean. The ensemble spread increases, and
thus the rainfall forecast reliability decreases, with lead time. However, comparing
the ensemble spread with the RMSE of the ensemble mean and noticing the bias is
close to zero, we must conclude that the modelled uncertainty underestimates the
true uncertainty of the forecast for all lead times. A possible explanation is that the
ensemble forecasts only consider the uncertainty of initial conditions, while also model
errors (e.g. rainfall parameterization, scale discrepancy between atmosphere model
and catchment) yield additional errors.

We used Table 5.3 to calculate the categorical measures of skill, which indicate how
well rainfall events are predicted (Johnson and Olsen, 1998). Figure 5.7 shows the bias
ratio, probability of detection (POD), critical success index (CSI) and false alarm rate
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Table 5.3: Categories of rainfall prediction used to calculate categorical measures of skill. A threshold
of 0.1 mm day−1 is used to indicate a rainfall event

Predicted: no rain Predicted: rain
Observed: no rain Z F
Observed: rain M H

A B
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Figure 5.7 Categorical measures of skill for detecting rainfall using three different thresholds (0.1,
0.5 and 1.0 mm): bias ratio, probability of detection (POD), false alarm rate (FAR) and
critical success index (CSI). All skill measures are calculated using both the ensemble
mean (A) and all the individual ensemble members of the rainfall forecast (B).

(FAR). Bias ratio is the ratio between predicted and observed rainfall events (= F+H
M+H

).

POD (= H
M+H

) gives the fraction of rainfall events that are successfully forecasted.

CSI (= H
H+M+F

) is the number of hits divided by hits, misses and false alarms. FAR

(= F
F+H

) indicates how often rainfall events are predicted but not observed. In a
forecast without bias, the bias ratio equals 1 (POD + FAR = 1). In a perfect forecast
POD=1, CSI=1 and FAR=0. The measures of skill were calculated for both the
ensemble mean as well as for all the individual ensemble members. For the observed
rainfall we use the spatial mean rainfall. Three different thresholds are taken (0.1, 0.5
and 1.0 mm day−1) to indicate a rainfall event. The motivation for the choice of these
thresholds is the detection limit of conventional tipping bucket rain gauges (0.1 mm
day−1) and the interception capacity of forest in our model (1.0 mm m−2 throughout
the season for pine forest and 0.3-1.0 mm m−2 for deciduous forest). Figure 5.7A shows
a strong increase of bias ratio with lead time for the ensemble mean, especially for the
higher threshold. For the individual ensemble members, the bias ratio is more or less
constant (∼ 1.3) with lead time for all the thresholds. Also for POD and FAR we see
a difference between the ensemble mean and the individual ensemble members. As
could be expected the ensemble mean leads to an increase of number of forecasted rain
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events, which means that bias ratio, POD and FAR are higher for the ensemble mean
than for the individual ensemble members. The POD based on the ensemble mean is
more or less constant(∼ 1) with lead time for all the thresholds. However, based on
the individual ensemble members POD decreases with lead time, especially for higher
thresholds. CSI decreases with lead time (especially for higher thresholds) but shows
hardly any difference between ensemble mean and ensemble members. FAR increases
with lead time, especially for higher thresholds. The differentiation of bias ratio, POD
and FAR between ensemble mean and individual ensemble members with increasing
lead time can be explained by the increase of ensemble spread with increasing lead
time as was shown in Figure 5.6.

5.3.2 Soil moisture accuracy

As mentioned in Section 5.2.1 we use two different soil moisture forecast systems:

1. each ensemble member of the rainfall forecast is used as input for the hydro-
logical model;

2. the ensemble mean of the rainfall forecast is used as input for the hydrological
model.

We compare, per lead time, the difference between the forecasted storage in the root
zone and the storage in the root zone according to the true run. Figure 5.8 shows
the bias (temporal mean during the study period) in case the true run is compared
to the mean of the forecasted soil moisture ensembles (system 1). Positive bias values
mean that the forecast underestimates the root zone storage of the true run. Figure
5.9 shows the same, but this time the true run is compared with the storage in root
zone from the run with the ensemble mean of the rainfall forecast as input (system
2). For both systems, the bias increases with lead time. Absolute bias values higher
than 1 mm begin to show around lt3. The lower- and upper bounds of bias at lt9 are
respectively ∼ -4 mm to 7 mm. For both systems we see a spatial pattern in the bias
that becomes more pronounced with increasing lead time. The spatial pattern of the
bias in root zone storage strongly resembles the spatial pattern of total rainfall (Figure
5.2A). The area with less rainfall than the spatial average (i.e. the western part of
the study area) shows a negative bias, whereas the area with more rainfall than the
spatial average (i.e. the eastern part) shows a positive bias. This can be explained by
the fact that the true run is forced with spatially variable rainfall, while the rainfall
forecasts are spatially uniform. In the western part more rain falls according to the
forecasts, which leads to higher values in root zone storage and thus to negative bias
(and vice versa for the eastern part). Superimposed on this overall spatial pattern in
bias, local differences occur, which can be attributed to differences in land use and
soil type. If we compare Figures 5.8 and 5.9 with the pattern of land use in Figure
5.1B we see that forest exhibits locally higher values of bias in root zone storage,
i.e. underestimation of forecasted soil moisture. We think that the reason for this
underestimation of forecasted soil moisture in areas with forest lies in the fact that
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Figure 5.8 Temporal mean bias in root zone storage [mm] during March–November for soil moisture
forecast system 1; true run compared to the ensemble mean of forecasted soil moisture.
Positive bias values mean that the forecast underestimates the root zone storage of the
true run.

in these areas the interception (evaporation) is overestimated. As shown in Section
5.3.1 the total rainfall is almost the same for each lead time but the events with high
rainfall intensity are underestimated, while the number of rain events (thresholds 0.1,
0.5 and 1.0 mm day−1) are overestimated (FAR > 1; Figure 5.7). In reality however,
increased occurrence of rain could go together with reduced evapotranspiration (due
to more clouds and thus reduced solar radiation). This effect is not taken into account
as we use observed evapotranspiration in our soil moisture forecast system. built-up
areas show no bias within a region of positive bias (northeast). This is not surprising
as in built-up areas there is hardly any relationship between rainfall and soil moisture
as rainfall does not infiltrate (either because of drainage or low infiltration capacity).
We also see some differences in bias in root zone storage in areas with the same land
use but with different soil types which suggests that soil type plays a role as well.

Table 5.4 gives the spatial mean values of the temporal mean bias, RMSE and
MAE of root zone storage for both forecast systems for each lead time. Figure 5.10
shows in box-and-whisker plot the spatial distribution of the temporal mean bias in
root zone storage for both soil moisture forecast systems (system 1 in white, system
2 in grey) per lead time. From this table and figure it can be concluded that it makes
not much difference whether one uses soil moisture forecast system 1 or 2, although
system 1 gives slightly better results than system 2. However, with system 1 it is
possible to make probabilistic forecasts and to show per svat-unit the uncertainty
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Figure 5.9 Same as Figure 5.8 but then for soil moisture forecast system 2.
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Figure 5.10 Box-and-whisker plots of spatial distribution of bias in root zone storage per lead time
for soil moisture forecast system 1 (white) and 2 (grey). The solid boxes range from the
lower to the upper quartile, the black line within the box denotes the median, dashed
whiskers show the data range. Data that are further than 1.5 times the interquartile
range from the nearest quartile are shown as open bullets.
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Figure 5.11 Time series of root zone storage [m] for one SVAT-unit during March–November for
four different lead times (lt1, lt3, lt5 and lt9). The true run is represented by the dotted
line, the ensemble mean by the solid line and the grey boundaries indicate the range
between the first and third quartile of the ensemble members (i.e. 50 % of the ensemble
members).
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Table 5.4: Spatial mean bias, root mean squared error (RMSE) and mean absolute error (MAE) for
both soil moisture forecast systems [mm].

lt bias(1) bias(2) RMSE(1) RMSE(2) MAE(1) MAE(2)
1 0.27 0.25 2.35 2.38 1.73 1.74
2 0.28 0.27 3.57 3.61 2.16 2.18
3 0.34 0.35 4.40 4.49 2.61 2.64
4 0.40 0.43 5.26 5.36 3.16 3.19
5 0.45 0.52 6.17 6.32 3.75 3.79
6 0.49 0.59 7.22 7.40 4.45 4.51
7 0.54 0.66 7.93 8.14 5.00 5.07
8 0.58 0.73 8.66 8.91 5.54 5.60
9 0.64 0.81 9.40 9.68 6.15 6.20

of the predicted storage in root zone. As an example we show for one svat-unit
(location SK in Figure 5.1B) the time series of storage root zone according to the true
run (dotted line), according to the ensemble mean (solid line) and the range in storage
root zone between the first and third quartile of the ensemble members (i.e. 50 % of
the ensemble members, grey bound). Figure 5.11 shows this for 4 lead times (lt1, lt3,
lt5 and lt9). This figure shows that the spread of the ensemble members of forecasted
root zone storage increases with lead time, i.e. the reliability of forecasted storage in
root zone decreases with lead time. Also the correlation between the forecasted and
true root zone storage (dotted line) decreases with lead time; both the high and low
values of storage root zone from the true run are not reproduced by the forecasts at
large lead times and often show a delay.

5.4 Conclusions and outlook

In the following we first list the main conclusions from this study concerning forecasted
rainfall and forecasted soil moisture accuracy. Thereafter, the value for operational
water management and opportunities for further research are given.

forecasted rainfall accuracy

• The total amount of measured spatial mean rainfall within the study area is
forecasted well by the ensemble mean of the rainfall forecast for all lead times
(maximum difference 45 mm for lt1). However, the total measured rainfall dur-
ing March–November 2006 within the study area shows a large spatial variation
(200 mm). This spatial variance is not taken into account for forecasted rainfall;

• The measured rainfall (spatial mean) shows a distribution with peaks at 0–1 mm
day−1 and > 10 mm day−1. These peaks are underestimated by the ensemble
mean of the rainfall forecasts and this underestimation increases with lead time.
The ensemble members follow more or less the distribution of measured rainfall
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for all lead times;

• the modelled uncertainty in rainfall by ecmwf underestimates the true uncer-
tainty for all lead times;

• the number of rainfall events (thresholds 0.1, 0.5 and 1.0 mm day−1) is overesti-
mated (∼ 30 - 40%) by the rainfall forecasts, both with the individual ensemble
members as well as with the ensemble mean. This overestimation is constant
with lead time for the ensemble members but increases for the ensemble mean
with increasing lead time, especially for higher thresholds (up to factor 2–2.5
for lead time 9 days).

forecasted soil moisture accuracy

• Absolute bias values in root zone storage higher than 1 mm begin to show
around a lead time of 3 days. The lower- and upper bounds of bias at lead time
9 days are respectively ∼ -4 mm to 7 mm;

• The temporal mean bias in root zone storage shows a spatial pattern that
strongly resembles the spatial pattern of total measured rainfall. This can be
explained by the fact that the true run is forced with spatially variable rainfall
while the rainfall forecasts are spatially uniform. As a consequence, areas with
less rainfall than spatial average show a negative bias and vice versa;

• Superimposed on the spatial pattern of bias in root zone storage local differences
occur, which can be attributed to differences in land use and soil type;

• With increasing lead time mainly the high and low values in root zone storage
are not forecasted accurately and often show a delay.

outlook
This study shows that the accuracy of daily ecmwf rainfall forecasts is promising
and suggests that the use of these forecasts could be of value for operational water
management. The main drawback of using the ecmwf ensemble rainfall forecasts to
forecast the spatial distribution of soil moisture is the fact that the rainfall forecasts
are spatially uniform for most meso-γ scale (i.e. 2-20 km: Orlanski, 1975) catchments.
Insight in the spatial pattern of rainfall is of great importance. Additional informa-
tion about the spatial structure of rainfall within an area (e.g. due to orographic
effects), would make it possible to down-scale the rainfall forecasts, possibly leading
to a decrease in the bias of forecasted root zone storage. Besides the spatial pattern in
rainfall, this study shows that it is important to have good insight in the actual land
use and the soil physical parameters. Finally, the input for reference evapotranspi-
ration was set at observed values. In reality, this should be set at the forecasted
values.

This study uses daily rainfall. In The Netherlands rainfall is predominantly strat-
iform while the hydrological systems are groundwater-dominated with reaction times
of several days. This makes a temporal resolution of 24 hours sufficient. However, for
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Figure 5.12 Schematic representation of the loss of information content in forecasts as a function of
lead time. The solid line represents the theoretical limit of predictability. The dashed
line represents NWP models and the dotted line nowcasting methods (after Golding,
1998; Lin et al., 2005).

e.g. mountainous areas the spatio-temporal structures of rainfall are important and
the use of 6 hourly rainfall forecasts should be considered and investigated. Besides,
for operational rainfall forecast NWPs are not the only source. Extrapolation of radar
(or satellite) precipitation patterns for example, also called nowcasting methods, is
another one. Nowcasting methods capture the initial information almost perfectly,
but as they do not include physics, the skill will decrease rapidly with lead time.
NWPs on the other hand capture the physics of large systems very well, but lack
local detail because of their limited spatial resolution and have imperfect assimilation
algorithms. Therefore their skill is not so high for small lead times but decreases only
gradually with increasing lead time (Golding, 1998). Figure 5.12 gives a schematic
view of this, in which the line of the theoretical limit is based on the fact that in a
chaotic system such as atmosphere there is always loss of skill with increasing lead
time. Lin et al. (2005) investigated the cross-over point in time where NWPs start
to have more skill than nowcasting methods and found this to be 6 hours after the
forecast is initiated. Although this conclusion is based on 3dVAR methods instead of
4dVAR systems (such as that of the ecmwf), qualitatively it is safe to say that in
case rainfall forecasts are used in hydrological studies with time steps of for example
1 hour, a combination of nowcasting methods and NWPs should be beneficial.
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6 Synthesis

Four research questions were formulated for this thesis:

1. What is the added value of meteorological radar with respect to rain gauges?

2. What is the effect of spatial variability of daily rainfall on modelled interior
catchment response?

3. Can remotely sensed evapotranspiration improve the prediction of spatially-
distributed soil moisture by a distributed hydrological model?

4. Is it feasible to accurately predict the spatial distribution of soil moisture us-
ing rainfall forecasts of a numerical weather prediction model as input for a
distributed hydrological model, and, if so, up to how many days?

To answer these questions and to test the practical applicability, we performed field-
work and set up a blueprint of a system that integrates operational hydrometeo-
rological variables into a distributed hydrological model: the Hydrological Now- and
Forecasting System (HNFS). In this chapter the four research questions are answered
briefly, based on the results of the preceding chapters, and the answers are discussed
in a broader perspective. Also ongoing related research is pointed out. Because of the
close relationship between the first two research questions these are grouped in one
section. Finally, some applications of the HNFS are given as well as some considera-
tions about its use in practice.

6.1 Added value of meteorological radar

Results
The added value of meteorological radar with respect to rain gauges depends on the
density of the available rain gauge network. We showed that if a high density rain
gauge network (in our case approximately 13 gauges per 100 km2, i.e. our tempo-
rary research network) is available, rain gauge data only will provide accurate high-
resolution rainfall fields and the additional value of radar is negligible. However, for
areas with a less dense rain gauge network (in our case approximately 1 gauge per 100
km2, i.e. the currently available network), the combination of rain gauges and radar
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gave the best results, followed by bias-corrected radar only and finally rain gauges
only.

The second research question addresses the question whether it is important for
hydrologists to take into account the spatial variability of rainfall if this information
is available. We showed that if one is interested in the day-to-day variability of the
spatial distribution of soil moisture and groundwater level, it is important to take
the spatial variability of rainfall within the catchment into account. However, if one
is interested only in the general behavior of the catchment (i.e. groundwater and
soil moisture climatology), it is sufficient to accurately know the spatial average of
rainfall within the catchment. This holds also for the daily discharge. However, if
a catchment is divided into subcatchments, the spatial average of rainfall within the
subcatchment is of importance. The use of a single rain gauge, especially when this
rain gauge is situated outside the catchment, carries great risk, because the chance
that this rain gauge represents the spatial average rainfall is very small. Model results
with radar based rainfall as input showed similar results as when the dense network
of rain gauges was used as input, suggesting that bias-corrected radar products are
ready to be used in operational water management.

Discussion
In practice, a dense network of rain gauges like the research network that was set up
for this study is seldom available. Besides, if we want the HNFS to be an online system
we need insight in the actual rainfall fields. This means the rain gauges should be
equipped with telemetry. Moreover, regular maintenance of the rain gauge is of great
importance to secure its accuracy. Because the rainfall fields from meteorological
radar proved to be so useful in our study and because they are available almost
immediately, we recommend it as input data source for hydrological models. Recently
(2007) knmi renewed the radar software and now produces 1 x 1 km2 radar images
instead of the 2.5 x 2.5 km2 we used for our research in 2004. However, accurate
rain gauge information will still be needed as ”ground truth” for calibration of the
radar. Firstly, rain gauge information is needed to make a range correction for the
radar based rainfall fields. There is a distance related underestimation of surface
rainfall by the radar, due to spatial expansion of the radar beam and attenuation
of the radar signal. In 2004 only range corrected radar images of 24 hours were
available at knmi, restricted by the temporal resolution of the largest rain gauge
network. Nowadays, also 3-hourly radar images are range corrected. Secondly, rain
gauge data are needed because radar does not measure rainfall directly but measures
reflected electromagnetic waves that are translated to rainfall with the so-called Z-R
relationships throughout the year. Which Z-R relationship should be used depends
on the rainfall type (i.e. stratiform, convective). Up to now knmi uses one constant
Z-R relationship, which has been found to be most suitable for stratiform dominated
rainfall events (which is the case in the Netherlands). Research on using variable
Z-R relationships is going on (Uijlenhoet, 2008). This could improve the correlation
between rain gauge data and radar based rainfall fields and thus our method to derive
high-resolution rainfall fields from a combination of rain gauges and radar.
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Ongoing related research
A recent development that could be used to improve radar-based rainfall estimates,
or even be another source in rainfall information is the use mobile-telephone networks
(that involves electromagnetic waves similar to radar) that can potentially estimate
rainfall information. Promising results have been found using these networks (Leijnse
et al., 2007; Messer et al., 2006), that are especially dense in urban areas. Main
challenge now is to spatially upscale these line-rainfall estimates. Furthermore, a
development from which mainly data-poor areas (no radar available) could benefit
is the rainfall estimation derived from the geostationary satellite Meteosat (temporal
resolution of 15 minutes, highest spatial resolution is 3 x 3 km2), that covers Europe
and Africa (Roebeling et al., 2008; Wolters et al., 2008). This technique is however
only applicable during day-time. Another possibility is the use of TRMM (Tropical
Rainfall Monitoring Mission), which is the only rain radar in space (Huffman et al.,
2007).

6.2 Remotely sensed latent heat fluxes for improv-

ing model predictions of soil moisture

Results
We showed with a real case study that remotely sensed ETact is very useful for
hydrological model validation. Comparison of the magnitude as well as the spatial
distribution of the remotely sensed and hydrological model based ETact helps to detect
potential errors in the hydrological model, both flux-related and conceptual errors. In
our case study we concluded that (i) in the lower areas the soil moisture of the root
zone in our hydrological model is too high, (ii) the reference evapotranspiration that
is used in the hydrological model (Makkink) should be replaced with a method that
takes into account the aerodynamic part of evapotranspiration (Penman-Monteith)
and (iii) the model concept of forest evapotranspiration in areas with deep ground-
water levels (no capillary rise from groundwater anymore) should be adjusted.
Besides a comparison, we also assimilated ETact values of sebal with metaswap
by performing a linear statistical correction procedure that weighs the sebal and
metaswap based ETact values based on their confidence. The newly derived ETact

values were translated back to new soil moisture contents of the root zone using the
concept of metaswap that relates evapotranspiration reduction with soil moisture.
This resulted in a spatially-distributed adjustment of root zone soil moisture, which
we consider to be realistic but which is hard to validate because of the lack of other,
spatially-distributed soil moisture data.
Implementation of our data assimilation method also showed that in case the model
concept of land-plant-atmosphere interaction (i.e. the linkage between root zone soil
moisture and ETact) is not correct, ETact is not a useful variable to update root zone
soil moisture. This manifested itself in areas with forest where capillary rise from
groundwater did not play a role anymore because the groundwater level is too deep.
As we had both an aster images and modis image for the same days, we could also
compare their relative contribution. In our study the modis images, despite their
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lower spatial resolution in comparison to aster (15 x 15 m2 for aster and 250 x 250
m2 for modis), appeared just as useful as the aster images.

Discussion
The advantage of ETact derived from satellites is that it provides us with spatially-
distributed information. This in contrast to the commonly available validation data
sources for hydrological models, which provide either point information (e.g. obser-
vations wells) or area-integrated information (e.g. discharge). However, only during
periods with evapotranspiration reduction, there is a linkage between soil moisture
and ETact, which makes it useful to use satellite based ETact in order to improve the
accuracy of soil moisture as calculated by our hydrological model.
A drawback of ETact derived from polar orbiting satellites (like aster and modis
that were used in this study) is the temporal resolution. Besides the fact that these
satellites have a certain return period, the potential temporal resolution is reduced by
the fact that cloud free circumstances are needed to gain useful thermal images. This
makes it, especially in a often clouded country like The Netherlands, an unreliable
data source. Moreover, the future of thermal band is at risk. Up to now, for example
NASA has no budget to equip the new Landsat satellite with a thermal instrument.
Several memos have been written (e.g. Allen et al., 2006) to express the need for
thermal band on the new Landsat satellite. ETact images derived from geostationary
satellites like seviri (Spinning Enhanced Visible and Infrared Imager) on Meteosat
are much less sensitive to these cloud free restrictions as the temporal resolution is
much higher (15 minutes). However, its spatial resolution is much lower in comparison
to aster and modis (at highest 3 x 3 km2).
Satellite based information must always be translated to hydrological variables using
a specific algorithm which involves (i) uncertainty and (ii) a time lag. Measurements
of the derived hydrological variables that deliver ”ground truth” are essential to be
able to judge the relative reliability of either satellite based and hydrological model
based results. Automation of the algorithms is needed to reduce the time lag and
with that make online adjustment of the hydrological model using data assimilation
possible.
Data assimilation updates state variables of the hydrological model but does not solve
the underlying cause of error in the hydrological model that leads to the difference
between modelled and remotely sensed ETact. Data assimilation should therefore not
be considered as a replacement for model calibration.

Ongoing or related research
Besides thermal band satellite images that were used in this thesis, (passive or active)
microwave remote sensing data are also commonly applied in hydrology. With these
data it is possible to determine the top layer (few cm up to 10 cm) soil moisture.
Research is mainly focussing on (i) algorithms to derive root zone soil moisture from
microwave remote sensing data (e.g. Owe et al., 2008; De Jeu and Owe, 2003) and (ii)
assimilation of microwave derived soil moisture into hydrological models (e.g. Hoeben
and Troch, 2000; Pauwels et al., 2007), as microwave derived soil moisture is not
representative for the soil moisture within the whole root zone (from which water
is extracted for evapotranspiration). Besides, for areas with forest the soil moisture
data that are derived with microwave technique are less reliable as it is hard for the
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microwave signal to penetrate the canopy.
The spatial resolution of microwave data depends on the type of sensor (active or
passive) and the scan-mode of the sensor. In case of an active sensor like ENVISAT
ASAR (Loew et al., 2006) spatial resolution varies between 30 x 30 m2 (high resolution
mode with operation time of 30 minutes per orbit and a 30-day return period) up to 1
x 1 km2 in global mode (5 day return period). Passive systems measure the intensity
of microwaves at certain wavelengths radiated by the earth. Due to the weakness of
this signal, spatial resolution is much lower than for active systems and is in the order
of 50 x 50 km2 (2-3 days repeat time) in case of for example AMSR-E (Owe et al.,
2008). Research within The Netherlands using air-crafts equipped with microwave
instruments, which generates higher resolution images, is going on (Miralles, 2008).

6.3 Forecasting spatially-distributed soil moisture

Results
In Chapter 5 we mimicked an online forecast system that provides 9 day ahead fore-
casts of regional soil moisture for the period March-November 2006. Daily rainfall
forecasts from the numerical weather prediction model (NWP) of the European Cen-
tre for Medium-Range Weather Forecasts (ecmwf) were used, which were provided
by the knmi. Firstly, the accuracy of the forecasted daily rainfall was determined as
function of lead time by comparing the forecasts with high-resolution rainfall fields
using both radar and rain gauges. Secondly, the accuracy of forecasted soil moisture
was determined by comparing the forecasted soil moisture with the model results that
used the high-resolution rainfall fields (the so-called ”true run”).

We found that the total amount of measured spatial mean rainfall within the
study area is forecasted well by the ensemble mean of the rainfall forecast for all
lead times (maximum difference 45 mm for lt1). However, the total measured rainfall
during March–November 2006 within the study area shows a large spatial variation
(200 mm), which is not taken into account for forecasted rainfall. The measured
rainfall (spatial mean) shows a distribution with peaks at 0–1 mm day−1 and > 10
mm day−1. These peaks are underestimated by the ensemble mean of the rainfall
forecasts and this underestimation increases with lead time. The ensemble members
however follow more or less the distribution of measured rainfall for all lead times. We
also found that the modelled uncertainty in rainfall by ecmwf underestimates the
true uncertainty for all lead times. Besides, the number of rainfall events (thresholds
0.1, 0.5 and 1.0 mm day−1) is overestimated (∼ 30 - 40%) by the rainfall forecasts,
both with the individual ensemble members as well as with the ensemble mean. This
overestimation is constant with lead time for the ensemble members but increases for
the ensemble mean with increasing lead time, especially for higher thresholds (up to
factor 2–2.5 for lead time 9 days).

Comparison of the spatial distribution of temporal mean soil moisture showed
that bias values in root zone storage higher than 1 mm began to show around a
lead time of 3 days. The lower- and upper bounds of bias at a lead time of 9 days
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were respectively ∼ -4 mm to 7 mm (negative values meaning that the forecasted
soil moisture is too wet in comparison to the ”true run”). We found that the bias in
root zone storage showed a spatial pattern that represents the spatial pattern of total
rainfall: areas with less rainfall than spatial average show a negative bias and vice
versa. For the soil moisture forecasts we used both the individual rainfall ensemble
members (system 1) as well as the mean of the rainfall ensemble members (system
2). Because of the non-linear behavior of the unsaturated zone these systems can
lead to different outcomes. However, system 1 and 2 showed similar results for the
bias in temporal mean soil moisture. The advantage of system 1 is that it makes it
possible to show the reliability (i.e. consistency) of the predicted soil moisture per
model node and to make probabilistic forecasts. With system 2 this is not possible
but its advantage is that the computational demand is much lower.

Discussion
In this study we only investigated the modelled soil moisture uncertainty caused by
uncertainty in rainfall forecasts, thereby assuming that the high-resolution rainfall
fields were the actually true rainfall within the catchment. Uncertainties due to
model errors were not taken into account. Besides, uncertainty due to forecasted
evapotranspiration were also not taken into account. In our study we chose to use
observed evapotranspiration of that day, so the results should be considered as the
upper bound skill of the soil moisture forecast system. However, with the outcomes of
the ecmwfit is also possible to take the forecasted evapotranspiration into account.

Ongoing or related research
For operational rainfall forecasts, NWPs are not the only source. Extrapolation in
time of radar (or satellite) precipitation patterns for example is another one (the so-
called nowcasting methods). Lin et al. (2005) investigated the cross-over point in time
where NWPs start to have more skill than nowcasting methods and found this to be
6 hours after the forecast is initiated. Although this conclusion is based on 3dVAR
methods instead of 4dVAR systems (such as that of the ecmwf), qualitatively it is
safe to say that in case rainfall forecasts are used in hydrological studies with time
steps of for example 1 hour, a combination of nowcasting methods and NWPs should
be beneficial.

6.4 HNFS: applications and considerations

With the HNFS we are able to show the current as well as the forecasted spatial
distribution of several useful hydrological properties that are accounted for in our
model metaswap. Some examples are (1) actual soil moisture in root zone (2) po-
tential storage in unsaturated zone (3) evapotranspiration reduction and (4) irrigation
demand of root zone: the amount of water that should be added via irrigation to the
root zone in order to resolve evapotranspiration reduction. Figure 6.1 shows this as
an example for 17 July 2006. Besides, with HNFS it is also possible to show time
series of forecasted soil moisture which is caused by uncertainty in rainfall forecasts,
like was done in Figure 5.11.
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Figure 6.1 Example of practical application of HNFS for 17 July 2006.

The accuracy of our hydrological model outcomes will make or break the value
of the above listed practical applications. As mentioned in Chapter 1, spatially-
distributed models are developed at ongoing higher spatial resolution due to increas-
ing data availability and computer capacity. Considering the hydrological cycle, as
well as the temporal and spatial scales of the hydrological processes, it is clear that the
”reality” of our hydrological system is complex. In a recent paper Sivakumar (2008)
comes to the conclusion, based on an extensive literature research, that hydrologists
have the tendency to (i) make the models more and more complex and (ii) focus on
individual mathematical techniques rather than general hydrologic issues.
Are we seeking an answer to a scientific question, thereby searching for a appropriate
hydrological model, or are we developing a model an thereby searching for an ap-
propriate question? In other words, is our question leading or is our model leading?
This is where the separation between hydrology as science itself and hydrology as an
applied science for decision support comes into play. For practical use the main ques-
tion we should ask ourselves should be: ”for what purpose do we want to develop this
system?”. Although this seems very trivial it is something that is quickly overlooked
in our optimism that we are technically capable of building a multi-purpose model
that will be useful for e.g. water boards (discharge prediction), farmers (water stress
prediction) and drinking water concerns (recharge prediction). To be able to make
accurate model predictions, the following four aspects should be considered, which
should keep pace with each other.

• model complexity

• input data availability

• calibration and validation measurement availability
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• user-friendliness of the model

To make progress in hydrology the ”weakest link” of those four aspects should be
improved. In the following the current state of these four aspects in The Netherlands
is addressed.

With model complexity both increasing detail and improved model concepts are
referred to. An example of this is the development of the Netherlands Hydrological
Modeling Instrument (Delsman et al., 2008), which is a collaboration between the
larger research institutes to couple unsaturated, saturated and surface water model
codes. This could lead to better description of the hydrological system. However,
there is a danger that coupling of these different modules becomes a (technical) chal-
lenge itself, thereby focussing too much on certain model concepts instead of taking
advantage of using several model concepts as is encouraged by for example Beven
(2006).

The two largest rives in The Netherlands are the Rhine (average annual discharge
at the border 2,300 m3 s−1) and the Meuse (average annual discharge at the border
230 m3 s−1). Translated to water depth over The Netherlands (41,000 km3), their
yearly budget is 1770 mm respectively 177 mm. So actually there are two rivers in
between the Rhine and Meuse: the river ”Down” and river ”Up”. The river Down
being rainfall (annual average 800 mm) and the river Up being evaporation (annual
average 550 mm). These two main input variables (rainfall and evapotranspiration)
of the hydrological system deserve the needed attention. During the last few years
the rainfall radar that can detect the spatial distribution of rainfall has improved
considerably. In this study we showed the added value of radar and the importance
of taking this into account in distributed hydrological models. However, although
on average almost 70% of annual rainfall evaporates, good insight into the (spatial
distribution) of evaporation lacks. This is maybe due to its latent character. More
attention should be payed to this significant flux.

Calibration data are needed to be able to judge which parameters in the hydro-
logical model should be adjusted and validation data are needed to test the accuracy
of our hydrological models. What data and on what spatial and temporal resolution
goes together with (i) the question for what purpose we developed a model and (ii) the
spatial and temporal resolution of our model. However, the basic components of the
water balance (i.e. inlets and outlets) of (sub)catchments should always be available.
This is not the case at this moment. Even worse, the number of commonly available
measurements like observation wells has been cut back over the last few years.

An acknowledged pitfall of hydrological simulation models is that they will always
generate an outcome. It is the hydrologist’s task to weigh these aspects against each
other and prevent the pretence of knowing the hydrological variables at a high resolu-
tion. It is the challenge for hydrologists to decide whether outcomes are trustworthy
or not and to decide which model parameters should perhaps be adjusted. As model
complexity and thus the number of parameters and their interaction increases this be-
comes a very hard job to deal with. This is what is meant with the user-friendliness:
models should not be more complex than what qualified hydrologists can deal with.
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Besides, accessibility of the model code together with proper documentation is indis-
pensable to improve the model through experiences from other users.

Possibly, we can learn from our colleagues the meteorologists who struggle with
the same kind of problems in their NWPs and more and more decide to focus on the
development of model ensembles, rather than on increasing the model complexity.
With the use of model ensembles it is possible to gain insight in the model reliability
and, in case there are validation sources, also in the model accuracy. Development
of model ensembles that are based on perturbations of the initial conditions of the
model or, more relevant for hydrological modeling, different parameter combinations
is a challenge itself. Another possible consideration is the use of anomalies, which is
often done in meteorology.
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Appendix 1

Rain gauge calibration

The gauges used in this study have a collecting funnel diameter of 254 mm and were
set to measure approximately 0.2 mm of rain per tipping. For most rain gauges
the manufacturer provided the average volume per tipping. However, tipping bucket
type rain gauges are known to overestimate rainfall at low rainfall intensities and
to underestimate rainfall at high rainfall intensities (e.g. Molini, 2005; Habib et al.,
2001). Therefore we dynamically calibrated all rain gauges in the laboratory (Figure
2), following Van den Assem (1988). Figure 3 shows the results of this calibration.
It was found that the intercept of the linear relationship between tipping volume and
rain rate varies between 0.185 and 0.202 mm/tipping, with 83 % of the values being
below 0.2 mm/tipping. Considering a rainfall intensity range of 0-100 mm/hour and
assuming a tipping volume of 0.2 mm/tipping, the absolute error caused by ignoring
the linear relationship is 0-5 % in 47 % of the cases, 5-10 % in 47 % of the cases and
10-15 % in 6 % of the cases.

Figure 2 Photo of rain gauge calibration.
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Figure 3 Dependency of tipping volume on rainfall intensity with calibration curves fitted by linear
regression for each of the 30 rain gauges (numbers indicate serial numbers).
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Appendix 2

Geostatistical Simulation of Daily
Rainfall

Prediction techniques such as kriging tend to smooth out the local variability of
rainfall, especially further away from the data locations. Kriging variances provide
a measure of local uncertainty but give no insight into the joint spatial distribution
of rainfall uncertainty. Because the hydrological system is non-linear, the use of
smoothed rainfall fields could lead to a biased hydrological response when used as
input for hydrological models. Therefore it would maybe be better to stochastically
simulate rainfall fields and use an ensemble of simulated rainfall fields as input. Here
we show how sequential simulation with colocated cokriging could be used.

Sequential Gaussian Simulation
For the sequential simulation we used the same data set as used for kriging, so the
square-root transformed rain gauge data and colocated range corrected radar data.
Sequential simulation can be described by the following steps (Goovaerts, 1997):

1. Select randomly a simulation location (usually on a grid) and perform kriging
using the rain gauge measurements (original data set), giving a kriging predic-
tion and kriging variance.

2. Draw randomly a number from a Gaussian distribution that has a variance equal
to the kriging variance and a mean equal to the kriging prediction. This number
will be a conditioning datum for all subsequent drawings.

3. Select randomly another prediction location and repeat step 2, including in the
kriging all previously simulated values as observations to preserve the spatial
variability as modelled in the variogram.

4. When all prediction locations have been simulated, transform back to the orig-
inal distribution (in our case by squaring the simulated data). This provides
the first simulation field. When simulating another realisation, steps 1-4 are
repeated with a new random sequence.
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Because all the simulated data are added to the conditioning data, it is necessary
to limit the search neighborhood in order to reduce the calculation time. In our case,
we used only the 40 nearest data points.

As for the rainfall prediction, we used both ordinary kriging and ordinary colocated
cokriging for the simulation of rainfall. However, the “classic” sequential Gaussian
simulation algorithm assumes that the mean value or function of the random field
under consideration is known. In that respect, it is the simulation-equivalent of re-
spectively simple kriging and simple colocated cokriging. For simple kriging we used
the mean of the non-zero square-root transformed rain gauges as the mean. This value
was also taken for the mean of the first variable for colocated cokriging. The mean of
the square-root transformed radar values within the extent was taken as mean of the
secondary variable.

Required Spatial Resolution
With the sequential simulation method we simulated rainfall depths at point locations,
which have a small spatial support. In order to produce rainfall fields at a given spatial
resolution we have to simulate several points within each pixel. The number of points
required depends on the variability of the rainfall process, that is represented by the
variogram. However, as a rule of thumb, 16-25 points are sufficient (Goovaerts, 1997).
The outcomes of these points within each pixel are averaged, giving the mean rainfall
depth for each pixel.

Simulation Results
Figure 4 shows the results of one simulated rainfall field of 1 May 2004 at the small
extent, using the ordinary kriging and simple colocated cokriging equivalent of se-
quential gaussian simulation. Figure 4a shows the simulated rainfall values on a point
grid, with a regular spacing of 100 meter. To produce simulated rainfall fields on a
spatial resolution of 500 m × 500 m, the outcomes of the 25 points within each grid
500 m × 500 m are averaged (Figure 4b).

For two events (4 April 2004 and 1 May 2004) we performed 100 simulations of
the rainfall field at small extent, using ordinary kriging and colocated cokriging. For
each of the 100 simulations we calculated the cumulative distribution function (cdf)
and plotted this together with the cdf of the rain gauge data set. Figure 5 shows
that colocated cokriging simulation is more precise (low spread) than the ordinary
kriging simulation, especially for 1 May 2004, where the correlation between the rain
gauge data and colocated radar values is high (0.84). Figure 5 also shows that the
simulations are accurate, reproducing the cumulative distribution function of the rain
gauge data.

The simple colocated cokriging equivalent of sequential gaussian simulation enables
us to simulate rainfall fields at any required spatial resolution, conditional to both
rain gauges and radar fields. The simulated rainfall fields reproduce both high and
low rainfall values as well as the spatial correlation of the observed rainfall fields and
can be used as an ensemble input for hydrological models.
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Figure 4 Results of sequential gaussian simulation of rainfall depths at 1 May 2004, using ordinary
kriging (OK) and simple colocated cokriging (CCK) on both (a) a point grid and (b) high
resolution grid of 500 m × 500 m.
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Figure 5 Cumulative distribution function of the simulated rainfall (grey lines) and the rain gauge
data (black dots): (a) ordinary kriging simulation for 4 April 2004; (b) colocated cosim-
ulation for 4 April 2004; (c) ordinary kriging simulation for 1 May 2004; (d) colocated
cosimulation for 1 May 2004.
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Appendix 3

ech2o calibration

In this study we used 20 cm ech2o probes (EC-20) that use the capacitance technique
to derive the dielectric permittivity of a medium (Bogena et al., 2007). For each soil
moisture measurement location (Figure 4.1B) we performed a calibration. Tubes
with a diameter of 20 cm and 40 cm length were drilled into the ground, nearby
the measurement locations at 2 depths: 10 cm and 50 cm. In the laboratory the
soil samples were first wetted to approximately field capacity after which the ech2o
probes were inserted into the soil samples, perpendicular to the surface. Then the top
of the tubes were cut off to create an area from which moisture could evaporate, a
situation that represents actual field conditions (Figure 6). The soil moisture content
according to the ech2o probes was logged every 5 minutes. We weighted the soil
samples twice a day in order to get the gravimetric soil moisture content. Figure
7 shows the calibration results of the soil moisture sensors, for each soil moisture
measurement location at 10 and 50 cm. The fitted splines were used to calibrate the
soil moisture measurements that were taken in the field. Field measurements were
done at 5, 15, 30, 50 and 70 cm depth. For field measurements at 5 and 15 cm, the
fitted splines of the calibration at 10 cm were used. For field measurement at 30, 50
and 70 cm, the fitted splines of the calibration at 50 cm were used. It must be noted
that extrapolation of splines can be very risky, however all the field measurement were
within the range that was measured by the ech2o sensors during calibration.
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Figure 6 Photo of soil moisture sensor calibration.
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Figure 7 Volumetric moisture content (V MC [cm3 cm−3]) of gravimetric measurements against
V MC of ECH2O sensors for each soil moisture measurement location (Figure 4.1B) at
2 depths: 10 cm and 50 cm. Black lines are the fitted splines, dotted lines represent 1:1
line.
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Appendix 4

groundwater model specifications

Our groundwater model is part of an existing groundwater model with a larger spatial
extent. The model boundary (Figure 4.1A) is taken from an earlier study of the study
area (Hermans et al., 2004). The model boundary is chosen such that wrong boundary
conditions have negligible small influence on the study area. The north-east side lies
over the ice pushed ridge, the south-east boundary lies south of a river, the south-west
side follows a deep canal (Amsterdam-Rijnkanaal) and in the north-west the boundary
lies far enough from the study area, considering the northeast-southwest groundwater
flow direction. The groundwater model consists of 7 layers (aquifers) separated by
aquitards in between (Figure 8). Within the aquifers the Dupuit assumption holds
true, which means that there is only lateral flow. Within the aquitards there is
only vertical flow. The first aquifer and aquitard together form the confining layer
that exists of holocene river sediments and is only present in the south-east part of
the study area. Its boundary lies halfway along the study area, coinciding with the
boundary between soil type 19 and 12 (Figure 4.1B).

131



0 - 100

100 - 200

200 - 400

400 - 600

600 - 800

800 - 1000

> 1000

layer 1 layer 2

layer 3 layer 4

layer 6layer 5

layer 7

kD [m   /day]
0 - 10

10 - 50

50 - 100

100 - 500

500 - 1000

1000 - 2000

> 2000

layer 1 layer 2

layer 3 layer 4

layer 5 layer 6

c [days]2

Figure 8 Transmissivity (kD) [m2 day−1] and resistance (c) [days] values of hydrological model.
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Appendix 5

SEBAL

The Surface Energy Balance Algorithm for Land (sebal ) is based on the surface-
energy balance (Bastiaanssen, 1995; Bastiaanssen et al., 2005):

Rn = G0 + H + λρE, (1)

in which Rn [W m−2 ] is the net radiation; G0 [W m−2 ] is the soil heat flux; H
[W m−2 ] is the sensible heat flux and λE [W m−2 ] is the latent heat flux that is
associated with actual evapotranspiration (ETact ) by the latent heat of vaporization
(λ) and ρ is the density of water [kg m−3].

From satellite radiances the surface parameters surface albedo (r0 [-]), Normal-
ized Difference Vegetation Index (NDVI [-]) and surface temperature (Ts [K]) are
determined for each satellite pixel.

The instantaneous net radiation Rn,i at time of satellite overpass is determined
with Equation 2.

Rn,i = (1 − r0) · Kext,i · τsw,i + L↓
i + L↑

i , (2)

with
L↓

i = εatm · σ · T 4
a (3)

and
L↑

i = εs · σ · T 4
s , (4)

in which the emissivity of the atmosphere (εatm) [-] is an empirical relationship
with humidity, the emissivity of the surface (εs) [-] is derived from NDVI, σ is the
Stefan-Boltzman constant (5.67 e-08 W m−2 K−4), Ta [K] is the air temperature
(meteorological station data) and Ts [K] the surface temperature (satellite image).

The instantaneous soil heat flux (G0,i) is calculated using a sinus relation for soil
temperature, a coefficient of heat conductivity and an attenuation depth.
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Having Rn,i and G0,i the remaining problem is the division between the (instan-
taneous) sensible (Hi) and the (instantaneous) latent heat flux (λEi), which can be
expressed by the (instantaneous) evaporative fraction (Λi [-])

Λi =
λρEi

Rn,i − G0,i

=
λρEi

λρEi + Hi

=
Rn,i − G0,i − Hi

Rn,i − G0,i

(5)

If Hi is solved for each satellite pixel, λEi is the residue of the energy balance.
sebal computes Hi using a so-called ”self calibration” procedure. The coldest pixel
is selected in the satellite image, where it is assumed that Hi=0 (and λEi = Rn,i-
G0,i), and the warmest pixel is selected where it is assumed that Hi = Rn,i-G0,i

(and λEi=0). For this cold and warm pixel the vertical temperature difference ∆T
between two reference heights (see Equation 7) is calculated to match the value of
H at a given aerodynamic resistance. For the cold pixel ∆T=0, for the warm pixel
∆T is solved iteratively using the Equations 6–11. These equations are based on
the Monin-Obukhov Similarity Theory (MOST, Monin and Obukhov (1954)) that
describes the flux-profile relationships of wind, temperature, humidity and latent heat
flux. The Obukhov length L [m] is the height above the surface where mechanical
and convective forces are equal. Holtslag (1987) has shown that MOST is valid in
The Netherlands up to a height of 200 m. In the Equations 7 and 8 z1 is set to
the roughness length (zom [m]), that comes in this study from a slightly modified
roughness map from the Royal Netherlands Meteorological Institute (knmi). This
map is based on the Dutch national land-cover database LGN (Oort et al., 2007;
De Wit and Clevers, 2004), as is the land use map in our hydrological model. The
roughness map is slightly modified with an orographic correction and a small time
correction for agricultural land use, using NDVI. The parameter z2 is set to a standard
height of 10 m. The wind velocity at height z2 , uz2 [m s−1] in Equation 8 is based
on Meteolook data. Meteolook is a physically based regional distribution model for
measured meteorological variables and is developed by WaterWatch (Voogt, 2007),
and κ is the von Karman constant [-]. Meteolook provides interpolated maps of the
routinely measured weather variables air temperature, wind velocity and humidity.
This model is also based on the MOST theory as well as on recent research that
links meteorological conditions of neighbouring land surface types. Hutjes (1996) and
Bink (1996) applied the ”bottom-up-top-down” approach, where measurements at a
site with given surface characteristics are transformed to values at a height where
surface influences are no longer dominantly present (e.g. blending height). For the
Netherlands it is found that the blending height is ∼ 60 m (Wieringa, 1986; Vermeulen,
2001). In Meteolook a blending height of 100 m is taken.

Now, the sensible heat flux is calculated with:

H = ρa · cp · T∗ · u∗, (6)

in which the specific heat of air (cp) [J kg−1 K−1] is kept constant, the air den-
sity (ρa) [kg m−3] is a function of elevation, temperature and humidity, T∗ [K] is a
Temperature scalar given by Equation 7 and u∗ the friction velocity [m s−1 ] given by
Equation 8.
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T∗ = ∆T/[ln(z2/z1) − γh(z2, L) + γh(z1, L)], (7)

in which ∆T = Tz2 − Tz1 and γh is a stability function given by 9.

u∗ = (k · uz2)/[ln(z2/z1) − γm(z2, L) + γm(z1, L)], (8)

in which γm is a stability function given by 10

γh(
z

L
) =





L < 0 : 2 · ln(1+x2

2
)

L = 0 : 0
L > 0 : −5 · z

L

(9)

γm(
z

L
) =





L < 0 : 2 · ln(1+x
2

) + ln(1+x2

2
) − 2 · arctan(x) + π

2

L = 0 : 1
L > 0 : −5 · z

L

(10)

x = 4

√
1 − 16 · z

L
(11)

After solving ∆T for the hot pixel( ∆T=0 for the cold pixel) by solving Equations
6-11 for ∆T , L and H such that Hi = Rn,i−G0,i, a linear relationship is fitted for the
∆T–Ts relationship, which is thus image specific. Field research has demonstrated
that this linear relationship is valid (Wang, 1995; Franks and Beven, 1997). The
advantage of this ∆T -Ts relationship is that it eliminates propagation of errors on
the energy balance partitioning and the need for atmospheric correction, by band, for
short-wave reflection.
With the ∆T -Ts relationship, together with the wind velocity uz2 from Meteolook
and the site-specific z1 =zom, the sensible heat flux H can be calculated for each
pixel of the satellite image (Equation 6). λE follows from solving the energy balance,
Equation 1. This means that the instantaneous evaporative fraction (Λi) is known
for every satellite pixel. It is assumed in sebal that the daily evaporation fraction is
the same as the instantaneous evaporation fraction. This means that if the daily net
radiation (Rn,24) and daily soil heat flux (G0,24) are known, the daily latent heat flux
λE and thus the daily evaporation E is known for each satellite pixel.

To derive the daily soil heat flux (G0,24), the sinus relation used to derive the
instantaneous soil heat flux is integrated over 24 hours. Furthermore the soil heat
flux is attenuated based on NDVI. The more vegetation, the lower G0 .

The daily net radiation, Rn,24 can be calculated for each satellite pixel using a
simplified formula (De Bruin and Stricker, 2000)

Rn,24 = (1 − r0) · τsw · K↓
exo − 110 · τsw, (12)
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in which τsw is the transmissivity of atmosphere for short wave radiation [-] and
K↓

exo is the extraterrestrial radiation [W m−2 ]. τsw can be calculated for each meteo-
rological station where K↓ is measured with pyranometers. In this study a constant
τsw of the nearest meteorological station is used for the satellite images, because the
images cover a relatively small area.

τsw =
K↓

K↓
exo

(13)

K↓
exo can be calculated as a function of the solar constant (Gsc, 1367 [W m−2 ]), the

inverse relative distance between earth and sun dr [-], the solar declination δ [rad], the
latitude ϕ [rad], the day of year J [-] and the sunset angle ω [rad] (Equations 14-17).

Kexo =
Gsc · dr

π
[arccos[−tan(ϕ)tan(δ)]sin(ϕ)sin(δ) + cos(δ)cos(ϕ)sin(ωs)] (14)

δ = 0.409 · sin(
2π

365
J − 1.39) (15)

dr = 1 + 0.033 · cos( 2π

365
J) (16)

ωs = arccos[−tan(ϕ)tan(δ)] (17)
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Summary

Physically based distributed hydrological computer simulation models are important
tools for hydrologists to obtain insight into the hydrologic cycle and to determine
how precipitation is distributed over the different hydrological stores (e.g. surface
water discharge, soil moisture, groundwater). In the last 30 years the number but
also the complexity of hydrological computer models has grown tremendously, due to
more powerful computers, geographical information systems (GIS) and remote sen-
sors. As the spatial resolution of these models increases, the amount of available data
to provide these models with input and validation information at the same spatial
resolution lacks behind. At the same time hydrometeorological information based on
remote sensing techniques has improved over the years and has become more easily
available. These data can serve as improved input and validation data for distributed
hydrological models. Besides, meteorologists developed numerical weather prediction
models (NWP) that can be used to make forecasts of the hydrological system. How-
ever, in practice, these remotely sensed and forecasted hydrometeorological variables
are not commonly used in hydrological models. The reason for this lack of use are
some unresolved research questions about how these hydrometeorological data should
be integrated into the hydrological models and whether these data could improve the
accuracy of the hydrological models at all.

The scope of this thesis was to investigate (i) whether operational remote sensing
data that provide spatially-distributed hydrological information can improve the ac-
curacy of the distributed hydrological models and (ii) whether rainfall forecasts could
provide accurate forecasts of the hydrological model. Within the hydrological system
the focus was on soil moisture. The operational remotely sensed data were restricted
to meteorological rainfall radar and actual evapotranspiration (ETact) derived from
satellites.

To test the integration of remotely sensed and forecasted hydrometeorological
variables into a hydrological model we set up the Hydrological Now- and Forecasting
System (HNFS). By using operational data and hydrological models with real case
studies we hoped to show the potentials and limitations of such a system in practice.

To derive high-resolution daily rainfall fields that can serve as input for the hydro-
logical models, we applied geostatistics (Kriging variants) using rain gauge data only,
radar data only and a combination of rain gauge and radar data. Results showed
that the added value of radar with respect to rain gauges is significant. With the
operational rain gauge network in The Netherlands, it was shown that a combination
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of rain gauge and radar data gave the best results, followed by radar only and finally
rain gauge data only. Only in case of a dense network, like our experimental network
(30 rain gauges within an area of 15 km x 15 km), the rain gauges did perform better
than radar.

The need to use spatially variable rainfall fields in a distributed hydrological model
was tested by using a scenario analysis of different rainfall inputs. Results showed
that the need to take into account the spatial variability of rainfall depends on the
hydrological modelling objective. If one is interested in the day-to-day variability of
distributed soil moisture and groundwater level it is important to take the spatial
variability of rainfall into account. However, if one is interested in the general hydro-
logical behavior (i.e. groundwater and soil moisture climatology) it is sufficient to
take into account the spatial mean rainfall within the catchment. This holds also for
the daily discharge. It was shown that there is a great risk in using one rain gauge
only, especially if it is situated outside the study area.

ETact derived from satellites proved to be very useful in the process of model
validation, although this is restricted to periods with evapotranspiration reduction.
Spatially-distributed ETact data made it possible to indicate areas of potential model
error, both flux-related as conceptual model errors. Assimilation of ETact based on
satellites into our hydrological model, resulted in a spatial adjustment of modelled
soil moisture. We consider this adjustment to be realistic, but this is hard to validate
because of the lack of other, spatially-distributed validation data.

Finally, we studied the feasibility of forecasting regionally distributed soil moisture
(up to 9 days ahead) by using ensemble rainfall forecasts from the NWP of the Euro-
pean Centre for Medium-Range Weather Forecasts (ecmwf) as input for our hydro-
logical model. As rainfall is one of the most important input variables, the accuracy
of the forecasted soil moisture highly depends on the accuracy of the rainfall fore-
casts. Comparing the forecasted daily rainfall with measured rainfall (combination
of rain gauge and radar data) we found that the accumulated rainfall in our study
period (March-Nov 2006) was forecasted very well by all lead times. However, the
spatial variation shown by measured rainfall is not taken into account by rainfall
forecasts. The forecasted spatially-distributed soil moisture was compared to a ”true
run”, which was the same hydrological model with measured rainfall as input. The
temporal mean bias in soil moisture gradually increased with increasing lead time.
The spatial distribution of the bias in soil moisture resembled the spatial pattern in
total rainfall within the study area. Areas with less rainfall than spatial average show
a negative bias and vice versa. Using either the individual ensemble members or the
ensemble mean of the rainfall forecast as input made hardly any difference in the
spatial pattern of temporal mean bias in soil moisture. However, with the individual
ensemble members it is possible to show the reliability of predicted soil moisture.

This study has shown how remotely sensed and forecasted hydrometeorological
variables can be integrated into distributed hydrological models. As this study is
based on real data, it has shown the potentials and limitations of applying a system
like the HNFS in practice. Finally, considerations about future implementation of
this system are given.
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Samenvatting

Hydrologische actuele en kortetermijn voorspellingen
Integratie van operationeel beschikbare hydrometeorologische variabelen verkregen met
remote sensing en voorspellingen in ruimtelijk verdeelde hydrologische modellen

De hydrologische cyclus is de voortdurende beweging van water tussen aarde en
atmosfeer en speelt een belangrijke rol in ons klimaatsysteem. Computersimulatie-
modellen die (een deel van) de hydrologische cyclus simuleren zijn een belangrijk
instrument voor hydrologen. Met dergelijke modellen kunnen zij het hydrologische
systeem beter begrijpen en beschrijven, zoals de verdeling van neerslag over de ver-
schillende hydrologische compartimenten (bijvoorbeeld afvoer, bodemvocht en grond-
waterstand). Als gevolg van de toename van de rekenkracht van computers en het
opkomen van geografische informatie systemen, is de complexiteit van deze hydro-
logische modellen de laatste 30 jaar enorm toegenomen. Terwijl de ruimtelijke re-
solutie van deze modellen toeneemt, blijft de hoeveelheid beschikbare data op een-
zelfde ruimtelijke schaal om deze modellen van invoer en validatiegegevens te kunnen
voorzien achter. Tegelijkertijd is de informatie vanuit ’remote sensing’ (van afstand
waargenomen) technieken de afgelopen jaren sterk verbeterd en is gemakkelijker beschik-
baar geworden. Voorbeelden hiervan zijn de neerslagradar en verdampingsbeelden
afkomstig van satellietopnamen. Deze remote sensing data kunnen dienen als een ver-
beterde invoer en validatie bronnen voor de ruimtelijk gedistribueerde hydrologische
modellen. Daarnaast hebben meteorologen numerieke weersvoorspellingmodellen ont-
wikkeld, waarvan de uitkomsten (bijv. neerslag voorspellingen) door hydrologen ge-
bruikt kunnen worden om voorspellingen te maken van het hydrologisch systeem.
Echter, in de praktijk worden deze operationele hydrometeorologische variabelen,
verkregen met remote sensing en voorspellingen, nog niet algemeen gebruikt in hydro-
logische modellen. De reden hiervoor is dat er nog onbeantwoorde onderzoeksvragen
liggen over hoe deze hydrometeorologische gegevens te integreren in hydrologische
modellen en of deze data de nauwkeurigheid van de hydrologische modellen wel ver-
betert. Nauwkeurigheid in dit proefschrift is gedefinieerd als ”representatie van de
werkelijkheid”, niet in de mathematische zin als ”precisie”.

Het doel van dit proefschrift was om te onderzoeken of (i) operationele remote
sensing data, die ruimtelijk verdeelde hydrologische modellen van informatie kunnen
voorzien, de nauwkeurigheid van deze modellen verbeteren en (ii) of neerslagvoor-
spellingen nauwkeurige voorspellingen van het hydrologische systeem kunnen op-
leveren. Binnen het hydrologisch systeem lag de focus op bodemvocht. De opera-
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tioneel beschikbare remote sensing data is beperkt tot meteorologische neerslag radar
en actuele verdamping (ETact) afkomstig van satellietopnamen.

Om de hydrometeorologische variabelen verkregen met remote sensing en voor-
spellingen in een hydrologisch model te kunnen integreren hebben we het Hydrological
Now and Forecasting System (HNFS), oftewel het Hydrologisch Actueel en Korte-
termijn Voorspellingssysteem opgezet. Door gebruik te maken van zowel operationele
data en hydrologische modellen alsmede praktijkstudies hopen we de mogelijkheden
en beperkingen van een dergelijk systeem in de praktijk inzichtelijk te maken.

Om neerslagvelden met een hoge ruimtelijke resolutie te genereren die vervolgens
gebruikt kunnen worden als invoer voor hydrologische modellen hebben we geosta-
tistiek (Kriging varianten) toegepast. Hierbij is gebruik gemaakt van enkel regen-
meter data, enkel radar data en een combinatie van regenmeter en radar data. De
radar data is afkomstig en geleverd door het Koninklijk Nederlands Meteorologisch
Instituut (KNMI). Resultaten lieten de toegevoegde waarde van radar zien bij het
genereren van neerslagvelden. Het bleek dat met het huidige nationale netwerk van
regenmeters de combinatie van regenmeter data met radar data de meest nauwkeurige
neerslagvelden opleverde, gevolgd door enkel radar data en uiteindelijk enkel regen-
meter data. Slechts in het geval van een dicht netwerk van regenmeters, zoals ons
experimentele netwerk (30 regenmeters in een gebied van 15 km x 15 km), leverde
regenmeters beter dan de radar.

De noodzaak om ruimtelijk variabele neerslagvelden te gebruiken in een hydrolo-
gisch model is getest door een scenario analyse uit te voeren met verschillende neer-
slaginvoerscenario’s. Resultaten lieten zien dat de noodzaak om ruimtelijk verdeelde
neerslag mee te nemen afhangt van de doelstelling van de hydrologische modellering.
Indien men is gëınteresseerd in de van dag-tot-dag variabiliteit van ruimtelijk verdeeld
bodemvocht of grondwaterstand is het belangrijk om de ruimtelijke verdeling van neer-
slag mee te nemen. Echter, indien men is gëınteresseerd in het algemene gedrag van
een stroomgebied (bijv. grondwater en bodemvocht klimatologie), is het voldoende
om het ruimtelijk gemiddelde van de neerslag binnen het stroomgebied mee te nemen.
Dit geldt ook voor dagelijkse afvoer. Het is aangetoond in deze studie dat het gebruik
van een enkele regenmeter groot risico met zich meebrengt, met name als deze buiten
het gebied is gesitueerd.

ETact afgeleid uit satelliet opnamen bleek zeer bruikbaar in het proces van model
validatie. Dit is echter beperkt voor perioden waarin er verdampingsreductie op-
treedt. Ruimtelijk verdeelde ETact data maakte het mogelijk om gebieden met po-
tentiële modelfouten op te sporen. Deze fouten waren zowel flux-, als conceptgerela-
teerd. Assimilatie (het laten opgaan van twee variabelen in een nieuwe variabele) van
ETact afgeleid uit satelliet opnamen in ons hydrologische model, resulteerde in een
ruimtelijke aanpassing van gemodelleerd bodemvocht. Deze aanpassing beschouwen
wij als realistisch maar is moeilijk te verifiëren als gevolg van het gebrek aan andere,
ruimtelijk verdeelde validatiedata.

Ten slotte hebben we de haalbaarheid bestudeerd om het ruimtelijk verdeelde
bodemvocht te kunnen voorspellen (tot 9 dagen vooruit). Hierbij is gebruik gemaakt
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van het numerieke weersvoorspellingmodel van het Europese Centrum voor Middellange-
termijn Weersvoorspellingen (ECMWF) in Reading (Verenigd Koninkrijk). Deze
data zijn enigszins bewerkt en geleverd door het KNMI. Omdat neerslag een van
de meest belangrijke invoer variabelen is, zal de nauwkeurigheid van het voorspelde
bodemvocht sterk afhangen van de nauwkeurigheid van de neerslagvoorspellingen.
Uit de vergelijking van voorspelde dagelijkse neerslag met gemeten neerslag (combi-
natie van regenmeters met radar) bleek dat de totale neerslag tijdens onze studie-
perioden (maart-november 2006) goed werd voorspeld voor alle voorspeltermijnen (1
tot 9 dagen vooruit). Echter, de ruimtelijke variatie van gemeten neerslag wordt niet
meegenomen in de neerslagvoorspellingen. De voorspelde ruimtelijke verdeling van
bodemvocht is vergeleken met een ”werkelijke situatie”. Deze werkelijke situatie is
hetzelfde hydrologische model waarbij de gemeten neerslag als invoer is gebruikt. De
tijdgemiddelde afwijking tussen voorspeld en werkelijk bodemvocht nam geleidelijk
toe met toenemende voorspeltermijn. De ruimtelijke verdeling van deze afwijking liet
een patroon zien dat overeenkomt met het ruimtelijk patroon van de totale neerslag in
het gebied. Gebieden waar minder neerslag viel dan ruimtelijk gemiddeld lieten in de
voorspelling een onderschatting zien van het bodemvocht en vice versa. Het gebruik
van hetzij de individuele neerslagvoorspellingen (50 per dag), hetzij het gemiddelde
van deze 50 neerslagvoorspellingen vertoonde weinig verschil in het ruimtelijk patroon
van de bodemvocht afwijking. Echter, door gebruik te maken van de individuele neer-
slagvoorspellingen is het mogelijk om de betrouwbaarheid (oftewel de consistentie)
van het voorspelde bodemvocht te laten zien.

Deze studie heeft laten zien hoe hydrometeorologische variabelen verkregen met
remote sensing en voorspellingen gebruikt kunnen worden in ruimtelijk verdeelde
hydrologische modellen. Omdat deze studie is gebaseerd op werkelijke data en mod-
ellen heeft het de mogelijkheden en beperkingen van het toepassen van een systeem
zoals het HNFS in de praktijk aangetoond. Tot slot zijn aandachtspunten aangegeven
voor de toepassing van een dergelijk systeem in de praktijk.
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Dankwoord

Dan is het nu tijd om het dankwoord te schrijven. In de laatste fase van mijn aio-
schap liet ik mijn gedachten wel eens afdwalen naar dit moment. Het zou betekenen
dat alles echt af was. Nu is het dan echt zover om het, waarschijnlijk meest gelezen
stuk van dit proefschrift, te schrijven!

Hoe het begon: 5 maart 2003, mijn verjaardag, maar ook de dag dat Marc Bierkens
zijn inaugurele rede als professor bij de Universiteit Utrecht hield. Het was Peter
Troch, professor bij Universiteit Wageningen en mijn toenmalige afstudeerbegeleider,
die tijdens de receptie de legendarische woorden uitsprak (ik sta niet in voor het
letterlijke citaat): ’Als je nog overweegt aio te worden, Marc zoekt nog mensen’.
Hoewel ik op dat moment een vaste betrekking had bij ingenieursbureau Grontmij
en het daar goed naar mijn zin had, liet deze opmerking me niet los en ik besloot te
solliciteren. En zo begon het aio-avontuur dat ’aiomon’ heette!

Marc, als eerste wil ik jou heel erg bedanken. Uiteraard voor het mogelijk maken
van dit onderzoek maar ook voor je enthousiasme en vertrouwen gedurende de afgelopen
jaren. Toen ik begon waren Reinder en ik je enige promovendi en had je nog veel tijd
om ons op weg te helpen en ook je stempel op het onderzoek te drukken. Ondertussen
heb je talloze aio’s onder je hoede en hebben we mijns inziens onderling een werkre-
latie opgebouwd die hoort bij een aio in de laatste fase. Je betrokkenheid bij mijn
onderzoek is altijd gebleven en je commentaar was altijd scherp en bovendien snel.
Frans van Geer, mijn copromotor, wil ik als tweede hartelijk danken. Vooral in de
tweede fase hebben we regelmatig goed contact gehad, wat samenhing met mijn meer
frequentere aanwezigheid bij TNO (ondertussen Deltares). Bedankt voor je waarde-
volle commentaar en hulp. Peter Troch heb ik al eerder genoemd. Zonder genoemde
opmerking destijds was ik misschien nooit aio geworden en was dit proefschrift er
niet geweest. Grote dank ben ik jou verschuldigd aan de tijd dat je mijn afstudeer-
begeleider bent geweest in Wageningen. Mijn enthousiasme voor dit onderwerp heb
jij aangewakkerd en onder jouw hoede heb ik mijn eerste wetenschappelijke artikel
geschreven. Helaas is je verhuizing naar de Universiteit van Arizona een te grote stap
gebleken om uiteindelijk voor mij als copromotor op te treden, wat in eerste instantie
de bedoeling was.

Naast mijn promotoren wil ik als eerste EdzeR Pebesma heel erg bedanken. Toen
ik als aio begon was ’R’ voor mij gewoon een letter uit het alfabet. Nu ben ik ook
een volgeling (citaat Edzer: ’R kan alles, behalve een lekker menu voor je koken’) en
zelfs uitdrager. Je enthousiaste begeleiding bij (geo-) statistiek en R-programmeren
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waren zeer waardevol. Ik hoop dat het je nu goed bevalt als professor in Münster
en dat je met je band ’de nieuwe Galukken’ nog vaak mag optreden in Amersfoort
tijdens de jazz-dagen! Een andere persoon aan wie ik veel dank ben verschuldigd is
Remko Uijlenhoet. Regenmeters bestellen, een keer mee het veld in, de nodige tijd
besteed om me de ’ins en outs’ van de regenradar te leren: mijn dank daarvoor. Je
enthousiasme werkt aanstekelijk en je bent voor mij het voorbeeld hoe je ’lusten en
lasten’ in de wetenschap met elkaar kunt verenigen. Het radar congres in Gotland
staat met stip op nummer 1!

Voor dit onderzoek waren veel meteorologische data nodig. Het KNMI heeft hier
een geweldige bijdrage aan geleverd en ik ben dit instituut dan ook enorm dankbaar.
Allereerst wil ik Ton Donker en Iwan Holleman hartelijk danken. Ton, de data werden
dankzij jou altijd uitstekend geleverd en gestroomlijnd. Ik hoop dat je nu geniet van
je pensioen! Iwan, heel erg bedankt voor je hulp en uitleg over de regenradar en je
interesse in mijn onderzoek. Het radaroverleg wat je samen met Remko Uijlenhoet
bent gestart heb ik altijd zeer inspirerend en leerzaam gevonden. Hartelijk dank
voor de leerzame presentaties en discussies aan de volgende personen in willekeurige
volgorde: Hidde Leijnse, Adri Buishand, Hans Beekhuis, Han Stricker, Paul Torfs,
Aart Overeem, Remco van de Beek (jij ook bedankt voor samenwerking in het veld!)
en Pieter Hazenberg. Kees Kok, Robert Mureau en Daan Vogelezang van het KNMI:
jullie wil ik enorm bedanken voor de data (en bijbehorende uitleg) die ik in de laatste
fase van mijn proefschrift heb gebruikt: neerslagvoorspellingen. Kees, ook hartelijk
dank voor het doorlezen en van commentaar voorzien van mijn conceptartikel!
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ers, dank ik voor de logistieke en financiële hulp bij diverse data en hydrologische
modellen. Wouter Meijninger en Wim Bastiaanssen van WaterWatch wil ik hartelijk
danken voor het leveren en bewerken van de satellietbeelden.

Alle collega’s van het departement Fysische Geografie: super bedankt voor de
unieke werksfeer de afgelopen jaren! De meest uiteenlopende zaken zijn besproken in
de koffiehoek: van wetenschappelijke discussies tot persoonlijke gesprekken met daar-
tussen heel veel grappen. Als je even in een dip zat was er altijd wel iemand te vinden
om dit gevoel mee te delen. Geweldig, hou het zo en ik zal jullie absoluut missen!
Persoonlijk wil ik mijn ex-kamergenoten Marc Vissers en Daniel Mourad bedanken. In
onze mediterrane (vanwege de werktijden) kamer vond regelmatig uitwisseling plaats
van muziek (Marc, dankzij jou heb ik nu een verantwoorde muziekcollectie), poli-
tieke meningen (Daniel, heb ik van jou de tik soms iets te vaak op nu.nl te kijken?)
en aio-perikelen. Uiteraard wil ook mijn latere en ’huidige’ kamergenoot Arien Lam
heel erg bedanken. Onze muzieksmaak kwam niet overeen (op Ella Fitzgerald na:
bij jou het meest moderne, bij mij ongeveer het oudste) maar dat werd ruimschoots
gecompenseerd door andere overeenkomsten zoals ouderschap. Ik wens jou nog heel
veel succes toe met het afronden van je promotieonderzoek en sorry dat ik de laatste
tijd een minder trouwe kamergenoot was omdat ik veel tijd bij TNO/Deltares door-
bracht. Alle (ex-) medewerkers van het technisch lab van fysische wil ik ook hartelijk
danken. Theo, bedankt voor het meedenken; Hassan, bedankt voor het uitlenen van
divers veldwerk materiaal; Marcel, altijd weer bereid de zoveelste kapotte regenmeter

150



te repareren; Chris, je hulp in het veld was geweldig en zelfs kolfapparaten zijn jou
toevertrouwd; Bas, dankzij jou kwamen de KNMI data ook echt tot mijn beschikking
en ging het niet verloren. Verder dank ik ’mijn’ afstudeerstudente Inger de Groot
voor haar hulp tijdens het verzamelen van veldwerkgegevens en het vergroten van
mijn didactische vaardigheden. Geomedia wil ik hartelijk danken voor het ontwerpen
van de kaft en uitnodiging.

Alle collega’s van TNO/Deltares, jullie ook bedankt! Het combineren van twee
werkplekken vond ik in het begin erg lastig maar aan het eind heb ik me goed thuis
gevoeld. Ate en Esther, jullie waren fijne kamergenoten! Judith Snepvangers wil ik
danken voor de hulp bij het MODFLOW modelleren. Ab Veldhuizen en Paul van
Walsum van Alterra dank ik hartelijk voor alle hulp bij MetaSwap!

I am grateful to the members of the examination committee. Thank you very
much for taking the effort to read this thesis. Susanne (mijn kolfmaatje) en broer
Wytze: bedankt voor al jullie tips, hulp en opmerkingen. Ik ben blij dat jullie mijn
paranimfen willen zijn!

Gelukkig was er de afgelopen jaren meer dan alleen werk. Francis, Fred, Joost,
Karen, Koen, Linda, Roos, Stef, oftewel ’De Hoeksteen’ dank jullie wel voor de nodige
afleiding! Primaire vriendinnetjes Bregje, Brigit, Karen, Mariska, Marieke en Nicole
bedankt voor de weekendjes weg, etentjes, boottochtjes en eindeloze mail conversaties.
Floor, dank je wel voor je geweldige vriendschap! Iedereen ook dank voor het begrip
dat ik de laatste tijd niet overal meer aan meedeed.

Lieve pa en ma, ik wil jullie enorm bedanken voor jullie steun, interesse en stim-
ulans tijdens deze afgelopen jaren! Bij jullie vond ik altijd een luisterend oor en
geruststellende woorden (ma, je woorden ’als je maar rustig blijft’ zijn altijd blijven
hangen). Pa ook bedankt voor het meehelpen bij het plaatsen van de eerste regen-
meters en het aanschaffen van de beschermende omheiningen. Bedankt ook, zeker
ook mijn schoonouders, voor het feit dat Akke altijd bij jullie terecht kon als we met
werk in de knoop kwamen. En verder al mijn broers, zussen, zwagers en schoonzussen,
neven en nichten: Jaap, Saskia, Eva, Jan-Brecht, Margreet, Paul, Mees, Zeger, Wytze,
Joke, Jaap, Manuel, Akke, Matthijs, Dirk-Jan, Elske, Johannes, Jan, Debby, Alfred,
Ingrid, Arien, Karin, Nico, Lieke en Jochem. Leuk dat jullie meegeleefd hebben en
ja, ik ben nu echt afgestudeerd!

En last but certainly not least : Koen, Akke en Per. Het was (en is) altijd zo fijn
thuiskomen bij jullie! Koen, dank je wel voor al je liefde, geduld, interesse, steun en
relativerende woorden. En uiteraard ook dank voor je hulp bij het graven van de kuilen
voor de bodemvochtmeters. Akke, dankzij jou werden mijn werkdagen efficiënter en
bovendien bracht je geweldige afleiding en vreugde. Elke morgen heb jij weer zo’n zin
in de dag en dat werkt aanstekelijk! En kleine Per, je hebt de laatste fase van dit
promotieonderzoek in de buik meegemaakt (hopelijk zonder al teveel stress) maar nu
ben je er gelukkig gezond en wel. Je komst was een goede stok achter de deur om
alles op tijd af te ronden. Ik kijk ernaar uit nog heel lang van elkaar te mogen genieten!

Amersfoort, oktober 2008.

151



Publications

Peer reviewed papers - published

Schuurmans, J.M, M.F.P. Bierkens, E.J. Pebesma & R. Uijlenhoet (2007), Au-
tomatic prediction of high-resolution daily rainfall fields for multiple extents: the
potential of operational radar. J. Hydrometeor. 8, pp. 1204–1224.

Schuurmans, J.M & M.F.P. Bierkens (2007), Effect of spatial distribution of daily
rainfall on interior catchment response of a distributed hydrological model. Hydrol.
Earth Syst. Sci., 11, pp. 677–693.

Schuurmans, J.M., P.A. Troch, A.A. Veldhuizen, W.G.M. Bastiaanssen & M.F.P.
Bierkens (2003), Assimilation of remotely sensed latent heat flux in a distributed
hydrological model. Adv. Water Resour., 26, pp. 151–159.

Peer reviewed papers - accepted

Schuurmans, J.M & M.F.P. Bierkens (2008), Ability to forecast regional soil
moisture with a distributed hydrological model using ECMWF rainfall forecasts. ac-
cepted for publication in J. Hydrometeor.

Peer reviewed papers - submitted

Schuurmans, J.M, F.C. van Geer & M.F.P. Bierkens (2008), Remotely sensed
latent heat fluxes for improving modelled soil moisture predictions: a case study.
submitted to Remote Sens. Environ.

Other papers

Schuurmans, J.M, F.C. van Geer & M.F.P. Bierkens (2008), Actuele en korte
termijn voorspellingen voor operationeel waterbeheer (in Dutch). Stromingen.

Schuurmans, J.M. & M.F.P. Bierkens (2007), Belang van betere neerslaginformatie
voor hydrologen (in Dutch). H2O, 40(12), pp. 27–29.

152



Conference abstracts

Schuurmans, J.M. & M.F.P. Bierkens (2008), Value of ecmwf ensemble rainfall
forecasts for forecasting catchment spatially distributed soil moisture. Catchment-
scale Hydrological Modelling & Data Assimilation International Workshop III (CAH-
MDA III). Melbourne–Australia.

Schuurmans, J.M, M.F.P. Bierkens, E.J. Pebesma & R. Uijlenhoet (2004), Simu-
lating high resolution rainfall fields for operational water management using meteo-
rological radar and rain gauges. In Third European Conference on Radar in Meteor-
logy and Hydrology (ERAD) together with the COST 717 seminar. Visby–Island of
Gotland–Sweden.

Schuurmans, J.M, M.F.P. Bierkens, E.J. Pebesma & R. Uijlenhoet (2004), Esti-
mating high resolution rainfall fields based on meteorological radar and rain gauges
for operational water management. In Geophysical Research Abstracts 6 - 1st General
Assembly. Nice–France: European Geosciences Union (EGU).

Schuurmans, J.M, M.F.P. Bierkens, P.A. Troch & Geer, F.C. van Geer (2004),
Nowcasting for operational water management using reduced hydrological models
and data assimilation. In Geophysical Research Abstracts 6- 1st General Assembly.
Nice–France: European Geosciences Union (EGU).

153



Curriculum Vitae

Johanna Magritha (Hanneke) Schuurmans was born on 5 March 1977 in Harderwijk,
The Netherlands, completing the family of six children. In 1995 she did her VWO
exam at Lingecollege in Tiel. After that she started her study ’Soil, Water and At-
mosphere’ at Wageningen University and chose the specialization hydrology. For her
first master thesis she worked at the waterboard ’De Maaskant’ in Oss, The Nether-
lands. There she implemented the just released WATERNOOD method (groundwater
controlled surface water management) in a part of the waterboard area. In 2000 she
went for half a year to the International Water Management Institute (IWMI) in Sri
Lanka. There she studied, in collaboration with a fellow student, the effect of several
irrigation scenarios on plant growth and nutrient outflow. Back in the Netherlands
she finished her study with a master thesis at Alterra, studying the implementation
of remotely sensed evapotranspiration into a spatially-distributed hydrological model.
This study resulted in the publication of Schuurmans et al. (2003). After her stud-
ies Hanneke worked for two years at the consultancy and engineering firm Grontmij
in Houten as advisor hydrology. She exchanged her permanent position to start as
PhD student at the department of Physical Geography of Utrecht University. Starting
January 2009, Hanneke will be working at Future Water, a research and advisory com-
pany that works throughout the world to combine scientific research with practical
solutions for water management, as researcher/advisor hydrology.

154


