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1	 Introduction

1.1	 Background

Water is the most essential substance on earth. More than a quarter of the world’s population or 
a third of the population in developing countries live in regions experiencing severe water scarcity 
(Seckler et al., 1999). The changing climate has an important impact on the spatial and temporal 
availability of water. It is anticipated that changes in the water cycle will be most significant 
in mountain areas where the current variability of rainfall, temperature and evapotranspiration 
is already high. The slow but steady disappearance of the glaciers in mountain areas will also 
have a significant impact on the discharge patterns of the rivers. The availability of water also 
has a strong impact on economic activities and potential of an area (Droogers et al., 2001). Our 
knowledge of how climate change will affect the availability of water is rather limited due to the 
complexity of the system, the lack of data and observations and model limitations. The use of 
advanced models driven by inputs from time series of earth observation sensors and from general 
circulation models and calibrated with field measurements may greatly enhance our insight in the 
pending impacts of global change. This thesis aims at increasing our knowledge about how water 
availability will change in the future and at developing practical modelling tools to predict water 
availability in mountain areas.

1.2	 Mountains and hydrology

Mountain areas cover a significant part of the world’s surface. Half of the world’s population 
depends directly or indirectly on the water resources provided by mountains. Mountains play an 
essential role in the survival of global ecosystems, have a profound impact on global and regional 
weather and climate patterns, and are an important producer of environmental services provided 
by mountain ecosystems (e.g. fresh water, biodiversity). Because of the altitudinal variation 
completely different climate regimes are found within short horizontal distances. At the same 
time mountains are a key element of the hydrological cycle, being the source of many of the 
world’s major rivers and a temporary sink of rainfall water. Mountains can be considered as water 
towers with increased specific yields for agriculture, seasonal delay of discharge through storage 
of water in the form of snow and ice, and decreased seasonal discharge variability in comparison 
to lowlands. Degradation of water resources in mountains therefore does not only affect 
the mountain population, but also the people in downstream areas. Mountainous regions are 
considered ‘the blackest of black boxes in the hydrological cycle’ with respect to data availability 
and understanding (Klemes, 1998).

It is predicted that climate change in mountain areas will lead to an intensification of the 
global hydrological cycle and can have major impacts on regional water resources (Arnell, 1999).
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Changes in the amount of precipitation and in its frequency and intensity directly affect the 
magnitude and timing of runoff and the intensity of floods and droughts. However, at present, 
specific regional effects are uncertain (IPCC, 2001). The impact of climate change on the water 
resources and agriculture in mountain areas could be significant. Regional changes in precipitation 
characteristics have the potential to affect mean runoff, frequency, and intensity of floods and 
droughts. Projected rise in temperature will lead to increased glacial and snow melt (IPCC, 2007), 
which would lead to increased summer flows in some river systems for a few decades, followed 
by a reduction in flow as the glaciers disappear and snowfall diminishes. A recent study even 
showed that climate models predict that temperatures rise faster at higher than at lower altitudes 
(Bradley et al., 2006). Barnett et al. (2005) argue in a global study that the Hindu Kush Himalaya 
(HKH) region is the most critical area in which increased melt will affect water supply in the 
decades ahead. A quantification of these effects as well as an evaluation of adaptation strategies 
remains however unknown.

1.3	 Objectives and approach

A systems approach to the interaction between the hydrological cycle, climate change and 
agriculture in mountain areas is largely lacking. Research on either of the components has been 
performed in the past but the integration is severely hampered by the lack of systematic data 
and/or tools in many cases. Three knowledge gaps can be identified which impede a successful 
implementation of a systems approach: (i) lack of fundamental data and knowledge about the 
spatial heterogeneity of climate variables in mountain, (ii) absence of a straightforward technique 
to calibrate simulation models in data scarce areas and (iii) the missing link between outputs of 
simulation models and policy changes.

The overall objective of this thesis is:

The development of a systems approach for mountain river basins leading to a better understanding of 
the hydrological functioning and to the development of tools supportive to decision makers

The thesis is structured across four different topics each addressing a specific research question. 
The four questions cover the entire range from understanding fundamental hydrological processes 
using remote sensing to the development of instruments supporting decision making. It should 
be acknowledged that each research question is a field of science by itself. Therefore a specific 
topic has been chosen that addresses the main research question. Each topic has resulted in the 
publication of a peer reviewed paper in an international journal, which will be presented in the 
subsequent chapters. The following research questions are addressed:

1.	 How can remote sensing support the quantification of processes of the hydrological balance 
in highly diverse topographic terrain?

2.	 Is it possible to make a reliable assessment of climate change and its effects at river basin scale 
in mountain areas?

3.	 Is it feasible to develop a methodology to reliably calibrate hydrological models in ungauged 
basins on the basis of remote sensing derived hydrological parameters?
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4.	 Is it possible to integrate economic and hydrological modelling and if yes, what incentives 
and economic instruments can best be applied to conserve water in upstream areas of water 
scarce river basins?

1.	 How can remote sensing support the quantification of processes of the hydrological balance 
in highly diverse topographic terrain?

Quantification of different components of the hydrological cycle in time and space is the most 
important objective of every hydrological simulation model. A precise understanding of the spatial 
and temporal behaviour of climate parameters in mountain areas is hampered by the lack of 
observational data (Beniston, 2003). Climate changes rapidly with height and over relative short 
horizontal distances climatological differences can be extremely large. A common error source 
of simulation models in mountain catchments therefore is the inaccurate climate representation. 
More specifically, this thesis focused on understanding precipitation patterns using time series 
analysis of Remote Sensed vegetation indices on the Tibetan Plateau. The main assumption 
in the research is that the behaviour of vegetation in semi-arid areas is strongly depending 
on precipitation. The greenness of the vegetation is measured by the Normalized Difference 
Vegetation Index and the spatial-temporal patterns are an important determinant of precipitation 
patterns. Previous studies have revealed that NDVI and rainfall seem to be linearly related in a 
specific range of rainfall conditions, generally between 200-1200 mm/y and 25-200 mm/month 
(Davenport and Nicholson, 1993; Malo and Nicholson, 1990).

2.	 Is it possible to make a reliable assessment of climate change and its effects at river basin 
scale?

Most applied climate change studies make use of the outputs of general circulation models 
(GCMs). The use of GCM climate data for modelling impacts on agriculture has been evolving 
over the past twenty years. Due to the complexity of these models the spatial resolution of the 
outputs is generally in the range of several hundred kilometres. This is too large for application at 
local scale, specifically in mountain areas. In order to obtain information at spatial scales, smaller 
than a grid-box in a GCM, it is necessary to ‘downscale’ the GCM information. Statistical 
downscaling uses a time series of local observations which overlap with the reference period 
of the GCMs (Wilby et al., 1998). This technique assumes conservation of mean and variance 
during the reference period. In this thesis the temporal and spatial temperature and precipitation 
patterns in the entire Brahmaputra basin are analyzed. Firstly, a historical analysis of the previous 
100 years is performed to detect trends in temperature and precipitation. Trends are explained 
by multiple regression analysis with a number of variables. Secondly, results of six GCMs are 
statistically downscaled for two scenarios up to the year 2100. Finally, the downscaled results in 
time and space are used to assess the hydrological effects of climate change in the basin. Earlier 
work focused mainly on downscaling GCM output at a specific location, but the combination of 
spatial and temporal downscaling and the link to basin scale effects on average and extreme river 
discharges is a new approach.

3.	 Is it feasible to develop a methodology to reliably calibrate hydrological models in ungauged 
basins on the basis of remote sensing derived hydrological parameters?
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Despite substantial progress in the development of hydrological models, the weakest part is the 
lack of data to apply and calibrate these models. Traditionally, these models are fine-tuned by a 
calibration process where observed hydrographs are compared to simulated ones. By adjusting the 
most sensitive and most unreliable input parameters the model can be calibrated and performs 
better in describing the current situation. Consequently is it also more reliable to explore water 
management options for the future. It is clear that in data scarce areas such an approach, which 
requires observed stream flow data, is impossible. In this thesis it is investigated whether it is 
possible to autocalibrate the hydrological model SWAT (Neitsch et al., 2001) on the basis of 
spatial evapotranspiration (ET) measurements derived from Remote Sensing using non-linear 
parameter optimization tools. Deriving ET from Remote Sensing is an expanding field and 
several operational tools, based on solving the surface energy balance, are available (Bastiaanssen 
et al., 1998; Su, 2002). To satisfactory test this approach the highly diverse, both in climate and 
land uses, mountainous Krishna basin in India is chosen.

4.	 Is it possible to integrate economic and hydrological modelling and if yes, what incentives 
and economic instruments can best be applied to conserve water in upstream areas of water 
scarce river basins?

A critical next step is to decide upon a strategy on how valuable knowledge, generated by these 
calibrated models, can be integrated with the decision making process. In this thesis an economic 
approach is integrated with the results of the hydrological simulation model. In agriculture there 
has been a shift from traditional subsidy and trade policies to conservation and environmental 
aspects of agriculture by providing farmers with incentives for increasing the supply of 
environmental services. This project will adopt an economic approach to model the supply of 
fresh water in mountain areas to illustrate this powerful concept. The minimum data approach 
developed by Antle and Valdivia (2006) has been used as a starting point. Antle and Stoorvogel 
(2006) show how the spatial heterogeneity of the physical system can be incorporated in this 
approach using simulation models. With some adaptation, this approach has proven to be suitable 
to model the supply of fresh water on the Tibetan plateau.

1.4	 Innovation and relevance

Using a systems approach to investigate the relationship between hydrology, climate change and 
agriculture using simulations models and remote sensing in mountain ecosystems and data poor 
environments is highly innovative.

The quantification of the spatial heterogeneity of climate variables in mountain areas using 
Remote Sensing is a new and challenging field of research. Satellites, which enable this type of 
work, have only recently been developed and systematic methodologies aiming at improving the 
performance of hydrological simulation models do not yet exist.

Downscaling of GCM data itself is not innovative; however the addition of a spatial 
component and the basin wide approach is new. Most existing methods downscale to a specific 
location (usually one meteorological station). The statistical approach to assess basin wide effects 
of climate change is currently not available, but is in high demand.
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Using nonlinear parameter estimation techniques in calibration of models is well investigated in 
hydrology. These algorithms however always use observed hydrographs. Using spatial information 
on evapotranspiration in the calibration method is a completely new approach..

The concept of payments for environmental services has received an increasing amount of 
attention over the years. However, the implementation of the concept is still in its infancy. The 
possibilities of the integration of physical models and the economic behaviour of farmers are 
therefore promising.

This thesis has contributed to the development of tools that allow a quantification of the 
effect of climate change on the water resources as well as the evaluation of an adaptation strategy. 
These tools are relevant for society and can guide policy makers in taking appropriate, science 
based action.

1.5	 Thesis outline

The research presented in this thesis puts emphasis on mountain catchments in Asia; two chapters 
focus on (part) of the Tibetan Plateau, one chapter focuses on the Brahmaputra basin covering 
part of China, India, Bhutan and Bangladesh and two papers analyse a sub-basin of the Krishna 
basin in the Indian state of Maharasthra. Detailed descriptions of the research catchments are 
presented in the subsequent chapters.

Each research question has resulted in a peer reviewed paper in a varying range of international 
scientific journals. The papers are, in modified form, included in this thesis as separate chapters:

•	 Chapter 2 is titled Understanding complex spatiotemporal weather patterns and land use 
interaction in the Tibetan Autonomous Region using harmonic analysis of SPOT VGT-S10 NDVI 
time series and is in its original form published in the International Journal of Remote Sensing 
(Immerzeel et al., 2005).

•	 Chapter 3 is titled Historical trends and future predictions of climate variability in the 
Brahmaputra basin and is accepted for publication in the International Journal of Climatology. 
(Immerzeel, 2007)

•	 Chapter 4 is titled Calibration of a distributed hydrological model based on satellite 
evapotranspiration and is accepted for publication in the Journal of Hydrology (Immerzeel 
and Droogers, 2007)

•	 Chapter 5 is titled Integrating remote sensing and a process-based hydrological model to evaluate 
water use and productivity in a south Indian catchment and is accepted for publication in 
Agricultural Water Management. (Immerzeel et al., 2007a)

•	 Chapter 6 is titled Can payments for ecosystem services secure the water tower of Tibet? and is 
accepted for publication in Agricultural Systems (Immerzeel et al., 2007b).

Finally chapter 7 forms the synthesis of the five chapters and presents the main conclusions of the 
thesis. This chapter may be read independently of the preceding chapters and provides a complete 
overview of and relation between the different research questions addressed.
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2	 Understanding precipitation patterns and 
land use interaction in Tibet using harmonic 
analysis of SPOT VGT-S10 NDVI time series

		�  Based on: Immerzeel, W.W., R.A. Quiroz & S.M. de Jong (2005), Understanding complex 
spatiotemporal weather patterns and land use interaction in the Tibetan Autonomous Region 
using harmonic analysis of SPOT VGT-S10 NDVI time series. International Journal of 
Remote Sensing 11, pp. 2281-2296.

Abstract

Time series analysis of Normalized Difference Vegetation Index (NDVI) imagery is a powerful 
tool in studying land use and precipitation interaction in data-scarce and inaccessible areas. The 
Fast Fourier Transform (FFT) was applied to the annual time series of 36 average dekadal NDVI 
images. The dekadal annual average pattern was calculated from 189 NDVI images from April 
1998 to June 2003 acquired with the VEGETATION instruments of the SPOT-4 and SPOT-5 
satellites in Tibet. It is shown that the first two harmonic terms of a Fourier series suffice to 
distinguish between land use classes. The results indicate that the highest biomass production 
occurs before the monsoon peak. Regression analysis with 15 meteorological stations has shown 
that the total amount of precipitation during the growing season shows the strongest relation 
with the sum of the amplitudes of the first two harmonic terms (R2 = 0.72). Inter-annual NDVI 
variation based on Fourier-transformed time series was studied and it was shown that, early in 
the season, the expected NDVI behaviour of the up-coming season could be forecast; if linked to 
food production this might provide a robust early warning system. The most important conclusion 
from this work is that harmonic time series analysis yields more reliable results than ordinary 
time series analysis.

2.1	 Introduction

In data-scarce environments time series analysis of the Normalized Difference Vegetation Index 
(NDVI) can provide valuable information in assessing spatial distributed linkages between climate 
properties, vegetative phenological cycles and rain-fed land use (Tucker 1979). The NDVI assumes 
that the difference between the near-infrared and red reflectance divided by the sum of both is a 
quantitative measure of photosynthetic activity (Prince 1991). Analysis of remotely sensed NDVI 
imagery has successfully been applied in a variety of fields such as drought assessment (e.g. Liu 
and Negron Juarez, 2001; Karnieli and Dall’Olmo, 2003), agricultural productivity (e.g. Groten 
and Ocatre, 2002; Hill and Donald, 2003), climate linkages (e.g. Srivastava et al. 1997; Wang et 
al. 2001; Ichii et al. 2002; Li et al. 2002; Gurgel and Ferreira, 2003; Roerink et al. 2003), spatial 
classifications (Azzali and Menenti, 2000) and cloud correction (Roerink and Menenti, 2000). 
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High temporal and preferably high spatial resolutions are prerequisite for these types of studies and 
image corrections are required to reduce the effect of atmospheric and geometric distortions on the 
NDVI values. Traditionally, NDVI images are derived from the Advanced Very High Resolution 
Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration 
(NOAA) satellite; however since 1998 the VEGETATION instruments aboard the SPOT-4 and 
SPOT-5 satellites provide another source of data with high spatial and temporal resolution.

The Tibetan plateau is characterized by harsh climatic conditions, and food production is 
mainly depending on fragile rangelands and irrigated crop production systems. Annual rainfall 
and temperature are the dominant determinants in ensuring food security in this sensitive 
landscape (Tashi et al. 2002). Scientific research into the relation between phenological cycles 
and climatic parameters in Tibet is scarce despite the fact that its understanding could be of great 
importance for early warning and food security assessments.

The lack of long time series of spatially homogenously distributed meteorological data 
can be compensated for by establishing a relation between average spatial NDVI patterns and 
meteorological parameters. The high temporal resolution and the up-to-date character of NDVI 
imagery enables and facilitates the prediction and spatial interpolation of climate parameters 
using the relation described above.

The present paper provides an insight into the complexity of relating NDVI derived 
parameters to precipitation and land use using Fourier analysis. The applicability of using the Fast 
Fourier Transform (FFT) algorithm is analysed for six different land use complexes. The relation 
between precipitation and the original and Fourier-transformed NDVI increments is analysed 
for four different meteorological stations with different land uses, and a relation is established 
between precipitation amounts during the growing season, total precipitation and different 
NDVI parameters. The applicability of Fourier-transformed NDVI time series in food security 
early warning is illustrated for the same four meteorological stations.

2.2	 Methodology

2.2.1	 Fourier analysis
Satellite measurements of land cover are often disturbed by noise caused by the atmosphere, 
sensor instability or orbit deviations. In order to derive interpretable characteristics from a noisy 
pattern, atmospheric transmission models, e.g. Modtran or 6S (Wolfe and Zissis 1993) and 
geocoding methods can be applied. Alternatively, Fourier analysis can be deployed. Fourier or 
harmonic analysis is a mathematical technique to decompose a complex static signal into a series 
of individual cosine waves, each characterized by a specific amplitude and phase angle. Several 
authors have successfully applied Fourier analysis in analysing time series of AVHRR NDVI 
imagery (e.g. Azzali and Menenti, 2000; Roerink and Menenti, 2000; Jabubauskas et al. 2001, 
2002; Moody and Johnson, 2001).

A process that repeats itself every t seconds can be represented by a series of harmonic 
functions whose frequencies are multiples of a base frequency. This series of harmonic functions 
is called a Fourier series. Assume the process can be described by a function F(t). The usual form 
of the Fourier series is (Pipes and Harvill, 1971):

� (1)
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The constant term in equation 1 is always equal to the mean value of the equation, e.g. the mean 
NDVI value in a series of satellite imagery and ω = 2πf0, where f0 is de base frequency. Equation 1 
can be written in different forms, following basic mathematical laws (Pipes and Harvill, 1971). In 
this research it was decided to transfer equation 1 to a form that only contains cosine terms which 
facilitates interpretation. Equation (1) can also be written as

� (2)

Equation (2) now has a desirable form with only cosine terms. The signal is decomposed in a 
series of cosine terms, each with its own amplitude (Cn) and phase angle (φn), and a constant term 
(A0/2). When a signal is described using Fourier analysis the values for the coefficients Cn need 
to be found. An algorithm to recover those coefficients from a discrete signal is the Fast Fourier 
Transform. In this case we are analyzing a discrete signal of 36 samples (NDVI images) with 
a fixed interval of 10 days and the Fast Fourier Transform (FFT) is used to find values for the 
Fourier coefficients Cn. The result of the FFT is a complex vector, and its real part contains the A 
coefficients and its imaginary part contains the B coefficients of equation (1). The coefficients Cn 
of equation (2) can be derived from A and B by calculating the length of the vector. There are a 
few limitations to the FFT related to the underlying mathematics. In the first place in order to 
correctly recover a signal from the Fourier transform of its samples, the signal must be sampled 
with a frequency of at least twice its bandwidth (Nyquist frequency) and in the second place 
only static waves can be analyzed using FFT, which means that both amplitude and phase of the 
individual terms must be constant over time.

The frequencies, which are recovered by the FFT are given by

� (3)

where fk is de frequency of the kth term, n is the number of samples and fs is de sampling 
frequency. In this case the smallest frequency, which can be recovered from the time series is 
2.778 x 10-3 (1/36 x 1/10), which is equal to a period of 360 days.

The total variance of the Fourier series can be calculated from the amplitude values (Davis, 
1986) through:

� (4)

The percentage variance of each individual term can then be calculated by dividing its contribution 
by the total. Another recently evolved method to analyse temporal behaviour in a spatial and 
temporal domain is the wavelet transform (Prasad and Iyengar, 1997). The clear advantage of 
using the wavelet transform over the Fourier transform is that it allows to decompose time series 
of images and/or the spatial domain of images in various directions and at various levels of scale; 
it also allows better detection of frequency and amplitude changes in either domain (Zhu and 
Yang, 1998; Carvalho, 2001; Epinat et al., 2001). However, the wealth of information and wavelet 
coefficients are sometimes a bit more difficult to explain on the basis of physiographic landscape 
information.

n

n
nn tnCAtF

1

0 )cos(
2

)(

sk f
n
kf

n amplitudeTotalVariance
1

2

2
)(



26

2.2.2	 Datasets
A dataset containing 189 10-day composite NDVI images derived from the SPOT-4 and SPOT-5 
VEGETATION instruments was used, spanning the period April 1998 to June 2003. A land use 
map was used to average NDVI values and a set of longterm average precipitation values from 15 
meteorological stations across Tibet was used to relate precipitation to NDVI increments.

From April 1998 to January 2003 data from the VGT1 sensor aboard the SPOT-4 satellite 
were used and from February 2003 data from the VGT2 sensor aboard the SPOT-5 satellite were 
used. Both sensors have the same spectral and spatial resolution. The red spectral band (0.61-0.68 
μm) and the near-infrared (NIR) spectral band (0.78-0.89 μm) were used to calculate the NDVI 
(NIR- RED/NIR + RED) and the imagery had a spatial resolution of 1 km. The synthesized 
preprocessed S10 NDVI product was used, which is a geometrically and radiometrically corrected 
10-day composite image. The periods were defined according to the legal calendar: from the 1st to 
the 10th; from the 11th to the 20th; and from the 21st to the end of each month.

The land use map was derived from the global land cover characteristics (GLCC) database, 
which was jointly generated by the US Geological Survey (USGS), the University of Nebraska-
Lincoln (UNL) and the European Commission’s Joint Research Centre ( JRC). It has a spatial 
resolution of 1 km and 24 different land use classes are distinguished. The map is based on data 
acquired with the AVHRR from April 1992 to March 1993. A formal accuracy assessment was not 
conducted for this land cover dataset; however the following validation exercise was conducted. 
To determine the true cover type, three interpreters independently interpreted either Landsat 
Thematic Mapper (TM) or SPOT images covering each sample. In order for the AVHRR pixel 
to be called correct, the majority of the three interpreters (i.e. two of the three) had to agree on 
the land cover type, as interpreted from Landsat TM or SPOT data, for the sample point. If the 
land cover type could not be determined the sample was discarded. It was found that 73.5% of the 
pixels were correctly classified (Scepan, 1999).

Long-term average precipitation values for 15 meteorological stations across Tibet were 
obtained from the Chinese Academy of Sciences (CAS) and were used to relate NDVI 
increments with precipitation.

2.2.3	 General
A time series of 189 1 km resolution SPOT VGT-S10 dekadal (defined as a 10-day period) NDVI 
images from April 1998 to June 2003 was processed and analysed for this study.

The region of interest was extracted using CROP-VGT software, and the format was 
converted in ArcView GIS. The NDVI was calculated from an 8-bit digital number (DN) to 
NDVI values between 0 and 1 according to the following specified equation:

� (5)

The datasets were checked and corrected for a DN between 0 and 3 in order to prevent negative 
NDVI values, which complicates the application of the FFT.

Clouded pixels in the image that needed correction were linearly interpolated using the 
preceding and subsequent image. The algorithm was only applied when both preceding and 
subsequent image pixels were cloud-free. Dekadal averages, based on either five or six years, 
were calculated in ArcView, which resulted in one annual average NDVI pattern captured in 36 

DNNDVI 004.01.0
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images. The GLCC grid was reprojected to the same projection as the NDVI imagery, and the 
area of interest was extracted.

Firstly, NDVI characteristics per land use complex were studied. For each land use class the 
average NDVI value was determined for each decadal image in ArcView GIS. A discrete FFT was 
performed for the main land uses in Tibet using the mathematical software package MathCad. 
Based on the calculated variance in each frequency a decision was made on the number of cosine 
terms to be included. The same number of terms was used for all land uses in order to facilitate 
comparison between the classes. NDVI patterns per land use were interpreted.

Secondly, the relation between precipitation and NDVI increment was analysed. For four 
different meteorological stations from different agro-ecological zone-land use complexes, 
temporal patterns of precipitation, based on long-term averages, were related to original and 
Fourier-transformed NDVI patterns.

A regression analysis using data from 15 meteorological stations was performed between total 
annual precipitation. Total precipitation during the growing season was related to a number of 
NDVI pattern characteristics:

•	 the constant term in equation (2) (A0/2);
•	 the amplitude of the first harmonic term (A1);
•	 the amplitude of the second harmonic term (A2);
•	 the sum of the amplitudes of the first two harmonic terms (A1 +A2);
•	 the difference between the maximum and minimum of the original NDVI.

The length of the growing season was determined using a modified version of the methodology 
described by Groten and Ocatre (2002). The following rules were applied in the determination of 
the start and end of the growing season:

•	 the start of the growing season was determined by selecting the first dekad (i.e. 10-day period) 
after March 1 that was followed by two consecutive dekads with positive NDVI increments 
based on the average Fourier-transformed NDVI time series;

•	 the end of the growing season was determined by selecting the first dekad after June 1 that 
was followed by two consecutive dekads with negative NDVI increments based on the average 
Fourier-transformed NDVI time series.

Eventually the inter-annual Fourier-based NDVI variation was analysed for four different 
meteorological stations and its applicability for food security early warning was assessed.

2.2.4	 Study area
Tibet is situated in the south-western part of China between 27.20º and 36.70º latitude and 78.20º 
and 99.10º longitude and borders India, Nepal and Bhutan. The total area is over 1.2 million 
square kilometres. The elevation ranges from 700m above sea level (asl) in the south-east to the 
summit of Mt. Everest at 8848masl, with an average elevation over 4000masl. Seven different 
agro-ecological zones, mainly determined by climate and elevation, can be distinguished (Tashi 
et al. 2002).

These zones vary from a hot humid agro-forestry pastoral zone in the south-east to a cold 
dry pastoral zone in the north-west. The relation between the physiogeographic units and the 
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agro-ecological zones is evident (Leber et al., 1995). The main agricultural practices are barley 
production and yak herding. The land use of Tibet (USGS GLCC) is shown in Figure 2.1.

Tibet has only about 230,000 ha of cropland and most of it is concentrated in the Shigatse, 
Changdu and Lhasa prefectures in the south-eastern part of the country. Barley is the main crop 
and accounts for 50% of the cropping area. Wheat is the second major crop of (20% of the total 
cropping area), and both spring wheat and winter wheat are cultivated. Peas, potatoes, forage 
crops, oils seeds, corn and millet are also grown, but on a much smaller scale. Big gaps between 
actual and potential production can be noted. In recent years a significant increase in greenhouse 
vegetable cultivation has occurred. Most of the agriculture is concentrated along the rivers and 
small-scale canal irrigation systems are used. Tibet has extensive rangelands (77 million ha), part 
of which is irrigated (4.4 million ha). Yaks, cattle, piannius (a crossbreed between yak and cattle), 
goats and sheep are the dominant grazing animal species (Qiumei 2003). Overgrazing is a serious 
problem and many rangelands face serious degradation (Tashi et al., 2002).

There is a clear demarcation between the dry and wet season. At least 80% of the total 
precipitation (~400-600 mm/yr) falls between June and September, mostly during the night, 
resulting in a short growing period. Potential evaporation is high (~1600-2000 mm/yr) due to 
low relative humidity, high wind speeds and radiation. Average temperature ranges from 7 to 
15 ºC in the warmest month ( July) to 21 to 27 ºC in the coldest month ( January). Temperature is 
therefore also a major determinant for crop production. A decreasing trend in both temperature 
and precipitation is observed from south-east to north-west.

70
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Barren or Sparsely
Cropland/Grassland Mosaic
Cropland/Woodland Mosaic
Deciduous Broadleaf Forest
Deciduous Needleleaf Forest
Dryland Croplad and Pasture
Evergreen Broadleaf Forest
Evergreen Needleleaf Forest
Grassland
Herbaceous Wetland

Land use
Irrigated Cropland and Pasture
Mixed Forest
Mixed Shrubland/Grassland
Savanna
Shrubland
Snow or Ice
Urban and Built-up Land
Water Bodies
Wooded Tundra
Wooded Wetland

300 km0

Figure 2.1 USGS global land cover characteristics for Tibet.
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2.3	 Results

2.3.1	 NDVI patterns for different land uses
Figure 2.2 shows the annual NDVI pattern over 12 months based on the decadal images from 
April 1998 to June 2003. A clear annual NDVI trend is visible in Tibet. The south-east part of 
Tibet, characterized by a relatively warm climate, shows the highest NDVI values (0.2-0.5) and 
the largest variation, while the north-western dry and cold area is characterized by very low 
average NDVI values (0-0.15) with very little variation throughout the year. The growing season 
in general is short and ranges from approximately four months in the eastern part to hardly any 
growing season at all in the north-western part of Tibet.

Figure 2.3 shows a frequency diagram for dry croplands. The left-hand vertical axis scales the 
amplitude in NDVI values for each cosine term; the right-hand vertical axis shows the cumulative 
percentage explained variance (equation (3)) is shown; the period (1/frequency) of each cosine 
term is shown on the horizontal axis. The cosine functions with an annual and bi-annual period 
are by far the most important in the signal. These first two harmonic terms account for 94.2% 
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No Data

0.1 - 0.15
0.15 - 0.2
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Figure 2.2 Average annual NDVI pattern for Tibet derived from dekadal images from April 1998 
to June 2003.
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of the total variance. However, it should be noted that there are substantive contributions of 
the cosine waves with periods of 72 and 60 days, explaining 1.6 and 1.2% of the total variance, 
respectively, indicating the presence of a temporal phenomenon with a period of approximately 
two months. The cumulative percentage of the explained variance is used to determine the 
number of Fourier terms to be included in the modelled signal. In this case we assume that the 
information contained in the first two harmonic waves is sufficient to be correlated with climatic 
parameters.

Figure 2.4 shows the original NDVI signal and the modelled Fourier signal including one, two 
and six different cosine waves for dry cropland areas. The additive term (A0/2) from equation (2) 
equals 0.23, which is exactly the average NDVI value for the whole year. The original NDVI wave 
has a clear annual period, and shows two different peaks around 1 August and 1 October. If only 
one Fourier term is used, most of the annual variation is accounted for (85.2%), however the phase 
difference during the annual lowest NDVI around March/April is obvious. When two Fourier 
terms are taken into account (94.2 % of variance explained) this phase difference is no longer 
apparent. It is only when six Fourier terms are used that the two smaller peaks are modelled 
well. These smaller peaks relate to cosine waves with a period of 72 and 60 days in the frequency 
diagram (Figure 2.3). This strange peak behaviour is probably caused by the fact that two different 
crops (barley and wheat) fall within the same land use category (dry croplands) but they have a 
different crop calendar resulting in the two different peaks.

Figure 2.5 shows the sum of the first two harmonic terms of six different land uses. The figure 
clearly illustrates the difference between land uses, and the fact that the NDVI response is a 
complex mixture of land use and climatic variables. The mixed shrubland/grassland, wooded 
tundra, grassland and the dryland cropland/pasture land uses show a very similar pattern, 
although the magnitudes of the classes differ significantly. All exhibit an NDVI peak around the 
first decade of August. The evergreen needle forest and the irrigated cropland and pasture show 
a different pattern and gradually peak around the first decade of November. These land uses are 
obviously less dependent on precipitation, and their annual NDVI pattern might be explained by 
temperature, radiation and vegetation phenology rather than precipitation. The other land uses 
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are likely to show a clear relation with annual precipitation patterns. NDVI responds to rainfall 
with a certain time lag. Land use with higher soil moisture availability will exhibit a longer time 
lag. In the case of irrigated crops, water availability is ensured through irrigation rather than 
precipitation. For evergreen needle forest, the relatively higher water availability is the result of a 
dense and deep root network and a larger buffer capacity because of its higher biomass.

2.3.2	 NDVI behaviour in relation to precipitation
Ideally, a quantitative relation between the NDVI and precipitation, valid throughout the year 
and for every land use, should be found. Figure 2.5 indicates that the Fourier-transformed NDVI 
curve can only partially be explained by precipitation (80% of the rainfall occurs between June 
and September), and that the effects of land use are strongly interwoven with climatic parameters. 
Although the Fourier-transformed NDVI curve for different land use types may not be directly 
related to annual precipitation patterns, the NDVI increments show the immediate effect of 
precipitation.
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Figure 2.4 Modelled and original NDVI curves for dryland cropland.
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Figure 2.6 Relation between NDVI increment and precipitation for four meteorological stations.
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Figure 2.6 shows the average temporal relation between NDVI dekadal increments (original and 
Fourier-transformed) and monthly precipitation (based on long-term averages) for four different 
meteorological stations with different land uses. Positive incremental NDVI values indicate growth 
and an increase in photosynthetic activity. The advantage of the Fourier-transformed NDVI over 
the original NDVI is evident. All stations respond immediately to the first precipitation in April 
and exhibit positive incremental values from that date onwards. All stations show an incremental 
peak before the precipitation peak, indicating that biomass production is maximized before the 
peak of the monsoon. However, the total amount of green biomass is maximal at that point in 
time when the increments change sign from positive to negative. The gap between the two peaks 
is the largest for evergreen needleleaf forest. The cropland grassland mosaic land use exhibits the 
largest dekadal incremental values (~0.05) and also has the highest precipitation peak (~140 mm/
month). Shrubland (Pulan) shows the smallest variation in monthly precipitation amounts and 
dekadal NDVI increments. Evergreen needleleaf forest has a prolonged growing season compared 
to the other land uses.

The results of the Fourier analysis, such as the amplitudes and phase angles of the constituent 
cosine waves, contain information that could be related to variations in precipitation. Fourier 
analysis provides an insight into the components of a static wave and the outputs of a Fourier 
analysis can only be related to information valid for the whole signal without a temporal 
dimension. In other words, the outputs can only be related to, for example, total annual 
precipitation or total precipitation during the growing season. This is shown in the regression 
analysis with 15 meteorological stations between total annual precipitation and total precipitation 
during the growing season and several NDVI parameters pertaining to the whole signal. Table 
2.1 shows R2 values of the regression analysis. In both the total precipitation and the growing 
season precipitation the R2 values are the highest for the sum of the amplitudes of the first two 
harmonic terms, followed by the amplitude of the first harmonic term and then the amplitude 
of the second harmonic term. In both cases the constant term (A0/2) and the difference between 
maximum and minimum of the original NDVI correlate poorly to both total and growing season 
precipitation levels. Slightly higher regression coefficients were obtained when the total amount 
of precipitation during the growing season was used. The highest value of R2, 0.72, was found in 
relating the growing season precipitation to the sum of the amplitudes of the first two harmonic 
terms.

2.3.3	 Inter-annual NDVI behaviour
The average NDVI pattern was analysed for different land uses, and the average Fourier-
transformed NDVI increments were related to long-term averages of precipitation. Recent 

Table 2.1 Regression coefficients (R2) of NDVI parameters and precipitation.

Type R2

Total annual precipitation Total precipitation growing season

A0/2 0.46 0.47
A1 0.66 0.71
A2 0.62 0.61
A1+A2 0.69 0.72
Max (NDVI) – Min (NDVI) 0.53 0.38
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Figure 2.7 Inter-annual variation of Fourier-transformed NDVI curves for four meteorological 
stations.
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homogeneously distributed rainfall data are not available for Tibet; however, the near-real-time 
availability of NDVI imagery could be an appropriate means for monitoring vegetation and crop 
development.

Figure 2.7 shows the Fourier-transformed NDVI signal for 2002 and the average Fourier-
transformed signal for the period 1998-2003, for the same four meteorological stations. For Anduo 
and Cuona no difference in the length of the growing season is observed. In Pulan the growing 
season in 2002 is one dekad shorter and ends earlier, while in Dangxiong the growing season 
commences one dekad later and ends one dekad earlier. At the onset of the growing season in 
Pulan the NDVI lags the average ‘normal’ NDVI curve, but this is compensated throughout the 
growing season and the peak NDVI is even somewhat higher than normal; the same, but to a 
lesser extent, is valid for Anduo. The length of the growing season and any deviation from the 
average situation seriously affects food productivity.

2.4	 Discussion

The length of the growing season was determined using a modified version of the methodology 
developed by Groten and Ocatre (2002). The decision rule for the start is based on the 
identification of a dekad followed by two dekads with positive increments after a certain first 
possible date of the growing season. For the end of the growing season a similar decision rule was 
defined. This work used the same methodology, except that a Fourier-transformed NDVI time 
series was used – given the noisy pattern of the original NDVI increments (Figure 2.6), it was 
hoped that this could improve the methodology described by Groten and Ocatre (2002).

Ideally, a quantitative relation between NDVI increment and precipitation valid for every land 
use and climatic zone should be found. Given the fact that solely longterm average precipitation 
data (from a different period than the NDVI imagery) are available, total amounts of precipitation 
have been correlated with NDVI characteristics. However, if a sufficiently long time series with 
a number of homogeneously distributed meteorological stations covering the same time span as 
the imagery were available, a more direct relationship could be found. Such a relation could be of 
great importance in, for example, the spatial interpolation of precipitation patterns. This would 
require insight into the change of amplitudes and frequencies in spatial and temporal domains, 
for which application of the wavelet transform might be the appropriate methodology. Such a 
method can be applied not only to precipitation, but also for estimations of spatial patterns of 
actual evaporation.

The Fourier-transformed NDVI has also proven to be valuable in analyses of inter-annual 
NDVI variations. By comparing the Fourier-transformed NDVI patterns of a specific year to a 
long-term average, anomalies in the growing season can easily be detected. A delayed onset of 
the growing season may, for example, indicate lower yields or biomass production later in the 
year. Establishing such Fourier-transformed NDVI patterns and linking them to food production 
might provide a robust early warning system since very early in the season the expected behaviour 
of the up-coming season could be forecast.
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2.5	 Conclusion

Analysis of NDVI time series proves to be a valuable tool to study complex weather patterns in 
inaccessible and data-scarce regions. Application of the FFT facilitates the extraction of valuable 
and interpretable characteristics from the time series, which are usually disturbed by atmospheric 
noise, sensor instability or orbit deviations. Although it is evident that an annual NDVI pattern 
is the complex resultant of plant phenology and a number of climatic determinants, the results 
presented in this paper have shown the potential of relating Fourier-transformed NDVI 
characteristics to both land use and precipitation.

Inclusion of only two harmonic terms in the Fourier series suffices for Tibet, and in the 
case of dry croplands it was found that 94.2% of the variation in the time series was explained 
through the first two harmonic terms. However, it also showed that the first two harmonic terms 
usually relate to natural phenomena with an annual and bi-annual periodicity. If phenomena with 
a higher frequency are important in the signal, more harmonic terms should be included in the 
Fourier series. This could be of great importance in areas with higher rainfall regimes than that of 
the Tibetan plateau or if dual-cropping patterns are prevalent.

Analysis of the average Fourier-transformed NDVI patterns of six different land uses has 
shown clear separating power, indicating the potential of classification based on high temporal 
resolution as opposed to high spectral resolution. The use of a different number of Fourier terms 
to identify differential phenologies and/or cropping seasons might improve our capability of 
resolving crops or species in mixed systems where the spatial resolution does not suffice. These 
conclusions match the results found for southern Africa by Azzali and Menenti (2000).

Precipitation-dependent land use/vegetation (dryland cropland/pasture, mixed shrubland/
grassland, grassland and wooded tundra) exhibits a clear single peak with different magnitudes 
roughly following the monsoon cycle. Vegetation/land use that is less dependent on precipitation 
(evergreen needleleaf forest and irrigated cropland and pasture) does not show this behaviour and 
its pattern must be explained by other determinants such as temperature constraints during the 
winter. Fourier-transformed NDVI increments and precipitation show a clear positive relationship 
for all four meteorological stations studied. FFT NDVI increments are easier to interpret than 
the original noisy NDVI increments. NDVI increments increase as soon as the first precipitation 
falls; in some cases they increase even earlier than the first rainfall, indicating the presence of 
an internal biological calendar. This is most prevalent for evergreen needleleaf vegetation and 
might be a response to temperature and light triggering growth before the first rains. Initial water 
availability in that case is provided by the groundwater accessed though a dense and deep rooting 
network. The maximum biomass production occurs before the precipitation peak, and the total 
amount of biomass is maximized at the peak of the monsoon at the moment the increments 
become negative again. Based on this analysis it can be concluded that a relation exists between 
the total amount of precipitation during the growing season and the amplitudes of the harmonic 
terms of the Fourier analysis, which are a measure for the total increment.

Regression analysis using 15 meteorological stations across the Tibetan plateau for total annual 
precipitation and total precipitation during the growing season and several NDVI time series 
derived parameters has shown that a good relation exists between the different variables. The 
highest R2 (0.72) was found between the total precipitation during the growing season and the 
sum of the amplitudes of the first two harmonic terms. The smallest R2 (0.38) was found between 
the total growing season precipitation and the range of the original NDVI. Taking into account 
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all analysed NDVI characteristics the total growing season precipitation shows a slightly better 
correlation than the total annual precipitation. This is to be expected as it is the growing season 
precipitation causing increments in the NDVI, which is reflected in the eventual amplitudes.
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3	 Historical trends and future predictions of 
climate variability in the Brahmaputra basin

		�  Based on: Immerzeel, W.W. (2007), Historical trends and future predictions of climate 
variability in the Brahmaputra basin. International Journal of Climatology (in press)

Abstract
An innovative approach is developed and presented to assess historical climate variations 
and to quantify future climate change for the entire Brahmaputra basin. Historical trends in 
temperature and precipitation are analysed from 1900 to 2002 for the Tibetan plateau (TP), the 
Himalayan belt and the floodplains (FP) using a global 100 year monthly high resolution dataset. 
Temperature patterns are consistent with global warming and out of the 10% warmest years from 
1900 to 2002 six occurred between 1995 and 2002. No clear trends in precipitation were found 
and annual precipitation in the basin is mainly determined by the strength of the monsoon. 
Regression analysis is used to further explain monsoon precipitation. A significant inverse relation 
is found between air temperature differences between the FP and the TP and the strength of the 
monsoon, whereas the El Niño Southern Oscillation teleconnection does not have a prominent 
role in explaining variation in monsoon precipitation. Simulation results of six general circulation 
models are statistically downscaled to the spatial resolution of the observed dataset for two 
future storylines. The analysis predicts accelerated seasonal increases in both temperature and 
precipitation from 2000 to 2100. The largest changes occur on the TP and the smallest on the 
FP. Multiple regression analysis shows a sharp increase in the occurrence of average and extreme 
downstream discharges for both storylines. The strongest increases are projected for the monsoon 
season and the largest threat of climate change lies in the associated flooding in the densely 
populated FP.

3.1	 Introduction

It is predicted that climate change will lead to an intensification of the global hydrological cycle 
and can have major impacts on regional water resources (Arnell, 1999). Changes in the total 
amount of precipitation and in its frequency and intensity directly affect the magnitude and 
timing of run-off and the intensity of floods and droughts. However, at present, specific regional 
effects are uncertain (IPCC, 2001).

The Himalayan range and the Tibetan plateau (TP) are the source of major river systems 
in Asia. The impact of climate change on the water resources of the region will be significant. 
Increases in evapotranspiration (ET) combined with regional changes in precipitation 
characteristics have the potential to affect mean run-off, frequency, and intensity of floods and 
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droughts. Run-off in the Himalayas for example is affected by snow cover, the monsoon and 
cyclones. All of which may be affected by climate change (IPCC, 2001).

This study is focusing on the Brahmaputra basin originating mainly in the eastern part of 
the Himalayas (Figure 3.1). The Brahmaputra is a major transboundary river and drains an area 
of around 530,000 km2. The basin is located within four different countries: China (50.5%), India 
(33.6%), Bangladesh (8.1%) and Bhutan (7.8%). The Brahmaputra springs from a glacier in the 
Kailash range in Tibet (China) at an elevation of 5300 meters above sea level (m.a.s.l.), has a 
length of 2900 km and after its confluence with the Ganges, the Brahmaputra flows into the Bay 
of Bengal. Average discharge of the Brahmaputra is approximately 20,000 m3/s. The climate of 
the basin is monsoon driven with a distinct wet season from June to September, which accounts 
for 60-70% of the annual rainfall.

Three physiographic zones are distinguished in this study, because it is expected that each of 
these three physiographic units will respond differently to the anticipated climate change. First 
of all, the TP, covering 44.4% of the basin, with elevations of 3500 m and above in the north of 
the basin. Secondly the Himalaya belt (HB), covering 28.6% of the basin, with elevations ranging 
from 100 m.a.s.l. to 3500 m.a.s.l. Finally the agricultural floodplains (FP), covering 27.0% of the 
basin, of India and Bangladesh with elevation up to 100 m.a.s.l., of which 40% is flood prone.
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Figure 3.1 Overview Brahmaputra basin; the digital elevation model, location of the CRU TS2.1 
grid points of the three physiographic zones, the discharge station at Bahadurabad and country 
boundaries.
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Figure 3.2 shows the seasonal climate normals from 1961 to 1990 for the TP, the HB and 
the FP in a boxwhisker plot. The plot shows the median, the upper and lower quartiles and the 
caps at the end of the box show the minimum and maximum. The TP is the coldest with average 
temperatures ranging from −10 °C in winter to 7 °C in summer. Winter temperatures in the HB 
fluctuate around 2 °C, while summer temperatures reach values of approximately 15 °C on average. 
The FP is the warmest of the three zones with winter temperatures around 17 °C and summer 
temperatures on average as high as 27 °C. For all zones the seasonal temperature variation is 
largest in winter and smallest in summer. The annual rainfall is concentrated in the monsoon 
months June, July, August and September ( JJAS) in all zones. The TP located in the rain shadow 
of the HP is the driest zone in the basin (734 mm/year), while the FP is the wettest with an 
annual precipitation of 2354 mm. The HB has an average annual precipitation of 1349 mm.

Mountains are a major climate determinant and large scale orography has a pronounced 
effect on atmospheric flow patterns. A precise understanding of the spatial and temporal 
behaviour of climate parameters and their projected change in mountain areas is hampered by 
the lack of observational data in complex topographic terrain and the difficulties to represent 
large mountain ranges in general circulation model (GCMs) (Beniston et al., 1997). Especially 
predicting changes in precipitation patterns in mountains pose additional challenges due to the 
inadequate representation of the local effects of topography on precipitation in most GCMs 
(Beniston, 2003). In addition to this, there is an intricate set of natural climate determinants 
that are known to influence the Asian monsoon; the El Niño – Southern Oscillation (ENSO) 
condition and the Eurasian snow depth levels. The relation between the monsoon and ENSO 
has been explored by numerous studies (Ropelewski and Halpert, 1989; Walker, 1924; Webster et 
al., 1999). The general consensus is that during El Niño years anomalous subsidence suppresses 
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convection over South Asia and this results in a weaker monsoon (Krishna Kumar et al., 1999). 
Snow pack levels, specifically on the TP, also play a critical role in the variation in inter-annual 
precipitation. Upper-tropospheric air temperatures above the TP are among the warmest on the 
planet because of the heating of the elevated land with altitudes of over 3500 m. The troposheric 
temperature gradient between the TP and the Indian Ocean is shown to be associated with the 
Indian monsoon rainfall (Fu and Fletcher, 1985). The snow depth on the TP affects the land 
surface thermodynamics and reduces this thermal gradient. Shaman et al. (2005) report an inverse 
relationship between the spring snow depth on the TP and monsoon precipitation in Bangladesh. 
This does however not necessarily mean that these factors have influence on the precipitation in 
the entire Brahmaputra basin and this is subject of this study.

Climate change will have effects on the hydrology of the Brahmaputra basin. Large parts 
of the basin depend on the Brahmaputra discharge for irrigation while the lower part of the 
basin is vulnerable to flooding. Especially Bangladesh suffered severe flooding in 1987, 1988 and 
1998 (Mirza, 2003). Climate change will affect the discharge characteristics significantly and will 
lead to more severe and more frequent flooding (Warrick et al., 1996) both through alterations 
in climatic conditions and sea level rise. Projected rise in temperature will lead to increased 
glacial and snow melt, which could lead to increased summer flows in some river systems for a 
few decades, followed by a reduction in flow as the glaciers disappear and snowfall diminishes. 
Satellite records have shown a decrease in snow cover extent of about 10% in the Northern 
hemisphere related to temperature increases in spring and summer since 1966 (Robinson, 1997, 
1999). To what extent increased glacial and snow melt influence stream flow is varying strongly in 
space. Barnett et al. (2005) argue in a global study that the Hindu Kush Himalaya (HKH) region 
is the most critical area in which increased melt will affect water supply in the decades ahead. 
Within the Himalayan region there are however large differences in the contribution of melt 
water in total annual run-off. Rees and Collins (2006) show that the melt water component in 
the total run-off rapidly decreases from west to east. Summer precipitation declines from east to 
west. In the western Himalayas in winter at high elevations westerly winds provide precipitation 
while at lower altitudes arid conditions prevail. Total annual precipitation follows the east to 
west gradient. Therefore stream flow in basins in the west is for a major part determined by 
melt water while in the east run-off generated by monsoonal precipitation is the most important 
constituent of downstream discharge. Rees and Collins (2006) also argue that glaciers experience 
winter accumulation and summer ablation in the west, but there is predominantly synchronous 
summer accumulation and summer melt in the east. Singh and Bengtsson (2004) confirm the 
strong dependence of stream flow on melt water in basins originating in the western part of the 
basin and stress the difference in melt water contribution to stream flow between rain fed, snow 
fed and glacial fed river basins. The Brahmaputra basin is located in the eastern Himalayas and 
river discharges are predominantly rain fed.

Basin wide quantified assessments of climate change and its effects in the entire drainage 
area of the basin are scarce and not straightforward. Previous work indicates that specifically the 
TP is extremely sensitive to global climate change (Liu and Chen, 2000). A complete overview 
of the functioning of the Brahmaputra basin including the impact of climate change on runoff is 
lacking so far. Therefore this paper will focus on (1) analysis of historical trends in precipitation 
and temperature, (2) future trends in precipitation and temperature, and (3) the impact of climate 
change on hydrology.
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3.2	 Data and methods

Temperature and precipitation patterns were obtained using the most accurate global database 
currently available: the climate research unit (CRU) dataset. The latest updated version, referred to 
as the CRU TS 2.1 dataset in this paper, is used to reconstruct the temperature and precipitation 
patterns in the basin from 1901-2002 (Mitchell and Jones, 2005). The CRU TS 2.1 is a set of 
monthly climate grids which are constructed for nine climate variables and interpolated onto 
a 0.5° grid and provide best estimates of month-by month variations. The raw station data are 
derived from seven different sources and are corrected for in-homogeneities using a modified 
version of the Global Historical Climatology Network (GHCN) method (Peterson et al., 1998). 
The centre of the grid cells of the CRU TS 2.1 dataset is shown in Figure 3.1. The interpolated 
value of a certain grid cell depends on a number of surrounding stations within a correlation decay 
distance. These distances are 1200 km and 450 km for temperature and precipitation respectively. 
This does not mean that all stations within this range actually influence the gridded value but it 
refers to the number of stations with information upon which the grid-box may draw, if necessary 
(New et al., 2000). The average number of stations in the basin within the correlation decay 
distance for each grid cell for precipitation and temperature are shown in Figure 3.3. Although 
this is the most accurate dataset available, the figure shows that some caution is required when 
interpreting data between 1901 and 1950 and after 1995.
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Figure 3.3 Average number of meterological stations within the correlation decay distance for 
precipitation (top figure) and temperature (bottom figure).
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Estimating future precipitation patterns requires understanding of current and past causes of 
precipitation processes. It is expected that precipitation in the basin is related to ENSO conditions 
and the thermal gradient between the FP and the TP. To explain precipitation patterns linear 
regressions were performed to identify relations between the monthly JJAS monsoon precipitation 
in the TP, the HB and the FP and the Southern Oscillation Index (SOI) (Können et al., 1998), 
the NINO3 index (Rayner et al., 2003) and the temperature difference between the FP and the 
TP (ΔTFP-TP).

GCM monthly precipitation and temperature fields from six different models from 2002 to 
2100 are used to analyse the A2 and B2 storylines (Parry, 2002). GCM data were downloaded 
from the IPCC Data Distribution Centre (IPCC-DDC, http://ipcc-ddc.cru.uea.ac.uk/).

Table 3.1 shows that the different GCMs have a varying spatial resolutions typically in the 
range of three degrees. In order to capture basin scale variations in temperature and precipitation 
and the large-scale behaviour of the GCMs a statistical downscaling procedure is applied. The 
GCM outputs are downscaled to the resolution of the CRU TS 2.1 dataset (0.5° by 0.5°) using a 
similar procedure as Bouwer et al. (2004). This method ensures conservation of the variability and 
mean during the reference period.

The average seasonal anomalies (2061-2090 compared to 1961-2000) in precipitation and 
temperature are determined at the centres of the CRU TS 2.1 grid cells. These anomalies are 
spatially interpolated to a resolution of 0.05° using a spline tension interpolator with weight one 
using four CRU TS 2.1 points. This interpolator ensures a smooth (continuous and differentiable) 
surface, together with continuous first derivative surfaces (Franke, 1982). This approach is 
appropriate to assess spatial climate patterns at basin scale.

Daily discharge data at the Bahadurabad gauging station (Figure 3.1) from 1956 to 1993 were 
analysed using a multiple regression based rainfall-run-off model. Average monthly hydrographs 
in combination with monthly precipitation were assessed on the contribution of snow melt to 

Table 3.1 Overview of the GCMs used, the reference periods and latitudinal and longitudinal 
spatial resolutions

Model Institute Acronym Reference 
period

Latitudinal 
resolution

Longitudinal 
resolution

CCSR Japanese Centre for Climate System 
Research, Tokyo, Japan

CCS 1890-2002 ~5.54º ~5.63º

CGCM2 Canadian Centre for Climate 
Modelling and Analysis, Victoria, 
Canada

CGC 1900-2002 ~3.71º ~3.75º

CSIRO-Mk2 Australian Commonwealth 
Scientific and Industrial Research 
Organisation, Australia

CSI 1961-2002 ~3.19º ~5.63º

ECHAM4/OPYC3 Max-Planck-Institute, Hamburg, 
Germany 

EH4 1990-2002 ~2.79º ~2.81º

GFDL-R30 US Geophysical Fluid Dynamics 
Laboratory, Princeton, USA 

GFD 1961-2002 ~2.24º ~1.88º

HADCM3 Hadley Centre for Climate 
Prediction and Research, Bracknell, 
UK 

HAD 1950-2002 ~2.50º ~3.75º
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annual stream flow. Only if there is sufficient reason to assume that the majority of stream flow is 
related to rainfall it is legitimate to use a multiple regression run-off model using rainfall data.

Multiple linear regression was used to model average monthly stream flow in month t 
using three variables; basin precipitation in month t (Pt (mm)), basin precipitation in month t-1 
(Pt-1(mm)) and ΔTFP-TP(ºC) in month t. To capture seasonal variation regression models were 
derived for summer, winter, autumn and spring separately. These models are of the form:

� (1)

where Q avg (m3/s) is the average monthly discharge, a is the intercept and b1, b2 and b3 are 
coefficients. Based on these models and the downscaled data of six GCMs seasonal models with 
monthly time series of average discharges has been generated for the A2 and B2 storylines from 
1901-2100.

3.3	 Results

3.3.1	 Historical trends
Figure 3.4 shows the anomalies in temperature and precipitation from 1900 to 2002 for the three 
physiographic zones. Six extreme warm years (10% warmest years) have occurred between 1995 
and 2002. For the TP, HB and the FP temperature patterns are remarkably consistent with the 
global warming pattern. The warming trend is obvious throughout the entire basin at an average 
rate of 0.6 ºC/100 yr. Figure 3.4 does not reveal any large difference between the different zones 
in annual temperature trends. The TP reveals most inter-annual variation. There are however 
seasonal differences. All zones show the largest warming trend in spring (TP = 1.1 ºC/100 yr, 
HB = 1.0 ºC/100 yr, FP = 0.9 ºC/100 yr) and the smallest warming trend in summer (TP = 0.2 
ºC/100 yr, HB = 0.4 ºC/100 yr, FP = 0.5 ºC/100 yr). There is an obvious difference between the 
zones in summer temperature trend. Annual trends in precipitation are not observed from 1901-
2002. The precipitation pattern in all three zones does not show any resemblance to the global 
precipitation anomalies, which exhibit a slight positive trend. An approximate 15 year cycle in 
the annual precipitation pattern is observed. The TP and HB show most inter-annual variation. 
Other factors evidently play an important role in the inter-annual variation in precipitation. The 
winter precipitation trends are positive for all zones (TP = 6.7%/100 yr, HB = 6.1%/100 yr, FP = 
7.5%/100 yr), while in summer there is a general negative trend for all zones (TP = -6.3%/100 yr, 
HB = -4%/100 yr, FP = -5.2%/100 yr). Autumn precipitation trends are also positive which could 
indicate a delay in the onset of the monsoon.

The annual precipitation patterns in the basin are further explained by linear regression 
analysis. Figure 3.5 shows the results of the linear regressions between the JJAS zonal precipitation 
and SOI, NINO3 and ΔTFP-TP respectively. The ENSO indices do not have a prominent role in 
explaining the JJAS precipitation in all three zones, and the correlations found are negligible. A 
significant relation is however found between ΔTFP-TP and the monsoon precipitation, ranging 
from R2 = 0.32 on the TP to R2 = 0.42 on the FP. Regression analysis between ΔTFP-TP and 
total JJAS basin precipitation results in an R2 of 0.45. This leads to the interesting finding that 
precipitation in the basin is inversely related to the gradient in surface air temperatures between 
the FP and TP. A small ΔTFP-TP is associated with relatively high air temperatures on the TP and 

TPFPavg TbtPbtPba 3)1(2)(1Q
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Figure 3.4 Temperature anomalies (ºC) (left) and precipitation anomalies (%) (right) per 
physiographic zone from 1905-2002. The lines indicate the 5 year moving average of temperature 
and precipitation anomalies from the climate normal 1961-1990. The bars in the graphs indicate 
the original year temperature and precipitation anomalies respectively.



47

low air temperatures in the FP. This is indicative of increased warming of the TP land surface and 
the atmosphere above.

3.3.2	 Future changes
Figure 3.6 shows the downscaled temperature and precipitation anomalies from 2000-2100 per 
physiographic zone. The graphs show the average of all six GCMs. The HADCM3 model is 
an intermediate model in all projections in all zones. For both temperature and precipitation 
the HADCM3 model shows the best downscaling results in maintaining the time series 
characteristics during the reference period, specifically variation in precipitation.

The coefficient of variation between the 6 GCMs in precipitation is on average 9% and the 
standard deviation in temperature between the GCMs is 0.5 ºC for both storylines. There is a 
slight increasing trend from 2000 to 2100. By the end of the century the A2 storyline shows more 
extreme changes in precipitation and temperature than the B2 storyline. By 2100 it is projected 
that on average the temperature in the basin has increased by 3.5 ºC and 2.3 ºC for the A2 and B2 
storylines respectively. The projected changes in precipitation show a more capricious pattern but 
a consistent increase of 22% and 14% by 2100 for the A2 and B2 storyline respectively is observed. 
The dips in the precipitation time series at 2080 for the A2 scenario and 2070 for the B2 scenario 
are caused by anomalous behaviour of the CGC GCM. For both temperature and precipitation 
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Figure 3.5 Linear regressions for the TP, HB and FP between monthly precipitation in June, July, 
August and September and SOI, NINO3 and the FP-TP temperature difference for the period 
1901-2002.
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inter-zonal differences are evident and the TP is the most sensitive to climate change, followed 
by the HB and the FP for the A2 and B2 storylines. This means that ΔTFP-TP will decrease because 
the TP warms at a faster pace than the FP.

The box-whisker plots in Figure 3.7 shows the basin seasonal shifts in temperature and 
precipitation. The seasonal climate normals (1961-1990) are compared to 2061-2090 for the A2 
and B2 storylines. Data of a single GCM (HADCM3) are used to be able to analyse changes 
in variation. All seasons show an increase in temperature, which is more pronounced for the A2 
scenario than the B2 scenario, except for winter when both scenarios show a similar increase. 
Autumn shows the largest difference in temperature increase between the two storylines. The 
difference between the first and third quartiles in summer has increased for both storylines 
resulting from a wider distribution in temperatures. Seasonal precipitation trends are also positive 
except for autumn and summer precipitation for the B2 storyline which have the median lower 
than the 1961-1990 value. The frequency distribution of precipitation is generally widened and the 
extreme values, especially in summer have increased.
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Figure 3.6 Downscaled temperature and precipitation anomalies from the climate normal 1961-
1990 based on the average of 6 GCMs from 2002-2100 per physiographic zone.
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The spatial patterns in the basin are revealed by the spatially interpolated temperature and 
precipitation maps in 2020, 2050 and 2080 for the A2 and B2 storylines in Figure 3.8 and 
Figure 3.9. The Tibetan plateau, specifically the north eastern part shows the largest increase in 
temperature. Both storylines show similar spatial behaviour and significant spatial differences in 
temperature between the scenarios become apparent after the 2050s. The Himalayas obviously 
have a pivotal role in the regional climate system and temperature anomalies generally follow the 
orography.

The spatial precipitation patterns (Figure 3.9) also shows the strongest increase in precipitation 
on the TP and the least increase in the FP. The total amount of precipitation in the FP is however 
more than three times as large than in the TP. The spatial patterns are more capricious than the 
spatial patterns in temperature. There is a distinct horizontal band around 29ºN south of the 
Brahmaputra River, which shows a remarkably steep increase in precipitation in all years for both 
storylines. This amounts to a precipitation increase to over 30% in the 2080s for the A2 storyline. 
The A2 storyline in 2020 shows for large parts of the HB and the FP a remarkable decrease in 
precipitation. The effects of the Himalayas are also visible in the spatial precipitation patterns.

3.3.3	 Hydrological impacts
Figure 3.10 shows the average monthly hydrograph based on daily discharge data from 1956-
1993. The hydrograph and scatter plot show that stream flow at Bahadurabad is mainly generated 
by rainfall. The scatter plot reveals that from the end of the monsoon onwards, when soils are 
saturated, discharge is relatively high. In the early spring months, when soils have not yet reached 
saturation, discharge is relatively low. The hydrograph shows that discharge responds directly to 
rainfall with a typical lag of one month and there is no additional peak in spring related to snow 
and glacial melt. This does comply with earlier studies that report synchronous accumulation 
and melt in eastern Himalayan basins (Rees and Collins, 2006). In addition to this summer 
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Figure 3.7 Box-whisker plot of seasonal temperatures and precipitation for observed data and 
HadCM3 climate change predictions for the A2 and B2 scenario (CRU = CRU TS2.1 1961-1990, 
A2 = downscaled HadCM3 results 2061-2090 for the A2 scenario, B2 = downscaled HadCM3 
results 2061-2090 for the B2 scenario).
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precipitation in all zones is much larger than winter precipitation in the TP and HB (Figure 
3.2). Therefore it may be concluded that the overall contribution of snow and glacial melt to 
downstream discharge in the Brahmaputra will be very small and that it is legitimate to use a 
simple rainfall-runoff model to gain insight in stream flow patterns. The total average annual 
precipitation sum between 1956 and 1993 is 1336 mm, while total discharge is on average 1200 
mm.

Table 3.2 shows the results of the seasonal regression models. All seasons, except winter, 
show good results with R2 ranging from 0.64 in summer to 0.82 in autumn and spring. Winter 
discharges show limited response to Pt, Pt-1 and ΔTFP-TP, while average discharge is also relatively 
low. Pt and Pt-1 are proportional and ΔTFP-TP is inversely proportional to Q avg in all cases where 
significant contributions are found.

Using the regression models and the average monthly Pt, Pt-1 and ΔTFP-TP of the six GCMs 
the seasonal effects on the discharge from 2000-2100 are determined (Figure 3.11). During the 
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Figure 3.8 Downscaled spatial temperature anomalies from the climate normal 1961-1990 based 
on the average of 6 GCMs for 2020 (2010-2030), 2050 (2040-2060) and 2080 (2070-2090).
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Figure 3.9 Downscaled spatial precipitation anomalies from the climate normal 1961-1990 based 
on the average of 6 GCMs for the 2020 (2010-2030), 2050 (2040-2060) and 2080 (2070-2090).

Table 3.2 Seasonal regression models for average discharge at Bahadurabad based on data from 
1954-1992. Q avg is the average discharge from 1954-1992. R2 is the multiple R squared, a is the 
intercept and b1, b2 and b3 are the coefficients in the multiple regression equation. A ”*” indicates 
significant contribution at the 95% confidence level.

Autumn Winter Spring Summer

Qavg (m3/s) 25267 5518 9247 40204
R2 0.82 0.06 0.82 0.64
a -254 14275 * 28253 * 73630 *
b1 97 * -10 35 * 72 *
b2 73 * 33 38 * 68 *
b3 242 -347 * -964 * -3635 *
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monsoon in summer the strongest increase in discharge is expected and projections range between 
20% and 30% increase of average monthly discharge for the B2 and A2 scenarios respectively. 
Winter discharges show little change and discharge is mainly fed by groundwater base flow. 
Autumn and spring show intermediate increases in discharge. The increase in summer is critical 
and this will most likely also entail an increase in the number of extreme discharges, since there is 
a strong relation between average monthly discharge and maximum monthly discharge (R2 = 0.61; 
Figure 3.12).
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Figure 3.10 Average monthly hydrograph at Bahadurabad and basin precipitation (left figure) 
and scatter plot between monthly basin precipitation and Bahadurabad discharges (right figure) 
(1956-1993 data).
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Figure 3.11 Projected trends in seasonal discharges at Bahadurabad based on multiple linear 
regression models and average data of six GCMs.
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3.4	 Discussion and conclusion

The historical analysis of precipitation and temperature revealed that there is a clear increasing 
trend in temperature at an average rate of 0.6 ºC/100 year, with the largest increases in spring. No 
distinct drying or wetting trends are observed over the last 100 year and annual precipitation is 
primarily controlled by monsoon dynamics.

The GCM simulations show an accelerated increase in both temperature and precipitation. 
Projected changes on the TP are more profound than in the other two physiographic zones. The 
widening distribution of summer precipitation indicates a potential increase in extreme events.

In this paper an analysis is provided of the historical climatic variations at the scale of a large 
river basin. The CRU TS 2.1 dataset is not always suitable to provide time series analysis at the 
scale of an individual grid box. The grids are optimised in space rather than in time, resulting in 
instantaneous best estimates of spatial patterns. The analysis also revealed a large variation in time 
in the number of stations within the correlation decay distance. For these reasons the time series 
analysis conducted in this research on the dataset was mainly conducted per physiographic zones 
and problems caused by local inhomogeneities at a specific location were avoided.

The historical analysis showed clear temperature trends, however no clear trends in 
precipitation were observed although seasonal variations were apparent. This study reveals no 
significant relation between ENSO and monsoon precipitation, which is not in agreement with 
earlier findings (Krishna Kumar et al., 1999) and should be subject to further research. A large 
part of the variation in monsoon precipitation is however explained by the surface air temperature 
gradients between the FP and the TP. Relatively high temperatures on the TP and low 
temperatures on the FP generally yield stronger monsoons. Previous studies (Barnett et al., 1989; 
Shaman and Tziperman, 2005) argue how thermodynamics on the TP reduce the strength of the 
monsoon through a decrease of the upper-tropospheric temperature gradient between TP and 
the Indian Ocean. They argue that the reduction of the thermal gradient is caused by an increased 
TP snow pack resulting in a number of thermodynamic effects which all result in lower air 
temperatures of the atmosphere above the TP; (i) an increased snow pack yields a higher albedo 
leaving less solar radiation for the sensible heat flux, (ii) of the energy which is left a substantial 
part is required for sublimation and (iii) the melting of the snow leaves a wetted surface and a 
large part of the energy is consumed by the latent heatflux. In other words low air temperatures on 
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the TP (= high ΔTFP-TP) generally yield weak monsoons, which is in agreement with findings of 
this study. Kripalani et al. (2004) found that the well-documented negative relationship between 
winter snow and summer rainfall has recently changed into a positive relation ship in the western 
Himalayas, and argue that a possible cause might be found in global warming and the interaction 
between snow depth and cover.

The future precipitation increase simulated by the GCMs is assumed to be driven by global 
warming rather than changes in atmospheric dynamics. The study revealed an inverse relation 
between ΔTFP-TP and precipitation. The GCM analysis showed that this gradient will decrease in 
the years ahead, which would result in higher precipitation according to the relation found.

To which extent remains however largely unknown and this should be topic of future research 
and some caution is warranted. A number of recent studies have, for example, investigated the 
influence of black carbon aerosols on the South Asian monsoon, suggesting a competing effect 
with increasing concentrations of greenhouse gases (Lau et al., 2006; Ramanathan et al., 2005; 
Chung and Ramanathan, 2006). These specific aerosols are not included in the climate models.

The hydrological analysis showed that it is likely to assume that the majority of downstream 
stream flow in the Brahmaputra is generated by rainfall and to a much lesser extent by snow 
and glacial melt. It was also found that the average difference between annual precipitation and 
discharge only leaves 136 mm for evapotranspiration. Assuming that the soil water storage balance 
is close to zero this is not realistic given the high potential evapotranspiration rates. The logical 
explanation is that the CRU precipitation, based on a limited number of stations, underestimates 
the precipitation in the floodplain due to orographic effects in the Meghalaya hills and the 
Himalayan foothills. Nijssen et al. (2000) found similar results. Through relative simple multiple 
regression analysis interesting relations are found between JJAS discharges and precipitation. 
It showed that trends in average and extreme discharges can be reasonably well predicted, but 
that the most extreme discharge events are missed by the regression model. There are several 
potential reasons. Extreme discharges are often the result of precipitation events with a daily 
timescale. Extreme discharges at Bahadurabad are combination of processes and the upstream 
hydro-meteorological processes are not the only cause for floods in Bangladesh. The combination 
of simultaneous discharge peaks of the tributaries, high runoff from the Meghalaya Hills, heavy 
rainfall in Bangladesh, high groundwater tables and spring tides will results in a very high peak 
discharges at Bahadurabad (Messerli and Hofer, 2006).

In this research direct relationships with zonal precipitation were investigated. This study 
provides a baseline against which process based hydrological models may be built and used 
to simulate the complete anticipated effects on the hydrological cycle. Changes in snowfall, 
evapotranspiration and groundwater recharge can thus be modelled and related to food 
production in a changing environment.
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4	 Calibration of a distributed hydrological 
model based on satellite evapotranspiration

		�  Based on: Immerzeel, W.W. & P. Droogers (2007), Calibration of a distributed hydrological 
model based on satellite evapotranspiration. Journal of Hydrology (in press)

Abstract
Calibrating spatially distributed hydrological models is complex due to the lack of reliable data, 
uncertainty in representing the physical features of a river catchment, and the implementation of 
hydrological processes in a simulation model. In this paper, an innovative approach is presented 
which incorporates remote sensing derived evapotranspiration in the calibration of the Soil and 
Water Assessment Tool (SWAT) in a catchment of the Krishna basin in southern India. The 
Gauss-Marquardt-Levenberg algorithm is implemented to optimise different combination of land 
use, soil, groundwater, and meteorological model parameters. In the best performing optimisation, 
the r2 between monthly sub-basin simulated and measured actual evapotranspiration (ETact) was 
increased from 0.40 to 0.81. ETact was more sensitive to the groundwater and meteorological 
parameters than the soil and land use parameters. Traditional calibration on a limited number 
of discharge stations lumps all hydrological processes together and chances on the equifinality 
problem are larger. In this study we have shown this problem can be constrained by using spatially 
distributed observations with a monthly temporal resolution. At a spatial resolution below the 
sub-basin level further study is required to fine-tune the calibration procedure.

4.1	 Introduction

Calibration of physically based, distributed hydrological models is complex given limitations 
of the input data, complexity of the mathematical representation of hydrological processes, and 
incomplete knowledge of basin characteristics. A priori, it is not clear whether a unique set of 
model parameters exists for a given catchment. While comparing model outputs to observations 
the main question is what the causes of these differences are (Duan et al., 2003)? Model calibration 
is usually based on the comparison between modelled and observed hydrographs for a limited 
number of locations and a small number of input parameters are varied in a trial and error mode 
to achieve a desired response (Gupta et al., 1998; Anderston et al., 2002). In a complex distributed 
hydrological model with numerous parameters with a high spatial and temporal heterogeneity 
this approach can be cumbersome. To overcome these difficulties a number of different auto-
calibration or parameter optimisation methods have been developed that deploy a systematic 
approach to parameter estimation.
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The type of optimisation algorithm applied is the dominant distinguishing factor in parameter 
estimation (Singh and Woolhiser, 2002).The objective function describes the difference between 
the observed and model simulated values. RMSE statistics and the Nash-Sutcliffe criterion (Nash 
and Sutcliffe, 1970) are amongst the most commonly used. Minimizing the objective function is 
complex; because most discharge based objective functions in distributed hydrological models 
have multiple extremes. Optimisation algorithms adopt either a gradient (Levenberg (1944); 
Marquard (1963)) or a global search method such as the shuffled complex evolution algorithm 
(Kuczera, 1997) and genetic algorithms (Wang, 1991). Global optimisation algorithms are designed 
for locating the global optimum. Local search algorithms have been criticized for getting trapped 
in local minima. The most important advantage of a local search is nonetheless its efficiency; e.g., 
the number of model calls required to find the optimum set of parameters. Skahill and Doherty 
(2006) show how the algorithms underlying the Gauss-Marquardt-Levenberg (GML) method 
of computer-based parameter estimation can be improved to enhance the possibility to find the 
global minimum while retaining the model run efficiency.

Using a limited number of discharge stations in the optimisation may well lead to the 
equifinality problem; e.g., there are more than one parameter combination leading to similar 
results (Beven, 1993; Beven, 2000; Beven, 2001; Beven and Freer, 2001; Beven 2006; Franks et 
al., 1997). High spatial heterogeneity in combination with a large number of model parameters 
inhibits the identification of one set of parameters describing the natural system. If river 
discharges in a catchment are mainly governed by human decisions (e.g., dams and reservoirs) 
they may not be usable in determining the natural characteristics of the system. Hydrological 
parameters measured using remote sensing, which has a high spatial and temporal observational 
resolution, could provide a suitable solution in this respect. Deriving hydrological parameters 
such as evapotranspiration and soil moisture using remote sensing is a growing field of research 
(Bastiaanssen et al., 1998; Hall et al., 1992; Kite and Droogers, 2000; Su, 2000). The use of remote 
Sensing in the parameterisation of hydrological models is an even newer field; Wood (1995) 
empirically evaluates scale issues using remote sensing data and a hydrological model. Other 
studies use remote sensing to parameterise hydrological models (Boegha et al., 2004; Houser et 
al., 1998; Kite and Pietroniro, 1996; Shuttleworth, 1998). Less work has been done in the use of 
remote sensing in the actual calibration using optimisation algorithms of hydrological models. 
Campo et al. (2006) show the use of remote sensing derived soil moisture in the calibration of 
a distributed hydrological model using a local search algorithm developed by Nelder and Mead 
(1965).

In summary five partially overlapping fields of expertise can be identified that deal with 
the topic of this study: (i) deriving hydrological fluxes by remote sensing, (ii) optimisation 
algorithms used in calibration of simulation models, (iii) equifinality in parameter optimisation, 
(iv) use of remote sensing in parameterisation of hydrological models and (v) the use of remote 
sensing in the calibration of hydrological models in data scarce areas. The focus of this paper is 
on the last topic (v). The objective was to evaluate the method of using remote sensing derived 
actual evapotranspiration (ETact), based on the Surface Energy BALance algorithm (SEBAL; 
Bastiaanssen et al., 1998), to calibrate the process-based hydrological model Soil and Water 
Assessment Tool (SWAT; Arnold et al., 1998), in the water scarce Upper Bhima catchment in 
southern India. The Parameter ESTimation (PEST) software (Doherty, 2005), incorporating the 
gradient search GML optimisation method, was used for this purpose.



57

4.2	 Study area

The Upper Bhima catchment (45,678 km2) is located in the upstream part of the Krishna basin in 
southern India and originates in the Western Ghat mountains and covers part of the Maharasthra 
state (Figure 4.1). The catchment is located between 16.5º-19.5º latitude and 73.0º-76.5º longitude. 
The elevation ranges from 414 meter in the east to 1458 meter in the Western Ghat mountains and 
95% of the catchment is below 800 meter and relatively flat. The average slope of the catchment 
is 2%.

The catchment has two main tributaries, the Sina River which drains the north eastern 
part and the Bhima River which drains the remainder. The catchment is an important source of 
water for the entire Krishna basin as a major part of the precipitation falls in the Western Ghat 
range in the east of the catchment and is retained and released to downstream areas through an 
intricate set of reservoirs, especially along the Bhima tributary. Flows in the rivers are, therefore, 
mainly human controlled and respond less directly to variations in the climate excitations and 
biophysical conditions and are hence less suitable to use for calibration. The reservoirs accumulate 
water during the monsoon season ( June to September), and this is gradually released throughout 
the irrigation season (October to May).

70
21

50 km0

Figure 4.1 Upper Bhima catchment boundary, contours of the precipitation sum from June 
2004 to May 2005, river network, major reservoirs, and meteorological station (circles represent 
precipitation stations; triangles represent precipitation, temperature, wind speed, relative 
humidity and radiation stations)
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The catchment has a highly diverse climate mainly caused by the interaction between the 
monsoon and the Western Ghat mountain range (Gunnel, 1997). The precipitation ranges from 
less than 600 mm in the eastern part of the basin to over 1800 mm in the mountains in the west 
with an average of 941 mm during the averagely wet irrigation year 2004-2005 (Figure 4.1). Figure 
4.2 shows the monthly precipitation (P) and reference evapotranspiration (ETref) in the basin. 
ETref is calculated using Penman-Monteith (Monteith, 1965) and alfalfa as reference crop. The 
catchment has a high annual ETref (1814 mm) ranging from 224 mm/month in May to 108 mm/
month in December. More than 75% of the annual precipitation occurs during the monsoon. 
Between October and May, large precipitation deficits occur with the peak in May (179 mm) just 
before the onset of the monsoon.

The state of Maharasthra has a diverse cropping pattern characterized by cultivation of 
sugarcane, sorghum, wheat, corn, millet, groundnut, grass fodder, and a variety of horticultural 
crops (Neena, 1998). Three main types of agricultural systems were identified in the catchment: 
(i) rain fed agriculture with a single crop (e.g. sorghum) cultivated during the monsoon, (ii) 
supplemental irrigated agriculture with one rain fed crop during the monsoon (e.g. sorghum) 
and a (groundwater) irrigated crop planted in October and harvested in February (e.g. winter 
wheat) and (iii) irrigated perennial sugarcane which has a growing period of 11 months and which 
is grown throughout the year and irrigated from water released by the reservoir system. Other 
natural land covers include rangelands, mixed forests, evergreen forests and water surfaces.

4.3	 Methods

4.3.1	 SEBAL
The Surface Energy Balance Algorithm for Land (SEBAL) formulated by Bastiaanssen et al. 
(1998) was used to derive bi-weekly ETact from October 2004 to May 2005. Spectral radiances 
in the visible, near-infrared, and thermal infrared part of the spectrum derived from 16 
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Figure 4.2 Monthly precipitation (P), reference evapotranspiration (ETref) and temperature from 
June 2004 to May 2005.
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MODIS satellite images were used. Two cloud free images were selected each month and the 
MOD02HKM product was used in the analysis. This Level 1B product contains calibrated 
and geolocated radiances. The thermal band is downscaled and the final resolution of the ETact 
images is 250 meter. This downscaling algorithm is based on the assumption that a unique 
relationship between radiometric surface temperature relationship and vegetation index exists at 
multiple resolutions and is similar as described by Agam et al., 2007. It should be noted that this 
sharpening procedure does not account for sub-pixel variability in soil moisture conditions, and 
therefore does not work as well for areas where the irrigated areas are smaller than the nominal 
MODIS thermal pixel size of 1 km (Agam et al., 2007b).

The acquisition dates and overpass time are shown in Table 4.1.

SEBAL converts satellite radiances into land surface characteristics such as surface albedo, 
leaf area index, vegetation index, and surface temperature, which were used in solving the 
instantaneous energy budget equation given by

� (1)

Where LvE is the latent heat flux (W/m2), Q* is the net radiation flux at the surface (W/m2), G0 
is the soil heat flux (W/m2), and H is the sensible heat flux to the air (W/m2).

The net radiation (Q*) was computed by subtracting all outgoing radiant fluxes from all 
incoming radiant fluxes according to

� (2)

Where Q s↓ is the incoming short-wave radiation (W/m2), a is the surface albedo (dimensionless), 
Q L↓ is the incoming long wave radiation (W/m2), Q L↑ is the outgoing long wave radiation 

HGQELv 0
*

LLLss QQQQQQ )1( 0
*

Table 4.1 Date and local acquisition time (+5:30 GMT) of Aqua-MODIS images.

Date Time

16/10/2004 1:40 PM
21/10/2004 2:00 PM
04/11/2004 2:10 PM
22/11/2004 2:00 PM
03/12/2004 1:40 PM
17/12/2004 1:50 PM
07/01/2005 2:10 PM
18/01/2005 1:50 PM
12/02/2005 1:45 PM
19/02/2005 1:50 PM
14/03/2005 2:00 PM
23/03/2005 1:50 PM
10/04/2005 1:40 PM
19/04/2005 1:35 PM
14/05/2005 1:25 PM
17/05/2005 1:55 PM
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(W/m2), and εo is the surface thermal emissivity (dimensionless). In Eq. 2, the amount of net 
short-wave radiation (Q S↓ – aQ S↓) that remains available at the surface is a function of the 
surface albedo (a). The broad band surface albedo a was derived from the narrow band spectral 
reflectances a(λ) measured by each MODIS satellite band (Zhong and Li, 1988). The incoming 
short-wave radiation (Q S↓) was computed using the solar constant, the solar incidence angle, 
a relative earth-sun distance, and a computed broad band atmospheric transmissivity. This 
transmissivity was estimated from sunshine duration or inferred from pyranometer measurements. 
The incoming long wave radiation (Q L↓) was computed using a modified Stefan-Boltzmann 
equation with an apparent emissivity that is coupled to the shortwave atmospheric transmissivity 
and a measured air temperature. Outgoing long wave radiation (Q L↑) was computed using the 
Stefan-Boltzmann equation with a calculated surface emissivity and surface temperature. Surface 
temperatures were computed from the satellite measurements of thermal radiances.

Soil heat flux was empirically calculated as a G0 /Rn fraction using vegetation indices, surface 
temperature, and surface albedo. Sensible heat flux was computed using wind speed observations, 
estimated surface roughness, and surface to air temperature differences (ΔT), that were obtained 
through a sophisticated self-calibration between dry (LvE≈0) and wet (H≈0) pixels. The wet and 
dry pixels were manually selected in the image. For the wet pixel it is assumed that ΔT = 0. For 
the dry pixel ΔT is given by:

� (3)

Where rah (s m-1) is the near surface aerodynamic resistance to heat transfer, ρair (kg m-3) is the 
moist air density and Cp ( J kg-1) is the specific heat at constant pressure. SEBAL solves this 
implicit equation iteratively. Empirically it has been shown that under many conditions there is 
a linear relation between surface temperature (T0) and ΔT. This relation was used to estimate ΔT 
for all pixels in the image.

Knowing the instantaneous soil, latent, and sensible heat fluxes made it possible to calculate 
the evaporative fraction given by:

� (4)

SEBAL assumes that the evaporative fraction is constant during the day and this assumption 
allows the conversion of an instantaneous LvE value to a daily value. Experimental work has 
demonstrated that this is a reasonable assumption for cases when soil moisture and atmospheric 
conditions do not significantly change (e.g., Shuttleworth et al., 1989; Brutsaert and Sugita, 1992; 
Nicols and Cuenca, 1993; Kustas et al., 1994; Crago, 1996; Franks and Beven, 1997).

For periods longer than one day it may be assumed that the (time-integrated) soil heat flux 
equals 0. The 24hr latent heat flux could therefore be determined by

� (5)

The final step was to derive biweekly evapotranspiration data. This was achieved by inserting 
LvE24hr into the Penman-Monteith equation (Monteith, 1965). Using this approach it was possible 
to inversely determine the surface resistance (rs). There are some known associated problems with 
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this approach. There is a strong relationship between the aerodynamic (ra) and surface resistances 
(rs) and uncertainty in ra leads to incorrect estimates of rs (Beven, 1979; Franks et al., 1997). By 
using a consistent ra from meteorological data the error in the eventual ET estimate is however 
minimal. Knowing the spatial distribution of the surface resistance made it possible to calculate 
ETact based on the Penman-Monteith equation and meteorological data for all days without 
satellite imagery (Bastiaanssen and Bandara, 2001). Meteorological data on radiation, temperature, 
wind speed, relative humidity for two stations were used for this purpose (Figure 4.1). SEBAL has 
been extensively validated (Bastiaanssen et al., 1998b).

The 16 biweekly ETact images of the Upper Bhima catchment were accumulated to eight 
monthly images from October 2004 to May 2005, and these were used in the calibration of the 
SWAT model. SEBAL could not be applied during the monsoon months ( June to September) 
due to the lack of cloud free imagery.

4.3.2	 SWAT
A SWAT model was built and simulations were run on a daily basis from June 2004 to May 2005. 
SWAT is a distributed hydrological model providing spatial coverage of the integral hydrological 
cycle including atmosphere, plants, unsaturated zone, groundwater, and surface water. The model 
is comprehensively described in literature (Arnold et al., 1998; Srinivasan et al., 1998).

Conceptually SWAT subdivides the catchment into sub-basins and a river network based 
on a digital elevation model (DEM). Based on unique combinations of soil and land use, the 
sub-basins were further detailed into hydrological response units (HRUs), which were the 
fundamental units of calculation. A total of 115 sub basins and 768 HRUs were delineated in the 
Upper Bhima catchment.

The Penman-Monteith method (Monteith, 1965) was used in SWAT to calculate daily 
reference evapotranspiration for alfalfa (ETref) and potential plant transpiration (ETp). Daily data 
on radiation, wind speed, relative humidity, and air temperature for two different meteorological 
stations were used (Figure 4.1). Potential daily plant transpiration is calculated using actual daily 
crop height and leaf area index (LAI), required to determine the aerodynamic resistances and 
canopy resistances respectively. Potential soil evaporation is an exponential function of ETref 
and the soil cover and is further reduced during periods with high plant water use. Actual soil 
evaporation is limited by the soil water content (θ) and is reduced exponentially when θ drops 
below field capacity.

To calculate actual plant transpiration the potential plant water uptake is defined by

� (6)

Where wp,z (mm H2O) is the potential plant water uptake from the soil surface to a specified 
depth from the soil surface on a given day, ETp (mm H2O) is the maximum plant transpiration 
on a given day, βw (-) is the water use distribution parameter, z is the depth from the soil surface 
(mm), and zroot is the depth of root development in the soil (mm). Actual plant water uptake 
equals actual plant transpiration and is, similarly to soil evaporation, reduced exponentially when 
θ drops below field capacity. Actual evapotranspiration (ETact) is the sum of interception, actual 
soil evaporation, and actual plant transpiration.

root
w

w

z
z

p
zp e

e
ET

w 1
1,



62

Meteorological data in SWAT are parameterized on sub-basin level. No precipitation data 
was available for the simulation period and to be able to capture the spatial heterogeneity in 
precipitation, monthly gridded precipitation estimates with a spatial resolution of 25 km 
derived with the Tropical Rainfall Monitoring Mission (TRMM; Kumerrow et al., 1998) was 
used. To correct the TRMM data the monthly grids were scaled using linear regression with 11 
meteorological stations between 1998 and 2004 (Figure 4.1). For each month and each station 
a linear relationship between observed and TRMM precipitation was established. Using these 
relationships between observed precipitation and the TRMM data during the simulation 
period, monthly grids of precipitation were generated from June 2004 tot may 2005. The grid 
based monthly data were aggregated per sub-basin and converted to daily precipitation using a 
simple weather generator, since no long term statistics on daily rainfall distributions are available. 
The weather generator maintains the monthly sums, days with rain are randomly selected, and 
a maximum daily precipitation threshold is used. This threshold is higher during the monsoon 
months (100 mm) than in other months (20 mm). A total of 115 hypothetical meteorological 
stations were thus inferred on the model.

The major reservoirs (20) are mainly located along the Bhima branch. For modelling purpose, 
the reservoirs are clustered into two reservoirs. Because the simulation year was an average year, 
the assumption was made that over the entire year there was no net increase or decrease in 
reservoir storage. The reservoirs inflow was largest during the monsoon season and throughout 
the irrigation year the water was used for irrigation. The unused excess water was released using a 
monthly distribution derived from historical measurements.

Land used in this study was based on a 15 class unsupervised land use classification using a 
time series of 16 MODIS derived Normalized Difference Vegetation Index (NDVI) images with 
a spatial resolution of 250 meter. The same imagery was used for the land use classification and 
the SEBAL analysis (Table 4.1). Based on existing land use map and field surveys 15 classes were 
clustered into six land use classes defined in Table 4.2.

The results were visually verified with high resolution satellite imagery. The final land use map 
is shown Figure 4.3.

The FAO digital soil map of the world (FAO, 1995) was used to derive soil properties. 
Ten different soil units are identified in the catchment. The alluvial plains are predominantly 
characterized by vertisols and the Western Ghats and steeper slopes by luvisols.

To initialize the model, in particular soil moisture, a model spin up period of one year was 
used by simulating the period June 2004 to May 2005 twice consecutively and the calibration 
on ET was performed on the latter year from October 2004 to May 2005. Initial soil moisture 

Table 4.2 Acreages of different land use and land cover in the catchment

Class name Code Area (km2) Area (%)

Water surfaces WATR 411 1
Rangelands RNGB 12242 27
Rain fed agriculture AGR1 15348 34
Supplemental irrigated agriculture AGR2 6121 13
Irrigated sugarcane AGR3 9090 20
Evergreen forest FRSE 1416 3
Mixed forest FRST 1051 2
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was set at field capacity and nearly all soils were again at field capacity after the monsoon of the 
second year of simulation at the start of the calibration period.

4.3.3	 PEST
In this study PEST (2005 version) was used to calibrate the SWAT model using ETact derived 
with SEBAL. PEST is a non-linear parameter estimation package that can be used to estimate 
parameters for just about any existing computer model (Doherty, 2005). PEST is able to run a 
model as many times as it needs to while adjusting its parameters until the discrepancies between 
selected model outputs and a complementary set of field or laboratory measurements is reduced 
to a minimum.

PEST uses the GML algorithm to optimize the model. The theory underlying the 
GML method is derived from the linear parameter estimation theory. The relation between a 
hydrological model (X), a set of parameters (p), a set of observations (H) and residuals in the 
observations (ε) can be described as:

� (7)

The goal of PEST is to find that p that minimises the objective function, which is defined as the 
sum of squared deviations between model generated values and experimental observations and 
can be written as:

� (8)

HpX

)()( XpHQXpH t
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Supplemental irrigated agriculture
Water

Land use

Figure 4.3 Land use based on unsupervised classification of MODIS time series of NDVI 
imagery.
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Where Q is proportional to the inverse of C(ε), the covariance matrix of measurement noise. The 
objective function used in PEST is closely related to the commonly used root mean square error 
(RMSE) through:

� (9)

Φ is minimized when

� (10)

For linear models optimisation can be achieved in one step, whereas for non-linear problems it is 
an iterative process. At the beginning of each iteration the relationship between model parameters 
and model-generated outputs is linearised by formulating a Taylor expansion about the currently 
best parameter set; hence, the derivatives of all observations with respect to all parameters must 
be calculated. This linearised problem is then solved for a better parameter set, and the new 
parameters tested by running the model again.

However, one of the most relevant restrictions in the GML algorithm, a gradient based 
method, is sensitivity to local minima. Recent advances in the GML algorithm have improved 
the capability to identify the global minimum in surface water models (Skahill and Doherty, 
2006). The most pronounced advantage of the GML method is that it can generally complete a 
parameter estimation process with an extremely high level of model run efficiency.

4.3.4	 Calibration strategy
The core of the calibration as tested in this study consists of a comparison of seven different 
parameter set estimations. The entire flowchart of the calibration strategy, including pre and post-
calibration steps, is summarized in Figure 4.4.

Because ETref is the basis for the ETact calculations, first, a simple adjustment was performed on 
the SWAT input solar radiation to ensure that calculated SWAT ETref and SEBAL ETref were 
equal. In general SWAT ETref is lower than SEBAL ETref and there are two possible reasons. 
Firstly, to account for impacts of slope and aspect on incident solar radiation SEBAL incorporates 
a digital elevation model (DEM) based correction. Another source for slight deviations between 
SEBAL and SWAT ETref is the fact that SEBAL ETref assumes grass as a reference crop and 
SWAT assumes alfalfa. For grass the reference crop height equals 0.12 m and rs equals 70 m 
s-1, while for alfalfa a reference height 0.40 m and a rs of 100 m s-1 are taken. To correct these 
difference the SWAT input radiation was incremented iteratively for each sub basin until SWAT 
ETref matched SEBAL ETref.

After adjusting of ETref, it was verified through a set of box whisker plots whether ∆ETact 
(ETact SEBAL – ETact SWAT) was explained by variation in land use, different soil type, month, 
or precipitation zone. Precipitation zones were delineated based on annual precipitation.

This analysis leads to the identification of a number of PEST optimisation runs for a primary 
variable. Each PEST run optimizes a set of sub-variables related to either of these primary 
variables. The results of each PEST run (Φ reduction and r2) were used to identify a number 
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of combination PEST runs. Final results were analyzed at basin, sub-basin, and HRU level. All 
ETact optimisation runs calculated the Φ based on monthly data at sub basin level. A total of 920 
observations (8 months times 115 sub basins) were used in the objective function. The following 
optimisation runs were formulated (Figure 4.4):
•	 Available water capacity (AWC). The AWC is defined as the difference between the field 

capacity of the soil and the permanent wilting point. It is defined per soil layer per soil type 
and determines, to a large extent, the water holding capacity of the soil. Ten different soil 
types with two layers each resulted in 20 different sub-variables to be optimized. AWC is 
bound by the range 0.05 mm/mm and 0.60 mm/mm.

•	 Maximum potential leaf area index (BLAI). The LAI is the leaf area divided by the land area. 
The BLAI is one of six parameters that determine leaf area development of a crop in SWAT 
and determines the maximum threshold. BLAI is specified per land use type (Table 4.2) and, 
excluding water surfaces, resulted in 6 sub-variables to be optimized (one per land use). The 
bounding range is between 2.0 and 8.0 for AGR1, AGR2, FRSE and FRST, between 5.0 and 
12.0 for AGR3 and between 1.0 and 8.0 for RNGE.

70
21

SWAT simulation

Initial SWAT simulation

Radiation adjustment to
correct ETref

Analysis ∆ETact and
definition PEST runs

AWC
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GWREVAP
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GWREVAP2
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Analysis results and definition
PEST combination runs

COM1
run

COM2
run

Validation COM2 with
historical streamflow data

Figure 4.4 Flowchart of calibration strategy.
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•	 Monthly rainfall increment (RFINC). The RFINC is specified per month and per sub-basin 
and is defined as the relative monthly adaptation in rainfall. The assumption was made that 
the spatial distribution of the TRMM derived precipitation was correct, however that for 
specific months the scaled absolute amounts of precipitation could be incorrect. This led to 
one sub-variable to be optimized per month. RFINC is allowed to vary between -200% and 
200% of the original monthly precipitation.

•	 Groundwater revap coefficient (REVAP1 and REVAP2). Water may conceptually move 
from the shallow aquifer into the overlying unsaturated zone. The process of water being 
evaporated from the capillary fringe in dry periods is referred to as groundwater revap and in 
SWAT quantified by the revap coefficient (βr) multiplied by ETref. Two optimisation runs were 
designed. For the first optimisation run one βr for each land use, except water, was defined 
(REVAP1, 6 sub-variables). For the second optimisation run it was assumed that βr varies 
per land use and per elevation zone. Four different elevation zones were defined (0-500 m, 
500-600 m, 600-700m and >700m). In combination with land use this resulted in 21 unique 
βr resulting from unique combinations of elevation zone and land use class (REVAP2, 21 sub-
variables). For both optimisation runs the revap coefficient may range between 0.0 and 0.5.
Two combined optimisation runs were performed based on the results of the individual runs 

(COM1 and COM2). COM1 combined AWC, RFINC and GWREVAP1 and COM2 combined 
AWC, RFINC and GWREVAP2. Two combinations runs were evaluated to check if the ability 
of PEST to converge to an optimum was not jeopardized by the relatively large number of 
parameters of COM2.

The results of the best performing combination run were validated using historical stream 
flow data.

4.4	 Results

Monthly analysis of the ETref differences between SEBAL and SWAT revealed that the 
differences between SEBAL and SWAT typically range from 6.1 mm month-1

 in May 2005 to 
29.9 mm month-1 in March 2005 with an average monthly difference of 16 mm month-1. Figure 
4.5 shows the results of the ETref adjustments. The unadjusted SWAT ETref (base) is consistently 
lower than SEBAL ETref. With a modest relative adaptation of solar radiation per month and 
per sub-basin, the monthly differences were reduced to minimal (adjusted). On average radiation 
values were increased by 3.5% with a maximum of 7% for one sub basin in March.

SWAT simulated ETact with the base model (base) in the 2004-2005 irrigation year was 775 
mm with the highest ETact in August (112 mm) and the lowest in February (34 mm). Figure 4.6 
shows box-whisker plots of monthly ∆ETact per land use, soil type, month, and precipitation 
class respectively. The order of magnitude of SWAT ETact is similar to SEBAL, ∆ETact is on 
average slightly positive indicating that ETact derived using SEBAL is slightly higher than SWAT 
simulated values. The distribution of ∆ETact resembles a normal distribution for most cases, but 
ranges between the first and third quartile are considerable and vary between land uses, soil types, 
months and precipitation classes.

Table 4.3 presents the results for the different optimisation runs. In the base run the root 
mean square error (RMSE), defined as the average difference between monthly ETact SWAT and 
ETact SEBAL, was equal to 24 mm/month and ETact SWAT was generally higher than the ETact 
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Figure 4.5 Scatter plot of SEBAL vs SWAT of the sum of ETref from October 2004 to May 2005 
per sub basin.
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Figure 4.6 Box whisker plots of monthly ∆ETact (SEBAL – SWAT) per land use class (top left), 
soil class (top right), month (bottom left) and precipitation class (bottom right; p1 = 0-800 mm 
yr-1, p2 = 800-1100 mm yr-1, p3= 1100-1400 mm yr-1, p4=1400-1700 mm yr-1, p5=1700-2000 mm 
yr-1) The box-whisker plots show the median, first and third quartiles. The caps at the end of the 
boxes show the extreme values.
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SEBAL (ε = 5.2 mm/month). The AWC run reduced the RMSE to 22 mm and the average value 
for the AWC after optimisation was 0.22 mm/mm, while the average initial value was 0.15 mm/
mm. The model was relatively insensitive to maximum plant leaf area index (BLAI). The RMSE 
was not reduced and the average of the residuals only decreased by 0.4 mm/month. The RFINC 
optimisation run had a significant effect and the r2 increased from 0.40 to 0.70. The average 
adjustment in monthly precipitation during the calibration months was limited (-13 mm/month) 
with a maximum in December (21 mm) and a minimum in April (-29 mm). ETact SWAT was 
also sensitive to the groundwater revap coefficient. The GWREVAP run (6 variables) resulted in 
a RMSE of 17 mm and ε was reduced to 1.6 mm/month. GWREVAP2 (21 variables) yielded a 
slightly higher r2 but no significant improvements in RMSE and ε were observed. The best results 
were achieved by the combination runs (COM1 and COM2). COM2 yielded the best results in 
the optimisations: 2987 model calls were required to increase r2 from 0.40 to 0.81. The RMSE in 
that case equalled 13 mm/month and ETact SWAT was on average only 0.5 mm/month higher. 
The COM1 results were also good, but significantly less model calls were required (1610). In the 
COM1 run the average available water content increased from 0.15 mm/mm to 0.21 mm/mm, the 
rainfall adjustment on average was -2% during the calibration months and the groundwater revap 
coefficient equalled 0.1.

There are several ways to evaluate the reliability of any optimisation of a distributed 
hydrological model across time and space. Figure 4.7 shows the scatter plots for run COM1 
between SEBAL ETact and the optimized SWAT ETact on catchment, sub-basin and HRU level 
respectively. It also shows the individual monthly data and the eight month sum of ETact. The 
figure shows that the goodness of fit decreases with spatial and temporal detail. The r2 of monthly 
catchment ETact

 for example is as high as 0.90, while at HRU level the r2 is only 0.35. In time 

Table 4.3 Results of different optimisations runs. #sub and #obs are the number of sub-variables 
and observations used in the optimisations. The Φ (Eq. 8) is the sum of the squared deviations 
between monthly SEBAL and SWAT ETact summed over all sub basins (objective function), 
RMSE is the Root Mean Square Error, defined as the average difference between monthly 
ETact SWAT and ETact SEBAL (Eq. 9), e is the average of the residuals and # model calls is 
the number of model calls required to reach the optimisation results.

PEST run Primary variable #sub #obs Ф RMSE 
(mm/
month)

r2 ε (mm/
month)

# model 
calls

BASE - 0 920 5.29E+05 24.0 0.40 5.20 	 -
AWC Available water content 20 920 4.49E+05 22.1 0.49 5.90 	 664
BLAI Maximum plant leaf area index 6 920 5.19E+05 23.8 0.41 5.50 	 68
RFINC Monthly rainfall increment 12 920 2.54E+05 16.6 0.70 0.80 	 324
GWREVAP Groundwater revap coefficient 6 920 2.78E+05 17.4 0.68 1.60 	 55
GWREVAP2 Groundwater revap coefficient 21 920 2.66E+05 17.0 0.70 1.70 	 792
COM1 Available water content, 

monthly rainfall increment, 
groundwater revap coefficient

38 920 1.77E+05 13.9 0.79 -0.45 	1610

COM2 Available water content, 
monthly rainfall increment, 
groundwater revap coefficient

53 920 1.63E+05 13.3 0.81 0.50 	2987
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we see similar patterns. The r2 at monthly sub basin level is 0.81 while if the eight month sum is 
analyzed the r2 increase to 0.92.
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Figure 4.7 Scatter plots of SEBAL and SWAT ETact. Monthly data are shown on the left side 
graphs and the eight month sum is shown on the right side. Spatial detail increases from top to 
bottom and ranges from catchment, sub basin to HRU level respectively. SWAT results relate to 
COM2 optimisation.
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Figure 4.8 maps the eight month ETact sum for SWAT and SEBAL at sub-basin and at HRU 
level. At sub-basin level, the spatial patterns between SWAT and SEBAL were highly consistent. 
At HRU level there were considerable differences. The general spatial patterns were well 
depicted. However, some HRUs within a sub-basin evaporated more than derived with SEBAL 
and some evaporated less, however aggregated over the entire sub basin these differences were 
levelled out. For example most sub basins with a significant area of AGR3 also contained a large 
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area of RNGE. ETact of AGR3 seems to be overestimated and ETact of RNGE seems to be 
underestimated. On subbasin scale these differences level out and the results are good, however 
the variation in SWAT ETact at HRU level was larger. This was a result of the fact that PEST 
optimises monthly ETact at sub basin level and not at HRU level.

Discharge data of the simulation period are unavailable and even if measured discharge would 
be available, their use in calibration would be questionable, given the fact that stream flow is 
completely human controlled in the catchment. A qualitative control on measured discharge was 
however performed using historical data from 1970 to 1996. The discharges of the entire catchment 
were used for comparison with the model simulations. Figure 4.9 shows the historical observed 
and simulated discharges for the base and calibrated models. The calibrated model mimicked the 
observed discharges better than the base model. The simulated calibrated discharges in 2004-
2005 were well within one standard deviation of the average measured discharges between 1970 
and 1996. December was an exception and modelled discharges were slightly higher. It should be 
noted though, that the coefficient of variation in the observed discharges were large and range 
from 66% in August to 160% in May. Further validation of actual discharges during the simulation 
period (2004-2005) is recommendable; however these data were not available.

4.5	 Discussion and conclusion

This study showed that the spatially distributed hydrological model SWAT can potentially be 
successfully calibrated using the GML algorithm and remotely sensed derived evapotranspiration 
from a time series of MODIS images in a data scarce area. The best results were obtained by 
optimising a combination of soil, meteorological, and groundwater related parameters for an 
eight month time series of sub-basin actual evapotranspiration. Optimising a total of 53 variables 
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Figure 4.9 Historical observed and simulated (base and calibrated) discharges at the outlet of the 
catchment. Error bars around the observed historical series denote one standard deviation based 
on the 1970-1996 time series.
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using 920 monthly observations increased the r2 between SEBAL and SWAT ETact, significantly, 
from 0.40 to 0.81. A validation with historical measured discharges revealed that the modelled 
discharges are well within one standard deviation of the observed data. Separate optimisation runs 
revealed that ETact is more sensitive to the groundwater and meteorological parameters than to 
soil and land use parameters. On sub-basin level the ETact showed least response to the land cover 
dependent maximum leaf area index. Furthermore, it can be concluded that at the HRU level 
more work is required to fine-tune the calibration procedure. The calibration was only reliable at 
the spatial and temporal scale on which the observations, used in the optimisation, were based. 
Future work should focus on calibration strategy that incorporates HRU level ETact observations 
and discharges at a high temporal resolution in the objective function.

In this study, the gradient search GML algorithm was used in the optimisation although 
this method is sometimes sensitive to local minima, especially when non-linear processes are 
modelled. However, a time series of spatially distributed ETact exhibits more linear behaviour 
than discharge at a limited number of locations. Moreover, it has been shown that global search 
algorithms require much more function calls to identify the global minimum. SWAT was recently 
used in the evaluation of a number of optimisation algoritms; Shuffled Complex Evolution, 
real-valued simple Genetic Algorithm, multi-start Simplex and Monte Carlo Sampling and a 
new algorithm called the Global Greedy Search algorithm (Tolson and Schoemaker, 2006). For 
two case studies a maximum of 2500 (6 parameters) respectively 6000 (14 parameters) SWAT 
model calls were required. The GML algorithm is much more efficient in this respect (Skahill 
and Doherty, 2006) and for the best performing optimisation (53 parameters) in this study 2987 
model calls were required. We therefore conclude that PEST and the GML algorithm served our 
objectives best.

Traditional calibration on a limited number of discharge stations lumps all hydrological 
processes together and chances on the occurrence of the equifinality problem are much larger. In 
this study we showed that using spatially distributed ETact observations with a monthly temporal 
resolution provide a promising alternative. The success of the approach lays in the spatial and 
temporal isolation of the calibration problem at hand. Information content of a time series of 
discharges at the outlet of a catchment is simply insufficient to attribute deviations between 
observation and simulation to specific processes at a specific location at a specific point in time. 
Using spatial data constrains the spatial distribution of fluxes, but the equifinality problem may 
still occur at the scale of a HRU given the large number of parameters in the SWAT model. 
Franks and Beven (1997, 1999) utilised the function similarity concept and use representative 
parameter combinations at the unit scale, which are not necessarily correct, but produce the 
correct output. Although it is important to consider this issue of equifinality at the HRU scale 
we believe that using function similarity concept compromises the understanding of hydrological 
processes. The approach of this study offers a basically unlimited number of observations in time 
and space and adding information on for example stream flows or groundwater heads to the 
objective function may further reduce equifinality issues without compromising parameterisation 
of essential hydrological processes. Adding other independent sources of information may also 
further substantiate the reliability of SEBAL estimates of ETact. Although we have found very 
good results at the sub basin level on a monthly time step, further study is required to increase the 
reliability of the results in space (at HRU level) and time (weekly or daily).

One of the variables used in the optimisation is a monthly rainfall increment. It is generally 
not common practice to vary model excitations in a calibration procedure; however we believe 
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that in this case it was legitimate. Precipitation data used in this study was based on TRMM for 
two important reasons: (i) station data for the simulation period are unavailable and (ii) there 
is a large spatial variation in precipitation that is not captured by using a limited number of 
meteorological stations. However using raw TRMM data would result in unreliable absolute 
precipitation amounts and the TRMM precipitation is scaled with data from 11 meteorological 
stations within the catchment using linear regression and data between 1998 and 2004. The r2 
values between monthly TRMM and observed rainfall for these stations range from 0.29 tot 0.81 
with an average of 0.59. Both TRMM as well as the observed station data are subject to error, 
which cannot be isolated. Considering this it was justifiable to use monthly RFINC as calibration 
parameter. No changes occur in the spatial distribution of rainfall and average adjustment in 
precipitation is only -13 mm/month with an maximum in December (21 mm) and a minimum in 
April (-29 mm) for the best performing optimisation.

The calibration period covers only eight months and a longer time scale would be preferable. 
Presently longer time series of remotely rensed ETact are unavailable, but this might changes in 
the future. An attempt to develop a standard MODIS ET product has recently been abandoned 
(Running et al., 1995), but Mu et al. (in press) have recently suggested a potential globally 
applicable methodology based on the Penman-Monteith equation, MODIS data and global 
meteorology data.

The monsoon period is not covered in the calibration, because of the absence of cloud free 
imagery. SEBAL depends on the visible, NIR en thermal IR part of the spectrum which is 
hampered by clouds. A viable alternative could be to incorporate radar based soil moisture and 
measured discharges in a combined objective function during the monsoon months in order to 
appropriately calibrate the model in the monsoon season. No parameters directly related to runoff 
were included in the calibration. The curve number for example is normally a common parameter 
to included and is known to be a sensitive parameter to control runoff. The calibration period did, 
however, not include the monsoon and rainfall, and thus runoff are small during the calibration 
period, which renders it unsuitable for calibration. However runoff during the monsoon influence 
initial soil moisture condition and more importantly reservoir inflow. Therefore to be able to 
realistically model reservoir storages, erosion and nutrient loads it is recommendable to calibrated 
runoff in the monsoon months in addition to ETact in the other months through a combined 
objective function.

Realistic simulations during the dry period from October to May are also more important 
than the monsoon period. Runoff is not a critical issue, but ET management, water shortage and 
irrigation are the dominant hydrological issues relevant to water managers.

Differences in space and time in ETref between SEBAL and SWAT were caused by spatial 
altitude dependent operations, which SEBAL performs on important parameters. The DEM 
was used to correct air pressure and density and thus the psychometric constant. The DEM was 
further used to correct the absorbed solar radiation values for slope and aspect. Southern facing 
terrain, due to the angle of incidence, absorbs more solar radiation per unit land than the northern 
facing slope. Another cause of the difference in ETref is the fact that SEBAL uses grass as a 
reference crop and SWAT uses alfalfa. We showed that a near perfect match between observed 
and measured ETref after inferring a small adjustment (average = 3.5%) of monthly radiation.

In this study it was assumed that ET derived with SEBAL provides an independent 
measurement of ET. Although much more closely tied to direct observations than a process based  
prognostic model such as SWAT, it must be acknowledged that SEBAL still is a diagnostic model. 
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Remotely sensed surface temperatures and vegetations characteristics are used to model ET fluxes 
using the energy balance as a basis. This has clear advantages as it eliminates problematic spatially 
distributed input data requirements. Since the basis for ET calculation in SWAT (hydrological 
and process based) is completely different from SEBAL (energy balance based) it is legitimate to 
use SEBAL ET as a data source for calibrating SWAT. It should be acknowledged though that 
the true test of the applicability of this calibration approach should be further  investigated in the 
future in a catchment where natural flows are measured and used as an independent verification. 
Additional validation with discharge data in this case could only be based on historical data, 
because of lack of data. Another compromising factor is that stream flow in the catchment is 
mainly human controlled through a cascade of reservoirs and local water storage facilities and are 
therefore less suitable for validation. The key objective of this study was to introduce an innovative 
calibration procedure based on remotely sensed ETact, especially targeted for these kinds of data 
scarce human controlled catchments.

In developing countries, where lack of data is an issue and the planning process needs to 
be supported by scientific sound measures, the innovative use of remote sensing in hydrological 
model calibration as presented in this study will contribute to the prevention of disasters and 
improve sustainable management in the long term. Recently, interest in using simulation models 
in ungauged or sparsely gauged basins has increased leading to some concerted actions. The most 
relevant is the Prediction in Ungauged Basin (PUB) initiative; an International Association 
for Hydrological Sciences (IAHS) initiative for the decade of 2003-2012, aimed at uncertainty 
reduction in hydrological practice (Sivapalani et al., 2003). PUB focuses the development of new 
predictive approaches that are based on “understanding” of hydrological functioning at multiple 
space-time scales. This study provided an ET based innovative approach at different temporal and 
spatial scale that fits well into the PUB science program.
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5	 Integrating remote sensing and a 
process-based hydrological model to 
evaluate water use and productivity 
in a south Indian catchment

		�  Based on: Immerzeel, W.W., A. Gaur & S.J. Zwart (2007), Integrating remote sensing and 
a process-based hydrological model to evaluate water use and productivity in a south Indian 
catchment (in press)

Abstract
The combined use of remote sensing and a distributed hydrological model have demonstrated the 
improved understanding of the entire water balance in an area where data are scarcely available. 
Water use and crop water productivity were assessed in the Upper Bhima catchment in southern 
India using an innovative integration of remotely sensed evapotranspiration and a process based 
hydrological model. The remote sensing based Surface Energy Balance Algorithm for Land 
(SEBAL) was used to derive an eight month time series of observed actual evapotranspiration 
from October 2004 to May 2005. This dataset was then used in the calibration of the Soil 
and Water Assessment Tool (SWAT). This hydrological model was calibrated by changing 34 
parameters to minimize the difference between simulated and observed actual evapotranspiration. 
The calibration efficiency was assessed with four different performance indicators. The calibrated 
model was used to derive a monthly basin water balance and to assess crop water productivity 
and crop water use for the irrigation year 2004-2005. It was found that evapotranspiration is the 
largest water loss in the catchment and total evaporative depletion was 38,172 Mm3 (835 mm). Of 
the total evaporative depletion 42% can be considered as non-beneficial and could be diverted 
to other beneficial utilization. Simulated crop water productivities for sugarcane, sorghum and 
winter wheat are relatively high at 2.9 kg/m3, 1.3 kg/m3 and 1.3 kg/m3 respectively. The frequency 
distributions of crop water productivity are characterised by low coefficient of variation, yielding 
limited scope for improvement in the agricultural areas under the current cropping systems. 
Further improvements in water productivity may however be achieved by shifting the crop 
base from sugarcane to a dual crop and introducing a fallow period from March to May or by 
converting non-productive rangelands to bio fuel production or other agricultural land uses.



76

5.1	 Introduction

The Krishna River Basin (258,948 km2) in semi-arid southern India is the fourth largest in India 
in terms of annual discharge, and the fifth in terms of surface area. The basin covers parts of three 
south-Indian states: Maharashtra (27%), Karnataka (44%), and Andhra Pradesh (29%). After 
independence (1947), a major national objective was the rapid harnessing of the country’s water 
resources potential, which resulted in a surge of developments from 1960 onwards and a drastic 
reduction in river discharge. The massive proposed irrigation schemes promoted interstate water 
conflicts. The Krishna basin as a whole is now nearly a closed basin (Gaur et al., 2007).

A major part of the water available in the Krishna basin originates from the humid regions 
of the Western Ghat mountains where precipitation exceeds 5,000 mm. The Upper Krishna and 
Upper Bhima catchments served by Western Ghats are, therefore, two very important catchments 
out of 12 major catchments in Krishna basin. These two catchments contribute significantly to 
Krishna river flows for downstream use. The Upper Bhima cathment is additionally important 
for the state of Maharashtra in the context of serving inter-sectoral water demands including 
hydropower, agriculture and drinking water supplies. Following the increase in utilization, the 
water released to the main stem of the Krishna from the Upper Bhima catchment has declined 
by 59% from an average of 8,816 Mm3 in 1970-80 to 3,615 Mm3 during 1994-2004, and is mainly 
concentrated in the monsoon months June to September (Government of Maharashtra, 2005). 
During the last 20 years, a shift in agricultural practices towards more water consuming crops, 
such as sugarcane, took place. The sugarcane area, for example, has almost tripled during this 
period. An increased competition for water resources between agriculture and the industrial and 
domestic sectors may lead to a decrease in food production and to environmental degradation. 
The agricultural sector, being the largest consumer of water, should therefore focus on enhancing 
the productivity of water through (i) improving the production per unit of water consumed, or 
(ii) by maintaining the same production while reducing water use (Kijne et al., 2003; Rijsberman, 
2006). Better knowledge on fresh water depletion and crop production patterns throughout a 
basin is essential for water managers and policy makers to improve water management in areas 
where water productivity is low. Traditional water management techniques often focus on water 
saving at field level by reducing irrigation water allocation to fields. However, a plot level saving 
may not necessarily lead to ‘real’ water savings at the basin scale, as excess water can be reused 
downstream (Keller and Keller, 1995). Water management should, therefore, focus on a reduction 
of water depletion by evapotranspiration and increasing water productivity, as this water is not 
available for reuse. Therefore, water productivity in this study is defined as the marketable crop 
yield over the seasonal water use by actual evapotranspiration (ETact).

Remote Sensing and distributed hydrological models are indispensable tools in objectively 
quantifying water depletion, water balance components, agricultural yields and water productivity 
in areas where data is scantily available. This paper shows how the hydrological model Soil and 
Water Assessment Tool (SWAT) (Arnold et al., 1998; Srinivasan et al., 1998) can be applied to 
simulate the catchment’s water balance, quantify water depletion per land use, and to analyze crop 
water productivity per agricultural system. Using an innovative methodology, the SWAT model 
is calibrated using Remotely Sensed ETact based on the Surface Energy Balance Algorithm for 
Land (SEBAL) algorithm (Bastiaanssen et al., 1998; Bastiaanssen et al., 2005). This approach 
is unique in the sense that Remote Sensing is completely integrated in the calibration of a 
hydrological model. Traditionally hydrological models are calibrated using measured hydrographs. 
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Lack of data and absence of natural flows generally compromise the calibration of such models. 
The approach demonstrated in this paper provides an innovative methodology to assess water 
resources in drought prone catchments with limited data availability.

5.2	 Study area

The Upper Bhima catchment has a total area of 45,678 km2 and is located between 16.5º-19.5º N 
and 73.0º-76.5º E and comprises of the catchment area of the river Bhima from its source to its 
confluence with the Sina River. The Sina River drains the north western part of the catchment. 
The elevation ranges from 414 meter in the east to 1458 meter in the Western Ghat mountains, 
while 95% of the catchment is below 800 meter and relatively flat.

The catchment has a highly diverse climate mainly caused by the interaction between the 
monsoon and the Western Ghat mountain range (Gunnel, 1997). The normal annual precipitation 
varies from 5000 mm in the mountains in the Western Ghats to less than 500 mm in the eastern 
part of the catchment with an average of 642 mm. During the study period, 2004-2005, the 
average precipitation was 842 mm, which is 31% more than average (Figure 5.1). A total of 61% of 
the area received less than 750 mm and 25% more than 1,000 mm.

Figure 5.2 shows the monthly precipitation (P) and reference evapotranspiration (ETref) in 
the basin, as well as the minimum and maximum temperatures. The catchment has a high annual 
ETref (1814 mm) ranging from 224 mm/month in May to 108 mm/month in December. Over 
90% of the annual precipitation occurs during the monsoon months June to September. Between 
October and May large precipitation deficits occur with the peak in May (211 mm) just before the 
onset of the monsoon. The minimum temperature ranges from 12 ºC in December 2004 to 25 ºC 
in May 2005, while the maximum temperature ranges from 30 ºC in august 2004 to 40 ºC in May 
2005.

The large amounts of precipitation in the Western Ghat range are retained in a chain of 
reservoirs and excess is released to downstream areas, especially along the Bhima tributary. The 
reservoirs accumulate water during the monsoon season ( June to September), and supply the 
water during the monsoon as well as throughout the irrigation season (October to May). Flows 
in the rivers are therefore mainly human controlled and respond less directly to variations in the 
climate excitations and biophysical conditions.

Agriculture in the upper Bhima catchment is characterised by a diverse cropping pattern of 
sugarcane, sorghum, wheat, corn, millet, groundnut, grass fodder and a variety of horticultural 
crops (Neena, 1998). Three main types of agricultural systems can be identified in the catchment: 
(i) rainfed agriculture with a single crop cultivated during the monsoon (RFA) such as maize, 
millet, pulses and sorghum, (ii) supplemental irrigated agriculture with one rainfed crop during 
the monsoon (e.g. rice, maize, sorghum) and a groundwater irrigated crop grown during winter 
(e.g. winter wheat, sorghum, vegetables) (SIA) and (iii) irrigated perennial crops (e.g. sugarcane, 
horticulture) (SIUG) (Figure 5.4). These crops are grown throughout the year the majority is 
irrigated the reservoirs.

The normalized difference vegetation index (NDVI) patterns of these land use classes are 
shown in Figure 5.3. The natural NDVI peak was just after the monsoon early October and the 
NDVI of the irrigated agriculture classes remained relatively high also after the wet period. The 
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sugarcane NDVI was still as high as 0.35 at the end of May. Other non-agricultural land covers in 
the catchment include rangelands, mixed forests, evergreen forests and water surfaces.

Most of the catchment lies on granite, zeonite and basalt rocks, that all contain considerable 
stocks of groundwater. Groundwater levels, however, vary greatly both in space and time.
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Figure 5.2 Monthly precipitation (P), reference evapotranspiration (ETref), minimum (Tmin) and 
maximum temperature (Tmax) averaged for two meteorological stations (Pune, Sholapur).
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Figure 5.4 Land use based on unsupervised classification of MODIS time series of NDVI 
imagery with a spatial resolution of 250 meter.
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According to the FAO digital soil map of the world (FAO, 1998) ten different soil units are 
identified in the catchment. The alluvial plains are predominantly characterized by vertisols, while 
the Western Ghats and steeper slopes by luvisols (Figure 5.5). A further description of the soil 
types is provided in Table 5.1.

5.3	 Methodology

5.3.1	 Evapotranspiration mapping
SEBAL (Bastiaanssen et al., 1998; Bastiaanssen et al., 2005) was applied to estimate total ETact 
spatially between October 2004 and May 2005. During the monsoon period, June to September, 
cloudy conditions prevented the application of SEBAL. SEBAL uses satellite imagery from 
sensors measuring the visible, near-infrared and thermal radiation. The latent heat flux (LE) was 
computed on a pixel-by-pixel basis as a residual of the energy balance:

LE = Rn – G – H� (1)

Where Rn is the net radiation (W/m2), G is the soil heat flux (W/m2), and H is the sensible heat 
flux (W/m2). The net radiation (Rn) is the actual radiation that is available at the earth surface, 
which is equal to the sum of the net shortwave and longwave radiation. The former was computed 
as a function of the surface albedo, while the latter was computed from the difference between 
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Figure 5.5 Soil types based on the digital soil map of the world (FAO, 1998)
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incoming and outgoing longwave radiation. Incoming longwave radiation was calculated using 
a modified Stefan-Boltzmann equation that uses an apparent emissivity, which is coupled to an 
atmospheric transmissivity and a measured air temperature. The outgoing longwave radiation was 
calculated using the Stefan-Boltzmann equation with a calculated surface emissivity and a surface 
temperature measured by the satellite sensor. The soil heat flux (G) was estimated as a fraction 
from Rn, surface temperature and NDVI. The sensible heat flux (H) was estimated from surface 
temperature, surface roughness and measured wind speed. An essential step in the application 
of SEBAL is the solution of extreme values for H, prior to the pixel-by-pixel computations. In 
desert surroundings H is considered equal to Rn-G, while for water surfaces H is equal to 0.

SEBAL was applied on 16 cloud free satellite images that were recorded by the Aqua sensor 
onboard the Moderate Resolution Imaging Spectrometer (MODIS). Initially SEBAL solved 
the instantaneous surface energy balance at the moment of overpass from the satellite sensor. 
ETact sums for 2-week periods were obtained by re-applying the SEBAL models with average 
meteorological measurements for the 2-week periods and by assuming certain bio-physical 
parameters constant throughout the period. These parameters include surface albedo, NDVI, 
emissivity, evaporative fraction, surface roughness and bulk surface resistance. The final maps of 
ETact have a spatial resolution of 250 m.

5.3.2	 Land use classification
A land use map was derived from remote sensing data and was based on an unsupervised land 
use classification using a time series of 16 MODIS derived NDVI images with a spatial resolution 
of 250 meter from October 2004 to May 2005. The time series used for the land use classification 
was similar to the SEBAL analysis. The distinction between the temporal patterns of NDVI of 
major land use classes provides sufficient information to derive a land use classification. Firstly, an 
unsupervised classification with a large number of classes (15) was performed. Secondly, using an 
existing land use map of low spatial resolution (500 m) in combination with limited field survey 
data in the upstream part of the catchment, the 15 classes were attributed to the seven main land 
use classes in Table 5.2. Finally the classified land use map was visually cross-checked with high 
resolution satellite imagery.

Table 5.2 Acreages, crops, and growing season of different land use classes in the upper Bhima 
catchment

Land use class Crops Growing 
season

Area (km2) Area (% )

Water surfaces (WATR) - - 411 1
Rangelands (RNGE) - - 12242 27
Rain fed agriculture (RFA) Sorghum (SGHY) 10/6 - 30/9 15348 34
Supplemental irrigated agriculture (SIA) Sorghum (SGHY) 10/6 - 30/10 6121 13

Winter wheat (WWHT) 15/10 - 0/2
Irrigated sugarcane (ISUG) Sugarcane (SUGC) 1/6 - 31/5 9090 20
Evergreen forest (FRSE) - - 1416 3
Mixed forest (FRST) - - 1051 2
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5.3.3	 Data preparation
A digital elevation model (DEM) acquired with the shuttle radar topographic mission (Rabus 
et al., 2003) was used. The original spatial resolution of the DEM was 90 meter, but for model 
efficiency and compatibility with the land use map the DEM were resampled to a resolution of 
250 meter with a similar extent as the land use map.

The digital soil map of the world (FAO, 1998) is accompanied by a database with soil 
properties. This database is used to parameterise the SWAT model. For this study each soil type 
is schematised as a representative profile consisting of a top and sub soil. A description of the top 
and sub soils of the ten soil types and the most important derived soil hydraulic properties are 
shown in Table 5.1.

Daily data on radiation, wind speed, relative humidity, and air temperature for two different 
meteorological stations (Pune and Sholapur) were used (Figure 5.1). These data were used to 
calculate reference evapotranspiration. Precipitation data were available at a more detailed spatial 
scale. Monthly precipitation data for 52 municipalities were collected for the period under study 
( June 2004 – May 2005). The precipitation was attributed to the centre point of the municipality 
and spatially interpolated to monthly grids with a resolution of 250 meter. These grids were then 
used as input in the SWAT model.

5.3.4	 Application of SWAT
SWAT is a distributed hydrological model providing spatial coverage of the entire hydrological 
cycle including atmosphere, plants, unsaturated zone, groundwater and surface water. The model 
is comprehensively described in literature (Arnold et al., 1998; Srinivasan et al., 1998).

A number of key processes are described in more detail.
The Penman-Monteith method (Monteith, 1965) was used in SWAT to calculate daily ETref 

for alfalfa and potential plant transpiration (Tp). ETp deviates from ETref, because actual daily 
crop height and leaf area index (LAI) are used to determine the aerodynamic resistances and 
canopy resistances respectively. Potential soil evaporation is an exponential function of ETref 
and the soil cover and is further reduced during periods with high plant water use. Actual soil 
evaporation is limited by the soil water content (θ) and is reduced exponentially when θ drops 
below field capacity.

To calculate actual plant transpiration the potential plant water uptake is defined by (Neitsch 
et al., 2002)

� (2)

Where wp,z (mm H2O) is the potential plant water uptake from the soil surface to a specified 
depth z (cm) from the soil surface on a given day, Tp (mm) is the maximum plant transpiration on 
a given day taken from a lookup table, βw (-) is the water use distribution parameter, z is the depth 
from the soil surface (mm), and zroot is the depth of root development in the soil (mm). Actual 
plant water uptake equals actual plant transpiration is reduced exponentially when θ drops below 
field capacity, similar to soil evaporation. ETact is the sum of interception, actual soil evaporation 
and actual plant transpiration.

For each day of simulation, potential plant growth, i.e. plant growth under ideal growing 
conditions, was calculated. Ideal growing conditions consist of adequate water and nutrient 
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supply and a favourable climate as depicted in the Tp. Firstly, the absorbed photosynthetical active 
radiation was computed from intercepted solar radiation as a function of LAI, followed by a Light 
Use Efficiency that is in SWAT essentially a function of carbon dioxide concentrations and vapor 
pressure deficits. Actual growth was calculated from optimal growth by inferring stress factors for 
extreme temperatures and water and nutrient deficiencies. The crop yield was computed as the 
harvestable fraction of the accumulated biomass production across the growing season.

The first step in setting up a SWAT model is the subdivision of the catchment into sub-
basins and a river network based on the DEM. Based on unique combinations of soil and land 
use the sub-basins were further detailed into hydrological response units (HRUs), which are the 
fundamental units of calculation. A total of 115 sub basins and 768 HRUs were delineated in 
the Upper Bhima catchment. The HRUs are then further parameterized. Soil parameters were 
attributed to the HRUs according to the data provided in Table 5.1. The classified land use map 
was linked to the SWAT land use database that provided the land use parameters. The growing 
seasons of the agricultural classes are shown in Table 5.2. For the three agricultural classes (RFA, 
SIA and ISUG) specific crop management activities (fertilization and irrigation) was specified 
as input to the model. It is assumed that for every fertilization application urea is used at a dose 
of 300 kg/ha. The irrigation amounts are based on average crop water requirements during the 
growing season, and based on potential evapotranspiration. RFA is fertilized once on June 22. 
SIA consist of a dual cropping pattern. Firstly, it was assumed that sorghum is cultivated during 
the monsoon and is fertilized on June 10, immediately after planting, and again on August 1. 
Secondly, winter wheat is fertilized thrice: October 17, November 1, and February 10. Winter 
wheat is irrigated on November 10 (40 mm), November 20 (40 mm), December 15 (100 mm), and 
January 15 (100 mm). The total amount of irrigation water applied is 280 mm. SUGC is cultivated 
year-round and is fertilized thrice on June 1, September 1, and January 1. In total 690 mm or 
irrigation water is applied to all SUGC areas in 12 monthly applications. Limited amounts are 
applied during the monsoon (40 mm/month) and larger amounts during the dry season from 
March until May (100 mm/month).

The major reservoirs are mainly located along the Bhima River. In the model, the reservoirs 
were clustered into two reservoirs. The majority of inflow into the reservoirs occurred during the 
monsoon and reservoirs are generally filled by October. The stored water is used for irrigation 
in the remainder of the season. Irrigation water is extracted from the reservoirs and the unused 
excess water is released using a monthly distribution derived from historical measurements.

The model was run with a daily timestep from June 1, 2004 to May 31 2005. Outputs of the 
SWAT model comprise:

•	 Water balance components at HRU, sub basin and catchment scale
•	 Streamflow data of each stream in the routing network, and
•	 Biomass production and crop yields at HRU level

5.3.5	 Model calibration and validation
The parameter estimation package (PEST) was used to calibrate the SWAT model. PEST is a 
non-linear optimisation software package based on the Gauss-Marquardt-Levenberg algorithm 
(Doherty, 2005). PEST is able to run a model as many times as it needs to while adjusting its 
parameters until the discrepancies between selected model outputs and a complementary set of 
measurements is reduced to a minimum. It calculates the optimal parameter set for which the 
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sum of the squared deviations between model-generated results and experimental observations is 
reduced to a minimum (Φ). Expressing this mathematically, the objective function Φ needs to be 
minimised, where Φ is defined by the equation:

� (3)

Where n equals the total number of observation, Oi is the observed value on timestep i, and Mi 
is the modelled value on timestep i. For linear models minimization can be achieved in one step, 
whereas for non-linear problems it is an iterative process. At the beginning of each iteration 
the relationship between model parameters and model-generated outputs is linearised by 
formulating a Taylor expansion about the currently best parameter set. Hence, the derivatives of 
all observations with respect to all parameters must be calculated. This linearised problem is then 
solved for a better parameter set, and the new parameters tested by running the model again.

In this study SWAT simulated actual evapotranspiration (ETact, SWAT) is calibrated using 
monthly SEBAL derived ETact (ETact, SEBAL) using PEST. The total time series spans eight months 
and the spatial calibration scale is the smallest possible SWAT scale (HRU). The ETact, SEBAL are 
first aggregated per month per HRU. PEST was then used to minimize the difference between 
the squared deviations between ETact, SEBAL and ETact, SWAT. Only HRUs from non-water surface 
were used (668), resulting in a total of 5344 (8 months x 668 HRUs) observations that were used 
in the calibration. A number of important model parameters that have a large influence on ETact 
have been included in the calibration:

•	 Available water capacity (AWC). The AWC is defined as the difference between the field 
capacity of the soil and the permanent wilting point. It is defined per soil layer per soil type 
and determines, to a large extent, the water holding capacity of the soil. In this case one 
AWC was defined per soil type. Ten different soil types resulted in ten different parameters to 
be optimized. The AWC was bound by the range 0.05 mm/mm and 0.30 mm/mm.

•	 Groundwater revap coefficient (REVAP). Water may conceptually move from the shallow 
aquifer into the overlying unsaturated zone. The process of water being evaporated from the 
capillary fringe in dry periods is referred to as groundwater revap and in SWAT quantified 
by REVAP multiplied by ETref. One REVAP for each land use, except water, was defined (6 
parameters) and bound by the range 0.7-1.0.

•	 Maximum canopy storage (CAN). CAN determines for a large part the interception of 
precipitation. Actual interception is a function of actual LAI and maximum LAI, at which 
CAN is defined. One CAN was defined for each non-water land use resulting in 6 parameters 
bound by the range 0-10 mm for non-forested land uses and 0-20 mm for forests.

•	 Soil evaporation compensation factor (ESCO). ESCO determines to what soil depth evaporation 
of the soil is permissible to sustain evaporative demand. As the value for ESCO is reduced, 
the model is able to extract more of the evaporative demand from lower levels. For each non-
water land use one ESCO parameter was optimised and bound by the range 0.01-1.00.

•	 Plant uptake compensation factor (EPCO). EPCO is similar to ESCO, but for plant water 
uptake. As EPCO approaches 1.0, the model allows more of the water uptake demand by 
plants to be met by lower layers in the soil. For each land use class one EPCO parameter was 
optimised and bound by the range 0.01-1.00.
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This definition resulted in 34 (10 x AWC+6 x REVAP+6 x CAN+6 x ESCO+6 x EPCO) 
parameters to be optimised. To be able to capture the spatial heterogeneity most parameters are 
optimized per land use class, because land use information is available at relative high level of 
detail compared with the soil information (Figure 5.4 and Figure 5.5). Other studies have used a 
similar approach (Immerzeel and Droogers, 2007).

The efficiency and performance of the SWAT model calibration was assessed according to 
four commonly used indicators (Hoffmann et al., 2004).

Firstly, the Pearson correlation coefficient (r) between the ETact, SEBAL and ETact, SWAT was 
calculated. A value of 1 yields perfect correlation, and a value of 0 indicates that ETact, SEBAL and 
ETact, SWAT are uncorrelated.

Secondly, the Nash-Suthcliffe model efficiency (Nash and Sutcliffe, 1970) was determined, 
which is given by

� (4)

The values range between -∞ – 1 and the higher the value the more efficient the calibration. A 
negative value indicates that the mean value of the observed values would have been a better 
predictor than the simulated values with the SWAT model.

Thirdly, the bias was determined, which is given by

� (5)

The bias reveals to which degree the modelled value is over or underestimated.
Finally, the root mean square error (RMSE) was assessed, which is given by

� (6)

The RMSE provides information on the average error between the ETact, SEBAL and ETact, SWAT.
The results of the calibrated SWAT model were validated using discharge measurements at 

the outlet of the Upper Bhima catchment. Since the flows in the rivers are mainly controlled 
by artificial releases from the reservoirs some caution is warranted. For this reason only total 
observed and modelled monthly discharge out of the catchment from June 2004 to May 2005 
have been compared.

5.3.6	 Water productivity analysis
In general there are three different types of crop water productivity that can be distinguished:
•	 Technical water productivity (kg/m3) defined as the mass of product per unit of water 

consumed.
•	 Economic water productivity ($/m3) defined as net private benefits per unit of water 

consumed.
•	 Socio-economic water productivity ($/m3) defined as the net social benefits per unit of water 

consumed, which are difficult to value.
Depending on whether a system is food scarce, water scarce or whether the market is completely 
open, one of the above crop productivities can be optimized. Clearly, the latter two are beyond 
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the scope of this paper, and we have limited this study to the analysis of technical water 
productivities.

The crop water productivity (CWP) (kg/m3) is defined as the ratio of the crop yield (kg/ha) 
and ETact, SWAT. The crop growth module of the calibrated SWAT model was used to estimate crop 
yields for each of the major crop cycles of the three main agricultural land use classes (RFA, SIA, 
ISUG). The cropping patterns were generalized as follows. For the rainfed crops it was assumed 
that sorghum was cultivated (RFA, SIA). The winter crop for SIA was modelled as winter wheat 
(SIA), and sugarcane has been assumed as perennial crop (ISUG) (Table 5.2).

The SEBAL algorithm also derived biomass production from satellite radiances, which can 
be further converted to crop yields by multiplying with the crop harvest index. In combination 
with the ETact, SEBAL the SEBAL based CWP was then calculated. This SEBAL based CWP 
was then used to validate the SWAT results. This could only be done for winter crops, which 
are grown from October 15 to February 10 (Table 5.2), because SEBAL could not be applied 
during the monsoon due to clouds. Finally, the predicted crop yields simulated by SWAT were 
also compared to measured yields reported as census statistics.

5.4	 Results and discussion

5.4.1	 Land use mapping
Figure 5.4 shows the land use map of the catchment and Table 5.2 shows the acreages of each 
land use class as well as the crop cycles within the agricultural land uses. In total 67% of the area 
is under agriculture, 5% is forested, 27% is non-productive rangeland and 1% is covered by open 
water. The forested areas are located in the western part of catchments where slopes are steep and 
rainfall is high. The irrigated sugarcane is mainly situated along the major irrigation systems along 
the Bhima River branch, while the supplemental irrigated agriculture is more abundant along the 
Sina River. Rainfed agricultural exhibits a more capricious spatial pattern. The rangelands are 
predominantly found in the south western part of the catchment. The total cropped area shows 
great similarity to the district agricultural statistics. The area classified as ISUG (20%) seems to be 
overestimated when compared with district statistics (4%). There are several possible explanations: 
(i) this study assumes all perennial crops as sugarcane, (ii) due to the moderate resolution of the 
satellite images a pixel with mixed crops was classified as ISUG, or (iii) the statistics are not 
correct. An independent verification is recommendable for the future.

5.4.2	 Model calibration and validation
The performance of the model was assessed according to four different indicators. Firstly, the 
Pearson correlation equalled 0.58, compared with 0.48 for the uncalibrated model. This means that 
the calibration resulted in an improved correlation between ETact, SEBAL and ETact, SWAT. Secondly, 
the Nash-Suthcliffe model efficiency index was 0.28, which indicates that the calibrated model 
is a better predictor than the mean value of the observed ETact, SEBAL contrary to the uncalibrated 
case when the Nash-Sutcliffe criterion was -0.42. Thirdly, the bias equalled 0.03 mm/month, 
which is very low, indicating there is no systematically under- or over prediction of ETact. For 
the uncalibrated model the bias was slightly higher (0.25 mm). Finally, the average error between 
ETact, SEBAL and ETact, SWAT (RMSE) was reduced from 36 mm/month to 26 mm/month. It is also 
interesting to see how the RMSE is related to the number of model calls that PEST requires 



88

to minimize Φ. Figure 5.6 shows that after approximately 200 SWAT models calls Φ (and the 
RMSE) are minimized. This shows that the optimisation converged relatively quickly, given the 
number of parameters. Figure 5.7: Cumulative ETact from October 2004 to May 2005 derived 
with SEBAL (left) and simulated with SWAT (right). Both figures display aggregated data per 
HRU.

Figure 5.7 shows the spatial patterns of the sum of ETact during the calibration period. The 
SWAT spatial patterns were generally in good agreement with the SEBAL results. There were 
however local differences and the SEBAL results show a larger within land use class variation, 
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Figure 5.6 The root mean square error of modelled actual evapotranspiration (RMSE) versus the 
number of SWAT model calls required by PEST.
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Figure 5.7 Cumulative ETact from October 2004 to May 2005 derived with SEBAL (left) and 
simulated with SWAT (right) Both figures display aggregated data per HRU.
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specifically the rangelands and irrigated sugarcane, which can be attributed to the different scales 
(HRU vs. pixel).

Table 5.3 provides more insight in the monthly results of the calibration per land use class. 
The uncalibrated results (base) are compared with the calibrated results. The calibration resulted 
in a considerable improvement as for all land uses, both the average monthly residual as well as 
the standard error, have decreased significantly. The decrease in average monthly residual between 
the base and calibrated model was the highest for the evergreen forests in the Western Ghat 
Mountains (53 mm/month). The largest decrease in standard error is found for the supplemental 
irrigated agriculture HRUs (12 mm/month). On a catchment scale the average residual is only 1 
mm/month. It is concluded that, based on four different efficiency criteria, the calibration has 
clearly improved the model’s capability to mimic ETact, SEBAL.

Figure 5.8 shows the observed and modelled discharge after calibration. The observed and 
modelled discharges correlate very well (R2 = 0.98) and this emphasizes the reliability of the 
calibration procedure. By calibrating the spatial and temporal pattern in ETact using this set of 
parameters, the hydrogical processes related to discharge were also adequately parameterized.

5.4.3	 Water balance
While remote sensing provides only information on one component of the water balance (ETact), 
the SWAT model is able to analyze the entire water balance as well as biomass and crop growth 
processes. The monthly water balance was derived from the results of the calibrated model. 
Figure 5.9 shows the monthly water balance for the catchment. Balance closure refers to the sum 
of net change in groundwater and soil storage and model inaccuracies. This storage generally 
decreased during the dry months and increased during the monsoon. Over the entire length of 
the study period there was 142 mm decrease in storage. There are many possible reasons for this 
large decrease in storage that could be either attributed to input data or model quality. From a 
data perspective there are three possible explanations. Firstly, it could be that the precipitation 
in the Western Ghats is underestimated. It is known that there is an extremely large increase 
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Figure 5.8 Modelled discharge at the outlet of the catchment (Q m) versus observed discharge at 
the outlet of the catchment (Q o).
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in precipitation over a very short horizontal distances (Gunnel, 1997), while the density of 
meteorological stations is low. Secondly, there are water transfers from outside the catchment 
(e.g. regional groundwater fluxes) but these are not incorporated in the model. Thirdly, it could 
be that the ETact calculated by SEBAL is too high. From a model quality perspective, it could be 
that the hydrogical processes related to the groundwater movement and storage are insufficiently 
represented and do not capture regional fluxes. This warrants further research.

The annual surface runoff coefficient (R/P) was 36% and only a slight evapotranspiration 
deficit was observed at catchment scale (17 mm). The runoff during the monsoon season is stored 
in the reservoirs and subsequently used for irrigation later in the season. There was considerable 
variation among monthly water balance components. The rainfall was insufficient to meet crop 
water requirements in the catchment from November to May and nearly all ETact was met from 
irrigation water and storage decreases.

Discharge measurements indicate that a total of 2,167 Mm3 (47 mm) of water was released 
to the main stem of the Krishna River in the irrigation year 2004-2005. This amounts to 5.6% of 
the total precipitation and the water was released during the monsoon months only. There was 
no discharge out of the catchment during the dry season. It is not possible to relate this to the 
simulated water balance, since there are no data on reservoir storage change available. However 
the dry year 2003-2004 depleted most reservoirs to dead storage levels and it is likely to assume 
that a considerable part of the runoff was used for increasing reservoir storage. It was not possible 
to isolate whether this large storage change originated from the model quality or input data.

A dynamic link with a regional groundwater model and the incorporation of reservoirs 
storage data could further detail the water balance and is recommendable.

Volumetric cumulative annual precipitation was 38,912 Mm3, while annual evaporative 
depletion equalled 38,172 Mm3 and ETact was by far the largest water loss in the catchment. 
Cumulative precipitation increased mainly during the monsoon months and ETact was distributed 
more equally throughout the year (Figure 5.10). High ETact rates in the dry season were enabled 
by the spatial and temporal redistribution of water through the reservoir system, groundwater 
irrigation and depletion of soil and groundwater storage.
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Figure 5.9 Monthly basin average water balance from June 2004 to May 2005.
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The distribution of evaporative depletion among different land uses is important to identify 
the opportunities for water savings or reallocation of water (Figure 5.11). A distinction 
between beneficial and non-beneficial evapotranspiration was made to determine whether 
water is productively used within the catchment. Perry (2007) recently proposed the following 
definitions:
•	 Beneficial evapotranspiration: water evaporated or transpired for the intended purpose – for 

example evaporation from a cooling tower, transpiration from an irrigated crop.
•	 Non-beneficial evapotranspiration: Water evaporated or transpired for purposes other 

than the intended use – for example evaporation from water surfaces, riparian vegetation, 
waterlogged land.
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Figure 5.10 Cumulative volumetric precipitation (P) and actual evapotranspiration (ETact) from 
June 2004 to May 2005.
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In this study ETact from non-productive rangelands is also considered non-beneficial, because 
these are non-productive sparsely vegetated areas, from which large amounts of water are lost 
mainly through soil evaporation. ETact resulting in growth of agricultural crops during their 
growing season or growth of biomass of valuable ecosystems such as forests can be considered 
beneficial. ETact from non-productive rangelands, from agricultural lands beyond the growing 
season and from reservoirs can be considered non-beneficial. It is interesting that a total of 42% 
of total evaporative depletion was non-beneficial and non-productive rangelands were the largest 
contributor (20%). Of the beneficial ETact, sugarcane depleted most in absolute terms (10,205 
Mm3). Forests depleted a relative small amount due to their limited area.

5.4.4	 Water productivity analysis
The spatial distributions of CWP were analyzed to examine the scope of manipulation within the 
land use system to provide better alternatives to enhance overall crop water productivity in the 
catchment. Zwart and Bastiaanssen (2007) propose to use the coefficient of variation (CV) of the 
distribution of CWP within a system as a measure to define the scope for improvement. A high 
CV and a strongly negatively skewed distribution indicate a large potential, whereas a low CV 
indicates a homogeneity and little room for improvement. The statistical summary of CWP for 
the major crops is shown in Table 5.4.

The estimated CWP was found highest for sugarcane (2.9 kg/m3). Evapotranspiration by 
sugarcane is the largest consumer of water, but crop water productivity is high and its distribution 
very narrow (CV = 1.4%), leaving limited scope for further improvement. Water consumption is 
very high (up to 1300 mm/year), because of the 12 months growing period; yields are however 
also extremely high (up to 37 ton/ha) (Table 5.4). The large sugarcane areas are all relatively 
flat and homogeneous and are generally not under water stress, since they are irrigated from 
the large reservoir based irrigation schemes. This is further clarified by Figure 5.12. Yields are 
shown as contours as a function of actual evaporative depletion and the sum of precipitation 
and irrigation. The figure shows that yields are nearly linearly related to ETact, but indifferent to 
the annual sum of precipitation and irrigation. Only in the lower left corner of the figure water 
stress is a constraint to the yield. Once ETa is higher than 900 mm/year, ETa is not depending 
on precipitation or irrigation, but is rather a function of other environmental variables (e.g. soil, 
nutrients, slope, pests and diseases).
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Figure 5.12 Sugar cane yield (kg/ha) as a function of annual actual evapotranspiration (ETact) 
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Average CWP for winter wheat based on SWAT results was estimated to be 1.3 kg/m3, which is 
higher than reported in a review by Zwart and Bastiaanssen (2004) as a global average value for 
winter wheat (1.1 kg/m3). The CV is relatively large (18.5%), as the availability of water amongst 
HRUs is less uniform. Table 4 also shows the CWP results for winter wheat based on the SEBAL 
analysis. The average CWP computed by SEBAL for WWHT is 1.1 kg/m3 and the CV is 4.6%, 
which are both smaller than the SWAT calculated values. However the SEBAL derived CWP 
distribution is more negatively skewed. This caused by the fact that the SEBAL estimation is 
pixel based and SEBAL captures the ETact with more spatial detail than the SWAT model which 
is based on a HRUs. The fact that the CWP ranges are similar provides, however, confidence in 
the SWAT simulated crop yields.

Finally the CWPs of the rainfed crops, represented by sorghum within the RFA and SIA 
land use classes, are equal (1.3 kg/m3). The CVs are relatively large and both distributions are 
negatively skewed.

The concept of using CWP to assess scope for improvement has proven to be a powerful 
tool, but caution is warranted and these results need to be interpreted carefully. The district 
agricultural statistics (Government of Maharashtra, 2007) reveal that the reported yields show 
large differences with the simulated yields by SWAT and SEBAL. The reported sugarcane yields 
are much higher (up to 200% of the simulated yield) and this requires further parameterization of 
the sugarcane crop in SWAT, mainly because sugarcane is a C4 crop, with specific characteristics 
and a very high potential biomass production. The reported winter wheat and rain fed crop 
yields are much lower (up to 25% of the simulated yield) and consequently the simulated CWP 
were higher than in reality. The simulated CWP could be referred to as potential CWP. For the 
determination of actual CWP, which is also governed by other environmental stress factors and 
management decisions, it would be preferable to include measured field data in the analysis. By 
comparing gaps between actual and potential CWP in space and time, scope for improvements 
can then be further quantified.

Table 5.4 Statistical parameters of yield (Y), actual evapotranspiration (ETact) and water 
productivity simulated by SWAT per agricultural land use (rainfed agriculture (RFA), 
supplemental irrigated agriculture (SIA), irrigated sugarcane (ISUG)) and per crop (sorghum 
(SGHY), winter wheat (WWHT), sugarcane (SUGC).

RFA SIA ISUG

SGHY SGHY WWHT WWHT* SUGC

minimum (kg/m3) 0.7 0.8 1.0 0.2 2.8
maximum (kg/m3) 1.6 1.8 2.1 1.3 3.0
average (kg/m3) 1.3 1.3 1.3 1.1 2.9
standard deviation (kg/m3) 0.1 0.2 0.2 0.1 0.0
CV (%) 11.4 15.8 18.5 4.6 1.4
Skewness (-) -1.2 -0.3 1.1 -5.1 -0.1

* based on SEBAL results
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5.5	 Conclusions

The total simulated evaporative depletion and precipitation indicate that the upper Bhima 
catchment was nearly closed in 2004-2005. This was confirmed by independent discharge 
measurements, which show that only 5.6% of the total precipitation was released to the main stem 
of the Krishna River. If even a water supplying catchment, such as the Upper Bhima, is nearly 
closed the future for the entire Krishna basin looks grim and a structural rethinking of the planned 
expansion of irrigated agriculture is warranted. The water productivities are already relatively high 
and there seems limited scope for further improvement. Based on the analysis two ways to use or 
allocate water more effectively in the catchment are proposed. Firstly, a diversion from sugarcane 
to a dual cropping season (similar to SIA) and the introduction of a fallow period from March 
to May (when precipitation is absent and ETref is extremely high) are proposed. Sugarcane is 
grown throughout the year and its water consumption is highest of all land use classes that were 
distinguished. A shift towards a dual cropping systems will most likely increase the catchment’s 
discharge. Of course some caution is warranted and social-economic considerations need to be 
taken into account. Secondly, by converting non-productive rangelands to rain fed agriculture, the 
beneficial ET will further increase on the expense of non-beneficial ET. A viable alternative could 
be the introduction of Jatropha curcas, that is considered to be an excellent source of bio-diesel 
and that can be grown in wastelands across India (Francis et al., 2005). The Governement of India 
is keen on reducing its dependence on coal and petroleum to meet its increasing energy demand. 
Promoting the cultivation of Jatropha is a crucial component of its energy policy, which should 
lead to energy independence by the year 2012. A conversion to other agricultural land uses could 
also be viable, but requires a careful land use suitability assessment.

The study faced a number of data limitations for which further improvements are 
recommendable. Firstly, the land use map could diversified to a larger number of crops by more 
elaborate ground-truthing and inclusion of more remote sensing data sources in the classification. 
Secondly, a more detailed soil map (including soil physical parameters) would yield more detailed 
results and a more efficient calibration. Thirdly, the calibration period could be extended in the 
monsoon season by including other datasets that do not depend on cloud cover (e.g. radar). The 
SEBAL algorithm depends on radiances in the visible, near-infrared and thermal infrared part of 
the spectrum, and measurements are hampered by clouds. The current calibration period covers 
eight months and a longer time series would be preferable. However, realistic simulations during 
the dry period from October to May are more important considering that water management 
issues related to evapotranspiration management, water shortage and irrigation are the dominant 
hydrological issues relevant to agriculture and water managers. Finally the simulation period 
should be extended to cover a multi-year periods covering a range of possible climate conditions.

It can be concluded that the integration of Remote Sensing in the calibration of a distributed 
hydrological model is highly innovative and enhances our insight in the hydrological pathways 
in drought prone areas with limited data availability. Catchments, such as the Upper Bhima, are 
difficult to model given the large number of anthropogenic disturbances, such as reservoirs, dams 
and irrigation canals, that render stream flow unusable for calibration. By using remotely sensed 
ETact this problem is overcome and a detailed calibration of a hydrological model was performed 
and assessed by a number of efficiency indicators. The use of a hydrological model has clear 
advantages over using remote sensing alone. A model provides insight in the entire hydrological 
cycle, fluxes between the different water balance components and the crop growth cycle, while 
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remote sensing provides only insight in one component of the water balance at high spatial detail 
at a specific point in time. A calibrated model also offers opportunities to analyse future scenarios, 
e.g. land use change and climate change. It is the combination of the strength of both approaches 
that provides a wealth of possible future applications.
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6	 Can payments for ecosystem services 
secure the water tower of Tibet?

		�  Based on: Immerzeel, W.W., J.J. Stoorvogel & J.M. Antle (2007), Can payments for ecosystem 
services secure the water tower of Tibet? Agricultural Systems (in press).

Abstract
Tibet can be considered as the water tower of Asia and the protection of its water resources 
crucial. We show that a minimum data approach to model the supply of ecosystem services 
can potentially be applied to water conservation in Tibet. The approach integrates the spatial 
heterogeneity of the biophysical environment and the economic behaviour of farmers. A spatially 
distributed hydrological model is used to simulate the effect of irrigation on evapotranspiration 
reduction and stream flow enhancement in a Tibetan agricultural catchment. The results feed 
into an economic model that estimates the supply curve of conserved water from the distribution 
of net returns between irrigated and rain-fed barley cultivation. The analysis shows that it is 
theoretically possible to increase discharge out of the catchment in the critical months April to 
June by 11% on average. Accumulated over larger areas this could provide a significant increase 
in total upper Brahmaputra discharge. The methodology appears to be a transparent and cost 
effective tool to quantify the effect of financial incentives in the conservation of water resources. 
Policy relevant information can be generated without the need to conduct expensive field surveys 
and to set up more elaborate econometric simulation models. Given the anticipated effects of 
climate change the potential of payments for ecosystem services to conserve water may become 
increasingly more important in sustaining stream flow early in the growing season.

6.1	 Introduction

The Tibetan plateau (TP) is often considered to be the water tower of Asia being the source of 
many major Asian rivers such as the Mekong, Yangtze, Brahmaputra, Indus and the Karnali. These 
rivers support hundreds of millions of people downstream. Since Asia is monsoon-dominated 
with precipitation concentrated in just a few months, the perennial flow of the rivers largely 
relies on the constant flux of the glaciers in Tibet. As the pressure on Tibet’s water resources is 
mounting because of rapid economic development, its conservation becomes ever more important. 
Population growth, increased incomes and urbanization have joined forces and agriculture cannot 
keep up with the increasing demands of this emerging, new society (Ecoregional Fund, 2005). 
Yields are restricted by a short growing season, large diurnal temperature ranges and above all 
a shortage of water. Annual precipitation is only 600 mm and is concentrated in the monsoon 
months July and August (Immerzeel et al., 2005). The proportion of arable land is only 0.3% 
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of the total land area and more than 60% of this land is arid and has a low productivity. Gaps 
between actual and potential yields of the main crops barley and wheat are very large and this is 
caused by a poorly developed irrigation infrastructure (Tashi et al., 2002). To sustain the increased 
demand for more and diverse agricultural products it is inevitable that the acreage of irrigated 
area will increase over the years (Immerzeel, 2005).

Climate change is another major threat to the future of Tibet’s water resources. Widespread 
accelerated glacier retreat and shifts in stream flow timing, from spring to winter, are likely to be 
associated with climate change (IPCC, 2001). There are serious concerns about the alarming rate 
of retreat of Himalayan glaciers. It has been predicted that the coverage of glaciers in western 
China, accounting for up to 70% of the Himalayan glaciers, will decrease by 27% by 2050 (Qin, 
2002). In the short run the glacier melt may increase water availability, but eventually the base 
flow from glaciers will cease (Barnett et al., 2005). Changes in timing and available volume of 
water available for irrigation will threaten agricultural productivity (IPCC, 2001) and will impact 
heavily upon the economy of the region (Matthews et al., 1995).

Tibet supplies an important ecosystem service in the form of fresh water to a large part of 
Asia. During the monsoon months the water supplied by the TP is a negligible fraction of the 
total river flows. However, at the end of the winter and in early spring glacial melt from the TP, is 
the major water source for agriculture in the downstream agricultural areas of India, Bangladesh 
and China during a crucial period of the growing season (Barnett et al., 2005).

The increased demand for agricultural production in Tibet, the expected climate change and 
the need to sustain the water supply to downstream areas challenges policy makers to make the 
most appropriate trade-offs between agriculture and the environment.

Globally there has been a shift from traditional subsidy and trade policies to policies that 
provide farmers with incentives to increase the supply of ecosystem services from agriculture. 
This is being referred to as payments for ecosystem services (PES). PES is emerging as a new 
approach to managing the valuable services derived from ecosystems. The Millenium Ecosystem 
Assessment (2005) describes fresh water as one of the critical provisioning services that ecosystems 
provide. Protection of the New York City watershed is often cited as one of the earliest uses of 
the concept of payments for ecosystem services, a plan implemented in 1997 (World Resources 
Institute, 2000). Since then, there has been an increasing number of efforts to protect water 
quantity and quality by paying land owners to use practices that protect water resources, mostly 
through forest protection and re-forestation (FAO, 2007). In water conservation policies the 
focus has been primarily on the development of water pricing instruments (Dinar, 2000). The 
concept of payments for ecosystem services applied in this study can be interpreted as a way to 
implement an efficient water pricing policy wherein farmers are assigned the initial rights to 
use irrigation water and downstream users (or governments) pay farmers to reduce water use. 
The analysis presented here combines analysis of bio-physical potential for water conservation, 
which, together with economic analysis of farmers’ willingness to change management practices, 
simulates a water supply curve to downstream users. This water supply curve can be used by policy 
decision makers to assess how much water farmers are willing to supply at a given price per unit 
of water. Combined with an assessment of how much water is worth to down-stream water users, 
an efficient water policy can then be implemented.

Recently a number of researchers have utilised site-specific data and models to assess the 
potential for ecosystem service payments (Pautsch et al., 2001; Antle et al., 2003; Wu et al., 2004; 
Lubowski et al., 2005). These studies utilize highly detailed data such as the National Resources 
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Inventory in the United States or specialized longitudinal farm surveys. However, in most cases 
neither time nor resources are available to collect such detailed data. In this paper we show 
how a less data-intensive “minimum data” economic model can be used in combination with a 
hydrological and production model to assess whether it would be technically and economically 
feasible to pay farmers to reduce water consumption by changing from irrigated to rain-fed crop 
production and thus secure the water tower of Tibet.

6.2	 Materials and methods

6.2.1	 Study area
The elevation of the TP ranges from 400 metres above sea level (m.a.s.l.) to the summit of Mt. 
Everest (8848 m.a.s.l) with an average altitude of over 4000 metres. The TP covers an area of 1.2 
million km2. This paper focuses on a sub catchment located between 27.47-29.33º N and between 
88.51-90.20º E in the central southern part of the Tibetan plateau within the province of ü-Tsang. 
This province has developed as Tibet’s cultural and political heartland and is commonly known as 
the grain bowl of Tibet. This is mainly caused by the fact that ü-Tsang provides broad U-shaped 
valleys for agriculture below the upper limit of cultivation of approximately 4500 m.a.s.l. (Ryavec, 
2001). The Nyangchu River drains the catchment, with a total contributing area of 14271 km2 
into the Yarlung Tsampo River, which is further downstream more commonly known as the 
Brahmaputra River as it descends down into India and Bangladesh. The catchment is located in 
Shigatse prefecture and overlaps with the Shigatse, Gyantse and Panam counties. Shigatse, which 
is the second largest city of Tibet, is located at the confluence of the Nyangchu and the Yarlung 
Tsampo rivers. Further upstream the Nyangchu River traverses the third largest town Gyantse. 
The altitude in the catchment ranges from 3827 to 6989 m.a.s.l with an average altitude of 4737 
m.a.s.l. Irrigated agriculture is found below 4500 m.a.s.l. and 37134 ha. of the catchment (2.6%) 
is classified as irrigated cropland. The main crop is spring barley, which has been Tibet’s staple 
food crop for centuries. Over 80% of the catchment consists of extensive grasslands used for yak 
herding. The remainder of the catchment is comprised of bare soils at extreme altitudes (14.7%), 
urban areas (0.1%) and a number of large lakes (2.4%). The catchment receives on average 560 mm 
of precipitation annually with more than 70% of the annual rainfall concentrated in the months 
June, July, August and September. Annual potential evapotranspiration is relatively high and 
varies around 1500 mm due to low relative humidity, high solar radiation, and high wind speeds 
on the plains. Temperatures are lowest in January and highest in July with average temperatures 
of -8.3 ºC and 8.9 ºC respectively with extremely large diurnal ranges and spatial variation due 
to the high (variation in) altitude. Soils in the catchment are of sandy texture (50% sand) with a 
depth generally less than 0.65 m., except for the agricultural areas in the valleys where soil depths 
reach 1.5 m.

6.2.2	 SWAT
The physically based distributed hydrological model Soil and Water Assessment Tool (SWAT) is 
used to simulate the hydrological processes as well as the crop growth in the catchment. SWAT 
represents all the components of the hydrological cycle including rainfall, snow, interception 
storage, surface runoff, soil storage, infiltration, evaporation, transpiration, lateral flow, percolation, 
pond and reservoir water balances, shallow and deep aquifers and channel routing. It also includes 
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land use management such as irrigation, fertilization and tillage. The model is comprehensively 
described in the literature (Arnold et al., 1998; Srinivasan et al., 1998).

SWAT simulates crop growth on the basis of daily temperature sum and water availability. 
For each day of simulation, potential plant growth, i.e. plant growth under ideal growing 
conditions (adequate water and nutrient supply) is calculated according to Monteith (1977). First, 
the photosynthetically active radiation, is computed from intercepted solar radiation as a function 
of Leaf Area Index (LAI). The radiation use efficiency (RUE), defined as the amount of dry 
biomass produced per unit intercepted solar radiation; is used to calculate the maximum daily 
plant growth. The RUE is essentially a function of carbon dioxide concentrations and vapour 
pressure deficits. Actual plant growth is then calculated and inhibited by temperature, water, and 
nutrient stress. The crop yield is computed as the harvestable fraction of the accumulated biomass 
production during the growing season.

To avoid water stress irrigation water is applied automatically based on a specified water 
stress criterion. Water stress is 0.0 under optimal water conditions and approaches 1.0 as the soil 
water conditions vary from the optimal. Water stress is simulated according to:

	 � (1)

where wstrs is the water stress for a given day, Et is the potential plant transpiration on a given 
day (mm H2O), Et,act is the actual amount of transpiration on a given day (mm H2O) and wactualup 
is the total plant water uptake for the day (mm H2O).

The catchment is partitioned into a number of sub-watersheds or sub-basins. The sub-basin 
delineation is performed on the basis of the catchments’ topographic features derived from a 90m 
resolution digital elevation model (DEM) acquired with the Shuttle Radar Topography Mission 
(SRTM) (Werner, 2001). The sub-basins (78) are further subdivided into hydrological response 
units (HRUs), which are unique combinations of soil and land use. A detailed land use map, 
based on aerial photograph interpretation, is provided by the Tibetan Bureau of Meteorology. 
This land use map was reclassified to land uses in the SWAT database. Soil variation is derived 
from the FAO soil map of the world with some local adaptations (FAO, 1995). By overlaying 
the sub-basins with the reclassified land use and soil map a total of 181 HRUs are delineated. 
The HRU is the smallest unit of calculation for the land phase of the model. Each sub-basin is 
linked to a single reach and all HRUs in a sub-basin drain their water into that reach by surface 
runoff, drainage and ground water flow. Subsequently the water is routed through the catchment 
from upstream to downstream. Water used for irrigation is extracted from the surface water and 
applied to the respective HRUs.

Monthly data on precipitation, temperature and relative humidity are extracted from the CRU 
TS 2.1 database (Mitchell and Jones, 2005). The CRU TS 2.1 is a set of monthly climate grids 
which are constructed for nine climate variables and interpolated onto a 0.5º grid and provide 
best estimates of month-by month variations. Data from the Tibetan Bureau of Meteorology 
for Shigatse from 1971-1998 are used to scale the temperature and precipitation data to the local 
situation. Monthly cloud cover and wind speeds are derived from the IWMI climate atlas (New 
et al., 2002). The SWAT model is run for 20 years from 1983-2002. The most detailed spatial level 
on which meteorological data can be defined in SWAT is at sub-basin level. The monthly climate 
data derived from the CRU TS 2.1 database and the IWMI climate atlas are therefore first 
averaged per sub-basin and then converted to daily values using the inbuilt weather generator.
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Spring barley is cultivated on all HRUs classified as irrigated agriculture. The spring barley 
is planted on April 15 and harvested on October 1 making full use of the short summer and 
monsoon rains. A total of 24 HRUs are cultivated with barley ranging in area from 108 ha to 3080 
ha, with an average area of 1547 ha. The barley is fertilized with 300 kg/ha of urea in April and 
August. Two practices are simulated: (a) irrigated barley using auto-irrigation with a water stress 
criterion of 0.95., and (b) rain-fed barley. The SWAT model is used to determine how reductions 
in the use of irrigation water reduce crop transpiration and how this eventually affects discharge 
out of the catchment. For both practices the 20 year average crop yield as well average annual 
crop evapotranspiration reduction of each HRU are input to the MD model which simulates the 
water supply curve based on economic features of each scenario.

SWAT simulates the 20 year period with a daily time step, but the output is stored on a 
monthly basis. Monthly water balances are stored at sub-basin, HRU and reach level, while 
biomass, crop yields, water and nutrient stress are stored at HRU level with a monthly time step. 
The monthly data at HRU level are input to the economic model. For a detailed overview of 
SWAT outputs reference is made to Arnold et al. (1998).

There are no hydrological data available for the catchment to validate the results of SWAT. In 
Tibet scientific research in this field is in its infancy, caused by the remoteness of the terrain and 
Tibet’s status as an outlying region, remote from the centre of power, and its limited capacity for 
local research (Bouma et al., 2007). It is stressed that this study is explorative in nature and the 
major objective is to show whether PES could potentially work to conserve water. However, to be 
able to validate the results on their plausibility we have used two sources of information.

Firstly, stream flow data of the nearest gauge in the Brahmaputra River at Yangcun (29.28ºN, 
91.88ºE) extracted from a database compiled by the global runoff data centre (Fekete et al., 2000) 
were analyzed and compared with the simulated average monthly discharge in the catchment.

Secondly, a subset of monthly latent heat fluxes from 1983-2002, produced by the National 
Centre for Environmental Prediction (NCEP) and the National Centre for Atmospheric Research 
(NCAR) through their reanalysis project (Kalnay et al., 1996), has been processed and converted 
to actual evapotranspiration rates for the catchment. The monthly average evapotranspiration has 
been compared with the simulated evapotranspiration for the entire simulation period.

6.2.3	 MD model for analysis of ecosystem service supply
To implement the economic analysis, we use the minimum-data (MD) approach developed by 
Antle and Valdivia (2006) to model the supply of ecosystem services from agriculture. Whereas 
other studies of agriculture-environment processes have used highly complex, data-intensive 
models (e.g., Antle et al., 2003; Wu et al., 2004), the MD approach exploits the structure of 
the PES problem to obtain an approximation to the ecosystem service supply curve using 
relatively simple secondary data. The MD model assumes farmers take land-use and management 
decision to maximize their perceived economic well being. When the farmers are not provided 
with any incentives there is an initial equilibrium supply of ecosystem service. This provision of 
this ecosystem service is driven by the farmer’s economic motivation and ignores the demand 
for that ecosystem service, e.g. other downstream water users. To increase the supply of water 
above this initial equilibrium the downstream demanders must provide the farmers with financial 
incentives stimulating farmers to change their land use management. For each barley HRU in 
the catchment we consider the two practices a, i.e. irrigation, and b, i.e. rain-fed, as competing 
land uses. An amount of e(s) ((m3/ha)/yr) of ecosystem service is produced at site s when practice 
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b is adopted and e(s) equals zero when practice a is adopted. Here e(s) is defined as the difference 
in evapotranspiration between the two practices. A farmer will receive a payment of pe for each 
m3 that is produced. The amount of e(s) at a specific site within a HRU is however not known 
beforehand, but since the objective is to obtain a total quantity for the entire HRU payments can 
be based on an expected average rate of supply generated by the SWAT model.

A farmer will decide to adopt rain-fed barley if

� (2)

where v is the net return, p is a vector of input and output prices, s indexes the site and a,b indicate 
the practice at the site. Thus ω(p, s) can be interpreted as the opportunity cost of changing from 
practice a to practice b. This equation implies that farmers are willing to change practices to 
receive the payment if ω/e ≤ pe, i.e. if the opportunity cost per unit of water conserved is less than 
the price paid for the water. If we order all the sites s for a given p within an HRU in increasing 
order of ω(p, s) we can define the spatial distribution of opportunity cost per unit of ecosystem 
e, φ(ω/e). The fraction of the total number of farmers who adopt practice b without payment is 
given by

� (3)

The initial equilibrium supply of water before farmers are given payments is then given by

� (4)

where H is the total area of the HRU. Similarly by integrating φ(ω/e) between zero and pe the 
fraction of the total number of farmers is found who change from practice a to b given pe, r(p,pe). 
The supply of ecosystem services in that case equals

� (5)

To model the supply of water per HRU we use the MD approach to parameterize the spatial 
distribution of opportunity cost by estimating the mean net returns of each practice and their 
variances and covariance. The opportunity cost per hectare can be calculated according to:

� (6)

where p is local market price for barley, ca and cb are the average local cost of production per 
hectare and Ya and Yb are the yields of practice a and b respectively.

Antle and Capalbo (2001) found that cost functions for barley production exhibited costs of 
production with approximately unitary output elasticities. Therefore, it can be plausibly assumed 
that cost of production is proportional to its yield, and that the coefficient of variation in net 
returns (CV) across land units in a region (at a point in time) can be estimated by the spatial CV 
for yield. Previous work showed that this approach provides an approximation that is well within 
an order of magnitude (Antle and Capalbo, 2001). The MD approach implemented in this study 
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utilizes these assumptions. The 20 year average crop yields are calculated using the SWAT model 
for both practices and the coefficient of variance in yield for practice b (CVb) has initially been 
assumed to be equal to the CV of field slope, e.g. if the variation in slopes within a HRU is high 
the variance in yields will be high, mainly because water cannot be retained in the soil. The CV 
of practice a (CVa) is assumed to be 20% of CVb, because irrigation water is available and the 
effect of steep slopes will be much less. In order to estimate the covariance between yields, the 
correlation between the yields of irrigated and non-irrigated crops is assumed to be positive but 
less than unity. In many cases the correlation between the yields of different practices is likely to 
be high, but not perfect (Antle and Valdivia, 2006). Since this correlation is not readily observed, 
sensitivity analysis is used to assess the impact of alternative values. The opportunity cost is 
assumed to be normally distributed and its variance is calculated according to the following set 
of equations

� (7)

� (8)

� (9)

� (10)

where σ2
a and σ2

b are the variances in net returns of practice a and b respectively, νa and νb are 
mean yields, and σab and ρab are the covariance and spatial correlation coefficient in net returns 
between practice a and b. The MD model constructs this distribution per HRU and by sampling 
this distribution at different pe the supply curve of fresh water for each HRU is calculated. 
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Figure 6.1 Derivation of the supply of ecosystem services from the spatial distribution of 
opportunity cost per unit of ecosystem services (Antle and Valdivia, 2006) e = ecosystem service 
rate, pe = price per unit of ecosystem service, φ(ω/e) = opportunity cost per unit of ecosystem 
service, H = total area, p = vector of input and output prices, and S = total supply of ecosystem 
service.
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The model aggregates the supply curves for each HRU to obtain a supply curve for the entire 
catchment.

Figure 6.1 shows how the supply of water is derived from the spatial distribution of 
opportunity costs for changing practices. Figure 6.1 actually contains two graphs. The left side 
of the graph shows the spatial distribution of opportunity cost per unit of ecosystem service. 
The price per unit of e, Pe, is shown on the vertical axis and the density function φ(ω/e) is shown 
on the horizontal axis. The area under this curve in the price range from -∞ to 0 is the initial 
equilibrium supply of fresh water. The shape of the distribution is estimated by equations 7 to 
10. The right side of the graph shows the supply curve. The horizontal axis shows the supply of 
fresh water as a function of the price per unit e on the vertical axis. The supply curve crosses the 
horizontal axis at the initial equilibrium and logically further increases as Pe increases. The rate of 
increase (slope of the supply curve) depends on the shape of the distribution of opportunity costs. 
The supply curve approaches a vertical asymptote equal to the maximum amount of ecosystem 
service (H e) that can be produced when every HRU switches to activity b.

6.3	 Results

6.3.1	 Hydrological modelling
Figure 6.2 shows the average annual water balance for the 20 year period 1983-2002 for the 
entire catchment. The catchment receives an average annual precipitation of 563 mm of which, 
on average 418 mm (73%) evaporates. Given a potential evapotranspiration of 1457 mm/year it is 
evident the catchment is under severe water stress. Around 15% of the incoming water is returned 
as stream flow through direct runoff. The remainder infiltrates in the soil and exits the catchment 
as sub-surface flow or ground water flow. Only a very small proportion is lost from the catchment 
through percolation to the deep aquifer (1 mm/year). On a catchment scale, the amount of 
irrigation water applied is limited due to the relatively small proportion of irrigated agriculture. 
However, it is, as will be shown subsequently, a very important and manageable proportion. Based 
on this analysis it is concluded that water conservation in the catchment should be sought in the 
reduction of evapotranspiration.

Figure 6.3 shows the results of the validation. The average monthly discharge in mm/
month shows good agreement. Some caution is warranted as the Yangcun gauge is located in 
the Brahmaputra downstream of the study catchment and drains a much larger area (153,191 
km2) that includes the catchment. The drainage areas is however relatively homogeneous and 
the comparison of area weighted discharges shows that SWAT simulates plausible monthly 
discharges. The comparison of actual evapotranspiration further supports this finding. The 
NCEP/NCAR and modelled actual evapotranspiration are in a similar range. The NCEP/NCAR 
data are generally higher than SWAT in the summer. A possible explanation could be that the 
NCEP/NCAR dataset is grid based with a spatial resolution of 2 degrees and the selected grid 
cell includes an area north of the catchment, which, due to the wide Brahmaputra floodplain, 
includes a large wetted surface resulting in a higher evapotranspiration rate.

To gain insight into how to achieve the largest water savings, the analysis of monthly 
partitioning into precipitation, irrigation and actual evapotranspiration (ETact) for irrigated 
barley is useful. Figure 6.4 shows these components for practice a and b respectively. The left 
figure shows that irrigation amounts are highest in the months April and June and decrease later 
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Figure 6.3 SWAT validation results: (i) Modelled discharges at the catchments’ outlet vs 
average monthly measured discharges at Yangcun (left figure), (ii) Modelled monthly actual 
evapotranspiration vs. monthly NCEP/NCAR derived actual evapotranspiration from 1983-2002 
(right figure).
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in the growing season when the monsoon rains provide sufficient water to sustain crop water 
requirements. In April the soil water content is replenished to field capacity and sufficient to 
sustain the relatively low crop water requirements in April and May. The months April-June are 
critical months for the downstream agricultural areas and water conservation efforts should focus 
on increasing discharge out of the catchment in the early months of the growing season.

An increase in discharge can be achieved by reducing irrigation and thus ETact. However 
the response of ETact to changes in irrigation amounts is governed by the biophysical conditions 
of the system. Figure 6.5 shows, for each agricultural HRU, the relation between a reduction 
in irrigation (ΔI) and a reduction in ETact (ΔETact). The relation can be approximated by linear 
regression (intercept = 630, slope = 0.5, R2 = 0.4). The figure shows (i) that a decrease in irrigation 
leads to a decrease in ETact, (ii) the decrease in ETact is always less than the decrease in irrigation, 
and (iii) there are large differences between the various HRUs. These differences are mainly 
explained by the fact that different HRUs receive different amounts of precipitation and by the 
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Figure 6.4 Monthly average precipitation (P), irrigation (I) and actual evapotranspiration (ETact) 
from 1983-2003 for irrigated (left figure) and rain fed (right figure) barley.
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differences in soil type. Deeper soils with a high water retaining capacity respond less directly to 
reduction in irrigation.

A reduction in ETact, assuming that the irrigation water originates from within the catchment, 
will yield an increase in discharge at the outlet of the catchment. Figure 6.6 shows the increase in 
discharge (m3/s) from April to June at the outlet of the catchment when all agricultural HRUs 
shift from irrigated to rain-fed barley. The simulated average total discharge in these months is 
87 m3/s (16 mm/month). This means that discharge can potentially be increased in these critical 
months between 2% and 30% with an average of 11%. These are very considerable amounts 
especially when considering only 2.6% of the total catchment area is irrigated agriculture.

6.3.2	 Economic model
Table 6.1 shows the inputs for the MD model. The average yield in the irrigated case is 4404 kg/ha 
and this is in good agreement with barley yields reported in literature (Tashi et al., 2002). The 
yields in the rain-fed case are on average 1646 kg/ha (37% of the irrigated case) and the average 
rate of ecosystem service (reduction in actual evapotranspiration) is 191 mm. The ecosystem 
service rates are based on crop water requirements and biophysical conditions within the HRUs. 
The average amount of required reduction in irrigation water to achieve this ecosystem service 
rate is 276 mm per growing season. The average barley market price in 2005 in Tibet’s capital 
Lhasa ranges between 0.18 $/kg and 0.20 $/kg. For both case a and b an average of 0.19 $/kg is 
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Figure 6.6 Average annual difference in discharge between the rain fed and irrigated scenario 
from 1983-2002 in the months April-June at the catchment outlet.
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used. The local cost of production is 330 $ ha-1 yr-1 for the irrigated case (personal communication 
1/8/2006; Dr. Quimei) and the gross income for the irrigated case is on average 837 $/ha. The 
cost of production is assumed to be proportional to yield, and the cost of the rain-fed case was 
estimated accordingly. In addition, the rain-fed cost was further reduced because no water fees 
for irrigation water are required. A water fee of 0.004 $ m-3 irrigation water (Loeve et al., 2001) 
is multiplied by the required amounts of irrigation water and deducted from the production 
costs for case a. Irrigation costs are on average only 3% of total production costs. Average cost of 
production for the rain-fed case averages 119 $/ha, while the average gross income for the rain-fed 
case equals 313 $/ha.

Figure 6.7 shows the results of the economic simulation for a single year of HRU 1. The left 
side of the graph shows the distribution of the difference in net returns between case a (irrigated) 
and case b (rain-fed) per unit ecosystem service (ΔETact). The initial distribution (solid line) 
reveals that the centre of the distribution is located around a Pe of 0.15 $/m3. The tail of the 
distribution approaches zero at Pe ≈ -0.09 $/m3 at the left side and at a Pe ≈ 0.37 $/m3 at the 
right side (nearly all farmers change from practice a to b). In case a there is therefore a limited 

Table 6.1 Inputs for the economic analysis per Hydrological Response Unit (HRU); Ya = average 
yield of irrigated barley, CVa is the coefficient of variation in the net returns of irrigated barley, 
Yb = yield of rain-fed barley, CVb = coefficient of variation in the net returns of rain-fed barley, 
Cb = cost of production of rain-fed barley, e = ecosystem service rate.

HRU  Area (ha) Ya (kg/ha) CVa (%) Yb (kg/ha) CVb (%) Cb ($/ha) e (m3/ha)

1 1755 4217 23 1720 117 130 1857
2 2754 4253 31 1722 154 129 1862
3 2305 4211 18 1712 89 130 1900
4 920 4284 30 1651 148 123 1664
5 467 4287 13 1735 63 129 1776
6 918 4659 22 1653 111 113 2150
7 2249 4661 39 1678 194 115 2111
8 2530 4280 32 1746 161 130 1887
9 2782 4621 30 1632 152 113 2148
10 1690 4297 28 1691 141 126 1856
11 3077 4507 41 1654 207 117 1863
12 1640 4255 38 1651 191 124 1746
13 3080 4601 42 1673 211 116 1998
14 1225 4480 22 1665 112 118 2015
15 756 4460 34 1704 171 122 1940
16 413 4493 21 1700 106 120 2013
17 1022 4564 38 1621 191 113 2071
18 231 4468 46 1679 231 120 1909
19 1556 4640 39 1648 193 113 1986
20 1036 4311 29 1717 143 127 1897
21 1530 4547 34 1422 168 100 1906
22 1886 4563 21 1713 103 119 1884
23 1206 4224 25 1353 127 102 1779
24 108 3824 24 1362 120 114 1711
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equilibrium supply of water (S(p)). This means that a number of farmers adopt practice b even if 
no additional financial incentives are provided, because their yields are low and irrigation is costly, 
i.e. they are better off without irrigation.

The right side of the graph shows the associated supply curve. At the right side of the graph 
the supply curve approaches the vertical asymptote equal to 1755 ha x 1857 m3/ha ≈ 3.3 106 m3. The 
slope of the supply curve is least steep at the centre of the distribution. The figure also shows the 
effect of the CV on the shape of the distribution of opportunity cost and the supply curve. An 
increase in CV widens the opportunity cost distribution and increases the slope of the supply 
curve. A decrease in CV causes the opposite.

It is interesting to note that with a CV of 200% of the initial CV the left tail of the distribution 
is now located at a Pe ≈ -0.2 $/m3. This means that the equilibrium supply of fresh water has 
increased considerably due to the relative large spatial variation in yields between the two cases.

Figure 6.8 shows the accumulated results for the entire catchment over a period of 20 years. 
The slope of the supply curve is smallest at a price of 0.15 $/m3. At that point approximately 
50% of the farmers enter into a contract. The maximum achievable amount of evapotranspiration 
reduction accumulated over the 20 years roughly equals 1.4 109 m3

 (= 7.0 107 m3/year), which will 
result in very significant increases in April-June discharge (2-30%). Besides conservation of water, 
there is considerable additional income generated by the farmers as is shown in the lower half of 
Figure 6.8.

6.3.3	 Sensitivity analysis
The model has been parameterized with model simulations, expert judgements and statistics 
available from literature and personal communications. However there are no long-term locally 
measured data available to calibrate the results. It was shown that the output of the hydrological 
model is plausible and subsequently a sensitivity analysis was performed for the most important 
physical and economic parameters in the economic model to indicate the range in which realistic 
results may be expected. Three parameters have been chosen which are governed by the local 
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Figure 6.7 The spatial distribution of opportunity cost per unit of ecosystem service (left side) 
and the derived supply curves (right side) for three different variances in net returns of the two 
practices for HRU 1.
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biophysical conditions (CVa, CVb and e) and three parameters have been chosen that relate to the 
economic model (P, Ca and Cb). The sensitivity analysis was performed at a fixed Pe level (0.15 $/
m3), which equals the centre of the distribution of the base model. All parameters were increased 
and decreased by 30% respectively and the effects on the total catchment supply, the slope of the 
supply curve and the number of farmers entering into a contract are shown in Table 6.2. The 
CV, which is the parameter which is least known, does not have a large influence on S, ΔS/ΔPe 
and r. In other words we may reasonably accurately simulate the supply of ecosystem service 
at catchment level without accurate knowledge of the CVs. The supply of ecosystem service is 
however very sensitive to e. An increase of 30% in e results in a near doubling of the total amount 
of ecosystem service produced. A decrease in e also considerably reduces the slope of the supply 
curve. An increase in market prices causes fewer farmers to shift from case a to b; e.g. a higher 
financial incentive is required to compensate the larger difference in net returns. An increase 
of costs of the irrigated barley system will reduce the difference in net returns between the two 
practices and more farmers will adopt rain-fed barley production at the same Pe. The opposite is 
true for the costs of rain-fed agriculture.
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Figure 6.8 Catchment results for the base model: The price of ecosystem service (Pe) as a 
function of fraction of farmers participating in a contract (r), the total amount of ecosystem 
service produced in 20 years (S), the total additional income (I) and relative income compared to 
the base scenario (p).
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6.4	 Discussion and conclusion

Providing payments for ecosystem services has the potential to contribute to the preservation 
of Tibet’s water tower. We have shown that when farmers are provided with a sufficiently high 
economic incentive the river discharge in the critical pre-monsoon period can be increased 
significantly even if the percentage of irrigated lands is relatively low. This approach could 
yield substantial water savings at a critical period of the growing season, if sufficient economic 
incentives are provided to farmers to change practices. The concept was showcased for a relatively 
small catchment on the Tibetan plateau; however the presented methodology could be applied 
to the entire Tibetan plateau. Depending on the physical characteristics (e.g. soil, slope and land 
use) and the agricultural water use, implementation of the approach at a larger scale may yield 
significant water savings in critical periods of the year at basin scale.

The methodology presented above, which combines biophysical simulation models with an 
economic approach, appears to be a transparent and cost effective tool to quantify the effect of 
financial incentives in the conservation of water resources. Policy relevant information can now 
be generated without the need to conduct expensive field surveys and set up more elaborate 
econometric simulation models for which there is generally no time in a political context. As 
argued by Antle and Valdivia (2006) the MD approach is motivated by the fact that policy makers 
demand timely, quantitative information with sufficient level of detail, which needs to be accurate 
within an order of magnitude.

This study was intended to be a proof-of-concept, and the objective was to show that the 
PES concept can be applied for the conservation of water in data scarce areas. The purpose 
of the analysis is to have an assessment of economic feasibility of payments for the ecosystem 
service with readily available data that can be carried out in a timely matter to support policy 
decision making. It is not intended to be a full-blown assessment of all the possible factors 
that might affect farmers’ decision making (e.g., risk aversion, other institutional constraints). 
The point of the MD analysis is to get a first-order approximation to the supply curve without 

Table 6.2 Sensitivity of the total supply of ecosystem service (S), the slope of the supply curve 
(ΔS/ΔPe) and the fraction of farmers participating in a contract (r) at a fixed Pe of 0.15 $ m-3.

   S (106 m3) ΔS/ΔPe (109 m3 $-1) r (-)

 Base  716 2.9 0.50

Physical 
parameters

CVa +30% 711 3.2 0.50
CVa -30% 716 2.7 0.50
CVb +30% 717 2.1 0.50
CVb -30% 699 4.8 0.49
e +30% 1232 4.2 0.67
e -30% 306 1.2 0.29

Economic 
parameters

P +30% 396 2.1 0.26
P -30% 1326 1.5 0.93
Ca +30% 963 2.3 0.68
Ca -30% 381 2.8 0.25
Cb +30% 559 4.3 0.38
Cb -30% 792 2.3 0.55
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taking a long time to do detailed surveys and understand farmers’ decision processes. We have 
used the combination of the SWAT and MD model in an area where limited data is available 
and a fully-fledged validation of both the economic and hydrological results was impossible. 
However using secondary sources of information we have shown that SWAT simulates plausible 
hydrological outputs and the explorative sensitivity analysis revealed the range in which results 
may be expected. This validation issue will always remain, particularly because PES contracts are 
generally signed for a multi-year period in the future based on plausible ranges from the past. The 
strength of the tools presented lies in the ability to provide these plausible ranges. This contract is 
also important in forcing the farmers’ decision to adopt the prescribed water conserving practice, 
i.e. rain-fed barley cultivation. The farmers enter a contract with the buyer of water and it defines 
at least the amount of ecosystem service to be supplied, the alternative practice and the financial 
compensation.

We have used a process based hydrological model in an ungauged basin. This is an issue many 
scientists face and recently, interest in using simulation models in ungauged or sparsely gauged 
basins has increased, leading to some concerted actions. The most relevant is the Prediction in 
Ungauged Basin (PUB) initiative; an International Association for Hydrological Sciences (IAHS) 
initiative for the decade of 2003-2012, aimed at uncertainty reduction in hydrological practice 
(Sivapalani et al., 2003). PUB focuses on the development of new predictive approaches that are 
based on “understanding” of hydrological functioning at multiple space-time scales. SWAT is 
such a process based model that comprehensively covers all components of the hydrological cycle, 
and which has been applied in numerous studies around the world (Arnold and Fohrer, 2005).

For the economic input a number of important assumptions were made. This is legitimate, 
since no regional data are available as will often be the case in these types of studies, but some 
caution is required. Two important assumptions were made, which directly affect the output of 
the MD model. Firstly, it was assumed that the CV of rain-fed barley yield was equal to the CV 
in slope, because slope is important in characterising the HRUs potential to retain water. This 
approach is preferred over using a constant CV for all HRUs. The sensitivity analysis showed 
that the influence of the CV in characterising the potential of the HRU to retain water is 
limited. More research into the estimation of the CV in yield based on biophysical properties is 
however recommendable. Secondly, it was assumed that the CV in net returns can be estimated 
by the CV in yield, because data from a variety of studies show that cost of production tends 
to be proportional to yield (Antle and Capalbo 2001). However, the CV of net returns may be 
higher than the CV of yields when yield is highly variable (as in this case of rain-fed barley) and 
farmers apply inputs in fixed proportions per hectare. Note that this tendency will be mitigated 
in semi-subsistence systems with low use of variable inputs, as illustrated by the data in Table 6.1. 
Sensitivity analysis to the assumption of a substantially lower or higher CV shows that the results 
are not highly sensitive to the CV in any case (Figure 6.7).

Conservation of water is not straightforward. We have shown that through the reduction of 
evapotranspiration, discharges can be enhanced during the dry season. A possible way to reduce 
evaporation is the reduction of irrigation and the associated change in land cover. In this study 
we have compared rain-fed agriculture with irrigated agriculture. However there may be other 
crops which transpire less than spring barley, which may provide additional savings. Rain-fed 
agriculture still consumes a considerable amount of water. It might also be a viable option to pay 
farmers to leave their fields partially fallow.
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Water is a common property resource, and there are always two issues to consider, efficiency and 
equity. For efficiency in the TP case the general principle that is pursued with PES is to create 
an incentive for farmers to use water efficiently from a social point of view. In TP the argument 
is that water may be worth much more to downstream users (agriculture, urban or hydropower) 
than to crop producers in the highlands. In this context, PES has been applied as a way to 
implement water pricing. An efficient outcome can be obtained in two equivalent ways: farmers 
using irrigation can be made to pay a positive price per unit of water consumed; or farmers can 
be paid a positive price per unit of water not used. The opportunity cost calculation is exactly the 
same in both cases. In other words, “taxing” water-using farmers per unit of water consumers, or 
“subsidizing” farmers per unit of water not consumed, are equivalent ways to achieve the same 
outcome. For equity, the question is, who has the rights to the water? If downstream users have 
the rights, then farmers should pay for using the water; and if farmers have the rights, then 
downstream users should pay farmers not to use water. So in this case the PES concept of paying 
farmers not to use water implies they have the rights to the water. The key policy questions that 
remain to be addressed are how much the water is worth, and who should pay for it. The PES 
analysis has shown how much water will be delivered at various water prices, but does not provide 
conclusive answers on which price is the “right” or socially efficient price. The challenge for policy 
makers thus is to choose the appropriate level for Pe and Pe should be set equal to the marginal 
social value of the water downstream. The payment will not be higher due to transaction costs; 
rather, the net price received will be lower.

The concept of payments for ecosystem service for the conservation of water resources may 
prove to become increasingly important in light of the pending impacts of climate change. A 
recent study (Immerzeel, 2007) has shown that the Tibetan Plateau is highly sensitive to climate 
change. Glacial melt will increase river discharge in the decades ahead, but once the glaciers 
have melted away completely river discharges will decline rapidly. Water conservation through 
agricultural adaptation may be one of few viable alternatives.
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7	 Synthesis

7.1	 Introduction

Water is the most essential substance on earth and adequate access to water is of paramount 
societal importance and strongly influences the economic potential. More than a quarter 
of the world’s population or a third of the population in developing countries live in regions 
experiencing severe water scarcity (Seckler et al., 1999). Water is cycled through the earth’s system 
and it is a resource that is constantly recharged. Water resources assessment should therefore focus 
on the flow of water between different compartments. The circulation rate of renewable fresh 
water resources is limited by the climate system. Although the current withdrawal rate of these 
resources is well below the physical limit, there are more than two billion people living under 
highly water stressed conditions, due to the uneven distribution in time and space of the water 
resources. Climate change is expected to further accelerate hydrological circulation rates. This 
could be beneficial to the reduction of water scarcity, however, shifts in the temporal distribution 
and projected increases in extreme droughts and excessive rainfall could yield the opposite (Oki 
and Kanae, 2006).

Figure 7.1 provides an overview of the global circulation on the earth’s land surface. In total 
110,000 km3 of precipitation is falling on the land surface and a distinction is made between 
green water (soil moisture) and blue water (rivers, wetlands, lakes and groundwater). Of the total 
annual water resources 39% is blue water and 61% is green water. Of the total precipitation 63% 
is eventually used for evapotranspiration, either by natural surfaces (56%), agriculture (6%), or 
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Figure 7.1 Global water use (source Comprehensive Assessment of Water Management in 
Agriculture, 2007)
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open water evaporation (1.3%). Water use by cities and industries comprise a negligible fraction 
of the total precipitation (0.1%). The spatial and temporal variation in this circulation is enormous 
(Comprehensive Assessment of Water Management in Agriculture, 2007).

In mountain areas the hydrological cycle is even more intense and diverse, because of orographic 
effects, low relative humidities, and a high variance in land covers across small horizontal 
distances. Mountain ranges are also more vulnerable to climate change, because the land surface 
hydrology is for many areas determined by snow and ice melt. The hydrological cycle at the land 
surface in mountains includes the processes of snow/ice accumulation and melting as well as the 
impact these processes will have on regional changes in evaporative depletion and runoff. The 
circulation in mountain areas is therefore more susceptible to changes in temperature. At the 
same time mountain ranges play an important role in supplying fresh water resources that sustain 
the livelihoods of the people downstream in critical periods during the year. The Himalaya, which 
is the focus of this study, is the water tower of Asia and rivers originating here flow into various 
regions in Asia. The Mekong, the Yellow river, the Yangthze, the Yarlung Tsampo (Brahmaputra), 
the Indus and the Karnali all originate in the Himalaya’s or on the Tibetan plateau, and support 
hundreds of millions of people downstream. Since Asia is monsoon dominated, with precipitation 
concentrated in just a few months, the perennial flow of the rivers largely relies on the constant 
flux of the snow and ice melt.

The knowledge on the global water cycle certainly has been enriched over the last forty years. 
Great advancements have been made in measuring and modelling the hydrological cycle at 
increasing spatial and temporal resolution supported by remote sensing and simulation models 
(Oki and Kanae, 2006). The future of this type of research also requires improved communication 
between scientists and policy makers to ensure that scientific finding are related to political 
actions. A systems approach that integrated all aspects of the interaction between the hydrological 
cycle, climate change and agriculture in mountain areas is however largely lacking. Research on 
these components has been performed in the past but the integration is severely hampered by the 
lack of systematic data and/or tools in many cases. A central concept in this thesis has been the 
transition from data to information, and from information to knowledge, and from knowledge 
to support decision makers. Each transition of this chain has been covered in varying degrees of 
detail. Although each part is a field of science this thesis covers the entire range of this continuum, 
because this is key to the sustainable development of mountain catchments.

The systems approach is best described by the diagram in Figure 7.2. To prevent external 
pressures from threatening the important values of mountain catchments we need to understand 
the past to be able to change the future. The combined analysis using statistics, observations, 
remote sensing and a combination of different types of models has led to an improved 
understanding of hydrological processes, insight in spatial and temporal distribution of important 
hydrological variables, and showed the linkage between upstream events and downstream effects. 
In particular the remote sensing derivatives are input to simulation models that can then be used 
to evaluate scenarios for the future. The hydrological assessment of different future scenarios in 
combination with an economic approach provides clear and transparent information for decision 
makers. In other words; from past to future and from data to information to knowledge to 
policies.
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Three knowledge gaps have been identified which impede a successful implementation of a 
systems approach: (i) lack of fundamental data (e.g. meteorological, hydrological and economic 
datasets) and knowledge about the spatial heterogeneity of climate variables in mountains, (ii) 
absence of a straightforward technique to calibrate simulation models in data scarce areas and 
(iii) the missing link between outputs of simulation models and policy changes. Given this 
background the overall objective of this study was:

The development of a systems approach for mountain river basins leading to a better understanding of 
the hydrological functioning and to the development of tools supportive to decision makers

This objective was further detailed through four different research questions:

1.	 How can remote sensing support the quantification of processes of the hydrological balance 
in highly diverse topographic terrain?

2.	 Is it possible to make a reliable assessment of climate change and its effects at river basin scale 
in mountain areas?

3.	 Is it feasible to develop a methodology to reliably calibrate hydrological models in ungauged 
basins on the basis of remote sensing derived hydrological parameters?

4.	 Is it possible to integrate economic and hydrological modelling and if yes, what incentives 
and economic instruments can best be applied to conserve water in upstream areas of water 
scarce river basins?

The four research questions covered a continuum from physical based research into deriving 
hydrological parameters from remote sensing to the provision of science based information to 
decision makers based on hydrological and economic models. Each research question has resulted 
in a peer reviewed paper as presented in previous chapters. This chapter aims at putting the 
individual topics in a wider context and to provide direction for future developments in this 
scientific field.

7.2	 Mapping precipitation using remote sensing

The use of remote sensing in hydrology has taken a leap forward in the past decades for several 
reasons; an increased number of satellites and types of sensors, improved data accessibility, and 
an accelerated development of scientific algorithms to retrieve relevant hydrological information 
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from satellite radiances. The advantage of having access to spatial temporal patterns of major 
water balance constituents (e.g. precipitation, evapotranspiration, soil moisture, and ground water 
storage) is evident; knowledge on the variation in time and space of these constituents yields 
an enormous amount of information, which can never be met by traditional point based hydro-
meteorological monitoring programs.
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Figure 7.3 Two examples of satellite based remotely sensed precipitation (mm) in July 2006. The 
top figure shows the TRMM 3B43 product and the bottom figure shows the NOAA RFE 2.0 
product.
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It is beyond the scope of this thesis to provide a complete overview of remote sensing application 
in hydrology and in this study the focus has been on understanding precipitation patterns using 
remote sensing. An indirect approach was used and the behaviour of the vegetation on the Tibetan 
plateau was analyzed using Fourier analysis to further understand spatial and temporal variation 
in precipitation (Chapter 2). In recent years a number of remote sensing derived precipitation 
products, which utilizes a combination of more direct measurements, became accessible. There are 
two relevant products that are important to mention in this context:

Firstly, the products derived from the Tropical Radar Monitoring Mission (TRMM) (NASA, 
2007). The TRMM satellite was launched in 1997 and the mission was recently extended to 2009. 
The satellite is in a non-sun-synchronous orbit, has a latitudinal range of 50º S-50º N and a 
revisit time of around 15 hours. The TRMM satellite carries three rain measuring instruments: (i) 
the TRMM Microwave Imager (TMI), which provides information on the integrated column 
precipitation content, (ii) the Visible Infrared Scanner (VIRS), which provides high resolution 
observations on cloud coverage, cloud type and cloud top temperatures, and (iii) the Precipitation 
Radar (PR) that measure 3-D rainfall distribution. TRMM products are derived from many 
algorithms, but the most recent and best estimates of precipitations is provided by the 3B42 (3 
hourly) and 3B43 products (monthly) (Hufmann et al., 2007). These level 3 products combine 
information from the three TRMM instruments with information of other satellites calibrated 
with precipitation gauge data from the Global Precipitation Climatology Project (GPCP) 
network (Adler et al., 2003). The resulting products are global grids at a spatial resolution of 0.25º  
(~25 km). An example of the 3B43 monthly precipitation across Asia in July 2006 is shown in 
Figure 7.3.

Secondly, the Rainfall Estimates (RFE 2.0) provided by the NOAA Climate Prediction Centre 
(NOAA, 2007). The data are provided for south-east Asia, Africa, Central America, and the area 
surrounding the Indian Ocean. Daily rainfall estimates are provided at a spatial resolution of 0.1º 
(~10 km). Four kinds of observation-based data sets are used as inputs to construct the merged 
analysis of daily precipitation; (i) analysis derived from WMO Global Telecommunication System 
(GTS) gauge observations of daily precipitation; 2) the GOES Precipitation Index (GPI, Arkin 
and Meisner 1987) inferred from full resolution IR data from geostationary satellites ( Janowiak et 
al., 2001), (iii) estimates derived from microwave observations of SSM/I (Ferraro and Marks 1995) 
and (iv) from AMSU-B (Zhao et al., 2001). An example of the merged precipitation product is 
shown in Figure 7.3.

Inherent to the methodology these satellite derived precipitation products still show relatively 
large uncertainties and are best used by averaging over larger areas (Hufmann et al., 2007). This 
will be particularly true for mountain areas where precipitation shows large variation and where 
the number of precipitation gauges required for removing biases is often limited. In this study 
an innovative approach has therefore been adopted to explore precipitation patterns. In chapter 
2 the response of vegetation to precipitation was used to explain precipitation patterns and land 
use interaction on the Tibetan plateau. A time series of Normalized Difference Vegetation Index 
(NDVI) images from 1998 to 2003, observed by the VEGETATION instrument aboard the 
SPOT 4 and SPOT 5 satellites, was analyzed. This dataset has a ground resolution of 1 km and a 
frequency of 10 days.
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To derive useful information from the NDVI time series a Fourier or harmonic analysis was 
applied. The analysis unravelled the NDVI signals into a number of sine and cosine waves, each 
characterized by a specific amplitude and phase angle. The thus manipulated time series revealed 
a number of interesting findings:
•	 By using only the first two harmonic terms over 90% of the variation in the NDVI signal was 

explained.
•	 There is considerable difference in NDVI patterns between land uses. The irrigated lands 

and forests show an NDVI peak early November and less intra-annual variation is observed. 
Other land uses (e.g. grasslands, shrub lands and tundra) respond much more direct on the 
monsoon precipitation and peak in early august.

•	 Direct comparison with average precipitation data shows that for all station there is a direct 
positive NDVI response after the first rains in April. The cropland grassland mosaic land 
use has the most pronounced response to rainfall. Shrubland show very limited reponse. The 
needleleaf forest has the largest net increase in NDVI integrated over the whole growing 
season, e.g. the largest increase in biomass.

•	 Regression analysis with 15 meteorological stations revealed that precipitation during the 
growing season shows strong correlation (r2 = 0.72) with the amplitudes of the first two 
harmonic terms of the Fourier series.

•	 The Fourier manipulated time series can well be used to derive the onset and length of the 
growing season.

In this study access to measured precipitation was limited, and there is scope to further extend this 
interesting methodology. Future work in mountain areas should integrate standard precipitation 
products, such as TRMM and NOAA RFE 2.0, with time series analysis of NDVI observations. 
On 1 km pixel resolution spatial patterns of the amplitudes of the Fourier terms could easily be 
derived based on the developed methodology. The spatial amplitude information in combination 
with local precipitation gauge data could then be used to downscale the TRMM and/or RFE2.0 
datasets to a more accurate precipitation product at a higher spatial detail for mountainous areas.

Another interesting avenue to explore would be the use of other techniques to analyze time series 
of NDVI. The application of the wavelet transform is promising in this respect. The wavelet 
transform has some clear advantages over the use of the Fourier transform; most importantly it 
allows the detection of changes in frequency and amplitude in the signal over time. The discrete 
wavelet transform decomposes a signal iteratively into approximations (A) and details (D) 
contained in the signal using a set of high and low pass filters. Approximations relate to the high 
scale, low frequency components of the signal and the details to the low scale, high frequency 
components. After the first iteration the approximated sample is down sampled by a factor two, 
and subsequently the high and low pass filters are applied again. This process is repeated until 
the final approximation only contains one sample. Both the approximation and details still show 
changes over time, whereas the Fourier analysis only reveals frequencies, which are abundant in 
the entire signal.

There are two important aspects that are relevant to the analysis of precipitation patterns using 
time series of NDVI. Firstly, it is expected that the approximated NDVI signal at a certain 
decomposition level is related to the same approximated level of the precipitation signal. There 
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will also be a certain lag time between the two signals, because vegetation responds generally 
only after a precipitation event has occurred. This lag time can easily be determined using the 
developed Fourier approach and inferred on the approximated NDVI signal. The NDVI signal 
is available for each pixel in a remotely sensed image and by superimposing the detailed part of 
the precipitation signal of the nearest meteorological signal on the approximated signal of each 
pixel. Using this approach significant improvement in deriving spatial precipitations patterns can 
be achieved. Secondly, because the temporal changes in frequency and amplitude can be detected, 
it is possible to use the approximated NDVI signal at the correct level of decomposition to detect 
trends in precipitation; e.g. trends in intensity (amplitude) and seasonal shifts (frequency). This is 
an entire new field to be explored, especially since the application of wavelets in remote sensing 
has been limited to the spatial domain (e.g. data reduction and pattern recognition) (Zhu and 
Yang, 1998, Carvalho, 2001, Epinat et al., 2001) and to a lesser extent to the temporal domain on 
a pixel basis.

7.3	 Hydrological implications of climate change in 
large scale mountainous catchments

The recently published fourth assessment paper of the International Panel on Climate Change 
(IPCC 4AR) (IPCC, 2007) concludes that warming of the global climate system is unequivocal, 
as is now evident from observations of increases in global average air and ocean temperatures, 
widespread melting of snow and ice, and rising global average sea level. At continental, regional, 
and ocean basin scales, numerous long-term changes in climate have been observed. These include 
changes in Arctic temperatures and ice, widespread changes in precipitation amounts, ocean 
salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, 
heat waves and the intensity of tropical cyclones. Based on a large number of simulations from a 
wide variety of atmosphere ocean general circulation models (AOGCM) the report also presents 
the analysis of possible futures for the period 2000-2100 following the scenarios defined in the 
IPCC special report on emission scenarios (SRES) (IPCC, 2000).

Figure 7.4 shows the multi-model surface warming prediction for six different SRES scenarios, as 
well as a scenario where the year 2000 concentration of greenhouse gases has been kept constant. 
The solid lines are multi-model global averages of surface warming (relative to 1980-99) for the 
scenarios A2, A1B and B1, shown as continuations of the 20th century simulations. Shading 
denotes the plus/minus one standard deviation range of individual model annual averages. The 
orange line is for the experiment where concentrations were held constant at year 2000 values. 
The gray bars at the right indicate the best estimate (solid line within each bar) and the likely 
range assessed for the six SRES marker scenarios. The assessment of the best estimate and likely 
ranges in the gray bars includes the AOGCMs in the left part of the figure, as well as results 
from a hierarchy of independent models and observational constraints. (IPCC, 2007).

The figure show that irrespective of the scenario the average global temperature is very likely 
to increase between 1.8 ºC and 4 ºC by the year 2100. Even the year 2000 constant composition 
will result in a temperature increase between 0.3 ºC and 0.9 ºC. The report further concludes 
that the warming is expected to be greatest over land and at most high northern latitudes, snow 
cover is projected to contract and that it is very likely that hot extremes, heat waves, and heavy 
precipitation events will continue to become more frequent.
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The spatial variation in observed and projected climate change is large and mountain ranges and 
their downstream areas are particularly vulnerable for several reasons:
•	 Firstly, the rate of warming in the lower troposphere increases with altitude, i.e. temperatures 

will rise more in high mountains than at low altitudes (Bradley et al., 2004).
•	 Secondly, there is a large high natural variation in climates because of the large difference 

in altitudes over small horizontal distances. This renders mountain areas more susceptible to 
climate change (Beniston et al., 1997).

•	 Thirdly, and probably most important, is the role mountains play in the water supply 
to downstream areas. More than one sixth of the global population depends on water 
supplied by mountains and changes in hydrology and water availability are expected to be 
large in mountain basins (Barnett et al., 2005). Climate Change is expected to intensify 
the hydrological cycle, e.g. more precipitation and more evapotranspiration. Snow and ice 
accumulation in mountain areas determine for a large part the surface hydrology and the 
temporal distribution of the availability of water. This will change significantly when surface 
air temperatures rise. Especially the diminishing role of snow and ice as a natural delay proves 
in supplying water will have a tremendous impact.

Despite its relevance, few studies have been conducted on the hydrological effects of climate 
change at basin scale in the Himalayas. Barnett et al., 2005 in a global assessment of the impact 
of global warming on snow dominated region indicate that the Himalaya – Hindu Kush area is 
perhaps the most critical area, where vanishing glaciers will negatively affect water supply in the 
next few decades, because of the region’s huge population. The ice mass over this mountainous 
region is the third-largest on earth, after the Arctic/Greenland and Antarctic regions. The 
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hydrological cycle of the region is complicated by the Asian monsoon, but there is little doubt 
that melting glaciers provide a key source of water for the region in the summer months.

In chapter 3 an innovative approach to analyze climate change for a large Himalayan basin 
(Brahmaputra, 530,000 km2) is presented and focus was on three components; (i) analysis 
of historical trends in precipitation and temperature, (ii) future trends in precipitation and 
temperature, and (iii) the impact of climate change on hydrology.

Based on the most accurate monthly observational global dataset available an assessment was 
made of temperature and precipitation patterns from 1900-2002 in the three physiographic zones 
of the basin, the Tibetan plateau, the Himalayas, and the floodplains. Warming was in general 
consistent with global warming patterns for the northern hemisphere (0.006 ºC/year), with the 
largest increase in all three zones in spring. Notably a critical period concerning snow and ice melt. 
Monsoon dynamics govern precipitation and no obvious trends could be identified. However, 
multiple regression analysis between precipitation and the El Niño Southern Oscillation (ENSO) 
teleconnection and the air temperature difference between the plateau and the floodplains yielded 
interesting findings. Firstly, no significant relation was found between monsoon precipitation 
and ENSO indicators, which is contradictory to earlier studies. Secondly, a significant relation 
between the air temperature difference between the plateau and the floodplains and precipitation 
was found. This temperature difference is related to the tropospheric temperature gradient 
between the plateau and the Indian Ocean, known to positively related to the strength of the 
monsoon. The troposphere above the plateau is among the warmest on earth, because warming 
of the plateau is directly related to tropospheric temperatures due to the high elevation. Then, the 
question arises which processes determine the heating of the air above the plateau? A number of 
conspiring effects of snow on the surface energy balance seem to play a crucial role here; snow 
increases the albedo and net energy is reduced, snow also causes a significant part of the net 
energy being consumed by sublimation and finally melting of snow results in a wetted surface 
which results in high latent heat fluxes on the expense of the sensible heat flux.

By statistical downscaling outputs from 2000-2100 of six different AOGCMs to spatial 
resolution of the observed grids a basin wide assessment of two SRES scenario of anticipated 
changes in precipitation and temperature was made. The analysis showed that the warming rate 
in this century is increasing and that the temperature increase is largest on the Tibetan plateau. 
Contradictory to the historical analysis clear future trends in precipitation are anticipated.

A simple stochastic rainfall runoff model based on multiple regression was calibrated using 
a monthly stream flow data set of a downstream gauge for the period 1956-1993. The model was 
fed by the downscaled AOGCM projection to provide insight in future changes in average 
and extreme stream flow per season. The temporal patterns of water availability will change 
significantly. Average summer discharge is expected to show the largest increase (20-30% in 
2100), which will likely have a similar effect on peak discharges. The combination of increase peak 
discharges in combination with rising sea levels could have far fetching effects in Bangladesh, 
which is already extremely vulnerable to floods.

There are several directions which are extremely interesting to further investigate in the future:
•	 There is a large variation in how the combination of climate and snow and ice melt 

influence river flow in the Himalayas. In summer months, the monsoon from the Bay of 
Bengal produces heavy precipitation, intensified on windward slopes, predominantly in the 
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southeast of the region. The monsoon weakens from east to west, rarely penetrating as far 
as the Karakoram, so that summer precipitation declines in the same direction. Although 
westerly winds bring precipitation in the west (and at higher elevations throughout the 
Himalaya) in winter, the total annual precipitation generally increases from west to east. Arid 
conditions exist at lower elevations in the west; hence, melt water from glacierized mountains 
remains the major component of runoff for great distances downstream, whereas monsoonal 
precipitation in the more humid east contributes much of the flow at all elevations. Glaciers 
experience winter accumulation and summer ablation in the west, but there is predominantly 
synchronous summer accumulation and summer melt in the east (Rees and Collins, 2006). 
Further (quantified) insight in this regional difference is very relevant. This could be achieved 
by combining remote sensing of snow cover, precipitation, and surface temperatures.

•	 As discussed snow cover extent and depth play an important role in the monsoon regulation 
in the area. A long term assessment of historical changes in snow extent based on remote 
sensing would provide an improved understanding of the system. Using a combination of 
visual interpretation, passive microwave, and snow spectral indices it is currently possible 
to construct a time series with a length of approximately 40 years. In combinations with 
long term regional observations of precipitation and temperature, the proposed interaction 
between snow cover, troposheric temperature gradient and monsoon precipitation could be 
further validated.

•	 The basin wide approach has provided interesting new insights; however a global database 
was used with a number of disadvantages, the most important one being the scarce amount 
of meteorological stations in these inaccessible areas, specifically at high altitudes. Also, 
a simple rainfall runoff model was used to predict stream flow at a single location while 
more advanced distributed process based hydrological models are available, which quantify 
the complete water balance with high spatial and temporal detail, as presented in chapter 4. 
Using these types of models assimilated or calibrated with high resolution information based 
on remote sensing (e.g. precipitation (chapter 2) and evapotranspiration (chapter 4 and 5) 
could drastically improve knowledge on the functioning of mountains as water tower in large 
basins and the effects of climate change.

Chapter 3 describes one of the rare analyses for an area where millions of people depend on 
for their water supply. More research efforts to improve the understanding are therefore fully 
justified.

7.4	 Calibrating hydrological models using Remote Sensing

Data on spatial and temporal patterns of key hydrological variables is essential to assess the 
current conditions of water resources and to evaluate trends in the past. However, to explore 
options for the future, tools are required that enable the evaluation of the impact of future trends 
and how we can adapt to these in the most sustainable way. A model is defined here as a computer 
based mathematical representation of dynamic processes. Simulation models are the appropriate 
tools to do these analyses and there are three major motivations to use models: (i) formalizing 
our knowledge in mathematical representation, (ii) understanding processes and (iii) scenarios 
analyses.
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Understanding processes is something that starts right from the beginning during model 
development. In order to build our models we must have a clear picture on how processes in 
the real world function and how we can mimic these in our models. The main challenge is not 
in trying to build in all processes we understand, which is in fact impossible, but lies in our 
capabilities to simplify things and concentrate on the most relevant processes of the model under 
construction. The main reason for the success of models in understanding processes is that models 
can provide output over an unlimited time-scale, in an unlimited spatial resolution, and for sub-
processes, which are difficult to observe. These are the weak points in experimental analysis, but at 
the same time crucial components in sustainable water resources management.

The most important virtue of simulation models is its use in exploration of different scenarios. 
These scenarios refer to aspects that cannot directly be influenced, such as land use changes, 
population growth and climate change, often referred to as projections. Complementary to these 
projections are the so called management scenarios where water managers and policy makers can 
make decisions that will have a direct impact. Examples are changes in reservoir operations, water 
allocation and agricultural/irrigation practices. In other words: models enable to change focus 
from a re-active towards a pro-active approach.

A huge number of hydrological models exits, applications are growing rapidly and a relevant 
question for hydrological model studies is therefore related to appropriate model selection. An 
important issue to consider here is the continuum between physical detail and spatial scale. In 
general it can be stated that the larger the spatial scale the less physical detail is included. Figure 
7.5 illustrates this concept and positions a number of commonly used models.
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Besides these important considerations there are a number of other factors influencing the choice 
of the model such as the availability of source code, documentation, support, user friendliness, 
and inclusion of crucial processes relevant to a particular research topic. For this study (chapter 
4, chapter 5 and chapter 6) extensive use was made of the SWAT model (Arnold et al., 1998, 
Srinivasan et al., 1998). Main reasons for using SWAT can be summarized as: (i) The model 
adopts a water balance approach and includes atmospheric, land surface, soil, groundwater and 
stream flow processes, (ii) Model parameterization is facilitated by a user-friendly GIS interface, 
(iii) SWAT includes high physical detail in relation to the spatial scale it can be applied on, (iv) 
The source code and interface are in the public domain and an active user community exists with 
application cases in many countries in the world.

Hydrological models use input data that have, by definition, inaccuracies. These input data or 
parameters must be estimated for a given catchment and for each computational segment of the 
model. They must be estimated either by some relationship with physical characteristics or by 
tuning the parameters so that model response approximates observed response, a process known 
as calibration. The process of model calibration is quite complex because of limitations of the 
models, limitations of the input and output data, imperfect knowledge of basin characteristics, 
mathematical structure of the models and limitations in our ability to express quantitatively our 
preferences for how best to fit the models to the data. As a result of these limitations, it is even 
not clear that a unique set of values exists for the model parameters for a given watershed.

The use of remote sensing in hydrological modelling is a growing field and proves to be highly 
relevant, especially in areas where data are scarce, unreliable or unusable. This situation is regularly 
encountered in many areas across the world, specifically in mountain catchment and developing 
countries. Remote sensing provides objective and continuous information on relevant variables 
and could provide a solution for this issue. As far as the link with models is concerned a distinction 
should be made in applications aimed at model parameterisation and in applications aiming at 
model calibration. Remotely sensed parameterization is more common, and could for example 
include land cover classification, inclusion of digital elevation model in catchment delineation, 
use of vegetation indices to derive surface roughness and the use of precipitation radar data as 
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input to a model. Remotely sensed calibration is however a novel field with limited published 
work, but is applied in this study.

In chapter 4 a methodology was presented that deploys remotely sensed actual evapotranspiration 
based on the SEBAL algorithm (Bastiaanssen et al., 1998) in the auto-calibration of SWAT.

SEBAL converts satellite radiances into land surface characteristics such as surface albedo, leaf 
area index, vegetation index, and surface temperature, which are used in solving the instantaneous 
energy budget equation. In combination with observed meteorological data daily data on actual 
evapotranspiration is determined.

SWAT is a distributed hydrological model providing spatial coverage of the integral 
hydrological cycle including atmosphere, plants, unsaturated zone, groundwater, and surface 
water. The model is comprehensively described in literature (Arnold et al., 1998; Srinivasan et al., 
1998).

The study area is a mountainous catchment in Southern India (Upper Bhima catchment in 
the Krishna basin), which is highly diverse in terms of climatology, where natural flows are non-
existent because of a large number of interlinked man made reservoirs and dams, and where data 
availability is severely hampered by an interstate dispute on water allocation. This renders the 
catchment extremely suitable for the used approach. Traditionally hydrological model calibration 
is based on a limited number of discharge stations. Major disadvantage of using a small number 
of stations, usually near the outlet of a catchment, is that all hydrological processes are lumped 
together and chances on different parameter combinations that lead to similar results are much 
larger (equifinality). The presented methodology showed that this can be partly constrained 
by using spatially distributed observations with a monthly temporal resolution. A time series 
of 16 bi-weekly actual evapotranspiration maps from October 2004 to May 2005 with a spatial 
resolution was used to calibrate the SWAT model. The Parameter ESTimation (PEST) (Doherty, 
2005) was used for this purpose. PEST is a model independent calibration tool that deploys the 
gradient based Gauss-Marquardt-Levenberg algorithm and minimizes the sum of the squared 
deviations between SWAT simulated and SEBAL observed actual evapotranspiration. The 
calibration was performed at sub basin level at a monthly time step. Several combinations of 
parameters were calibrated and evaluated and the best performing run improved the r2 between 
SWAT and SEBAL derived actual evapotranspiration from 0.40 to 0.81.

The strength of the theoretical approach as developed and described in chapter 4 has been 
demonstrated in a more applied study in chapter 5, In the same catchment the calibration 
procedure was further (spatially) refined and applied at the level below the sub basin; the 
hydrological response unit. The final monthly average evapotranspiration residual between SWAT 
and SEBAL was 1 mm, while the monthly standard error equalled 26 mm. The calibrated SWAT 
model was then applied to evaluate water use and productivity in the catchment. Water balance 
analysis revealed that by far the majority of water is lost from the catchment through evaporative 
depletion. In total 42% of this evaporation can be considered as non-beneficial (open water, idle 
rangeland, and fallow periods of agricultural lands). Estimated water productivities are relative 
high and spatial variation is small, leaving limited scope for improvement for agriculture. It was 
concluded that major water savings could be achieved (i) by diverting from sugarcane to a dual 
crop and introducing a fallow period during the extremely dry period from February to May and 
(ii) by converting non-beneficial evaporation to beneficial transpiration by for example converting 
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idle rangelands to bio-fuel plantations. In this applied part of the study the combination of 
remote sensing and SWAT appeared to be an extremely useful tool.

In Chapter 4 and 5 it was shown that there is great scope for the use of remote sensing in the 
calibration of hydrological models and future work could focus on the assimilation of more 
diversified remote sensing products for hydrological modelling projects. Three relevant extensions 
can be identified in this context:
•	 In this study actual evapotranspiration based on the SEBAL algorithm were used, however 

the same algorithm also produces other relevant data sets, that could well be integrated in the 
calibration procedure such as soil moisture and biomass production.

•	 The remote sensing based precipitation products (e.g. TRMM and RFE 2.0) should be 
further integrated to be able to better capture spatial heterogeneity inherent to precipitation 
in mountain catchments.

•	 Changes in groundwater storage can be quantified by gravity measurements. Currently these 
data are operational through the Gravity Recovery and Climate Experiment (GRACE 2007). 
The GRACE twin satellites, launched in March 2002, are making detailed measurements of 
Earth’s gravity field. An example is shown in Figure 7.6. The poor spatial resolution (~ 100 km) 
is a considerable disadvantage and it is expected that next generation gravity satellites (e.g. 
ESA GOCE mission) will have an improved spatial resolution.

7.5	 Integrating hydrological and economic 
modelling to support policy making

In Chapter 6 the “minimum data approach” (MD) is used to model the supply of ecosystem 
services from agriculture. The approach used finds its origins in the trade-off analysis model 
(TOA) (Stoorvogel et al., 2004) that integrates bio-physical and economic modelling of 
agricultural production systems.

A trade-off is a fundamental economic concept based on the assumption that resources are 
scarce. The increase of one scarce good inevitably leads to giving up an amount of another scarce 
good and this is referred to as opportunity costs by economists. The TOA uses this principle 
to derive information about the sustainability of agricultural production systems by comparing 
environmental and production indicators through trade-off curves derived by the analysis 
of bio-physical processes and the economic behaviour of farmers. These curves are used to 
communicate information to decision makers and embody the principle of opportunity cost in 
production systems and are constructed by varying parameters in the production system that 
affect the economic incentives perceived by farmers in their land use and input use decisions. As 
farmers respond to changing economic incentives through changes in land use and input use, the 
sustainability properties of the production systems change. Tradeoff analysis integrates a suite 
of models, e.g. production models, environmental process models and econometric models and 
extensive data is required on the bio-physical characteristics, economic behaviour of farmers and 
experimental data for calibration of the models. (Stoorvogel et al., 2004).
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Time constraints often inhibit the implementation of a complete TOA, because collection of the 
required data is laborious and time consuming, while policy makers require timely information 
and are often prepared to give up a certain degree of accuracy for this. In addition, in many 
areas, such as mountain catchments in developing countries, data are simply not available. For 
this reason Antle and Valdivia (2006) developed a minimum data (MD) approach to model the 
supply of ecosystem services from agriculture. The central concept in this approach is that the 
supply of ecosystem service can be modelled by quantifying the opportunity costs between two 
(or more) competing land use alternatives. One alternative is usually more environmental friendly 
than the other (produces more ecosystem service), but economically less attractive. By providing 
a farmer with financial incentives he will shift to the environmental friendly practice if the net 
return of this practice is higher. By modelling the spatial distribution of opportunity costs in 
a region, the supply of ecosystem service at different levels of financial compensation can be 
quantified. Antle and Valdivia (2006) propose an approach that uses mainly secondary data and 
sensitivity analysis, to parameterise directly the spatial distribution of net returns to competing 
activities. Often secondary data are available for ‘average’ or ‘representative’ costs and returns for 
a geographical region such as a county or agro-ecozone. The TOA and MD have been previously 
applied in the field of pesticide leaching (Stoorvogel et al., 2004), soil conservation (Antle et al., 
2005) and carbon sequestration (Diagana et al., 2007).

The MD approach is also extremely suitable to model the supply of fresh water from agriculture 
in data scarce mountain catchments. In chapter 6 it was shown that the concept of payments for 
ecosystem services has the potential to contribute to water conservation in Tibet. The Tibetan 
plateau can be considered the water tower of Asia and the conservation of its water resources is 
of unprecedented importance. For this study a specific agricultural catchment was selected and 
the hydrological (and production) model SWAT was use to evaluate the hydrological effects of 
two competing land use practices; rain fed and irrigated barley cultivation. The model outputs 
were linked to the MD model that estimated the supply curve of fresh water from the spatial 
distribution of the difference in net return between the two practices. The results showed that 
during a critical period in the growing season, significant enhancements of stream flow can be 
achieved. In anticipation of the projected climate change for this region (Chapter 3), this approach 
could, implemented over larger areas, yield an effective adaptive strategy.

The purpose of the work presented in chapter 6 was a proof-of-concept and to show that 
payments for ecosystem services could potentially be a viable tool to conserve water. However 
besides some plausibility checks, no full fledged calibration of model outputs was performed. For 
future applications the use of remotely sensed datasets to calibrate the model (chapter 4 and 5) in 
combinations with the downscaled climate change projection (chapter 3) could take the approach 
a step further as adaptive strategy to climate change.

7.6	 Conclusions

The aim of this study was the development of a systems approach that leads to a better 
understanding of the hydrological functioning in mountain basins and at the same time has a 
societal relevance and contributes to development of tools that support decision making. The 
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four research questions cover a continuum from deriving hydrological parameters from remote 
sensing to the provision of science based information to decision makers based on hydrological 
and economic models. The main conclusions can be summarized as:
•	 The results of the systems approach are unique, specifically because there is so little scientific 

attention for this field, while 20% of the global population depends on fresh water provided 
by the rivers originating in the Himalayas.

•	 Using the temporal behaviour of vegetation in understanding precipitation patterns in 
complex topographic terrain is a promising methodology.

•	 The effects of climate change on the hydrology in large mountainous basins can be assessed 
using a straightforward approach. Identified hotspots can then be further analyzed using 
detailed modelling.

•	 Remote sensing has been used innovatively in the calibration of a distributed hydrological 
model.

•	 The combination of a hydrological model with an economic approach has proven to be a 
potential powerful tool to support decision making in water conservation in water scarce 
areas.
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Summary

Water is the most essential substance on earth and a changing climate has an important impact 
on the temporal and spatial distribution of water availability. It is anticipated that climate change 
will accelerate the hydrological circulation rates, and this would lead to an increase in extreme 
droughts and excessive rainfall. Mountain ranges, specifically, play an important role in regulating 
the earth’s water balance. They provide an important ‘water tower’ function and, for example, 
over 20% of the global population depends on fresh water resources provided by the Himalayan 
range in critical periods of the year. Due to orographic effects, climatic conditions and spatial 
heterogeneity, the hydrological cycle is more intense in mountains. At the same time mountains 
are more vulnerable to climate change due the dependence of the surface hydrology on snow and 
ice melt, which directly responds to temperature increases.

Although great advances have been made over the last decades in measuring and modelling 
the hydrological cycle at increasing temporal and spatial resolutions, scientific work in this 
field in mountain areas has however lacked behind. This study has taken a systems approach 
to the interaction between the hydrological cycle, climate change and agriculture in mountain 
catchments by contributing to thee major knowledge gaps. Firstly, the lack of fundamental data 
and knowledge about the spatial heterogeneity of climate variables in mountains. Secondly, the 
absence of a straightforward technique to calibrate simulation models in data scarce areas, and 
thirdly, the missing link between complex outputs of simulation models and straightforward 
information to decision makers. This study covered a continuum from physical based research 
into deriving hydrological parameters from remote sensing to the provision of science based 
information to decision makers based on hydrological and economic models through four major 
topics.

For the first topic, based on the behaviour of vegetation, knowledge on the spatial and temporal 
precipitation patterns across different land uses on the Tibetan plateau was enhanced. A time 
series of normalized difference vegetation index (NDVI), derived from the VGT sensor aboard 
the SPOT satellites, and was manipulated using a Fast Fourier transformation. The manipulated 
signal proved to yield interesting information about the interaction between vegetation and 
precipitation and the absolute amounts of precipitation. It also provides an improved method 
for determining the length of the growing season. Building on this approach promising future 
research topics have been identified: link with other satellite derived precipitation products and 
the use of the wavelet approach to further extract useful information from raw time series of 
satellite imagery.

The second topic focused on the assessment of the effects of climate change for the 
Brahmaputra basin (530,000 km2). The historical trends in precipitation and temperature from 
1900 onwards were analyzed. This revealed that temperature trends are consistent with global 
warming with the largest temperature increase in spring in all physiographic zones in the basin. 
Regression analysis of historical precipitation showed an interesting significant relationship 
between monsoon precipitation and the temperature difference between the Tibetan plateau and 
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the low-lying floodplains. A possible explanation has been sought in the link between monsoon 
strength, troposheric temperature gradient between the Indian Ocean and the Tibetan plateau, 
and a set of conspiring thermodynamical processes on the Tibetan plateau. Outputs of general 
circulation models were statistically and spatially downscaled and ensemble averages revealed 
accelerated increases in precipitation and temperature that seemed to be positively related to 
altitude. Multiple regression analysis revealed that the downstream summer discharge is subject 
to a steep increase, with will most likely result in an increase in flooding in the low lying plains 
of Bangladesh.

For the third topic an innovative methodology was developed to calibrate the process based 
semi-distributed hydrological model SWAT. Instead of the traditional way of using stream flow 
gauge data, remotely sensed actual evapotranspiration was used for the calibration. The use of a 
time series of ET with high spatial detail constrains issues of equifinality, e.g. different sets of 
parameter combinations leading to similar model output. To derive the ET imagery from satellite 
data, the globally applied and validated SEBAL algorithm was used. Different sets of soil, land 
use, and meteorological parameters were optimised using the non-linear parameter optimisation 
package PEST. The thus calibrated SWAT model was then used to evaluate water use and water 
productivity in the Upper-Bhima catchment in southern India. Since the catchment is drought 
prone as well as highly diverse in climate and natural flows are non-existent due to an intricate set 
of linked reservoirs, the approach proved to be very useful. Future extension of the methodology 
could include other remote sensing datasets such as precipitation and groundwater.

The final component adds a completely new dimension to the study: a link was made between 
biophysical and economic modelling and the provision of timely, quantitative information with 
sufficient level of detail to decision makers. The “payments for ecosystem service” concept to 
conserve water was implemented in an agricultural catchment on the Tibetan plateau, which 
has an important water supplying role for downstream areas. It was shown that by providing 
farmers with financial incentives they may shift from irrigated to rain-fed agriculture as long as 
the compensation is high enough. This would lead to an increased outflow out of the catchment 
to downstream users, who will provide the financial compensation. The SWAT model was used to 
evaluate how much water could potentially be saved, and an economic model revealed what level 
of payment for ecosystem service would result in which portion of the total farmers to shift to the 
water saving alternative.

The study has covered a wide range of topics and a number of relevant issues of hydrology, 
climate change and agriculture in mountain areas have been extensively covered. This integrated 
approach has shown fascinating results, has clearly added value and opened many new scientific 
avenues for the future to be explored.
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Samenvatting

Ruimtelijk modelleren van bergachtige stroomgebieden
Een integrale analyse van de hydrologische cyclus, klimaatverandering en landbouw

Water is van levensbelang op aarde en het veranderende klimaat heeft een belangrijke invloed 
op de ruimtelijke en temporele verdeling van de waterbeschikbaarheid. Het wordt verwacht 
dat klimaatverandering de hydrologische circulatie verder zal versnellen en dat dit zal leiden 
tot een toename in extreme droogten en regenval. Bergenketens in het bijzonder spelen een 
vooraanstaande rol in het reguleren van de waterbalans van de aarde. Zij hebben een belangrijke 
‘watertoren’ functie en de Himalayas, bijvoorbeeld, voorzien meer dan 20% van de wereldbevolking 
van schoon water tijdens kritische perioden van het jaar. In berggebieden is de hydrologische 
cyclus nog intenser, vanwege orografische effecten, klimatologische omstandigheden, en 
ruimtelijke heterogeniteit. Daarnaast zijn berggebieden extra kwetsbaar voor klimaatverandering 
vanwege de afhankelijkheid van de oppervlakte hydrologie van het smelten van sneeuw en ijs, 
welke onder directe invloed staan van temperatuurstijging.

De afgelopen decaden is er grote vooruitgang geboekt in het meten en modelleren van de 
hydrologische cyclus met steeds hogere ruimtelijke en temporele resoluties. In berggebieden is 
wetenschappelijk werk in dit veld echter achter gebleven. Deze studie heeft een systeembenadering 
toegepast op de relatie tussen de hydrologische cyclus, klimaatverandering en landbouw en 
heeft bijgedragen aan het opvullen van drie grote kennis hiaten. Ten eerste het gebrek aan 
fundamentele gegevens over de ruimtelijke heterogeniteit van klimaat variabelen in berggebieden. 
Ten tweede het gebrek aan een techniek om hydrologische modellen te kalibreren in gebieden 
met weinig gegevens en ten derde het ontbreken van een verband tussen de complexe uitvoer 
van simulatie modellen en duidelijke informatievoorziening aan beleidmakers. Deze studie 
beslaat een continuüm van fysisch onderzoek naar het afleiden van hydrologische parameters 
uit remote sensing tot wetenschappelijke informatievoorziening aan beleidsmakers gebaseerd op 
hydrologische en economische modellen aan de hand van vier hoofdonderwerpen.

Voor het eerste onderwerp is, gebaseerd op het gedrag van vegetatie, de kennis met betrekking 
tot ruimtelijke en temporale neerslagpatronen op het Tibetaanse plateau verbeterd. Een tijdserie 
van de normalized difference vegetation index (NDVI), afgeleid van de VGT sensor aan boord 
van de SPOT satelliet, is geanalyseerd met behulp van een Fast Fourier transformatie. Deze 
getransformeerde tijdserie bevatte interessante informatie over de interactie tussen vegetatie en 
neerslag en absolute hoeveelheden neerslag. Daarnaast werd een verbeterde methode ontwikkeld 
om de lengte van het groeiseizoen te bepalen. Op basis van deze aanpak zijn interessante 
veelbelovende onderzoeksmogelijkheden voor de toekomst geïdentificeerd; integratie met 
andere op satelliet waarnemingen gebaseerde neerslag producten en het gebruik van de wavelet 
benadering om meer nuttige informatie uit de ruwe tijdseries van satellietbeelden te extraheren.

Het tweede onderwerp richtte zich op de beoordeling van de effecten van klimaatverandering 
in het stroomgebied van de Brahmaputra (530,000 km2). De historische trends in neerslag en 
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temperaturen zijn geanalyseerd vanaf 1900. Deze analyse liet zien dat de temperatuur stijging 
grote overeenkomst vertoont met de wereldwijde temperatuurstijging en dat deze het grootste 
is in het voorjaar in alle fysiografische zones van het stroomgebied. Regressie analyse van 
historische neerslag patronen bracht een interessant significant verband aan het licht tussen de 
monsoon neerslag en het temperatuurverschil tussen het Tibetaanse plateau en de laaggelegen 
vlakten. Een mogelijke verklaring is gezocht in het verband tussen de sterkte van de monsoon, 
de troposferische temperatuurgradiënt tussen de Indische oceaan en het Tibetaan plateau, en een 
aantal thermodynamische processen op het Tibetaanse plateau. Uitvoer van een aan grootschalige 
klimaat modellen zijn statistisch en ruimtelijke neergeschaald en het ensemble gemiddelde laat 
een versnelde toename in temperatuur en neerslag zien, die lijkt te zijn gecorreleerd met hoogte. 
Meervoudige regressie analyse toonde aan dat de toekomstige benedenstrooms afvoer in de zomer 
sterk zal toenemen. Dit zal hoogst waarschijnlijk leiden tot een toename van overstromingen in 
de laag gelegen vlakten van Bangladesh.

Vervolgens is voor het volgende hoofdonderwerp een innovatieve methode ontwikkeld om 
het op processen gebaseerde semi-gedistribueerde hydrologische model SWAT te calibreren. 
Normaal gesproken wordt bij de calibratie gebruik gemaakt van afvoermetingen, maar voor 
de ontwikkelde methode is gebruik gemaakt van actuele evapotranspiratie, bepaald met 
remote sensing. Het gebruik van een ET tijdserie met veel ruimtelijk detail zorgt ervoor dat 
problemen met equifinaliteit (verschillende combinaties van model parameters leiden tot dezelfde 
modeluitkomst) beperkt worden. Om de ruimtelijke ET beelden af te leiden is gebruik gemaakt 
van het wereldwijd toegepaste en gevalideerde SEBAL algoritme. Verschillende sets van bodem, 
landgebruik en meteorologische parameters werden geoptimaliseerd met behulp van het niet-
lineaire parameter optimalisatie software pakket PEST. Het op deze manier gekalibreerde 
model is vervolgens toegepast om het watergebruik en de waterproductiviteit te evalueren in 
het stroomgebied van de Upper Bhima in zuid India. Gezien de droogtegevoeligheid, de grote 
diversiteit in klimatologische omstandigheden, en de afwezigheid van natuurlijke afvoer vanwege 
een ingewikkeld netwerk van onderling verbonden reservoirs, bleek deze benadering zeer 
succesvol. De toekomstige uitbreiding van deze methodiek zou zich moeten richten op de verdere 
integratie van andere remote sensing datasets zoals neerslag en grondwaterberging.

Het laatste hoofdonderwerp heeft een volledig nieuwe component aan de studie toegevoegd 
en er is een verband gelegd tussen biofysische en economische modellen en het genereren 
van tijdige, kwantitatieve informatie van voldoende detail voor beleidsmakers. Het “payments 
for ecosystem services” concept werd geïmplementeerd in een agrarisch stroomgebied op het 
Tibetaanse plateau, dat een belangrijke watervoorzienende functie heeft voor benedenstroomse 
gebieden. Het werd aangetoond dat boeren bereid zijn over te stappen van geïrrigeerde naar niet-
geïrrigeerde landbouw als zijn een voldoende hoge financiële compensatie krijgen. Dit leidt tot 
een toename van de afvoer uit het stroomgebied waarvoor benedenstroomse gebruikers bereid zij 
te betalen. Het SWAT model werd gebruikt om te bepalen hoe hoog de gewasopbrengsten en 
water besparingen zullen zijn, en een economisch model verschafte inzicht in de relatie tussen de 
hoogte van de financiële compensatie en het aandeel boeren dat bereid is over te stappen naar het 
waterbesparende alternatief.

De studie heeft een breed spectrum van onderwerpen behandeld en een aantal relevante 
aspecten van de hydrologie, klimaatverandering en landbouw in berggebieden zijn uitgebreid 
behandeld. De integrale benadering heeft fascinerende resultaten opgeleverd, heeft een duidelijke 
meerwaarde en heeft nieuwe wetenschappelijk deuren geopend voor toekomstig onderzoek.
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