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Abstract

We describe the analysis of global and regional drought over the second half of
the 20th century from a retrospective model simulation of the terrestrial water
cycle, and projected 21st century changes using multi-scenario data from mul-
tiple climate models. A global meteorological forcing dataset is developed for
1948-2000 to drive the retrospective simulation by combining observations with
reanalysis. Biases in the reanalysis precipitation, temperature and radiation
are corrected for systematic bias and spurious trends, which exert erroneous
effects on the land water budgets. A monthly soil moisture based drought in-
dex is developed from the simulation and is used to investigate the occurrence,
variability and trends in drought for 1950-2000. The frequencies of short-term
droughts (6 months and less) are highest in humid regions. Medium term
droughts (6-12 months) are more prevalent in mid- to high-latitudes, driven
by persistent frozen soil moisture anomalies. Over the Sahel and parts of high
northern latitudes, the frequency of long-term droughts is at a maximum. Se-
vere drought events are systematically identified in terms of spatial coverage,
including the 1988 USA, 1982/83 Australian, 1983/4 Sahel and 1965/66 Indian
droughts. There is an overall increasing trend in global soil moisture, driven by
precipitation, reflected especially in North America. Regional variation is nev-
ertheless apparent and significant drying over West Africa, stands out. Trends
in drought characteristics are mostly decreasing but statistically significant
changes are limited in areal extent and generally less than 10% of continental
areas. Concurrent decreases in global drought spatial extent are 0.04% yr−1.
Within the long-term trends we find interannual and decadal variations in soil
moisture and drought characteristics driven mainly by ENSO variability, al-
though the AMO plays an important role in many regions. Drought is driven
primarily by variability in precipitation, but temperature has an effect that
appears to be exaggerated in the late 20th century, especially in high northern
latitudes. At global scales the soil moisture index and the PDSI are reason-
ably well correlated but this breaks down in cooler regions and seasons, and
notably for recent years when the PDSI shows a larger drying trend, possibly
due to its temperature-based evaporation estimate. To investigate future pro-
jected changes in drought, soil moisture data is analyzed for three future IPCC
AR4 climate scenarios (B1, A1B, A2) from eight GCMs. A decrease in 21st

century global soil moisture is accompanied by a doubling of the spatial ex-
tent and frequency of short-term droughts. Long-term droughts become three
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times more common. Regionally, the Mediterranean, West African, Central
Asian and Central American regions show large increases, as does mid-latitude
North America but with larger inter-scenario variation. Changes under the B1
scenario are the least and the A1B and A2 results are similar. Although the
changes are generally monotonic increasing, they are not statistically different
from natural variability for multiple decades, in contrast to air temperature,
and this depends on the drought variable, magnitude of change, natural vari-
ability and statistical confidence. In contrast, changes in the means of hydro-
logic variables, including soil moisture, are essentially undetectable within the
21st century, implying that changes in extremes may be more detectable than
changes in mean quantities.
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Chapter 1

Introduction

1.1 Background

Drought is a pervasive climate phenomenon that is considered to be one of the
most damaging natural hazards in terms of economic cost (Wilhite, 2000). In
the US, it is the costliest natural hazard, averaging $6-8 billion in damages
annually, with the 1988 central U.S. drought impact estimated to be over $60
billion. Drought can cover extensive areas and last from months to multiple
years and may have major impacts on agriculture, water supply and the en-
vironment. Historically drought has persistently affected human activity (e.g.
Hodell et al., 1995, Stine, 1994) and impacts in every part of the globe in which
habitation is possible.

Drought occurs as a result of extremes in climate that are driven by natural
variability but may be exacerbated or dampened by anthropogenic influences.
The climate varies naturally in response to external forcings, such as solar
radiation (Christensen and Lassen, 1991) and atmospheric aerosols (Robock
and Mao, 1995), and because of internal interactions between components of
the climate system (Trenberth and Hurrell, 1994). This internal variability is
driven in the main by the El Nino Southern Oscillation (ENSO), which impacts
the Tropics and many regions in mid-latitudes (Ropelewski and Halpert, 1987).
Other climate oscillations and modes of large-scale variability, such as the North
Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the
Atlantic Multi-Decadal Oscillation (AMO), act on generally longer time scales
and interact with ENSO or are the primary climate drivers elsewhere and more
regional in their impacts.

The extremes of climate variations have consequences on the terrestrial wa-
ter cycle in general, and when coupled with potential climate change, which
may impact regionally and exaggerate the influence of natural variability, the
extremes of climate may become more pronounced (Easterling et al., 2000;
Palmer and Räisänen, 2002). As temperatures rise, the capacity of the atmo-
sphere to hold moisture would increase as governed by the Clausius-Clapeyron
equation (Held and Soden, 2000), with potential for an intensification of the
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water cycle in terms of increased evaporation and/or precipitation (Trenberth,
1999), although these may be limited by other factors such as available energy
and aerosol concentration. Climate model studies have shown that variability is
likely to increase under plausible future climate scenarios (Wetherald and Man-
abe, 2002), dependent upon climate sensitivity, with large regional changes in
the water cycle. The potential for more droughts and of greater drought sever-
ity is a worrisome possibility (Wetherald and Manabe, 1999; Wang 2005).

Huntington (2006) reviews the observational evidence so far for water cycle
intensification to date and concludes that despite some contradictions the over-
all picture points towards intensification. For drought specifically, trends have
been analyzed over the past 50 to 100 years at regional (e.g. Lloyd-Hughes and
Saunders, 2002; Rouault and Richard, 2005; Andreadis and Lettenmaier, 2006)
and global scales (Dai et al., 2004). When analyzing the Palmer Drought Sever-
ity Index (PDSI) and the Standardized Precipitation Index (SPI) over Europe,
Lloyd-Hughes and Saunders (2002) found insignificant change in the proportion
of land experiencing medium to extreme drought during the 20th century. A
drought analysis of South African SPI by Rouault and Richard (2005) found a
substantial increase in 2-year droughts since the 1970s. They also found inter-
decadal variability in the spatial extent of drought since the beginning of the
century, most of the severest of which are associated with ENSO. Andreadis
and Lettenmaier (2006) analyzed a long-term (1915-2003) hydrological simula-
tion over the USA and found a general increasing trend in soil moisture, with
concurrent decrease in drought duration and extent, except for the Southwest
and parts of the West. Globally, Dai et al., (2004) showed the global pattern of
trends in annual PDSI and found that generally drier conditions have prevailed
since the 1970s.

1.2 Motivation and Research Objectives

The reduction of the impacts of drought has obvious benefits economically
and environmentally. Progress towards this involves making improvements to
operational monitoring and seasonal forecasting which in turn requires greater
understanding of the occurrence of drought and the mechanisms that drive its
initiation, persistence and recovery. There is also a need to understand the
potential changes in drought under future climate warming.

Despite its omnipresent nature, our knowledge of the onset, development
and recession of drought is deficient. This hampers not only our ability to
monitor drought but also to predict its occurrence at seasonal time scales, and
evaluate climate model projections of future changes. Part of the reason for
this is the lack of detailed data about its spatial and temporal variability across
large scales. We also have an insufficient understanding of the hydrologic and
weather conditions and mechanisms that lead to drought initiation, persistence
and recovery. The generally poor predictive ability of seasonal climate models
to forecast drought reflects this lack of understanding.

Given the pervasive nature of drought and the magnitude of its impacts,
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there is a general need for greater understanding of its occurrence and the po-
tential changes in the future. This thesis is therefore motivated by the following
underlying research question:

What has been the occurrence of global and regional drought over recent
decades and how is this likely to change in the future?

More specifically, this can be broken down into a series of questions that
guide the research presented. “Can we describe the variability of the terrestrial
water cycle and drought through existing data sources and models?”, “What
has been the occurrence of global and regional drought over the 20th century?”,
“How will the occurrence of drought change in the future?”.

At a more general level, quantifying the variability in the terrestrial wa-
ter budget is central to understanding the interaction of the hydrologic cycle
with human activities and identifying the signals of climate change. Improved
estimates of seasonal to inter-annual variability are vital for determining the
requirements of water resources operations, quantifying the risks of flooding
and droughts, and for understanding the effect of climate change on water re-
sources and environmental well-being (Oki and Kanae, 2006). These estimates
can also provide the necessary basis for a multitude of hydro-climatological
research activities including the assessment of hydrological extremes (Sheffield
and Wood, 2007) and studies of the predictability of future hydrologic states as
seasonal scales, through the characterization of persistence and teleconnections
(Maurer et al., 2004). Furthermore, the detection of climate and anthropogenic
induced changes requires accurate estimates of natural variability to be able to
discern the forced signal from the background noise, and confidence in future
climate projections, especially on regional scales, is dependent on the ability of
climate models to replicate this variability (Giorgi, 2002).

To understand how drought varies (and other characteristics of the large
scale hydrologic cycle), long-term observations of relevant variables, such as
precipitation, streamflow and soil moisture, are required. Global datasets of
these variables are lacking at high spatial resolution or are available only for lim-
ited time periods. Alternatively, models can provide spatially and temporally
consistent fields of these variables at large scales when forced with observed
boundary conditions. Therefore, to address the above research questions, we
have focused on model output and particularly soil moisture to characterize
drought and its variability. We carry out analyses of historic and future pro-
jected soil moisture using data from off-line simulations of the global terrestrial
water cycle and projections from global climate models. It is argued that retro-
spective simulation provides our best estimate of the variation of the terrestrial
water cycle and its extremes over the last 50 years. Similarly, projections of
future changes can only be derived from models and climate model output is
our best resource for this. We focus on soil moisture anomalies as an indica-
tor of drought given that it captures the aggregate balance of all hydrologic
processes and represents available water.
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1.3 Thesis Overview

This thesis describes the analysis of global and regional drought over the second
half of the 20th century from a retrospective simulation of the terrestrial wa-
ter cycle, and projected changes for the 21st century using multi-scenario data
from multiple climate models. A meteorological forcing dataset is developed to
drive the retrospective simulation and this is described in the first two chapters.
Given that the forcing data for off-line land surface modeling are usually the
first order source of errors in the subsequent modeled states, this dataset was
carefully constructed to reduce these as far as possible. The third paper intro-
duces the retrospective simulation, as driven by this forcing dataset, and the
development of the soil moisture based drought index. A detailed evaluation of
this simulation in terms of its setup, comparisons with available observations
of the water cycle, and analysis of variability is reported elsewhere (Sheffield
et al., 2007c). However, an overview of the main features of the simulation are
given in chapter 3, as well as an evaluation of the representation of historic
drought events over past 50 years. Chapters 4 and 5 then analyze trends and
variability in drought occurrence, historically and for several future scenario
projections. Each chapter of the thesis was originally written as a separate
paper and as such there is some overlap between chapters in the description of
background material, motivation and datasets.

The forcing dataset is developed by combining near surface meteorological
fields from reanalysis with observation based datasets to provide the best es-
timate at the highest supportable spatial and temporal resolution. Chapter 1
describes the initial development of the forcing dataset, specifically the correc-
tion of the precipitation statistics of the reanalysis which are found to exhibit a
spurious wavelike pattern in high latitudes and are generally biased elsewhere.
The impact of these features on the terrestrial water cycle are analyzed and
are then corrected so that they match the statistics of observations.

In chapter 2 the development of the full, 50-yr (1950-2000), global, me-
teorological forcing dataset is described. This extends the work described in
chapter 1, to provide bias corrected fields of precipitation, air temperature,
radiation and other near surface meteorological fields suitable for retrospective
land surface modeling at regional to global scales. Evaluations are made of
the biases in the reanalysis against available observations and comparisons are
made between the corrected dataset and a similar product.

The retrospective drought dataset is developed in chapter 3 using output
fields from a 50-yr simulation of the global terrestrial water cycle as driven
by the forcing dataset. Drought is defined as a period of deficit soil moisture
below a threshold. Soil moisture and drought characteristics are analyzed in
terms of their spatial variability to develop climatological estimates of drought
frequency, duration and severity globally. The dataset is systematically scanned
to identify historic regional drought events and some of the major events are
analyzed further to see how well the dataset represents drought globally over
the past 50 years.

Chapter 4 analyzes this dataset in terms of the variability and trends in soil
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moisture and drought characteristics on global and regional scales. Evaluations
are made on changes in soil moisture over the last 50 years as well as changes
in drought duration, intensity and severity. The variability of soil moisture is
investigated at large scales by relating the major modes of variability to large
scale climate oscillations and at local scales through relationships with precip-
itation and temperature. These relationships are further investigated in the
context of global warming by analyzing a second simulation driven by clima-
tological air temperature to see the impact of temperature trends on changes
in soil moisture.

In chapter 5, projected changes in soil moisture and drought are evaluated
through analysis of data from the recent Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) simulations. To take into
account the uncertainty derived from representation of physical processes, data
are taken from multiple models. Uncertainty in how greenhouse gas emissions
will change in the future are also taken into account by assessing changes under
three scenarios that represent a range of plausible futures. Assessments are also
made of the detectability of changes, given that the magnitude of the signal of
change relative to the noise of natural variability is likely to increase with time.

The final summary describes the major findings of the work and puts this
into context of other ongoing work and future directions.
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Chapter 2

Correction of the rain day
statistics in the
NCEP/NCAR reanalysis

This chapter is a slightly modified version of: Sheffield, J., A. D. Ziegler, E. F.
Wood, and Y. Chen, 2004: Correction of the high-latitude rain day anomaly in the
NCEP/NCAR reanalysis for land surface hydrological modeling, J. Climate, 17(19),
3814-3828.
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Abstract

A spurious wavelike pattern in the monthly rain day statistics exists within
the National Centers for Environmental Prediction and National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis precipitation product. The
anomaly, which is an artifact of the parameterization of moisture diffusion, oc-
curs during the winter months in the northern and southern hemisphere high
latitudes. We correct the anomaly using monthly statistics from three different
global precipitation products from (1) the University of Washington (UW), (2)
the Global Precipitation Climate Project (GPCP) and (3) the Climatic Re-
search Unit (CRU), resulting in three slightly different corrected precipitation
products. The correction methodology, however, compromises spatial consis-
tency (e.g., storm tracking) on a daily time scale. We investigate the effect
the precipitation correction has on the reanalysis-derived global land-surface
water budgets by forcing the Variable Infiltration Capacity (VIC) land-surface
model with all four datasets (i.e., the original reanalysis product and the three
corrected datasets). The main components of the land-surface water budget
cycle are not affected substantially; however, the increased spatial variability in
precipitation is reflected in the evaporation and runoff components but reduced
in the case of soil moisture. Furthermore, the partitioning of precipitation into
canopy evaporation and throughfall is sensitive to the rain day statistics of the
correcting dataset, especially in the tropics, and this has implications for the
required accuracy of the correcting dataset. The output fields from these long-
term, land-surface simulations provide a global, consistent dataset of water and
energy states and fluxes that can be used for model inter-comparisons, stud-
ies of annual and seasonal climate variability, and comparisons with current
versions of numerical weather prediction models.

2.1 Introduction

Off-line computer simulations of continental- and global-scale water balances
are valuable for studying climate variability/change and the hydrological impli-
cations thereof. The lack of consistent, long-term observations of land surface
water states and fluxes over large spatial scales means that the use of such
simulations for determining variability in the major components of the hydro-
logical cycle is an attractive alternative. Conversely, the relative wealth of
observations of the atmosphere and sea surface means that a number of global,
long-term, near surface atmospheric analyses exist: e.g. the NCEP/NCAR re-
analysis (Kalnay et al., 1996; Kistler et al., 2001), the NCEP/DOE reanalysis
(Kanamitsu et al., 2002) and the ECMWF reanalysis (Gibson et al, 1997).
These analyses assimilate observed atmospheric and sea surface states into an
atmospheric forecast model to obtain global coverage of surface meteorology
which can then be used to force land surface models to generate global, sub-
daily, datasets of land surface water and energy fluxes and states. Although
these model derived forcing fields may not be perfect, they are self-consistent
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and are used by many to model the land surface water and energy balances.

The NCEP/NCAR Reanalysis provides long-term, near surface meteorolog-
ical data (e.g., precipitation, temperature, wind speed, vapor pressure, radia-
tion) at the high temporal resolution (daily and higher) required by land surface
models. However, the structure of the atmospheric model used in the reanaly-
sis assimilation system introduces systematic errors into some reanalysis fields,
particularly at high latitudes and other regions where observations are scarce.
Some analysis variables, such as precipitation, are generated entirely by the
model without assimilation of observational data and are therefore dependent
on the model parameterizations. As such, the precipitation data are acknowl-
edged to be somewhat unreliable at regional and sub-seasonal scales (Kalnay
et al., 1996), although comparisons with independent observations and with
several climatologies show that the data contain useful information at seasonal
to annual scales (Kalnay et al., 1996; Janowiak et al., 1998; Kistler et al., 2001).

Figure 2.1 shows, the seasonal average number of rain days of the
NCEP/NCAR reanalysis for the period 1948-1998. At the global scale the
spatial patterns of rain days and precipitation seem reasonable with high val-
ues in the tropics that follow the seasonal undulation of the Inter-Tropical
Convergence Zone (ITCZ), lower values in the mid- and high-latitudes and the
distinctive desert regions in Africa, the Middle East and Australia, amongst
others. However, a noticeable wave-like pattern (alternating zones of high and
low) exists in the high northern latitudes for both the number of wet days and
to a lesser extent for the precipitation totals (not shown). This pattern, also
reported by Cullather et al. (2000), is most apparent in the winter months
of the northern hemisphere, reduces somewhat in the spring and autumn, and
disappears in the summer months. A similar anomaly, not shown (over ocean),
exists in high southern latitudes during the southern hemisphere winter.

In this paper the uncertainty in the daily variability of the reanalysis precip-
itation is assessed by comparison with three other global precipitation datasets:
(4.1) the 15-year dataset developed by the surface water modeling group at the
University of Washington, (4.2) the 1997-1999, Global Precipitation Clima-
tology Project product and (3) the Climatic Research Unit 98-year dataset.
A methodology for correcting the anomaly in the NCEP dataset using the
monthly statistics from another precipitation dataset is presented. The correc-
tion method is applied to the NCEP dataset using monthly statistics from each
of the three comparison datasets. Motivation for this study is the creation of
a global, multi-decade, terrestrial, meteorological forcing dataset to drive land
surface model simulations of the global water and energy balance. Therefore,
the effect of the correction is discussed in terms of the land surface water budget
by analyzing long-term simulations using the VIC land surface model.
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2.2 Precipitation Datasets

2.2.1 NCEP/NCAR reanalysis

The NCEP/NCAR Reanalysis (referred to hereafter as the NCEP reanalysis) is
a retrospective global analysis of atmospheric and surface fields extending from
1948 to the near present (Kalnay et al., 1996, Kistler et al., 2001). Available
observations are assimilated into a global atmospheric spectral model imple-
mented at a horizontal resolution of T62 (approximately 210-km) and with
28 sigma vertical levels. The reanalysis is created using a “frozen” version of
the data assimilation system, although assimilated observations are subject to
changing observing systems. Consistent gridded output fields are generated
continuously in space and time and are classified according to how they are
determined and their reliability. Class “A” variables are strongly influenced
by assimilated observations and are therefore regarded as being the most reli-
able fields. These fields include upper air temperatures, rotational wind and
geopotential height. Less reliable are class “B” variables, such as moisture,
divergent wind and surface parameters, which are influenced by observations
and the model. Class “C” variables, such as surface fluxes and heating rates,
are completely determined by the model and as such are the least reliable.
Precipitation is classified as a class “C” variable.

2.2.2 UW daily dataset

The University of Washington (UW) surface water modeling group precipita-
tion data set (Nijssen et al., 2001a) covers a 15-year (1979-1993) time period
at 2-degree resolution. Daily observations from 7800 stations from the Climate
Prediction Center (CPC) global dataset are used to downscale the monthly
precipitation datasets of Hulme (1995) and the Global Precipitation Climatol-
ogy Project (GPCP) (Huffman et al., 1997). Aggregation from station data to
2-degree resolution is carried out using inverse distance square weights based on
the distance from each station to the center of each of the16 0.5-degree subcells.
The final 2-degree value is the mean of the 16 subcells. In areas where station
data are sparse, daily series were generated using a stochastic model consisting
of a two-state (wet/dry) first-order Markov chain for precipitation occurrences
and a two-parameter gamma distribution for intensities. The parameters are
initially estimated from the data derived where station data are available and
then interpolated to the data sparse regions.

2.2.3 Climatic Research Unit monthly dataset

The Climatic Research Unit (CRU) product is a 0.5-degree gridded dataset of
monthly terrestrial surface climate variables for the period of 1901–1998 (New
et al., 1999, 2000). The spatial coverage extends over all land areas, including
oceanic islands but excluding Antarctica. Fields of monthly climate anomalies,
relative to a 1961–1990 climatology, were interpolated using thin-plate splines
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from surface climate data. The anomaly grids are then combined with the 1961–
1990 climatology resulting in grids of monthly climate over the 98-year period.
Primary variables (precipitation, mean temperature, and diurnal temperature
range) are interpolated directly from station observations. The remaining sec-
ondary climatic elements (including rain day frequency) are interpolated from
merged datasets comprising station observations and, in regions without station
data, synthetic data estimated using predictive relationships with the primary
variables.

2.2.4 GPCP daily dataset

The Global Precipitation Climatology Project (GPCP) is a central element
of the World Climate Research Program (WCRP, 1990; Huffman et al., 1997),
providing a daily precipitation product for the period 1997-1999 at 1o resolution
(Huffman et al., 2001). The data are based on a combination of precipitation
estimates from a merged satellite IR dataset over 40oN-40oS and a rescaling
of the Susskind et al. (1997) TIROS Operational Vertical Sounder (TOVS)
satellite estimates at higher latitudes. Both contributing estimates are scaled
to match the GPCP version 2 monthly satellite-gauge dataset totals (Huffman
et al., 1997). Rain day frequencies of the IR based estimate are adjusted to
match data from the Special Sensor Microwave Imager (SSM/I) retrieval. The
TOVS based rain day frequencies are adjusted to the IR based estimate at
40oN and 40oS separately.

2.2.5 Spatial resolution and temporal coverage

To carry out inter-comparisons, all datasets were interpolated to a spatial res-
olution of 2o using bilinear interpolation over their common spatial coverage
of terrestrial areas excluding Greenland and Antarctica. Although previous
studies have reported that the high-latitude anomaly in precipitation can be
smoothed through interpolation (Cullather et al., 2000; Serreze and Hurst,
2000), Figure 2.1 shows that the anomaly is still evident in the rain day fre-
quencies after interpolation. There is no single common time period amongst
the four precipitation datasets and so comparison of any two datasets is car-
ried out over their common overlap period. The final corrected precipitation
datasets were generated at 2o resolution for 1948-1998, this being the common
time period of the NCEP and CRU datasets and the CRU dataset being used
to scale the corrected precipitation monthly totals as described in section 4.

2.3 The NCEP/NCAR high-latitude anomaly

The anomaly results from the formulation used for the moisture diffusion in the
atmospheric model of the NCEP/NCAR Reanalysis system (Kistler et al., 2001;
NCEP/NCAR Reanalysis web page http://wesley.wwb.noaa.gov/reanalysis.html).
The resulting spurious moisture sink/source creates unrealistically large or
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Figure 2.1: Seasonally averaged monthly rain days over the period 1948-
1998 for the NCEP/NCAR Reanalysis showing the spurious pattern in the
high-latitudes of the northern hemisphere in the non-summer months.

small amounts of precipitation, and is sensitive to elevation and high-latitudes
where the specific humidity is low in comparison with the global average specific
humidity. A more accurate approximation of moisture diffusion has been in-
troduced in the next version of the NCEP Reanalysis (Kanamitsu et al., 2002),
which has corrected the problem. Regardless, the methodology presented in
this paper can be applied to this new reanalysis, or any other dataset, to correct
any other biases that are revealed.

A comparison of the mean monthly number of rain days of the NCEP
reanalysis with the UW, CRU and GPCP datasets is shown in Figure 2.2
for the northern hemisphere winter months (DJF). The values are determined
for a period of time corresponding to the overlap of the NCEP dataset with
the comparison dataset (CRU: 1948-1998, UW: 1979-1993, GPCP: 1997-1998).
From a global perspective, the four datasets are largely similar; however, some
important regional differences exist. Most prominent is the high-latitude wave-
like anomaly in the NCEP reanalysis. Furthermore, the NCEP reanalysis has
more wet days in the tropics than any of the other datasets, although the GPCP
dataset is somewhat similar. The sub-tropical dry areas compare well between
the NCEP reanalysis and each of the other datasets. The high latitudes in
the northern hemisphere have more wet days in the NCEP reanalysis, most
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notably in northeast Asia and the northwest and northeast of North America.
Similar biases are also evident in all other seasons (not shown), although the
high-latitude wave-like anomaly is not apparent in the northern hemisphere
summer months.

Figure 2.2: Seasonally averaged monthly rain days for DJF for a) the
NCEP and CRU datasets for the period 1948-1998, b) the NCEP and the
UW datasets for the period 1979-1993 and c) the NCEP and the GPCP
datasets for the period 1997-1998.

Figure 2.3 shows the time series of the mean monthly number of rain days
for each continent for the common period of all datasets (1979-1993), except
for the GPCP dataset, which is not shown as it only overlaps the period 1997-
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1998. In general, the NCEP rain day means are higher than those of the UW
dataset, which are in turn higher than the CRU dataset. The exceptions to
this are Oceania, for which the NCEP and UW values are similar except for
the early part of the year, and South America, where the UW and CRU values
match well.

Figure 2.3: Time series of average monthly rain days over the period
1979-1993 for the continents for the NCEP, CRU and UW datasets.
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2.4 Correction of the NCEP reanalysis high-
latitude anomaly

2.4.1 Correction method

The correction of the anomaly in the NCEP precipitation may be divided into
a number of steps: 1) the systematic identification of the grid cells to be cor-
rected, 2) the correction of the NCEP precipitation values for each of these
grid cells using the monthly statistics of one of the other precipitation datasets
and 3) scaling of the monthly precipitation totals to match those of the CRU
dataset.

i) Step 1: Identify the grid cells to be corrected
To decide which grid cells are to be corrected, a statistical test is carried out

to determine whether the NCEP dataset is statistically similar to the compar-
ison dataset or not. A Z statistic (based on proportion) is computed for each
cell, and this is used to test the null hypothesis that the number of rain days in
the NCEP dataset and the comparison dataset are equal. This is repeated for
each of the three comparison datasets (CRU, UW and GPCP). The statistic is
calculated based on the total number of rain days for any given month:

z =
p1 − p2√

p(1− p)(1/n1
+ 1/n2

)
(2.1)

where p1 is the number of rain days in the NCEP dataset; p2 is the number
of rain days in the comparison dataset; n1 is the total number of days in the
NCEP dataset; n2 is the total number of days in the comparison dataset; and
p is the pooled estimate for the common population proportion:

p =
n1p1 + n2p2

n1 + n2
(2.2)

ii) Step 2: Correct the daily precipitation for inconsistent grid cells
The aim of the correction is to force the rain day statistics of the NCEP data

to match those of the comparison dataset by using the monthly wet-wet and
dry-dry conditional probabilities of the comparison dataset. These probabilities
are used within a first-order Markov-type process (Wilks and Wilby, 1999)
to make decisions on whether the NCEP precipitation on a certain day is of
the correct type (wet or dry) in relation to the previous day. The correction
algorithm is applied separately for each grid cell and is as follows. To begin, the
first day of the NCEP precipitation time series is accepted as being correct. The
type of the next day is generated at random using the conditional probabilities
of the correcting dataset for the current month and grid cell. If the type of the
original NCEP day matches the type of the randomly generated day, then the
NCEP precipitation value is accepted. If it does not match, then a day of the
appropriate type (wet or dry) is selected at random from the total population
of all days of this type in the NCEP dataset for the current month and grid
cell. This is repeated for every day in the time series.
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The conditional probabilities cannot be calculated for the CRU product, as
it is a monthly dataset. Therefore, these are generated by sampling from the
archive of UW conditional probabilities for months which have the same rain
day frequency as the CRU dataset. For some months, a matching rain day
frequency may not exist in the UW archive and so a month-long time series
of wet and dry days was repeatedly generated at random until it matched the
CRU rain day frequency and the conditional probabilities were then calculated
from this.

iii) Step 3: Scale the monthly totals

Although the correction method described in the previous section ensures
that the number of rain days in the NCEP dataset is consistent with the cor-
recting dataset, it ignores the consistency of the precipitation totals. Inconsis-
tent dry days are corrected by replacement with a rain day chosen at random
without regard to the precipitation total for the chosen day. This is likely to
introduce errors in the monthly precipitation totals that are in addition to the
biases that are seen in the precipitation totals of the original NCEP dataset
(Trenberth and Guillemot, 1998; Kistler et al., 2001). Therefore, in step 3 of
the correction method, the NCEP corrected daily totals are scaled by the ratio
of the monthly totals of the CRU and the NCEP corrected datasets, so that
the NCEP corrected monthly totals match those of the CRU dataset. This
simple scaling method can potentially produce unreasonably high daily pre-
cipitation values when the un-scaled daily value is an outlier and the CRU
monthly precipitation is much higher than the NCEP precipitation. Such situ-
ations are localized and generally occur at the limits of desert regions and at the
edge of large-scale climate phenomena with strong seasonal cycles such as the
Inter-Tropical Convergence Zone. In these regions, relatively small differences
between the NCEP and CRU datasets in the location and seasonal variation
of these large-scale features can lead to large monthly precipitation ratios at
the grid scale. Although the occurrence of unreasonably high daily values is
rare and localized, a more robust method of scaling the data to match observed
monthly totals would have to be employed in any final version of the corrected
dataset.

2.4.2 Consistency of related variables

Correcting the precipitation field may result in the related near surface meteo-
rological variables in the NCEP reanalysis being inconsistent with the corrected
precipitation. For example, if a dry day is changed to a wet day then the orig-
inal solar radiation for this day may be for a clear day. Therefore, as part of
the correction method, the related variables were changed for the same days
for which the precipitation was corrected, including wet days that are changed
to dry days, ensuring that the dataset is self-consistent.
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2.5 Correction results

The NCEP daily precipitation is corrected with the above methodology using
the statistics from each of the three datasets (CRU, UW and GPCP), resulting
in three slightly different corrected precipitation datasets. As the UW and
GPCP datasets do not overlap the 1948-1998 period completely, the mean
monthly conditional probabilities for these datasets are applied repeatedly for
all years. This assumes that the mean monthly statistics for the overlap period
are representative of the whole 49 years.

2.5.1 Grid cells corrected

The Z statistic was calculated with Equation 2.1 for the NCEP dataset and
the three comparison datasets over the time periods common to each pair of
datasets and an example of the results using the UW statistics are shown in
Figure 2.4. The unshaded areas indicate where the NCEP data are statistically
similar to the comparison dataset. The shaded areas indicate where the NCEP
dataset has significantly more (dark gray shading) or less (light gray shading)
rain days, based on a 75% confidence level (equivalent to a p value of ±1.28).
It is the data values from these shaded areas that are corrected. The maps
highlight the before-mentioned differences in rain day frequencies, including
the spurious wave-like pattern in the NCEP dataset in the winter months and
the significantly higher number of wet days in the NCEP than the UW (and
CRU) datasets over much of the globe. The comparison with the GPCP dataset
(not shown) shows a closer match in general which may be due to the GPCP
rain days being based on satellite grid values as opposed to gauge data which
may tend to underestimate the frequency of rain. However, the short time
period (3 years) of the GPCP dataset results in a weak statistical test and
therefore the worth of the comparison is unknown.

2.5.2 Corrected datasets

An example of the results of the correction is shown in Figure 2.5. This is
the seasonally averaged number of rain days for the northern hemisphere win-
ter (DJF) for the UW dataset and the corresponding corrected dataset. The
corrected precipitation dataset resembles the corresponding correcting dataset,
which is desirable and to be expected as the correction method is designed to
force the statistics of the two datasets to match. The results for the other sea-
sons and correcting datasets (CRU and GPCP) show similarly good matches.
In addition to correcting the high-latitude rain day anomaly, differences that
occur elsewhere are also removed. For example, in the tropics the high numbers
of rain days in the NCEP dataset are reduced to the levels found in the CRU
and UW datasets. This is illustrated more clearly in Figure 2.6, which shows
a scatter plot of the NCEP average monthly number of rain days versus that
for the CRU, UW and GPCP datasets and their respective corrected versions
for the six continents. The corrected datasets are similar to the corresponding
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Figure 2.4: Z statistic (Equation 2.1) indicating the statistical similarity
between the mean monthly number of rain days of the NCEP dataset and
UW dataset for January and July. The values of ±1.28 are the critical
levels of the Z statistic in a two-tailed test at a 75% confidence level.
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correcting dataset for both the CRU and UW with some slight differences most
evident for the UW dataset over Europe and Oceania. In the case of the GPCP
dataset, the corrected data are generally closer to the GPCP dataset than the
NCEP, yet there are still large differences for most continents. In any case, the
monthly statistics of the corrected dataset will never be identical to those of the
correcting dataset because of the stochastic nature of the correction method.
How well they match depends also on the difference between the NCEP and
correcting dataset and the threshold (or confidence level) of the statistical test
for determining if a grid cell requires correction.

2.6 Discussion

2.6.1 Choice of correcting dataset

The correction method may be applied using the statistics from any dataset
and each of the datasets used here (CRU, GPCP and UW) may be equally
valid for correcting the high-latitude anomaly. However, the methods used to
construct each dataset results in differences in the rain day statistics that are
regionally and seasonally variable. Deciding on which dataset to use for correct-
ing the NCEP precipitation may be somewhat subjective, but certain factors
may influence the decision. The accuracy of the dataset is perhaps of greatest
importance and this is highly dependent on the methods and observations used
to construct the datasets. The accuracy of the UW and CRU datasets is highly
dependent on the density of stations and methods used to interpolate to the
grid scale. Low station density will tend to give an underestimation of precipi-
tation occurrence in a grid, especially when convective precipitation dominates
as in humid regions in summer months (New et al., 2000). The GPCP dataset
relies on satellite data sources, which have much more uniform and consistent
spatial coverage and may give better estimates at grid scales. The temporal
extent of the dataset is also an important factor. A dataset with long temporal
overlap with the NCEP dataset would likely provide a better representation of
inter-annual variability and any trends over the 50-year period than a mean
monthly climatology based on fewer years. For the GPCP dataset (1997-1999),
the level to which the average monthly statistics are representative of the full
time period (1948-1998) is unknown. The CRU dataset may be more represen-
tative, by providing rain day frequencies and monthly totals for the whole time
period, but it is of concern that monthly conditional probability statistics had
to be generated from the UW dataset. In the end, it may be that a hybrid of
these datasets would provide the best estimate.

2.6.2 Loss of spatial coherence and storm tracking

Because the correction method is carried out individually for each grid cell,
spatial coherence between neighboring cells may be lost. For example, during
correction, the precipitation at one grid cell may be replaced with precipitation
from a day chosen at random from the population of appropriate days (wet or
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Figure 2.5: Seasonally averaged monthly rain days for DJF over the
period 1948-1998 for the UW dataset and the NCEP dataset corrected
with the UW monthly statistics.
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Figure 2.6: Scatter plot of the NCEP average monthly number of rain
days versus that for the comparison datasets (CRU, UW and GPCP)
(closed symbols) and the NCEP dataset corrected with each of the com-
parison datasets (open symbols) for the six continents.

dry). However, the precipitation in an adjacent cell may not to be replaced
with data from the same day, if it is replaced at all, thereby losing spatial
coherence between the two cells. For storm systems that span multiple grid
cells, there may be a loss of spatial structure. Although this may not have major
consequences on the mean precipitation over time and space scales larger than
that of the storm, the effects at smaller spatial scales may be more profound.
The passing of the storm over an area may be interrupted by the insertion of dry
days into the continuous sequence of rain days. If the corrected dataset is to be
used to force simulations of the land surface hydrology, this has potential effects
on the dynamics of soil moisture and the occurrence of droughts and floods at
the small scale. Figure 2.7 shows an example of the loss of storm tracking and
spatial consistency for a sequence of four daily snapshots over North America.
As large scale weather systems move from west to east, their general features
are retained in the corrected dataset but noise has been introduced. At the
scale of an individual grid, the continuous sequence of rain days as a storm
system passes over is disrupted by days of no precipitation. The opposite effect
can occur over areas experiencing a period of dry weather.
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Figure 2.7: A sequence of 4 daily precipitation (mm day−1) maps for
a) the NCEP dataset and b) the NCEP dataset corrected with the UW
inter-monthly statistics. Note the introduction of noise and the loss of
storm tracking in the corrected dataset.
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2.6.3 Temporal persistence in related variables

The related meteorological variables are resampled for the same days as the
precipitation to ensure consistency (Section 4.b.). However, this may lead to
a potential loss in the temporal persistence (lag-1 autocorrelation) in these
variables because days are replaced at random without regard for the weather
on preceding or following days. As an example, Table 2.1 shows the daily lag-1
autocorrelations averaged over 30-degree latitude bands for Asia for the NCEP
dataset and the corrected dataset (using the CRU wet day frequencies). For
both datasets, autocorrelations are lowest for precipitation and wind speed,
which is to be expected given the intermittent nature of storms and changes
in wind speed at daily time scales. Values are high for most other variables,
especially temperature, as they are dominated by the seasonal solar cycle, which
tends to increase autocorrelation.

Latitude Band Dataset P T SW LW SH Ps W

60o - 90o NCEP 0.42 0.97 0.97 0.90 0.96 0.83 0.44
Corrected 0.16 0.89 0.94 0.80 0.86 0.41 0.22

30o - 60o NCEP 0.45 0.97 0.91 0.91 0.93 0.84 0.45
Corrected 0.16 0.91 0.88 0.83 0.82 0.60 0.26

0o - 30o NCEP 0.66 0.94 0.82 0.92 0.92 0.94 0.66
Corrected 0.23 0.84 0.65 0.79 0.76 0.81 0.44

Table 2.1: Lag-1 autocorrelations for the NCEP dataset and the cor-
rected dataset (using the CRU wet day frequencies). Autocorrelations are
averaged over three latitude bands over Asia. Variables are precipitation
(P), air temperature (T), downward shortwave radiation (SW), downward
longwave radiation (LW), specific humidity (SH), surface pressure (Ps)
and wind speed (W).

The reduced autocorrelation for precipitation in the corrected dataset is a
result of the random sampling of wet days, which tends to break up multi-
day storms. As a result, the autocorrelation values for the other variables are
also reduced in the corrected dataset but the extent to which this happens
varies by type of variable and latitude band. Some of the largest differences
occur in the tropics for nearly all variables, and smaller differences are seen in
higher latitudes. The exceptions to this are wind speed, which has significantly
reduced autocorrelation in all regions, and surface pressure, which exhibits
small differences in the tropics due to the dominance of the Asian Monsoon,
and larger differences at higher latitudes where autocorrelations are less affected
by the smaller seasonal variations.

Although it is apparent that there is a general loss in temporal persistence
in all variables due to the correction, it is not clear whether the original NCEP
lag-1 autocorrelations are realistic. As the NCEP dataset has incorrect auto-
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correlations because of the rain day problem, these will spill over into the other
variables because of the correlation between them. Therefore, it can be ar-
gued that the correction method may reduce any autocorrelation bias in these
variables whilst maintaining physical consistency amongst variables.

2.6.4 Effects on the land surface water budget

The motivation for correcting the NCEP precipitation is to generate long-term
global fields of water and energy states and fluxes which entails forcing state
of the art land surface schemes with the best estimate of precipitation and
surface meteorology available. The methods presented in this study combine
observation based global datasets with reanalysis datasets in order to obtain
the best forcing dataset at the highest spatial and temporal scales possible.
However, it is important to understand how the choice of dataset and methods
used to construct such forcings affect the simulated land surface water budget.
If the water budget is sensitive to the differences in these forcing datasets and
the methods used to combine the data, then such simulations will only add to
the uncertainty in our understanding of the land surface water cycle.

To examine this, a number of experiments were conducted by forcing the
Variable Infiltration Capacity (VIC) land surface model (Nijssen et al., 2001a,
2001b; Wood et al., 1997; Maurer et al., 2001) with each of the three cor-
rected precipitation datasets, the NCEP dataset and the NCEP dataset scaled
to match the CRU monthly totals. These simulations are denoted as VICCRU ,
VICUW ,VICGPCP , VICNCEP and VICNCEP SCALED. In addition to precip-
itation, the VIC model also requires, at the least, the daily maximum and
minimum surface air temperature and the wind speed, which were derived
from the NCEP dataset and made consistent with the corrected precipitation
as described in section 4(c).

i) Effect of the NCEP high-latitude anomaly
Without correction of the biases and anomalies seen in the NCEP precip-

itation, the validity of using the NCEP dataset for land surface modeling in
its native form is questionable. To illustrate this, an example of the effect of
the high-latitude precipitation anomaly on the land surface hydrology is given
in Figure 2.8. This shows the average DJF snow water equivalent (SWE) for
the VICNCEP simulation. This simulation was forced with the NCEP dataset
in its raw form. The spurious pattern can clearly be seen in the SWE field in
the high northern latitudes. Results for other land surface variables, such as
evaporation, soil moisture content and runoff (not shown), show little at these
seasonal scales. This can be attributed to the fact that, at high latitudes in
winter, the evaporation is very low and significant runoff and changes in soil
moisture will not occur until the onset of spring melt, by which time the effects
of the anomalous precipitation have begun to dissipate. The spurious pattern
is of course not seen in the simulations forced with the corrected precipitation
datasets.

ii) Effect of different rain day statistics
The previous section showed that the land surface reflects the anomalies in
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Figure 2.8: Average DJF snow water equivalent (mm) for the VIC sim-
ulation forced by the NCEP precipitation.

the NCEP precipitation in its raw form and indicates that the correction to the
rain day statistics is required to remove the effects of these biases. Therefore,
it is important to determine the sensitivity of the land surface to the rain day
statistics, and to know the effect of the correction using rain day statistics from
different datasets. In the context of large-scale modeling, the effects on the land
surface budget at continental and global scales are of particular interest.

Table 2.2 shows the global and continental mean annual water budget for the
VIC simulations. Also shown are the percentage changes in each of the budget
components between each simulation and the VICNCEP SCALED simulation.
All simulations, except the VICNCEP simulation, are forced with precipitation
scaled to match the monthly totals of the CRU dataset and this is reflected in
the equal monthly precipitation totals in Table 2.2. The differences between the
simulations show the effect of the choice of correcting dataset and are consistent
with the comparison of rain day statistics shown previously in which, in general,
the CRU dataset showed the largest differences with the NCEP dataset and
the GPCP dataset showed the least.

The most notable effect on the land surface water budget is the way in
which the precipitation is partitioned into evaporation and runoff. For all
simulations forced with corrected precipitation, the evaporation is reduced and
the excess water appears as a matching increase in runoff. The decrease in
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VICNCEP SC. VICCRU VICUW VICGPCP

annual
mean

%
change

annual
mean

%
change

annual
mean

%
change

annual
mean

%
change

P

World 771 0.0 771 0.0 771 0.0 771 0.0
Africa 666 0.0 666 0.0 666 0.0 666 0.0
Asia 618 0.0 618 0.0 618 0.0 618 0.0
Europe 632 0.0 632 0.0 632 0.0 632 0.0
N. America 668 0.0 668 0.0 668 0.0 668 0.0
Oceania 712 0.0 712 0.0 712 0.0 712 0.0
S. America 1538 0.0 1538 0.0 1538 0.0 1538 0.0

E

World 519 0.0 472 -9.1 484 -6.7 506 -2.5
Africa 562 0.0 523 -6.9 543 -3.4 555 -1.2
Asia 389 0.0 356 -8.5 375 -3.6 380 -2.3
Europe 494 0.0 479 -3.0 492 -0.4 492 -0.4
N. America 447 0.0 419 -6.3 434 -2.9 444 -0.7
Oceania 483 0.0 460 -4.8 470 -2.7 480 -0.6
S. America 870 0.0 726 -16.6 711 -18.3 813 -6.6

Q

World 252 0.0 299 18.7 287 13.9 265 5.2
Africa 104 0.0 143 37.5 123 18.3 111 6.7
Asia 229 0.0 262 14.4 243 6.1 238 3.9
Europe 138 0.0 153 10.9 140 1.4 140 1.4
N. America 221 0.0 249 12.7 234 5.9 224 1.4
Oceania 229 0.0 252 10.0 242 5.7 232 1.3
S. America 668 0.0 812 21.6 827 23.8 725 8.5

S

World 486 0.0 493 1.4 489 0.7 487 0.3
Africa 716 0.0 721 0.7 717 0.1 715 -0.1
Asia 391 0.0 397 1.5 394 0.7 394 0.6
Europe 659 0.0 664 0.8 662 0.5 661 0.3
N. America 358 0.0 364 1.5 361 0.7 359 0.2
Oceania 347 0.0 356 2.5 351 1.1 348 0.3
S. America 439 0.0 452 2.9 450 2.5 443 0.9

SWE

World 20 0.0 17 -16.2 17 -14.3 19 -4.4
Africa 0 0.0 0 -11.6 0 -9.4 0 -5.3
Asia 22 0.0 18 -15.1 19 -12.2 21 -4.5
Europe 26 0.0 24 -6.4 25 -4.1 26 -0.3
N. America 55 0.0 43 -20.7 45 -18.0 51 -6.3
Oceania 0 0.0 0 -8.3 0 -17.6 0 18.6
S. America 4 0.0 5 10.5 4 -3.0 4 0.4

Table 2.2: Global and continental mean annual hydrological budget for
the VIC simulations forced with the NCEP dataset with scaled precip-
itation (VICNCEP SCALED) and the three corrected datasets (VICCRU ,
VICUW and VICGPCP ). Water budget components are precipitation (P),
evaporation (E), runoff (Q), soil moisture content (S) and snow water
equivalent (SWE).
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evaporation is mainly due to a decrease in canopy evaporation. For example,
in North America, the evaporation for the VICCRU simulation is 28 mm lower
than the VICNCEP SCALED simulation and is matched by an increase of 28
mm in the runoff. Canopy evaporation is lower by 101 mm and this is balanced
by increases in transpiration (79 mm), soil evaporation (4 mm), soil moisture
content (6 mm) and SWE (4 mm). The changes in snow sublimation and
canopy storage are negligible.

Despite the monthly precipitation totals being equal for these simulations,
the differences in the individual water budget components are quite large, and
especially in the partitioning of evaporation between canopy evaporation and
transpiration. These differences can be explained by the differences in the
monthly number of rain days and precipitation intensities. The NCEP data
has less low intensity precipitation and more high intensity precipitation than
the CRU and UW corrected datasets. The fixed capacity of the vegetation
canopy in the VIC model is exceeded by the more intense precipitation of the
corrected datasets more often than for the NCEP dataset. The excess water
is routed as throughfall to the soil surface, which reduces the amount of water
available for canopy evaporation and increases the potential for surface and
subsurface runoff and transpiration.

iii) Effect of loss of spatial coherence
To determine the sensitivity of the land surface to the potential loss of spa-

tial coherence in the corrected precipitation, spatial statistics were calculated
over the Amazon river basin for the VICNCEP SCALED and VICCRU simula-
tions (see Figure 2.9). This illustrates the effect of not only the differences in
the rain day statistics but also how the loss of spatial coherence of precipita-
tion occurrence affects the spatial variability of the land surface water budget.
From Figure 2.9, the basin average precipitation is approximately the same
for both simulations, which is to be expected, as the monthly precipitation
totals are the same. Differences in the distribution of the daily basin averaged
values are due to changes made at the grid scale by the correction method.
The CV values for precipitation for the two simulations show large differences.
The mean CV values for the VICCRU simulation are higher than those for
the VICNCEP SCALED simulation, as are, in general, the maximum and min-
imum values and the 25 and 75 percentiles. This is due to the breaking up of
storm systems and the introduction of “noise” into the corrected precipitation
dataset, which increases both the mean and the spread of the distribution of
spatial variability.

Differences in basin averaged evaporation are notable, with the mean
VICCRU evaporation values being on average 21-42% lower than for the
VICNCEP SCALED simulation. This is a result of the differential partitioning
of precipitation into canopy evaporation and throughfall between the two sim-
ulations as was seen in the continental scale analysis. Evaporation and runoff
CV values tend to mimic the variability in the precipitation forcing, although
the differences for runoff are small. Soil moisture CV values are high relative to
the other components, which is to be expected at these spatial scales. However,
any changes in variability resulting from changes in the spatial variability of
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Figure 2.9: Mean monthly time series of the distribution of the spatial
average and CV of the main components of the land surface water bud-
get over the Amazon basin for the VICNCEP SCALED (black line) and
VICCRU simulations (gray line). The solid line represents the mean daily
value. The upper and lower bars represent the maximum and minimum
values whilst the upper and lower limits of the boxes are the 75% and
25% quartiles. Units are mm day−1 for the fluxes and mm for the soil
moisture. Note the different scales for the basin average and basin CV for
precipitation and soil moisture.
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precipitation are likely to be dampened because the soil moisture values are for
the total active soil column which includes deep moisture stores. Although the
spatial variability in the VICCRU simulation precipitation is higher than for the
VICNCEP SCALED simulation, the corresponding variability in soil moisture is
actually lower. This may be because the increased spatial variability in pre-
cipitation tends to produce a higher proportion of saturated or near saturated
soil moisture conditions across the basin and thus will reduce the spatial vari-
ability. This is more likely in a humid environment such as the Amazon basin.
The same analysis was carried out for the Mississippi and Mackenzie basins to
investigate the effect for different climates and the results showed similar but
smaller effects.

2.7 Summary and conclusions

A spurious wave-like pattern exists in the mean monthly precipitation and
number of rain days of the NCEP dataset over terrestrial areas in high latitudes
in winter. Comparison with the CRU, GPCP and UW precipitation datasets
verified the anomaly and other regional biases in the NCEP precipitation field.
The rain day anomaly was corrected using the monthly precipitation statistics
from each of the three comparison datasets and the resulting daily precipitation
values were then scaled so that their monthly totals matched those of the CRU
dataset. The monthly statistics of the resulting corrected datasets match well
the statistics of the respective dataset used for the correction but the degree
to which it does this depends on the statistical similarity of the NCEP and
correcting dataset.

In the context of land surface modeling, the need for the correction is clear,
as the high latitude anomalous pattern is reflected in the land surface states. A
number of experiments were carried out to investigate the effect of the correc-
tion on the land surface by forcing the VIC land surface model with the original
and corrected NCEP datasets. The results show that the land surface water
budget is sensitive to the sub-monthly distribution of precipitation. Simula-
tions forced with identical monthly precipitation totals but different rain day
statistics can differ significantly in the partitioning of precipitation into canopy
evaporation and throughfall with implications for the level of accuracy required
of the correcting dataset. Ultimately, the choice of the correcting dataset would
be based on the level of confidence in the data and the accuracy of the rain
day statistics at the grid scale. However, attention must also be paid to the
temporal extent of the data and whether it is representative of the long-term
variability over the multiple decades of the NCEP dataset period. In the ab-
sence of a single dataset that fulfills these criteria it may be that a hybrid
dataset would have to be used.

A side effect of the correction method is that it introduces a degree of spa-
tial inconsistency in the resultant precipitation fields because it is carried out
independently for each grid cell. This results in the introduction of “noise” in
the spatial pattern of precipitation and the potential loss of storm tracking at
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the regional scale. The spatial variability of water budget components appears
to be sensitive to the increased spatial variability in the corrected precipita-
tion field, at least over the scale of a large river basin such as the Amazon.
The results for other basins indicate that there is less of an effect in cooler
and drier climates. An important implication of this is for the simulation of
the occurrence and magnitude of floods and droughts as the soil moisture field
may develop very differently when forced with the corrected precipitation, not
only because of the change in rain day statistics but also because the spatial
structure of storms may be broken down. One potential solution to the prob-
lem of spatial incoherence is to use the method of correlated random numbers
(Wilks, 1998) although this is beyond the scope of this study. Nevertheless,
for large-scale modeling, the side effects of the correction at continental and
seasonal scales are small.

This work forms part of an effort to create a global, multi-decade, daily,
sub-2o, terrestrial, meteorological forcing dataset to drive land surface model
simulations of the global water and energy balance. These simulations will
provide a long-term, globally consistent and validated set of land surface water
and energy fluxes and states at a high spatio-temporal resolution. The dataset
will facilitate the study of seasonal and inter-annual variability studies to an
extent not possible with currently available datasets. Furthermore, the dataset
will be suitable for evaluating the ability of coupled models and other land
surface prediction schemes to reproduce observed variability of surface fluxes
and state variables in space, and temporally for time scales up to decadal. In
addition, this long-term dataset will be useful for diagnostic studies related to
terrestrial hydrology, and for intercomparison studies with numerical weather
prediction (NWP) reanalysis datasets.
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Chapter 3

Development of a global
meteorological forcing
dataset, 1950-2000

This chapter is a slightly modified version of: Sheffield, J., G. Goteti, and E. F.
Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological
forcings for land surface modeling, J. Climate, 19(13), 3088-3111.
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Abstract

Understanding the variability of the terrestrial hydrologic cycle is central to de-
termining the potential for extreme events and susceptibility to future change.
In the absence of long-term, large-scale observations of the components of the
hydrologic cycle, modeling can provide consistent fields of land surface fluxes
and states. This paper describes the creation of a global, 50-year, 3-hourly,
1.0 degree, dataset of meteorological forcings that can be used to drive models
of land surface hydrology. The dataset is constructed by combining a suite of
global observation-based datasets with the NCEP/NCAR reanalysis. Known
biases in the reanalysis precipitation and near-surface meteorology have been
shown to exert an erroneous effect on modeled land surface water and energy
budgets and are thus corrected using observation-based datasets of precipita-
tion, air temperature and radiation. Corrections are also made to the rain
day statistics of the reanalysis precipitation which have been found to exhibit
a spurious wave-like pattern in high-latitude wintertime. Wind-induced un-
dercatch of solid precipitation is removed using the results from the World
Meteorological Organization (WMO) Solid Precipitation Measurement Inter-
comparison. Precipitation is disaggregated in space to 1.0 degree by statistical
downscaling using relationships developed with the Global Precipitation Cli-
matology Project (GPCP) daily product. Disaggregation in time from daily
to 3-hourly is accomplished similarly, using the Tropical Rainfall Measuring
Mission (TRMM) 3-hourly real-time dataset. Other meteorological variables
(downward short- and longwave, specific humidity, surface air pressure and
wind speed) are downscaled in space with account for changes in elevation.
The dataset is evaluated against the bias-corrected forcing dataset of the sec-
ond Global Soil Wetness Project (GSWP-2). The final product provides a
long-term, globally-consistent dataset of near-surface meteorological variables
that can be used to drive models of the terrestrial hydrologic and ecological
processes for the study of seasonal and inter-annual variability and for the
evaluation of coupled models and other land surface prediction schemes.

3.1 Introduction

The availability of large-scale, long-term datasets of the land surface water and
energy budgets is essential for understanding the global environmental system
and interactions with human activity, especially in the face of potential climatic
change. However, consistent observations of components of the land surface wa-
ter and energy budgets are routinely not available over large-scales. While some
terms of the surface water balance are reasonably well observed, at least over
some parts of the globe (precipitation and runoff in particular), other terms,
including evapotranspiration, soil moisture, and surface water are virtually ab-
sent of direct observations at large scales. Many of these variables are difficult
to measure because of technical, monetary and political limitations. In the case
of soil moisture, which forms a key element for drought assessment and medium
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and long-range prediction, global (or even regional, with only a few exceptions)
in situ measurement networks are grossly inadequate for hydrologic prediction
purposes, and land surface hydrology models have generally evolved without
the use of direct observations of this key state variable. In terms of surface
energy fluxes and evaporation, these are inherently difficult to measure and are
thus essentially non-existent over large scales. The use of remote sensing has
provided great potential for large scale measurement of some variables (notably
albedo, radiative surface temperature and soil moisture) but is restricted to in-
direct quantities and, in the case of soil moisture, to low-vegetated regions and
the top few centimeters.

It has been suggested that an alternative to estimating large-scale water
cycle terms directly from observations is to use land surface models (LSM),
in either off-line (forced with surface meteorological observations) or coupled
(with an atmospheric GCM) mode (e.g. Lau et al., 1994; Liang et al., 1994;
Levis et al., 1996; Werth and Avissar, 2002). LSMs close the water budget
by construct, so if the meteorological forcing data are accurate, and model
biases are small, these constructed water balance terms might be used in lieu of
observations and provide a consistent picture of the water and energy budgets.
Budget closure is not achievable from observations even at small scales. In fact,
analyses of water and energy cycle variables estimated through observations
(in-situ and/or remote sensing) will not provide water cycle closure (Roads et
al., 2003; Pan and Wood 2004) due to sampling and retrieval errors. However,
through research activities like the North American Land Data Assimilation
System (N-LDAS; Mitchell et al, 2004a), and Global LDAS (G-LDAS; Rodell et
al, 2004), the capability of land surface models to produce meaningful estimates
of land surface hydrologic conditions over large areas has been demonstrated.
Therefore, the contention is that observation-forced, off-line simulations using
state-of-the-art land surface model provides the best estimate of global water
cycle variables.

Nevertheless, while estimates of water cycle variables obtained through land
surface modeling are consistent, these estimates can be subject to large errors
due to errors in model inputs and meteorological forcings. The importance of
accurate forcings for large-sale land surface modeling efforts has been demon-
strated previously (Berg et al., 2003; Fekete et al., 2004; Nijssen and Let-
tenmaier, 2004). Results from the NLDAS project (Mitchell et al., 2004a)
indicated that first order errors in the land surface simulations were due to
inaccurate specification of the forcings and especially in precipitation (Robock
et al., 2003; Pan et al., 2003). Other studies have shown the sensitivity of the
land surface to the atmospheric forcings and especially precipitation (Berg et
al., 2003; Fekete et al., 2004; Sheffield et al., 2004). The conclusion is that
accurate forcings are necessary to provide accurate land surface simulations
when compared to observations. The implication is that the use of sufficiently
accurate forcings for land surface modeling in regions of sparse land surface
observations will provide a suitable surrogate.

The availability of near-surface meteorological observations is not pervasive
across all global areas and certainly not at the spatial and temporal resolu-
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tions that are required by land surface hydrologic models for most hydrologic
applications. Coupled with the lack of temporal extent and consistency in the
majority of observations, the development of forcing datasets using observa-
tions alone is unsatisfactory. With the increasing availability of remote sensing
products the prospect for the future is more promising, although this does not
help in the development of long-term retrospective datasets that are required
for extracting information about climate variability. In the global context, the
use of atmospheric reanalysis products may be the only alternative for pro-
viding near surface meteorological forcings at high temporal resolution. In
contrast to the lack of terrestrial observations, the relative wealth of observa-
tions of the atmosphere and sea surface has allowed the emergence of a number
of global, long-term, reanalysis datasets such as the NCEP/NCAR (Kalnay et
al., 1996; Kistler et al., 2001), ECMWF ERA-40 and ERA-15 (Gibson et al,
1997), NCEP-DOE (Kanamitsu et al., 2002), and NASA-DAO (Schubert et
al., 1993) reanalyses. These products are constructed using “frozen” versions
of numerical weather prediction and assimilation systems that ingest a variety
of atmospheric and sea surface observations to provide long-term, continuous
fields in time and space, of atmospheric (and land surface) variables. Although
these model derived fields may not be perfect, they are self-consistent and are
used by many to force models of the land surface water and energy balances.

The power of reanalyses is their consistent and coherent framework for
ingesting in situ and remote sensing data into a time- and space-discretized
representation of the global land, oceans, and atmosphere, in a way that is es-
sentially impossible to achieve directly from observations. Reanalysis has been
suggested as an alternate approach to the problem of estimating the surface
water balance, yet the reanalysis land surface products have many problems,
including: (i) The data that are assimilated are primarily atmospheric profiles
of moisture, temperature, and other variables and few, if any, land surface
data are assimilated, resulting in the fact that they represent better variables
like atmospheric moisture and large scale circulation than the representation of
land surface variables, like soil moisture and snow water content; (ii) the land
surface is forced by precipitation that is essentially a model output product
so that errors in model representation of precipitation (Janowiak et al., 1998;
Trenberth and Guillemot, 1998; Serreze and Hurst, 2000), which can be quite
large, are translated into errors in land surface fields like evapotranspiration,
runoff and soil moisture (e.g. Lenters et al., 2000; Maurer et al., 2001); and
(iii) the effects of “nudging” of the land surface to avoid drift have the effect
of creating unrealistic soil moisture, and biasing (by large amounts in many
cases) water budget flux terms (Betts et al., 1998; Maurer et al., 2001; Betts
et al., 2003a, b; Roads et al. 2002a, b).

The effect that these biases have on land surface processes has to be ad-
dressed for these products to be of use as forcings in modeling studies. The
results of Berg et al. (2003), who tested bias correction of ECWMF reanalysis
over North America, suggest that modelers using reanalysis products for forcing
LSMs should consider a bias reduction strategy for their input forcings. Also,
Sheffield et al. (2004) showed that systematic biases in reanalysis filter down
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into the modeled land surface fluxes and states. Ngo-Duc at al. (2005) found
that precipitation biases in the NCEP/NCAR reanalysis were responsible for
significant errors in modeled streamflow for continental scale basins. Never-
theless, the results of such studies have shown that there is great potential for
using hybrid datasets which combine reanalysis with observation based datasets
to remove biases. This approach retains the consistency and continuity of the
reanalysis but constrains it to the best available observation datasets, which
are generally available at coarser resolutions and reduced spatial and temporal
extents.

This paper describes the development of a long-term, global dataset of
near-surface meteorology that can be used to force models of the land surface
water and energy budgets. Reanalysis products are combined with a suite of
observation-based, global datasets that are used to correct for biases in the
monthly mean values and intra-monthly statistics of the reanalysis and for
downscaling in time and space to scales relevant for hydrologic applications.
The dataset has global coverage over the extra-polar land surface (i.e. excluding
Antarctica) at 1.0 degree spatial resolution and a 3-hourly time step, for 1948-
2000.

Previously, a number of studies have developed large-scale, long-term
datasets of a similar nature. However, these have been limited to smaller
domains (e.g. Maurer et al., 2002) and/or shorter time periods (e.g. Levis
et al., 1996; Nijssen et al., 2001a; (International Satellite Land-Surface Cli-
matology Project (ISLSCP) I, Meeson et al., 1995; ISLSCP II, Hall et al.,
2005; Global Soil Wetness Project (GSWP) 2, Dirmeyer et al., 2005) or have
been implemented globally, but at coarser spatial and temporal resolutions (e.g.
Levis et al., 1996; Nijssen et al., 2001a; Ngo-Duc et al., 2005). This dataset
represents an improvement over these products in terms of higher spatial and
temporal resolution and global coverage and through the implementation of a
number of enhancements in addition to correcting for monthly biases and ac-
counting for topographic effects. These enhancements include: 1) adjustments
to precipitation for gauge undercatch; 2) temporal and spatial dissagregation
of precipitation and downward solar radiation with account for observed sub-
grid and diurnal variability statistics; 3) adjustment to rain day frequencies
to match observed statistics; and 4) trend correction and probability weighted
scaling for biases in downward short and long-wave radiation.

3.2 Datasets

The forcing dataset is based on the NCEP/NCAR reanalysis, which includes
near-surface meteorological variables from 1948 to the present. This time pe-
riod provides the length of data necessary to infer the variability of the land
surface water and energy budgets at timescales up to multi-decadal. Alter-
native sources of reanalysis data are available, including the NCEP-DOE and
ERA-40 products that have been shown to be more accurate, in general, than
the NCEP-NCAR reanalysis. However, the NCEP-NCAR reanalysis offers the
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benefits of a long time period and ongoing production that may offset any po-
tential deficiencies that the bias correction methodology cannot address. Even
if the ERA-40 or NCEP-DOE reanalysis has been used, the comparisons would
reveal any biases that exist in these products and the correction methods could
easily be applied.

The reanalysis data are combined with a suite of global, observation based
datasets of precipitation, temperature and radiation. Table 3.1 summarizes the
contributing datasets that are used in the development of the forcing dataset
and these are described in more detail in the following sections. These obser-
vation based datasets are generally available at coarser temporal resolutions,
e.g. monthly. The reanalysis is essentially used to downscale these observation
datasets to the sub-daily temporal scale necessary for land surface modeling.
In contrast, the observation-based datasets are generally available at higher
spatial resolutions and are used to downscale the reanalysis in space. Thus a
hybrid forcing dataset is formed by using the sub-monthly variability in the
reanalysis, with bias corrections made at a monthly scale.

3.2.1 NCEP/NCAR reanalysis

The NCEP/NCAR reanalysis (referred to hereafter as the NCEP reanalysis) is
a retrospective global analysis of atmospheric and surface fields extending from
1948 to the near present (Kalnay et al., 1996, Kistler et al., 2001). Available
observations are assimilated into a global atmospheric spectral model imple-
mented at a horizontal resolution of T62 (approximately 2.0 degree) and with
28 sigma vertical levels. The reanalysis is created using a “frozen” version of
the data assimilation system, although assimilated observations are subject to
changing observing systems. Consistent gridded output fields are generated
continuously in time and are classified according to how they are determined
and their reliability. Class “A” variables are strongly influenced by assimilated
observations and are therefore regarded as being the most reliable fields (e.g.
upper air temperatures and geopotential height). Less reliable are class “B”
variables (moisture, divergent wind and surface parameters), which are influ-
enced by observations and the model. Class “C” variables (surface fluxes and
heating rates), are completely determined by the model and as such are the
least reliable. Precipitation is classified as a class “C” variable.

3.2.2 CRU monthly climate variables

The Climatic Research Unit (CRU) product is a 0.5 degree gridded dataset
of monthly terrestrial surface climate variables for the period of 1901–1998
(New et al., 1999, 2000) and updated to 2000 by Mitchell et al. (2004b).
The spatial coverage extends over all land areas, including oceanic islands but
excluding Antarctica. Fields of monthly climate anomalies, relative to a 1961–
90 climatology, were interpolated using thin-plate splines from surface climate
data. The anomaly grids were then combined with the 1961–1990 climatology
resulting in grids of monthly climate the full period. Primary variables (pre-
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cipitation, mean temperature, and diurnal temperature range) are interpolated
directly from station observations. The secondary variables (including rain day
frequency and cloud cover) are interpolated from merged datasets comprising
station observations and, in regions without station data, synthetic data esti-
mated using predictive relationships with the primary variables.

3.2.3 GPCP daily precipitation

The Global Precipitation Climatology Project (GPCP) daily, 1997-present, 1.0
degree precipitation product (Huffman et al., 2001) is based on a combination
of estimates from a merged satellite IR dataset over 40oN-40oS and a rescaling
of the Susskind et al. (1997) TIROS Operational Vertical Sounder (TOVS)
satellite estimates at higher latitudes. Both contributing estimates are scaled
to match the GPCP version 2 monthly satellite-gauge dataset totals (Huffman
et al., 1997). Rain day frequencies of the IR based estimate are adjusted to
match data from the Special Sensor Microwave Imager (SSM/I) retrieval. The
TOVS based rain day frequencies are adjusted to the IR based estimate at
40oN and 40oS separately.

3.2.4 TRMM 3-hourly precipitation

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between
the National Aeronautics and Space Administration (NASA) of the United
States and the Japan Aerospace Exploration Agency (JAXA). The TRMM
satellite was launched in November of 1997 and covers the tropics between ap-
proximately 40S to 40N latitude. A number of experimental, real-time datasets,
based on the TRMM products and other satellite sources are currently avail-
able (Huffman et al., 2003), including the 3B42RT product which is a merger
of the 3B40RT and 3B41RT products. The 3B40RT product is a merger of all
available SSM/I and TRMM microwave imager (TMI) precipitation estimates.
The SSM/I are calibrated to the TMI using separate global land and ocean
matched histograms. The 3B41RT product consists of precipitation estimates
from geostationary infrared (IR) observations using spatially and temporally
varying calibration by the 3B40RT product.

3.2.5 NASA Langley monthly surface radiation budget
(SRB)

The NASA/Langley Research Center product is available from 1983-1995
(Gupta et al., 1999) with an extension to 2001 being planned (Stackhouse
et al., 2004). The primary data sources are satellite data from the In-
ternational Satellite Cloud Climatology Project (ISCCP) C1 data product
(Rossow and Schiffer 1991) and from the Earth Radiation Budget Experi-
ment (ERBE; Barkstrom et al. 1989). The C1 data provide cloud param-
eters derived from a network of geostationary satellites and NOAA’s polar
orbiters, along with temperature and humidity profiles from TOVS, on a 2.5
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degree equal-area global grid and a 3-hourly time resolution. Monthly average
clear-sky planetary albedos used for deriving surface albedos over snow/ice-
free land areas were obtained from ERBE data. Two versions are available
for short and longwave radiation. Firstly, the SRB-SW and SRB-LW prod-
ucts are derived using the algorithms of Pinker and Laszlo (1992) and Fu et
al. (1997) respectively. Secondly, the SRB-QCSW and SRB-QCLW prod-
ucts are derived using the algorithms of Darnell et al. (1992) and Gupta et
al. (1992), respectively. Comparison of these products with surface measure-
ments has indicated that no one product is superior globally. For example,
the SW product underestimates shortwave radiation over the higher eleva-
tions of the Tibetan Plateau and western China but the QCSW product does
not, although comparisons undertaken for the GSWP2 over North America
showed that the SW product performed better (GSWP2 forcing data webpage
at http://www.jamstec.go.jp/frcgc/research/p2/masuda/gswp/b1alpha.html).
Given these preliminary analyses, the SRB-QCSW and SRB-LW products are
used in this study.

3.3 Development of the forcing dataset

The development of the forcing dataset has progressed through a number of
stages in terms of the spatial and temporal resolution and the sophistication of
the correction methods. This has resulted in a number of intermediate prod-
ucts at coarser spatial and temporal resolutions. To perform calculations of the
land surface water and energy cycles, land surface models, in general, require
sub-daily time series of the following near-surface atmospheric variables: pre-
cipitation, air temperature, downward short- and longwave radiation, surface
pressure, specific humidity and windspeed. Initially the reanalysis variables
were bilinearly interpolated from their native resolution of 1.875 degree lon-
gitude by approximately 1.9 degree latitude to a 2.0 degree regular grid with
consideration for changes in elevation (see section 3b). This grid is commen-
surate with the observation based datasets. Next corrections are made to the
daily precipitation statistics. All variables are then downscaled in space to 1.0
degree resolution (again with corrections for changes in elevation) and down-
scaled in time to a 3-hourly timestep. Finally, biases at the monthly scale are
removed. The following sections describe in detail the various stages in the
development of the forcing dataset.

3.3.1 Correction of the reanalysis rain day anomaly

A high-latitude anomaly in the rain day statistics exists in the NCEP reanalysis
in the winter months of the northern hemisphere (Cullather et al., 2000; Serreze
and Hurst, 2000; Sheffield et al., 2004). The anomaly results from the use of
a simplified approximation to moisture divergence in the atmospheric forecast
model used in the reanalysis. This results in a spurious wave-like pattern in the
monthly rain day statistics that is most noticeable in the northern hemisphere
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winter at high latitudes (Figure 1). The anomaly filters down into land surface
states when the precipitation is used to force a land surface model (Sheffield
et al., 2004). This study also showed the sensitivity of the land surface to the
monthly rain day statistics. Using various estimates of rain day statistics, but
the same monthly totals, to force a land surface model, resulted in large differ-
ences in estimated water balance components (up to 9% error in global average
evaporation and 17% in runoff, with higher values at the continental and re-
gional scale). The conclusion is that it is vital to use not only the best estimates
of monthly total precipitation but also of monthly rain day statistics to achieve
accurate simulations of the land surface water budget. A correction to the rain
day statistics is described in detail in Sheffield et al. (2004) and a brief descrip-
tion is given here. The correction involves resampling the daily precipitation
data to match the statistics of observation based terrestrial daily precipitation
datasets (CRU, GPCP and a 15-year gauge-based dataset developed by Nijssen
et al. (2001a)). To ensure consistency in the related meteorological variables,
these are also resampled for the same days that the precipitation was resampled
for. Figure 1 shows the correction of the NCEP precipitation using the CRU
dataset. In addition to correcting the high-latitude rain day anomaly, differ-
ences that occur elsewhere are also removed. For example, in the tropics the
high numbers of rain days in the NCEP dataset are reduced to the levels found
in the CRU dataset. One side effect of this correction method is that spatial
consistency at the daily time scale is not maintained because the correction is
carried out independently on each grid cell. Sheffield et al. (2004) found that
the effect of this on the large scale terrestrial water balance was small compared
to that resulting from the correction of the precipitation frequencies.

3.3.2 Spatial downscaling

Precipitation

Daily precipitation (corrected for monthly rain day biases) was downscaled
from 2.0 to 1.0 degree resolution using a probabilistic approach based on rela-
tionships between precipitation intensity and grid cell fractional precipitation
coverage. Precipitation varies considerably in space, especially at daily time
scales and it has been recognized that the land surface is sensitive to this vari-
ability (Johnson et al. 1993; Eltahir and Bras 1993) and the effects on the
atmosphere through enhanced feedback can be significant (Hahmann, 2003).
In general, low intensity, large area precipitation will tend to increase evapo-
ration and infiltration compared to high intensity, localized precipitation that
will result in increased runoff production through infiltration excess.

For downscaling the precipitation data to 1.0 degree resolution, it is of
interest to know the fractional wetted area within the 2.0 degree grid cell and
the distribution of precipitation intensities among the 1.0 degree grid cells
within. Fractional area is seasonally and geographically variable (Gong et al.,
1994), and depends, among other factors, on storm type, grid resolution and
temporal scale (Eltahir and Bras, 1993). Figure 2 shows an example of the
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Figure 3.1: Figure 1. Average January precipitation statistics for the
NCEP and corrected data sets. a) Number of precipitation days and b)
total precipitation (mm/day) from the NCEP dataset, showing the spuri-
ous wave-like pattern in northern hemisphere high-latitudes. c) Number
of precipitation days and d) total precipitation (mm/day) as corrected by
Sheffield et al. (2004) using data from the CRU TS2.0 global 1901-2000
climate data set of Mitchell et al. (2004b).

scaling behavior of precipitation fractional area for the 0.25 degree TRMM
and 1.0 degree GPCP datasets. Values for a range of spatial resolutions are
shown such that the scale is relative to the dataset resolution. Fractional area
of the TRMM data drops off rapidly with increasing scale but tends towards
a threshold value at larger scales that appears to be seasonal. At the scale of
the forcing dataset (1.0 degree) the fractional coverage of the TRMM data is
on average much less than 1 (full coverage). This implies that downscaling by
simply applying the 2.0 degree grid cell average precipitation to the four 1.0
degree cells may be inappropriate in terms of representing the spatial variability
of wet and dry areas, with subsequent effects on the land surface hydrology.
The GPCP data show similar relative scaling behavior (window sizes larger
than 4.0 degrees had a limited number of land cells and so were not included)
that may indicate some form of self-similarity. Because of this and their multi-
year, global coverage, the GPCP data were considered suitable for downscaling
the NCEP data.
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Figure 3.2: Fractional area of precipitation as a function of spatial scale
for mild, mid-latitude climate regions. a) Mean and b) standard deviation
for January. c) Mean and d) standard deviation for July. Solid lines are
the TRMM data, dashed lines are the GPCP data. The spatial scale is
relative to the resolution of the precipitation datasets (TRMM = 0.25
degree, GPCP = 1.0 degree).

The 2.0 degree daily data are downscaled using a probabilistic approach that
relates the fractional area of precipitation with the precipitation intensity at 2.0
degree. From Bayesian theory, the probability of occurrence of precipitation
within a 2.0 degree grid cell with fractional coverage (A) for a given grid cell
average precipitation intensity (I) can be written as

p(A|I) =
p(I|A)p(A)

p(I)
, (3.1)

where p(I|A) is the conditional probability of an intensity I given a frac-
tional area A. Probabilities for each term on the right hand side of equation
3.1 are generated for each month and grid cell using data from the GPCP daily
data set which has global and multiple year coverage. The NCEP daily data
are then downscaled to 1.0 degree by sampling at random from the resultant
conditional probability distribution p(A|I) to determine the spatial coverage of
precipitation in terms of the number of 1.0 degree grid cells.
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This disaggregation method was validated by reconstructing the 1.0 degree
GPCP data set from a 2.0 degree aggregated version using the probability dis-
tributions from equation 3.1. Figure 3.3 shows an example of the spatial statis-
tics for the GPCP data set and three different reconstructed versions over the
North American continent. These three versions were created, respectively, by
1) distributing the 2.0 degree precipitation value uniformly over all 1.0 degree
cells within; 2) using the probabilistic approach to determine the fractional
area of precipitation (number of 1.0 degree cells) within a 2.0 degree cell and
distributing the 2.0 degree grid cell precipitation uniformly within these cells;
and 3) as for (4.2) but weighting the precipitation among the wet 1.0 degree
grid cells based on the precipitation in neighboring 2.0 degree cells. This final
method assumes that precipitation occurrence has some spatial coherence and
the wet cells are deemed to have some simple connectivity with neighboring
regions of precipitation. Figure 3 indicates that the distributed method does
little better than using a uniform approach, although the effect on land surface
states may be quite different. However, weighting the distribution of the pre-
cipitation gives values of spatial variability that are consistent with the original
GPCP data, although slightly higher. Similar results apply for other regions
across the globe. The local autocorrelation of the original and reconstructed
datasets was also calculated at various lag times to see whether the correction
methods preserved the temporal characteristics of precipitation at each grid
cell (Figure 4). In general, the errors reduce with increasing lag time for all
three methods. Again, the weighted method shows the least error, except for
Europe and North America where all methods perform essentially the same at
longer lag times.

Meteorological variables

The other meteorological variables (downward shortwave and longwave radia-
tion, surface pressure, specific humidity and wind speed) were disaggregated
from 2.0 degree to 1.0 degree using bilinear interpolation but with adjustments
for differences in elevation between the two grids. The effects of elevation on
near-surface meteorology have been well documented and the difference in el-
evation between the two grids, as shown in Figure 5, can be significant. The
differences are most prominent in the foothills of mountain ranges where el-
evation may change by a few thousand meters within a 2.0 degree grid cell.
Maximum differences are approximately 3000m in the Himalayas, 1300m in
US Rockies and up to 3700m in the Andes. To account for the differences in
elevation, air temperature is first adjusted to the new grid elevation using the
environmental lapse rate (6.5 oC/km). Following the methods of Cosgrove et
al. (2003), which assumes that the relative humidity is constant to avoid the
possibility of super-saturation, the specific humidity, surface air pressure and
downward longwave radiation are also corrected for elevation changes to ensure
consistency. These corrections were applied whenever a dataset (reanalysis and
observational) was interpolated from one grid to another, whether for upscal-
ing or downscaling, using the following method. First, the data were elevation
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Figure 3.3: Average monthly distribution of the coefficient of variability
for North America for the original daily, 1.0 degree GPCP data set and
three data sets that were downscaled from a 2.0 degree aggregated ver-
sion of the GPCP data to 1.0 degree using various downscaling methods.
The uniform method assigns precipitation values uniformly to the higher
resolution cells. The distributed approach uses a probabilistic method to
determining the number of 1 degree grid cells within a 2 degree cell in
which it is raining and distributes the 2 degree grid cell precipitation uni-
formly within these cells. The distributed with weighting method is the
same as the distributed approach but weights the precipitation among the
1 degree grid cells based on the precipitation in neighboring cells. Similar
results apply for the other continents.
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Figure 3.4: Root mean square error (RMSE) over the six continents in
autocorrelation for various daily lag lengths between the original daily, 1.0
degree GPCP data set and three data sets that were downscaled from a 2.0
degree aggregated version of the GPCP data to 1.0 degree using various
downscaling methods.

adjusted to sea-level (0.0m elevation) on its native grid. The data were then
interpolated to the new grid resolution and elevation adjusted to the topogra-
phy of the new grid. This ensures that the interpolation procedure is free of
any elevation effects on the data. For the interpolation between the 2.0 degree
and 1.0 degree grids, these elevation adjustments resulted in significant changes
in some regions, with the maximum change in temperature of approximately
25oC, 160 W/m2 for longwave radiation, 0.013 g/g for specific humidity and
38 KPa for surface air pressure.

3.3.3 Temporal downscaling

Precipitation

The diurnal variation of precipitation is generally significant over land areas,
especially during the summer months where diurnal amplitudes can be greater
than 50% of the daily mean value (Dai, 2001). High temporal resolution pre-
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Figure 3.5: Difference in elevation (m) between the 2.0 degree and 1.0
degree grids. Elevation adjustments are made to air temperature, surface
pressure, specific humidity and downward longwave radiation whenever
data sets are interpolated between grids.

cipitation data (6-hourly or higher) are necessary to describe the diurnal cycle
and are desirable for a multitude of hydrologic applications. Land surface hy-
drological processes are governed not only by the total amount of precipitation
but also by the temporal structure of the precipitation, that is the storm du-
ration and intensity and inter-storm length. Marani et al. (1997) showed the
effect of the temporal structure of precipitation on land surface hydrological
processes to be considerable because of the non-linear processes involved in par-
titioning precipitation. In the context of remotely-sensed precipitation, which
may suffer from under sampling of the diurnal cycle, similar conclusions have
been reached (e.g. Soman et al., 1995; Salby and Callaghan, 1997; Nijssen
and Lettenmaier, 2004). Yet the availability of sub-daily precipitation data is
intermittent in time and space, whether from gauges, radar or remote sensing,
and thus downscaling is required for large scale applications. Direct use of the
highest resolution NCEP precipitation data (6-hourly) is unwarranted, as it is
acknowledged as being unreliable at scales less than monthly (Kalnay et al.,
1996) and especially given the biases in the rain day statistics as described
in section 3a. The biases in storm duration and storm frequency have been
partially accounted for through the correction of monthly rain day frequen-
cies (section 3a). However, to obtain reasonable estimates of the diurnal cycle
of precipitation, disaggregation of the daily values to a 3-hourly time step is
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necessary.
Temporal downscaling of precipitation has been attempted by many authors

using a variety of techniques, including the use of probability distributions of
precipitation statistics (e.g. Hershenhorn and Woolhiser, 1987; Connolly et al.,
1998), multi-fractal cascade methods (e.g. Olsson, 1998; Gütner et al., 2001)
and rectangular pulses stochastic rainfall generators (e.g. Bo et al., 1994; Cow-
pertwait et al., 1996). Here a simple stochastic sampling approach is used
based on 3-hourly precipitation distributions extracted from the TRMM real
time data set. This product provides one of the few large-scale, observation-
based, gridded precipitation datasets at sub-daily resolution. The original TMI
data suffer from under-sampling of the diurnal cycle because of orbit charac-
teristics and can only adequately describe the diurnal cycle at coarse time and
space resolutions (Negri et al., 2002). However the real time product used
here combines the TMI data with IR data to produce near-continuous cover-
age in time and space. Other alternative data sets could be used, including the
TRMM-based PERSIANN analysis (Hsu et al. 1997) and model-based prod-
ucts such as those from NASA’s Goddard Earth Observing System (GEOS),
NCEP’s Global Data Assimilation System (GDAS) and the ECMWF.

The precipitation is downscaled from the daily NCEP product (with cor-
rected rain day frequencies, section 3a) to a 3-hourly time step using a proba-
bilistic approach based on sampling from the remote sensing based TRMM data
set. The TRMM data set consists of 3-hourly data covering the latitude band
50S-50N (see Section 2). Monthly joint probability density functions (PDFs)
of 3-hourly and daily precipitation amounts are derived from this data set for
each 1.0 degree grid cell using information from the surrounding 2.0 degree win-
dow. 3-hourly precipitation amounts are then sampled at random from these
distributions for each NCEP daily total and then the eight 3-hourly values in
each day are scaled to match this daily total. For regions outside of 50S-50N
where TRMM precipitation data are not available it is assumed that the PDFs
are uniform across regional climate zones. Thus joint PDFs were created for
each continent and climate zone (based on the Koppen climate classification,
see Critchfield (1983)) and these were used to downscale the daily NCEP data
outside of 50S-50N within the same climate zone and continent. This method
was not feasible for regions within polar climate zones because there are no
such regions within the 50S-50N latitude band. In this case, the probability
distributions derived from cold climate zones were assumed to be representative
of polar climates in the same continent.

The disaggregation method forces the statistics of the disaggregated data
to match those of the TRMM dataset, whilst retaining the NCEP daily totals.
The method was validated by recreating the TRMM product from its daily
totals and indicated good performance in recreating the mean monthly diurnal
cycle for different seasons and regions. The application of the disaggregation
method is, however, dependent on the accuracy of the PDFs in representing
actual diurnal cycles, and so is limited by the amount of data that contribute
to them. The TRMM dataset used here has limited temporal coverage and
may itself contain biases (Gottschalk et al., 2005). Updates from the TRMM
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real time product and additional data from the retrospective version that start
in 1998 will be added in the future to increase confidence in the PDFs and
thus the resulting disaggregated values. Data from gauge-based datasets (Dai,
2001) that may be more reliable at regional scales could also be used.

Meteorological variables

The meteorological variables are simply downscaled from 6-hourly to 3-hourly
resolution using linear interpolation. It is assumed that the diurnal cycle of
these variables is represented adequately in the reanalysis, although the diurnal
temperature range is adjusted to remove biases at the monthly scale (see section
3.d.2). No attempt is made to adjust these variables to make them consistent
with the disaggregated 3-hourly precipitation as the relationships between pre-
cipitation and other meteorological variables are often weak. Downward solar
radiation is interpolated with regard for the solar zenith angle to give a more re-
alistic representation of the diurnal path of the sun. The type of the reanalysis
variables (downward shortwave and longwave radiation are time average values;
air temperature, pressure, humidity and windspeed are instantaneous values)
is taken into account during the interpolation and all variables are converted
into time average values.

3.3.4 Monthly bias corrections

As described in the introduction, systematic biases are inherent in the NCEP
reanalysis (and other reanalysis products) at the monthly and seasonal scale.
These biases are seasonally and regionally variable and will filter down into
simulations of the land surface water and energy budgets. Adjustments are
made to the reanalysis data (after downscaling and elevation corrections) so
that the mean monthly values match those from available observation based
datasets. Adjustments are not made to the specific humidity, air pressure and
wind speed because global-scale, observation-based datasets for these variables
do not exist.

Precipitation

The NCEP reanalysis precipitation is completely generated by the atmospheric
forecast model and as such is acknowledged as being somewhat unreliable at the
sub-monthly and local scale (Kalnay et al., 1996), although it does reveal useful
information at larger space and time scales (Kalnay et al., 1996; Janowiak et
al., 1998; Kistler et al., 2001). Biases in the NCEP reanalysis precipitation
have been studied by many authors (e.g. Janowiak et al., 1998; Trenberth and
Guillemot, 1998; Serreze and Hurst, 2000). Figure 6 shows the time series of
global and continental average precipitation for the NCEP reanalysis and CRU
data sets. The NCEP dataset is biased by 0.193 mm/day over global land areas
excluding Antarctica which is equivalent to about 70 mm/yr. Errors in the
NCEP reanalysis precipitation at monthly scales translate into errors in land
surface fields like evapotranspiration, soil moisture and snow cover (Sheffield
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et al., 2004). The effect on runoff generation has been investigated by Ngo-
duc et al. (2005) who found that biases in the NCEP reanalysis precipitation
contributed the largest errors in resultant large basin river discharge when
compared to biases in air temperature and radiation. To remove the biases
in the NCEP product, the daily values are scaled so that their monthly totals
match those of the CRU dataset before disaggregation to a 3-hourly time step
as follows:

P ∗
NCEP,3hr =

PCRU,MON

PNCEP,MON
× PNCEP,3hr, (3.2)

where the asterisk indicates a corrected value, and the subscripts indicate
the data source (NCEP or CRU) and the temporal resolution (3-hourly, daily, or
monthly). Gauge-based precipitation measurements are often subject to losses
from wind and wetting loses and due to solid precipitation (Goodison et al.,
1998). Adam and Lettenmaier (2003) describe a global dataset of adjustment
ratios that can be used for correcting gauge undercatch and can result in an
increase in precipitation of about 12% globally. These catchment ratios can
be applied to precipitation climatologies or to individual years in the reference
period of the data set (1979-1998) (see Adam and Lettenmaier, 2003). For
this study, the monthly CRU precipitation data set is adjusted using these
catchment ratios before being used to scale the NCEP daily totals.

Figure 7 shows the effect of the monthly bias corrections on the NCEP re-
analysis precipitation. These adjustments result in changes in global terrestrial
precipitation (excluding Antarctica) of -8.8% (-0.19 mm/day or -70.3 mm/yr)
after scaling to the CRU monthly values and -1.7% (-0.037 mm/day or 13.7
mm/yr) after also adjusting for gauge undercatch. Although the reduction in
global precipitation by scaling to the CRU values is offset by the undercatch
adjustment, there are substantial regional changes. Figure 7c shows the DJF
biases in the NCEP dataset when compared to the CRU dataset. The largest
biases in the reanalysis are over Greenland, central and southeast USA (for
DJF only) and in northern India during JJA (not shown). There are large pos-
itive biases in mid and high northern latitudes during the summer (not shown),
most notably in Canada and Alaska, central Europe, and throughout Eurasia
to China. In the tropics the biases are spatially variable and seasonally depen-
dent. For example, in Amazonia, the biases in the NCEP precipitation tend to
be negative in the southwest during SON and DJF and shift northwards during
the other part of the year. Conversely large positive biases occur generally in
the east in an opposite pattern. This indicates the poor representation of the
seasonal cycle of the tropical moisture patterns in the NCEP dataset (Tren-
berth and Guillemot, 1998). Of note is the correction to the spurious wavelike
pattern in high northern latitudes as described in section 3.a. Figure 7d shows
the mean DJF map of adjustments for gauge biases which are generally posi-
tive, with the largest increases in Greenland, central and northeast USA, parts
of northern Eurasia and scattered regions in the Tropics.
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Figure 3.6: Annual time series of precipitation averaged over global and
continental land areas excluding Antarctica for the NCEP and CRU data
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precipitation = 2.0 mm/day, global mean bias in NCEP precipitation =
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Figure 3.7: Average DJF precipitation (mm/day) for a) NCEP, b) NCEP
scaled with the CRU dataset and adjusted for gauge biases c) difference
between CRU and NCEP and d) difference between the NCEP scaled with
the CRU dataset and adjusted for gauge biases and the CRU dataset.

Temperature

The NCEP air temperature is calculated from the modeled atmospheric vari-
ables, which are constrained by upper air observations and surface pressure,
but no assimilation of screen level observations is carried out. It is a “B” class
variable (Kalnay et al., 1996) in the reanalysis classification as it is strongly
influenced by the model parameterization of surface energy fluxes. Kalnay
and Cai (2003) compared NCEP surface air temperature with station based
observations over the United States and found that the interannual variation
was well represented although the upward trend over time was significantly less
than that observed. Similar results were found by Kistler et al. (2001) at global
scales. Simmons et al. (2004) looked at continental and regional scales and
again found good agreement with interannual variability and generally lower
warming trends in the northern hemisphere but distinct and probably incorrect
regions of cooling in Australia and southern South America.

Figure 8 shows the mean annual time series of 2m air temperature for
the NCEP and CRU datasets for global and continental land areas excluding
Antarctica. The average annual global bias in the NCEP dataset is -0.56oC.

51



Comparison of the seasonal average air temperatures shows much larger re-
gional and seasonal differences (see Figure 9). Most notably, in Siberia and
Western Canada, and Alaska in the northern hemisphere winter, biases in the
NCEP reanalysis can reach in excess of 5oC. Low biases are evident in the
Himalayan range and Greenland, again of the order of 5oC, with smaller biases
throughout the Tropics and scattered areas in northern Africa and central Asia.
Biases in air temperature can be directly linked to changes in the land surface
water budget through modifications of evaporation and thus soil moisture (e.g.
Qu et al., 1998). To remove these biases the NCEP temperature data were
adjusted to match the CRU monthly values by shifting the NCEP values by
the difference between the NCEP and CRU monthly average values.

T ∗NCEP,3hr = TNCEP,3hr + (TCRU,MON − TNCEP,MON ) (3.3)

In addition to scaling the 3-hourly values so that their monthly mean
matched the CRU monthly values, the diurnal cycle of temperature for each
day was scaled so that the monthly mean diurnal temperature range (DTR)
matched the CRU monthly DTR values but the daily average value was un-
changed as follows:

T ∗NCEP,3hr = T ∗NCEP,DAILY +
DTRCRU,MON

DTRNCEP,MON

(
T ∗NCEP,3hr − T ∗NCEP,DAILY

)
,

(3.4)
Adjustments were made to the specific humidity, surface air pressure and

downward longwave radiation as outlined in section 3.2.2 to make them con-
sistent with the new temperature values.

Downward short and longwave surface radiation

Incoming shortwave radiation incident at the earth’s surface is the primary
energy source for the land surface and drives evapotranspiration and snow
melt. Therefore accurate specification of these forcing fluxes is essential for
land surface modeling. Snow accumulation and melt is particularly sensitive to
incoming longwave radiation (e.g. Schlosser et al., 2000), although Morrill et al.
(1999) found that energy and water budgets were not sensitive to the diurnal
cycle of longwave radiation. Downward surface short and longwave radiation
are completely predicted by the NCEP reanalysis forecast model, and, as with
precipitation and air temperature, contain systematic biases at seasonal time
scales. Local scale comparisons indicate biases in both the long and shortwave
products that may be systematic across geographic regions. Brotzge (2004)
found that the NCEP dataset consistently overestimated downward surface
shortwave radiation by 17-27% over 2000-2001 when compared to two Okla-
homa Mesonet sites. Longwave radiation was also underestimated but by a
lesser degree. Betts et al. (1996) found similar results when compared to data
from the FIFE experiment for 1987 and concluded that these problems are gen-
erally attributed to the NCEP model atmosphere being too transparent and
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Figure 3.8: Annual time series of air temperature (oC) averaged over
global and continental land areas excluding Antarctica for the NCEP and
CRU data sets. NCEP global mean air temperature = 7.6 oC, CRU global
mean air temperature = 8.1 oC, global mean bias in NCEP air temperature
= -0.6 oC.
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Figure 3.9: Average seasonal near-surface air temperature difference be-
tween the NCEP and CRU datasets (oC).

too few clouds being produced, which may be systematic of large-scale atmo-
spheric models in general. At larger scales, comparisons with remote sensing
based data have revealed large-scale biases. For example, Berbery et al. (1999)
found positive biases of 25-50 W/m2 over the United States when compared to
the Geostationary Operational Environmental Satellite (GOES) based product
of Pinker and Laszlo (1992).

Several global surface radiation budget (SRB) datasets have been devel-
oped in recent years including the GEWEX NASA Langley Surface Radiation
Budget Project 1984-1995 product (Stackhouse et al., 2004) and the Interna-
tional Satellite Cloud Climatology Project (ISCCP) global 1983-2000 product
(Zhang et al., 2004). These datasets provide surface short and longwave fluxes
that have been validated against ground measurements. The latest version
of the NASA Langley SRB product (release 2.0) is used here. Comparisons
with ground-based measurements from the Baseline Surface Radiation Network
(BSRN) indicate that errors are within measurement uncertainty. Comparison
of the SRB and NCEP downward longwave data is shown in Figure 10 as sea-
sonal averages for 1984-95. The mean bias in the NCEP dataset is 15.8 W/m2

over global land areas excluding Antarctica. There are large regional biases of
the order of 50-100W/m2 across the Sahara, Middle East and Central Asia,
the Andes and to a lesser extent in the western USA and Australia. The bi-
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Figure 3.10: Average seasonal difference in downward longwave radiation
between the NCEP and SRB datasets for 1984-94.

ases tend to be highest in the northern hemisphere spring and summer. The
comparison of downward shortwave radiation is summarized in Figure 11. The
mean bias in the NCEP shortwave data is -41.5 W/m2 over global land areas.
The biases tend to be larger in the spring and summer of each hemisphere in
mid to high latitudes. These exceed -60 W/m2 across the northern US and
Canada, northern Europe, Siberia and Central Asia during the boreal summer
and in the southern part of South America in the austral summer. In the
tropics there is reasonable agreement throughout the year.

Analysis of station data have shown that shortwave radiation at the earth’s
surface has decreased over large regions during 1960-90 (Gilgen et al., 1998)
that has been attributed to increases in cloud cover. More recently, studies of
station data (Wild et al., 2005) and satellite measurements (Pinker et al., 2005)
indicate that these downward trends have reversed over the past decade or so,
possibly due to reductions in aerosols. However, the trend in global terrestrial
shortwave radiation from the reanalysis shows a spurious upward trend (Figure
12b). Therefore, the reanalysis shortwave radiation is adjusted so that firstly,
systematic biases are removed at the monthly scale so that it matches the mean
of the SRB data for 1984-94, and secondly, trends over the full 50-yr period
are consistent with observations.

Using the relationship between cloud cover and surface downward short-
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Figure 3.11: Average seasonal difference in downward shortwave radi-
ation between the NCEP and SRB datasets for 1984-94. The bands of
missing data in high northern latitudes are where SRB data are not avail-
able for all months.

wave radiation (Thornton and Running, 1999), a new time series of radiation
is constructed that is consistent with observed trends. A linear regression
was developed at each grid cell between the monthly anomalies of reanaly-
sis cloud cover and shortwave radiation. This relationship was then used to
predict monthly anomalies of shortwave radiation from observation-based es-
timates of cloud cover anomalies from the CRU dataset. The resultant time
series was then converted to actual values whose monthly climatology over
1984-94 matched that of the SRB dataset. This was done by subtracting the
mean monthly climatology for 1984-94 from the time series of anomalies and
then adding the mean climatology of the SRB dataset. In this way the new
time series is consistent with the SRB data over the limited period of overlap
but imposes the long-term trends as derived from observed cloud cover. The
NCEP 3-hourly values are then scaled so that their mean values match this
new monthly time series as follows:

SW ∗
NCEP,3hr =

SWSRB+CRU,MON

SWNCEP,MON
SWNCEP,3hr, (3.5)

where the subscript SRB+CRU indicates the time series of monthly SW
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Figure 3.12: a) Annual anomalies of global mean cloud cover for the
CRU dataset and cloud cover and downward shortwave radiation from the
NCEP dataset. b) Annual time series of global mean downward shortwave
radiation for the NCEP, SRB QCSW and NCEP corrected datasets. The
corrected dataset has been scaled to be consistent with the SRB data
and the long-term variation of the CRU cloud cover. c) Annual time
series of global mean downward longwave radiation for the NCEP, SRB
LW and NCEP corrected dataset. The corrected datasets has been scaled
using the probability swap method to be consistent with the mean and
variability of the SRB data whilst retaining the year-to-year variation of
the NCEP dataset. Global means are calculated over terrestrial areas
excluding Antarctica.
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values derived from the CRU cloud cover and scaled to the SRB dataset.
Downward longwave radiation is bias corrected using a probability match-

ing method that scales the reanalysis monthly values to match the mean and
variability of the SRB values but retains the year-to-year variation of the NCEP
data. Figure 12c shows no apparent global trend in the NCEP data which is
consistent with station-based observations of long-term trends that are within
the bounds of measurement error (Wild et al., 2001). Therefore, no attempt is
made to alter the long-term trends in the NCEP monthly values. The proba-
bility matching method replaces each of the NCEP monthly mean values over
1948-2000 with a monthly value from the SRB time series that has the same
cumulative probability as the NCEP value. The cumulative probabilities were
calculated from PDFs of the NCEP and SRB monthly time series. The new
monthly time series was then used to scale the NCEP 3-hourly values:

LW ∗
NCEP,3hr =

LWSRB,MON

LWNCEP,MON
LWNCEP,3hr, (3.6)

Figure 12 shows the global mean monthly time series of downward short and
longwave radiation for the NCEP, SRB and the scaled NCEP datasets.

3.4 Discussion and Conclusions

The goal of this study is to provide a global dataset of forcings that has long
temporal and global coverage and is consistent in time and space. In this
respect, the dataset makes use of the latest available global meteorological
datasets and combines them with state of the art reanalysis to form a consistent,
high quality dataset. Nevertheless, an essential part of the development of any
dataset is validation against independent data sources, which will quantify the
errors and known biases and hopefully instill confidence in the use of the data.
This is a difficult task given the general lack of large-scale observations and the
fact that potential validation datasets are better utilized in the development of
the forcing dataset to produce the highest quality dataset possible.

The intended application of the forcing dataset is for long-term, large-scale
modeling, where the focus of interest is on the variation of the land surface
over seasonal to annual timescales and across regional and continental space
scales. Here it is more important to ensure that the statistics of the forcing
data are correct rather than trying to replicate the fine scale features of the
historic record. For example, the forcing dataset is unlikely to recreate actual
historic storm events partly because the correction of the daily precipitation
frequencies may disrupt spatial coherence at the daily time scale. This is be-
cause the disaggregation and correction methodologies are designed to match
the observed data only in a statistical sense whilst providing consistency among
variables where possible, and any detrimental effects on the terrestrial water
budget will be small at seasonal and regional scales.

The dataset can be evaluated by forcing a land surface model and compar-
ing the resultant water and energy fluxes and states with observations, such as
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streamflow records, snow cover extent and in situ soil moisture measurements.
Several studies have shown that evaluating land surface model simulations over
large areas requires detailed examination of all aspects of the modeling process
(e.g. Nijssen et al., 2001a,b; PILPS2-E experiment: Nijssen et al., 2003, Bowl-
ing et al., 2003; the series of NLDAS papers: Mitchell et al., 2004a). In addi-
tion to the errors in the forcings, there are also uncertainties in the land surface
model structure, physical parameterizations, and input parameters (vegetation,
soils, etc) as well as in the observations themselves. The relative contribution of
these factors to the differences from observations is difficult to discern without
a detailed examination of all aspects of the modeling process and this is work
in progress.

Nevertheless, it is possible to evaluate the dataset against similar bias cor-
rected forcing products and this is done next by comparing against the GSWP-2
forcing dataset that uses a similar strategy to combine reanalysis with obser-
vations, although for a much shorter time period.

3.4.1 Comparison with GSWP-2 forcing dataset

The goal of GSWP-2 is to develop global datasets of soil moisture and other
hydrologic variables from multiple land surface models and investigate the dif-
ferences and sensitivities of these models. The GSWP forcing dataset has
the same temporal (3-hourly) and spatial (1.0 degree) resolution but for a
shorter time period (1986-1995), is based on the NCEP-DOE reanalysis and
is described in detail by Zhao and Dirmeyer (2003). This section compares
monthly mean values of precipitation, temperature, and radiation from the
two datasets as absolute differences and using the non-parametric Wilcoxon
signed ranks test of differences. The monthly mean diurnal temperature range
and daily precipitation frequencies are also examined, as these generally have
a significant impact on the hydrologic cycle. Figure 13 shows the mean annual
differences and statistical significance of differences in the monthly means for
these variables.

Monthly mean temperature

Comparison of the monthly temperatures revealed differences that are consis-
tent with differences in the observations used to create the two datasets. Both
use long-term monthly temperature from CRU but different versions (GSWP
uses version 1.0 and this study uses the updated and extended version 2.0).
Using the Wilcoxon signed ranks test, the null hypothesis was tested that the
median difference of monthly means between the two datasets is zero for each
grid cell at the 95% confidence level. Figure 13 shows that the null hypothesis
can be rejected in the majority of regions, possibly due to changes in con-
tributing gauges between the two versions of the CRU dataset and the effects
of using different datasets to correct for elevation effects. The GSWP uses the
ISLSCP elevation product and this study uses the National Geophysical Data
Center (NGDC) 2-minute elevation dataset aggregated up to 1.0 degree reso-
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Figure 3.13: Difference of monthly mean values, averaged over 1986-
1995, between the GSWP-2 forcing dataset and this study. Contours are
critical values of the Wilcoxon signed ranks test statistic at the 95% level.
Solid contours are where the GSWP data are greater, dashed contours are
where GSWP are less. Regions where the two datasets are statistically
similar are unshaded.

60



lution. The mean difference is 0.0965 oC over global land areas and maximum
monthly differences of up to 4-5 oC occur in parts of the Himlayas and Tibetan
plateau, Northern Greenland and in small isolated regions scattered across the
globe.

Monthly mean precipitation

Monthly precipitation shows widespread differences that are statistically sig-
nificant, which is to be expected given the independent sources of observation
data used by each dataset. The GSWP data are based on Global Precipita-
tion Climatology Centre (GPCC) monthly data which are used to scale the
NCEP-DOE sub-monthly precipitation amounts. Corrections are also applied
for gauge undercatch. Data from the Global Precipitation Climatology Project
(GPCP) are blended in for regions where the density of contributing gauges for
the GPCC product is low. For this study the CRU monthly means are used,
with correction for gauge undercatch based on the analysis of Adam and Letten-
maier (2003). Several regions stand out as being coherently biased one way or
the other. The GSWP dataset is generally greater across mid-latitudes in both
hemispheres, with larger differences greater than 1.0 mm/day in Scandinavia,
the Pacific Northwest and Alaska, the eastern US and southern South America.
It is generally lower in the Tropics and high northern latitudes most notably
in Central America and the Amazon basin, northern Canada and Greenland.
The global mean annual bias in the GSWP is 0.0661 mm/day (24.1 mm./yr).

Monthly mean downward short and longwave radiation

For downward short and longwave radiation, both forcing datasets use SRB
products, although different versions (this study uses the SRB-QCSW and
SRB-LW datasets and GSWP uses the SRB-SW and SRB-QCLW datasets).
Additionally, this study uses observed cloud cover data to adjust the inter-
annual variability of the shortwave monthly means, whereas the GSWP uses
the data as is because of the direct overlap with the SRB time period. The
differences between the two datasets are consistent with the difference between
the SRB-SW and SRB-QCSW datasets (global mean bias for GSWP is -8.2
W/m2). The GSWP is generally smaller with the greatest differences across
a band stretching from northern Africa to Japan, and also in the western and
northeast US. For longwave, the differences are again consistent with the differ-
ences between the SRB-LW and SRB-QCLW. The SRB-QCLW (GSWP) values
tend to be larger (global mean bias of 6.0 W/m2), and distributed similarly to
the shortwave differences, but are lower at high latitudes.

Diurnal temperature range

Both datasets use CRU DTR products to correct the air temperature. As
for mean temperature the GSWP dataset uses CRU version 1.0 and version
2.0 is used here. For the GSWP dataset, the 3-hourly air temperature values
are scaled by the ratio of the CRU to NCEP-DOE reanalysis DTR values but
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with restrictions on the size of the ratio to avoid excessive values. A similar
method is used here (section 3.d.2) but with no restriction on the ratio of CRU
to NCEP values. The mean global bias for GSWP is -1.4oC and maximum
monthly differences can exceed 5oC. GSWP is generally larger in the Western
Hemisphere, the Tropics during the wet season and is lower predominantly over
central Asia and other dry regions worldwide.

Daily precipitation frequency

The distribution of precipitation within a month in terms of the number of wet
and dry days plays an important role in partitioning the monthly precipitation
into runoff and evaporation (Sheffield et al., 2004). The GSWP2 dataset makes
no adjustment to daily precipitation frequencies and so uses the NCEP-DOE
as is. For this study, the NCEP-NCAR reanalysis daily data are resampled
to match observation based datasets of precipitation frequencies. The GSWP2
has on average 0.48 fewer precipitation days per month globally. GSWP is
generally greater in the humid Tropics (except for northwest South America)
and in southwest South America and is smaller in most other regions, especially
in higher northern latitudes. Maximum monthly differences are generally less
than 4 precipitation days but can reach 10 precipitation days in small regions
in Greenland, central Siberia and the humid Tropics.

3.4.2 Future improvements

Although the emphasis has been on using global scale observation datasets
to ensure consistency in space, nevertheless, better quality data sets exist in
terms of spatial and temporal resolution but with smaller spatial and tempo-
ral extents. For example, for the temporal disaggregation of precipitation at
high northern latitudes, it was assumed, because of the lack of coverage by the
TRMM dataset, that the diurnal cycle in cold, mid-latitude climates is repre-
sentative of neighboring polar regions. Sub-daily station data from Canadian
surface airways products and the Former Soviet Union (Razuvaev et al., 1998)
are available for a significant number of high-latitude locations and can be
used to derive the probability distributions used for the disaggregation. Fur-
thermore, most monthly gridded precipitation datasets also do not allow for
orographic effects. As the network of rain gauges that contribute to these data
sets are generally not located in regions of complex and elevated topography,
this usually results in an underestimation of precipitation, by as much as 3
times (Adam et al., 2006). The correction method of Adam et al. (2006) uses
a simple catchment water balance method to calculate adjustments to precipi-
tation. These changes may be incorporated into new versions of the dataset in
the future, although concerns over consistency in time and space may make this
somewhat counter-productive. In addition, as improved and extended versions
of observation-based datasets used in this study become available these will be
incorporated where applicable.
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3.4.3 Dataset availability

The forcing dataset will be made available over the internet at
http://hydrology.princeton.edu in the ALMA (Assistance for Land-surface
Modelling activities) netcdf format (version 3) which is a standard data ex-
change format for land surface scheme forcing and output data. The develop-
ment of the final 1.0 degree, 3-hourly dataset has gone through a number of
intermediate stages in terms of spatial and temporal resolution and these in-
termediate products will also be added to the archive. The following products
are available:

• Global, 2.0 degree, 1948-2000, daily

• Global, 1.0 degree, 1948-2000, daily

• Global, 2.0 degree, 1948-2000, 3-hourly

• Global, 1.0 degree, 1948-2000, 3-hourly

The variables are precipitation, air temperature, downward short and long-
wave radiation, surface pressure, specific humidity and windspeed. Global cov-
erage indicates terrestrial regions excluding Antarctica.

3.4.4 Concluding remarks

This paper describes a long-term, high resolution, near surface meteorological
dataset that can be used for forcing hydrologic simulations of the land surface
water and energy budgets. The necessity for accurate estimates of the spa-
tial and temporal variation in terrestrial water and energy fluxes and states
is evident and is the driving force in the development of high resolution and
long-term hydroclimatological datasets. The development of the highest qual-
ity forcing datasets is a first and vital step towards this. Through research
initiatives such as the World Climate Research Programme (WCRP) Climate
Variability and Predictability (CLIVAR) program and Global Energy and Wa-
ter Cycle Experiment (GEWEX) the emphasis has been on the development
and enhancement of large scale datasets, through the use of increasingly better
observational datasets and the use of new assimilation and modeling techniques.
This study is intended to form a part of this process by providing a benchmark
forcing dataset that combines state of the art reanalysis products with the most
recent observation-based datasets. The goals in the development of this dataset
are to provide consistency in time and space among variables from contributing
datasets whilst trying to achieve the highest resolution that can be supported
by the data. This dataset provides a significant improvement over the original
reanalysis variables, and can be used for a wide variety of applications and
diagnostic studies in the climatological, hydrological, and ecological sciences.
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Chapter 4

Development of a global
dataset of soil moisture and
drought, 1950-2000

This chapter is a slightly modified version of: Sheffield, J., and E. F. Wood (2007),
Characteristics of global and regional drought, 1950-2000: Analysis of soil moisture
data from off-line simulation of the terrestrial hydrologic cycle, J. Geophys. Res., 112,
D17115, doi:10.1029/2006JD008288.
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Abstract

Drought occurrence is analyzed over global land areas for 1950-2000 using soil
moisture data from a simulation of the terrestrial water cycle with the VIC land
surface model, which is forced by an observation based meteorological dataset.
A monthly drought index based on percentile soil moisture values relative to
the 50-year climatology is analyzed in terms of duration, intensity and severity
at global and regional scales. Short-term droughts (<= 6 months) are preva-
lent in the Tropics and mid-latitudes, where inter-annual climate variability
is highest. Medium term droughts (7-12 months) are more frequent in mid-
to high-latitudes. Long term (12+ months) droughts are generally restricted
to sub-Saharan Africa and higher northern latitudes. The Sahel region stands
out for having experienced long-term and severe drought conditions. Severe
regional drought events are systematically identified in terms of spatial cov-
erage, based on different thresholds of duration and intensity. For example,
in northern Europe, 1996 and 1975 were the years of most extensive 3- and
12-month duration drought, respectively. In northern Asia, severe drought
events are characterized by persistent soil moisture anomalies over the win-
tertime. The drought index identifies several well-known events, including the
1988 US, 1982/83 Australian, 1983/4 Sahel and 1965/66 Indian droughts which
are generally ranked as the severest and most spatially extensive in the record.
Comparison with the PDSI shows general agreement at global scales and for
these major events but they diverge considerably in cooler regions and seasons,
and especially in latter years when the PDSI shows a larger drying trend.

4.1 Introduction

Drought is a pervasive climate phenomenon that is considered to be one of the
most damaging natural hazards in terms of economic cost (Wilhite, 2000). It
can cover extensive areas and last from months to multiple years and may have
major impacts on agriculture, water supply and the environment. Historically
drought has persistently affected human activity (e.g. Hodell et al., 1995, Stine,
1994) and impacts in every part of the globe in which habitation is possible.
Despite its omnipresent nature our knowledge of the onset, development and
recession of drought is deficient. This hampers our ability to predict its oc-
currence at seasonal and longer time scales. Part of the reason for this is the
dearth of detailed data about its spatial and temporal variability across large
scales and the impact on various environmental and social sectors.

To understand how drought varies, long-term observations of relevant vari-
ables, such as precipitation, streamflow and soil moisture, are required. Global
datasets of these variables are lacking at high spatial resolution or are avail-
able only for limited time periods. Alternatively, models can provide spatially
and temporally consistent fields of these variables at large scales when forced
with observed boundary conditions and can be used for prediction at seasonal
to decadal time scales when run in forecast mode. Furthermore, atmosphere-
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ocean general circulation models (AOGCM) can be used to study decadal vari-
ability in drought when run in coupled mode, and may provide insights into
the forcing mechanisms of historic drought events, such as the influence of sea
surface temperature patterns (Hoerling and Kumar, 2003).

Historically, the Palmer Drought Severity Index (PDSI) (Palmer, 1965) has
been the tool of choice when monitoring and analyzing drought occurrence.
At continental to global scales its simplicity makes it an attractive choice for
reconstructing drought records (Cook et al., 1999; Dai et al., 2004). However,
it has been shown to be unsuitable for widespread application and suffers from
simplifications in its physical basis (Alley, 1984; Heim, 2002). With the emer-
gence of physically based models over the last decade that simulate the detailed
processes of energy and water transfer at the earth’s surface, including detailed
soil moisture transport and snow processes, the potential for more accurate
drought monitoring is evident (Sheffield et al., 2004a). Coupled with the grow-
ing availability of remote sensing products and detailed meteorological data at
fine time and space scales to force these models with, both retrospectively and
in real time, there is the potential for analyzing drought variability historically
and for monitoring at regional and global scales.

Drought in its various forms has been analyzed at large scales by many
authors in recent years. Sheffield et al. (2004a) used an approach based on
simulated soil moisture data to analyze the spatial and temporal extent of
national and regional drought over the US. Similarly, Andreadis et al. (2005)
used severity-area-duration curves to investigate major US droughts over the
20th century. At similar scales, Van der Schrier et al. (2006a, 2006b) calculated
summer PDSI over North America and Europe for 1901-2000 and identified the
1930s and 1950s as the driest periods of the record over North America and the
late 1940s to early 1950s over Europe. Globally, Dai et al., (2004) calculated
PDSI data from 1870 to 2002 and concluded that precipitation and temperature
trends modulated by ENSO activity as the leading cause of variability. Peel et
al. (2004, 2005) looked at 3863 precipitation station and 1236 stream flow gauge
records globally to analyze the distribution of drought duration, magnitude
and severity and found that both precipitation and streamflow showed similar
distributions of drought duration globally except for the Sahel. McCabe and
Palecki (2006) analyzed decadal variability in global PDSI and sea surface
temperatures.

In this study, the spatial and temporal characteristics of global drought dur-
ing the second half of the 20th century are analyzed using soil moisture data
from an off-line land surface model simulation. Drought is defined conceptually
as a sequence of soil moisture deficits relative to climatology. The simulation
is driven by a hybrid forcing dataset derived by combining global atmospheric
reanalysis with a suite of observational datasets to remove biases and spuri-
ous trends in the reanalysis (Sheffield et al., 2006). The output fields have
been validated against observations of the terrestrial hydrologic budget, where
available (Sheffield and Wood, Evaluation of retrospective off-line simulation
of the global terrestrial water budget, 1950-2000, in preparation). This study
focuses on the statistical properties of drought occurrence as derived from this
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simulation, in terms of duration, magnitude and severity, and how these vary
globally. This definition does not explicitly take into account the impacts of
drought but these are generally small for short term droughts and increase
with duration and magnitude. By providing a globally consistent picture of
drought occurrence that is based on modeled physical processes and observa-
tion based boundary conditions, these analyses can help characterize historic
droughts and thus form a basis for real time monitoring and prediction, includ-
ing estimates of drought recovery. An analysis of the long-term variability and
trends in drought characteristics over the latter half of the 20th century and
the relationship with local and remote forcings will be reported elsewhere by
the authors.

The paper is laid out as follows. First, the soil moisture dataset is de-
scribed, including the land surface model and the meteorological forcings. Then
methods for deriving the drought index are presented along with statistics for
describing the attributes of drought and their temporal and spatial variation.
These include the duration, magnitude (deviation from a threshold value),
intensity (mean magnitude over the duration) and severity (intensity times du-
ration). A general overview of the variation of soil moisture globally is given
next, followed by a global and regional analysis of drought, its characteristics
and their inter-relationships. Finally, the dataset is compared to the PDSI and
the methods presented are used to identify major drought periods over the last
50 years and some examples of these are evaluated within the context of the
statistical framework.

4.2 Datasets and methods

The analysis of drought is based on simulated soil moisture data derived from
an off-line land surface hydrological model simulation. Soil moisture in the top
meter or so provides a useful index of drought in that it provides an aggregate
estimate of water availability from the balance of precipitation, evaporation
and runoff processes and takes into account the delays caused by infiltration
and drainage, snow accumulation and melt, and the impacts of anomalies in
meteorological forcings such as temperature and radiation. In drought ter-
minology, soil moisture falls somewhere in between meteorological drought (a
period of precipitation deficit) and hydrological drought (a shortfall in stream-
flow, reservoir and lake levels, groundwater, etc.) and may be representative of
agricultural drought (deficient soil moisture relative to crop and plant demand)
through its control on transpiration and thus vegetative vigor. The drought
index is calculated as the deficit of soil moisture with respect to the model’s
seasonal climatology at a given location (Sheffield et al., 2004a). This allows
us to quantify and compare drought characteristics between locations in a con-
sistent manner. A drought is then defined as a period with a percentile soil
moisture value less than a chosen level which represents the drought magni-
tude. This level reflects the rarity or extremeness of the event. The off-line
simulation and the derivation of the drought index and related statistics are
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described in detail next.

4.2.1 Off-line land surface simulation

The Variable Infiltration Capacity (VIC) land surface model (Liang et al., 1994,
1996; Cherkauer et al., 2002) was used to generate spatially and temporally con-
sistent fields of soil moisture and other water budget flux and state variables.
The VIC model simulates the terrestrial water and energy balances and dis-
tinguishes itself from other land surface schemes through the representation of
sub-grid variability in soil storage capacity as a spatial probability distribution,
to which surface runoff is related (Zhao et al., 1980), and by modeling base flow
from a lower soil moisture zone as a nonlinear recession (Dumenil and Todini,
1992). The VIC model has been applied extensively at regional (Abdulla et
al., 1996; Maurer et al., 2002) and global scales (Nijssen et al., 2001; Sheffield
et al., 2004b), including snow and ice dominated regions (Bowling et al., 2003;
Su et al., 2006).

Horizontally, VIC represents the land surface by a number of tiled land
cover classes. The land cover (vegetation) classes are specified by the fraction
of the grid cell which they occupy, with their leaf area index, canopy resistance,
and relative fraction of roots in each of the soil layers. Evapotranspiration is
calculated using a Penman-Monteith formulation with adjustments to canopy
conductance to account for environmental factors. The subsurface is discretized
into multiple soil layers. Movement of moisture between the soil layers is mod-
eled as gravity drainage, with the unsaturated hydraulic conductivity a func-
tion of the degree of saturation of the soil. Cold land processes in the form of
canopy and ground snow pack storage, seasonally and permanently frozen soils
and sub-grid distribution of snow based on elevation banding are represented
in the model. Seasonally and permanently frozen soils are represented in the
VIC model according to the algorithm of Cherkauer and Lettenmaier (1999).
Soil temperatures are calculated using a finite difference solution of the heat
diffusion equation for a user-specified number of nodes that are independent of
the soil moisture layers. Soil ice content is estimated based on node tempera-
tures and infiltration and baseflow are restricted based on the reduced liquid
soil moisture capacity.

Previously, soil moisture fields from a retrospective simulation with the
VIC model for the USA (Maurer et al., 2002) have been analyzed in terms of
drought occurrence by Sheffield et al. (2004a), who found that the simulated
soil moisture values were able to represent historic drought events, display
coherency and sufficient detail at small space scales, and compare well with
standard drought indices such as the PDSI. In snow dominated regions the
VIC based dataset and the PDSI dataset were found to diverge, likely due
to inadequate representation of cold season processes in the calculation of the
PDSI.

For this study, the VIC model was run globally at 1.0 degree spatial reso-
lution and 3-hourly time step, for the period 1950-2000. Three soil layers were
used in the simulation with the top layer being 30 cm thick. The second layer,
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the main storage layer, was between 0.5 to 1.5 m and the lower layer, which pro-
vides moisture for subsurface runoff, was between 0.1m and 0.25m. These two
layers are adjusted during the calibration process to result in routed streamflow
that satisfactorily match observations at the large basin scale. The values of
soil and vegetation parameters and their spatial distribution were specified fol-
lowing Nijssen et al. (2001). Soil textural information and bulk densities were
derived by combining the 5-min Food and Agricultural Organization–United
Nations Educational, Scientific, and Cultural Organization (FAO–UNESCO)
digital soil map of the world (FAO 1995) with the World Inventory of Soil
Emission Potentials (WISE) pedon database (Batjes 1995). The remaining
soil characteristics, such as porosity, saturated hydraulic conductivity, and the
exponent for the unsaturated hydraulic conductivity equation were based on
Cosby et al. (1984). Vegetation types were taken from the Advanced Very
High Resolution Radiometer (AVHRR)-based, 1-km, global land classification
of Hansen et al. (2000). Vegetation parameters such as height, and minimum
stomatal resistance were assigned to each vegetation class based on a variety
of sources described in Nijssen et al. (2001). Monthly values of leaf area index
were based on Myneni et al. (1997) and were kept constant from year to year.

This simulation was forced by a hybrid dataset of meteorological data de-
rived from the National Centers for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) reanalysis (Kalnay et al., 1996) and
a suite of global observation based products. In effect, the sub-daily variations
in the reanalysis are used to downscale the monthly observations. These obser-
vations, which are generally available at higher spatial resolution, are concur-
rently used to downscale the reanalysis in space. Known biases in the reanalysis
precipitation and near-surface meteorology were corrected at the monthly scale
using observation-based datasets of precipitation, air temperature and radia-
tion. Corrections were also made to the rain day statistics of the reanalysis
precipitation which have been found to exhibit a spurious wave-like pattern in
high-latitude wintertime. Wind-induced undercatch of solid precipitation was
removed using the results from the World Meteorological Organization (WMO)
Solid Precipitation Measurement Intercomparison project (Adam and Letten-
maier, 2003). Other meteorological variables (downward short- and longwave,
specific humidity, surface air pressure and wind speed) were downscaled in
space with account for changes in elevation. The forcing dataset is described
in detail by Sheffield et al. (2006). The simulation has been validated against
available observations of terrestrial hydrology (Sheffield and Wood, Evaluation
of retrospective off-line simulation of the global terrestrial water budget, 1950-
2000, in preparation) including in-situ measurements of soil moisture, large
basin streamflow and remote sensing based snow datasets.

4.2.2 Analysis of soil moisture and derivation of drought
index

The drought index is calculated using the method of Sheffield et al. (2004a) and
is briefly described here. Simulated soil moisture data at multiple model soil
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layers are aggregated over the total soil column, converted to volumetric values
and averaged to monthly values. The moisture in the total soil column is used
as it reflects the totality of modeled processes, including plant transpiration,
soil evaporation, infiltration, runoff, baseflow and snow accumulation and melt
that act at various time scales. For each model grid cell and month, beta
distributions are fitted to the 51 monthly values (1 value for each year in
1950-2000) by finding distribution shape parameters that minimize the error
between the statistical moments of the simulation sample and that of the fitted
theoretical distribution. The current level of drought or wetness for a particular
month and point in space can then be gauged relative to this fitted distribution
or climatology. A detailed description of these methods is given in Sheffield et
al. (2004a) and a summary is given next.

Empirical moments of soil moisture

The statistical characteristics of hydrologic variables, including soil moisture
can be best described by L-moments (Stedinger et al., 1993). Hydrologic vari-
ables are generally non-Gaussian and often possess extreme values or outliers
which hinder conventional statistical description. The advantage of L-moments
is that they are more robust to the presence of outliers and are able to charac-
terize a wider range of distributions (Hosking, 1990). However, autocorrelation
or trends in the monthly soil moisture data will invalidate the application of
L-moments that assumes the variable to be random. The areal extent of sta-
tistically significant autocorrelation (0.01 level) in the data is between 12 and
17% depending on the month with about 50% of this area in drier regions
(precipitation < 0.5mm/day) and the majority of the remainder in very high
latitudes. Therefore, the area that potentially invalidates the assumption of
randomness is small and generally restricted to drier regions, such as the Sa-
hara, which we ignore in the analysis. L-moments can be written in terms of
linear combinations of probability-weighted moments (PWMs). For values of
a random variable Xj (X1,X2,. . . ., X n) sorted in decreasing order, unbiased
estimators for the first three PWMs are:

b0 =X̄

b1 =
n−1∑
j=1

(n− j)Xj

n(n− 1)

b2 =
n−2∑
j=1

(n− j)(n− j − 1)Xj

n(n− 1)(n− 2)

(4.1)

The L-moments are calculated in terms of PWMs and are defined as
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λ1 =b0 (4.2)
λ2 =2b1 − b0 (4.3)
λ3 =6b2 − 6b1 + b0 (4.4)

The sample estimates using the L-moments are defined for the first few
moments as

Lmean(µs) =λ1 (4.5)

LCV (σs/µs) =
λ2

λ1
(4.6)

Lskew(γs) =
λ3

λ2
(4.7)

where µ, σ and γ are the mean, standard deviation and skew, respectively
and subscript s indicates the sample estimates of these statistics.

Soil moisture probability distributions

To simulate the continuous variation of soil moisture, beta probability distribu-
tion functions (PDF) are fitted to the simulated monthly soil moisture values.
The beta distribution can represent a wide variety of shapes and is flexible
enough to account for positive and negative skew values, which is necessary
given the variation in soil moisture distributions globally. A generalized form
of the beta distribution, defined on limits a and b, with a ¡ b, is:

f(θ) =
1

B(b− a)t−1
(θ − a)r−1(b− θ)t−r−1, a ≤ θ ≤ b (4.8)

where θ is the volumetric soil moisture content; the distribution shape pa-
rameters, r and t are constrained by r > g and t > g and B = Γ(r)Γ(t − r)
/Γ(t), where Γ() is the gamma function. For soil moisture, the parameters a
and b represent the lower and upper limit on soil moisture, respectively, which
are dependent on soil type and climate. The parameters r and t do not have
any direct physical significance but determine the shape of the distribution and
its moments.

The parameters a, b, r and t were estimated for each grid location and
month. Parameter a (b) was estimated by assuming that the first (last) 10%
of the sorted soil moisture values are linearly related to its empirical cumula-
tive distribution function. We also investigated setting a to zero and b to soil
saturation and this gave similar results for the fitted distributions. To deter-
mine r and t, once a and b were estimated, the L-moment sample statistics
were equated to the corresponding beta distribution moments and a “best-fit”
solution for r and t was found by minimizing the objective function:
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error =
(µ− µs)2

µ2
s

+
(σ2 − σ2

s)2

(σ2
s)2

+
(γ − γs)2

γ2
s

(4.9)

using the shuffled complex evolution global optimization algorithm (SCE-
UA) of Duan et al. (1993).

Calculation of the drought index

Equation 4.8 was used to estimate the PDF of monthly soil moisture, for each
month and grid cell. The VIC drought index is then represented by the quantile,
q(θ), corresponding to a soil moisture value θ, and is determined by integrating
the PDF over (a,θ). The integral of the PDF can be approximated as follows
and is used to derive spatial fields of the drought index.

q(θ) =

θ∫
a

f(θ)dθ ≈
i=M∑
i=1

f(a + (i− 1) ∗∆θ + ∆θ/2) ∗∆θ (4.10)

where a <= θ <= b, M is a large integer (1000 in this study), and ∆θ =
(θ - a)/M.

4.2.3 Temporal and spatial drought statistics

To characterize the spatial and temporal variation of drought, a number of
statistics are developed. Firstly, a drought is defined in general terms as a pe-
riod of anomalously low soil moisture. In engineering design or water resources
management, the anomaly is often described in terms of the deficit below a
critical or demand level. For the soil moisture drought index, this is a thresh-
old quantile, qo(θ). The magnitude of drought is the deficit from this threshold
level:

M = q0(θ)− q(θ) (4.11)

In line with other drought indices (e.g. the PDSI), the level of drought can
be categorized based on different arbitrary threshold values. These categories
are usually referred to as moderate, severe and extreme or similar. In this
study, a threshold value of 10% soil moisture quantile is used for the majority
of the analysis to discern between a drought and a non-drought. The study of
Sheffield et al. (2004a) and sensitivity tests of the threshold value indicate that
this value satisfactorily characterizes major drought conditions globally. This
value is also comparable to that used by the US National Drought Monitor
(http://drought.unl.edu/dm) to denote “severe” drought conditions. Other
analyses carried out in this study investigate the continuous variation of the
soil moisture and drought magnitude as a function of the threshold value.
Recognizing that the meaning and impacts of drought are regionally and sector
specific, we also investigate the occurrence of short-term, severe drought and
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long-term, moderate drought (Section 4.4) as characterized by different values
of q0(θ) and duration.

Following Yevjevich (1972), the occurrence of drought can be analyzed us-
ing the theory of runs, which has been applied frequently to time series of
anomalous hydrologic events, most often in streamflow analysis (e.g., Peel et
al., 2004). A run is defined as a consecutive sequence of D data values, in
this case soil moisture values θ, below the threshold qo(θ) that is preceded and
followed by at least one value q(θ) > qo(θ). The cumulative deficit or severity
of a run of duration D starting at time t1 is:

S =
t+D−1∑

t=t1

q0(θ)− q(θ)t (4.12)

which may also be written as

S = I ×D (4.13)

where I is the intensity or average magnitude of the run. Thus a run may
be termed “severe” if the magnitude is large and/or deficits of any magnitude
last for multiple months. This recognizes that the impact of drought is a subtle
balance between these two related factors. It should be noted that because the
drought index is defined relative to the local climatology, the magnitude of a
drought at one location may be higher than at another even though the abso-
lute soil moisture value is higher. The distribution of run durations, within the
time series of soil moisture quantiles can give insight into the stochastic or de-
terministic nature of drought occurrence. Further it can be used to understand
the frequency of droughts and the probability of future occurrence, in terms of
magnitude or severity. The mean run duration is given by

D̄ =
1
N

N∑
t=1

Dt (4.14)

where N is the total number of runs in the time series. Similarly, higher
order statistics can be calculated that describe the spread in the distribution
of runs (variance) and the bias towards longer or shorter runs (skew).

To facilitate general comparisons, a number of run duration classes, Dc, are
defined as follows:

D1−3, very short− term : 1 ≤ D ≤ 3, q(θ) <= q0(θ) (4.15)
D4−6, short− term : 4 ≤ D ≤ 6, q(θ) <= q0(θ) (4.16)

D7−12, medium− term : 7 ≤ D ≤ 12, q(θ) <= q0(θ) (4.17)
D12+, long − term : D > 12, q(θ) <= q0(θ) (4.18)

The total number of runs of a particular duration class can then be calcu-
lated over the time series and the frequency of occurrence over a defined period
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(e.g. number of medium-term runs per 30 years) used to compare with other
locations.

All the above statistics can be calculated for time series of soil moisture at a
model grid cell. It is of interest to know the global variation of these statistics
across climate and land cover zones and their spatial correlation structure. The
latter is important for understanding how the extent of drought develops and
decays over space. The spatial extent of deficits (for a particular value of qo(θ))
over a region is defined as the ratio of the area in deficit to the total area of
the region:

A =

Ngrids∑
i=1

A(i) = {q(θ) <= q0(θ)}

Ngrids∑
i=1

A(i)
(4.19)

where A(i) is the area of grid cell i weighted by the cosine of the grid cell
latitude and Ngrids is the total number of grid cells in the region of interest.
We are also interested in the spatial extent of contiguous drought, AC , which
is calculated using a simple clustering algorithm based on Andreadis et al.,
(2005). Drought clusters of less than 10 grid cells (approximately 100,000
km2) are filtered out.

4.2.4 Some caveats and uncertainties

Sheffield et al. (2004a) lists some of the potential deficiencies in the approach
applied here. These include errors in the model forcing (unknown systematic
biases and spurious trends), simplifications and biases in the model physics,
uncertainties in the soil and vegetation parameter data, and errors in the fit-
ted soil moisture distributions. Although some of the uncertainties will be
masked by spatial and temporal averaging and the use of summary statistics,
the compound effect of errors in all stages of the modeling process will in-
evitably lead to errors in final analysis. Furthermore, the full representation of
drought variability over global scales is a difficult task given that knowledge of
the variability of even basic climate variables, such as precipitation and tem-
perature, is lacking over much of the world at any scale. However, the use of a
carefully constructed forcing dataset to drive a state of the art and physically
based land surface model instills confidence in the soil moisture data (and other
water budget variables), which are validated where observations are available.
It should also be noted that the analysis does not take into account the direct
influence of anthropogenic activities on the water budget such as irrigation and
the potential response to climate variability and drought in terms of vegetation
dynamics and land use change.
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Figure 4.1: L-moment mean, variance and skew of monthly mean vol-
umetric soil moisture for January and July. Also shown is the seasonal
range for each statistic, calculated as the difference between the maximum
and minimum monthly values.

4.3 Results

4.3.1 Global variation of soil moisture

The sample estimates of soil moisture statistics are derived using L-moments.
Figure 4.1 shows the global variation in Lmean, Lcv and Lskew for January and
July, and the seasonal range for each statistic. High mean values of soil mois-
ture occur in the Tropics and follow the seasonal undulation of the terrestrial
Inter Tropical Convergence Zone (ITCZ), most notably in central Africa and
in Amazonia where the mean soil moisture approaches saturation. The south-
east Asian Monsoon is reflected in the soil moisture values, as is wetting up
during the North American Monsoon. In mid-latitudes, soil moisture wets up
in the Boreal winter and spring with extensive wetting across Europe and into
Russia caused by low evaporation and melting snow pack. At higher north-
ern latitudes, notable wet regions include near annually snow-covered regions
of northern Quebec and Newfoundland in Canada and the northern parts of
Ob-Yenisey basins in Siberia. Relatively low soil moisture values are spatially
extensive and are found in perennially dry regions of the Sahara, the Middle
East, central Asia, Australia and southern South America, among others.

76



The distribution of Lcv values is more interesting as it represents the inter-
annual variability and thus gives an indication of the range in soil moisture
values and the potential for higher drought frequency. Regions of high vari-
ability tend to be collocated or located near to regions of high mean soil mois-
ture. For example, in the Amazon basin the region of high mean soil moisture
is surrounded by a band of higher variability likely a result of the annually
variable spatial extent of precipitation over the region. Similarly, in Africa,
bands of high and low variability coincide with the central part and edges of
the ITCZ seasonal footprint. The thin band of high variability over the Sahel
shows the vulnerability of this region to wet and dry extremes. In the US, the
high wintertime variability coincides with the region of high soil moisture in
the southeast but is shifted slightly to the west.

The skewness of the distribution of soil moisture (Lskew) is highly variable
across the world and shows seasonality as indicated in Figure 4.1. Soil moisture
is bounded between wilting point and porosity, and so its distribution will
typically become skewed as the mean approaches these boundaries (Western et
al., 2002) with positive (negative) skew for dry (wet) soils. In general, northern
mid- and high-latitudes show little or no skew in the winter but positive skew
in the summer as the soil dries. The latter is indicative of the presence of
a few extreme wet years that punctuate the time series, which is confirmed
by inspection of individual grid cell histograms. Values tend to be higher in
Tropical and sub-Tropical regions, most notably in the Amazon and central
Africa, where high seasonality in precipitation forces soil moisture towards dry
or wet conditions. Within the Amazon, regions of high and low variability
tend to be collocated with regions of extreme skew values. For example, in
January low variability is associated with negative skew and high variability
with positive skew. In July, the dipole of negative and positive skew to the
northeast and southwest, respectively, are some of the highest skew values
globally. However these regions also have low variability indicating that the
skewed monthly values are close to the mean and thus relatively unimportant.
In Africa, positive skew is also associated with low variability.

4.3.2 Spatial extent of drought

The regionally averaged time series of soil moisture quantile and spatial extent
of drought for q(θ) < 10% (total and contiguous area) is illustrated in Figure
4.2. The regions are defined by Giorgi and Francisco (2000) with the addition
of the northeast Canada region (NEC), and are shown in Figure 4.3 and defined
in Table 4.1 in terms of area. These regions are chosen as they cover all land
areas, are simple in shape, and have been used extensively in previous climate
variability and change studies (e.g. Lopez et al., 2006; Kharin and Zwiers,
2005; Giorgi, 2002). Note that the time series in Figure 4.2 are smoothed to aid
visualization, which will tend to diminish the extreme values. The maximum
drought extent values from the original unsmoothed monthly time series are
given in Table 4.1.

Globally, there is little variation in the extent of drought due to the spatial
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Figure 4.2: Time series of regionally averaged soil moisture quantile and
areal extent of drought (total and contiguous) (q(θ) < 10%) for 1950-2000.
The data are smoothed from the original monthly data with a 13-month
moving average.

78



Region Total Area Amax AC,max

(km2 x 1012) (%) (%)
World 124.9 15.9 12.9
Northern Europe (NEU) 5.1 46.6 44.4
Mediterranean (MED) 6.3 38.4 36.6
Western Africa (WAF) 8.2 46.0 43.0
Eastern Africa (EAF) 8.6 32.6 28.8
Southern Africa (SAF) 6.2 50.7 49.8
Northern Asia (NAS) 14.7 26.3 24.6
Central Asia (CAS) 6.3 57.5 55.0
Tibetan Plateau (TIB) 4.7 33.3 30.1
East Asia (EAS) 8.5 34.6 31.9
Southeast Asia (SEA) 6.5 47.7 35.3
Southern Asia (SAS) 5.4 35.1 31.6
Australia (AUS) 8.6 61.9 59.8
Alaska (ALA) 3.5 40.5 36.8
Northeastern Canada (NEC) 4.5 42.9 41.1
Western North America (WNA) 5.6 39.7 38.9
Central North America (CNA) 3.4 74.7 74.4
Eastern North America (ENA) 2.7 53.5 52.3
Central America (CAM) 3.0 42.9 39.9
Amazon (AMZ) 12.9 48.2 46.2
Southern South America (SSA) 5.9 35.2 31.6

Table 4.1: List of regions used in this study, including their total area and
maximum spatial extent of drought, A (q0(θ) = 10.0%). The regions are
taken from Giorgi and Francisco (2000) but exclude the Greenland region
which has been replaced by the northeastern Canada (NEC) region.

averaging, with slightly less extensive drought in the 1970s. NEU shows higher
variability than MED and dry conditions in NEU are at a maximum in the
1950s and the mid 1990s. WAF is dominated by the long-term drought period
in the Sahel from the late 1960’s to mid 1980’s, also reflected but to a lesser
extent in EAF. In SAF, there are a number of peaks that cover up to 40%
of the region and a particularly extensive wet period in the 1970s. The size
of the NAS region tends to dampen the variation in soil moisture and spatial
extent although an underlying decadal variability is apparent. Spatially exten-
sive drought conditions in the late 1950s to early 1960s over TIB are followed
by increasingly wet conditions until the 1990s. SEA has experienced several
periods of large drought extent in the early 1970s and 1980s. The AUS data are
dominated by an extensive dry period in the 1950s and 1960s followed by an
upward jump in soil moisture around 1973, also seen in the precipitation data.
The extent of drought in WNA is relatively uniform but there is greater vari-
ability in CNA and a number of events that surpass 60% coverage. The data
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Figure 4.3: Map of regions used in the analysis as defined by Giorgi
and Francisco (2000). The original GRL region is split into northeastern
Canada (NEC) and Greenland for this study.

for the Amazon region are damped by the large area but show peak extents in
the 1960s, 1980s and 1990s.

4.3.3 Run frequency and duration

The global distribution of frequencies of different duration runs (qo(θ) = 10%)
for 1950-2000 is shown in Figure 4.4. Very short-term runs (D1−3) are most
frequent in the eastern US, parts of the western Amazon, Argentina, Tropi-
cal Africa and southeast Asia with over 30 runs per 50 years. The highest
frequencies of short-term runs (D4−6) show much greater spatial variability
and are generally located in mid-latitudes and parts of the Tropics. Medium
term droughts (D7−12) are at a maximum in high latitudes, especially north-
ern Canada and eastern Siberia. These regions are characterized by freezing
temperatures and thus are prone to persistent anomalies over the cold season.
Long-term runs (D12+) are restricted to a few areas including higher northern
latitudes, central Asia and the Sahel and are notably absent in the Tropics.

The geographic variation of run duration can be characterized by a summary
statistic such as the mean, median or higher moment. Figure 4.5 shows the total
number of runs of any duration and the statistics (mean, standard deviation
and skew) of run durations calculated using qo(θ)= 10%. Note that the total
time in deficit is equivalent to the total number of runs multiplied by the mean
run length, with an expected value of 10% as defined by the threshold value.
The total number of runs is minimal in dry regions. The highest values (> 25

80



Figure 4.4: Frequency of occurrence of very short (D1−3), short (D4−6),
medium (D7−12), and long-term (D12+) runs (q0(θ) = 10%) for 1950-2000.
The units are the number of runs over the whole time period.

runs) occur in more humid regions such as eastern North America, the Amazon
and Paraná River basins, Tropical Africa, Europe and southeast Asia. The
Sahel, scattered regions across central Asia and high northern latitudes stand
out as having high mean run lengths, a result of the high frequency of long-term
drought conditions. Regions of higher mean durations are generally collocated
with regions of higher variability (standard deviation). Tropical latitudes tend
to have the lowest standard deviations. The skew values are generally positive,
indicating that the frequency of long duration runs is low.

4.3.4 Run intensity and severity

Figure 4.6 shows the distribution of run intensity and severity as calculated by
equations 4.11 and 4.12. The data were calculated for a threshold value q0(θ) =
50% to capture the statistics of all events, but the results using other threshold
values show similar patterns but different amplitudes. Mean run intensity,
Imean, is ∼ 15 - 25% (departure below the threshold) for humid regions and 5
- 15% for drier regions, explained by the greater frequency of short (long) term
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Figure 4.5: Global variation of a) total number of runs, and b) mean, b)
standard deviation and c) skew of the distribution of run durations for q0

(θ) = 10%.

droughts in more humid (dry) regions. The eastern United States, central and
eastern Europe, Southeast Asia, China and Tropical Africa exhibit the largest
Imean values. The pattern for maximum run intensity, Imax, is similar in terms
of the general distribution of high and low values. The majority of values
are clustered within the range 33 - 50%, with only the drier regions dropping
below about 30%. For mean run severity, Smean, the variation is much more
distinct and several regions stand out as having experienced relatively severe
conditions, driven more by long durations than by high intensities. Smean is
greater than 200% (cumulative departure below the threshold) over the Sahel,
northern Canada, northern Siberia and the Taklamakan desert north of the
Himalayas, with Smean exceeding 500% for parts of the Sahel. Over much of
the Tropics, Smax < 400%, although in the northern half of Amazonia, Smax ≈
800%. In the majority of regions elsewhere Smax ≈ 400 - 1200%. The regions
of highest Smean also have the highest Smax. In the Sahel, Smax ≈ 1000 and
reaches 4000% in parts.
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Figure 4.6: Global variation of statistics of run intensity and severity for
q0(θ) = 50%: a) mean and b) maximum run intensity; c) mean and d)
maximum run severity.

4.3.5 Relationship between run duration and intensity

The relationship between D and I and thus the distribution of S is explored fur-
ther in Figure 4.7 for three example regions, WNA, WAF and SAS. Neighboring
regions show similar behavior. The figure shows scatter plots of coincident val-
ues of D and I for various values of qo(θ). By definition, I cannot exceed the
threshold value (i.e. I ¡= qo(θ) ) and this then forms an upper bound on the
cloud of points. All plots show a wide range of values of I for short duration
runs (∼ D¡10), but as D increases, I converges to approximately 50-75% of
qo(θ), most notably for WNA and for higher qo(θ) values, for which runs are
more numerous and longer durations (D > 30 months) are more probable. At
lower thresholds (qo(θ) = 10.0%), such a relationship may be equally valid, at
least empirically, but is less tractable because of the smaller sample size.

For WAF, some very different behavior is apparent, in addition to the larger
range in duration. Firstly, there is a clustering of points at regular intervals
of duration, most notable for higher threshold values. The interval is approx-
imately 12 months and is a result of the strong seasonal cycle in precipitation
over this region. The seasonality ensures that long-term deficit conditions (D >
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Figure 4.7: Run duration versus run intensity for the WNA, WAF and
SAS regions. Each row corresponds to a different threshold value, q0(θ),as
indicated by the number to the far right. Each point represents a single
run for a pixel. Note the extended x-axis for the WAF plot because of the
existence of longer duration runs.

12) can be extended until at least the next rainy season as this is the only time
of the year that the deficit can be dissipated. Secondly, the convergence to a
small range of I at higher values of D is not as obvious for the WAF data. In
fact there is considerable variability in I at high D, especially at higher qo(θ)
values. The reasons for this are unclear, although the greater number of long
runs over WAF will tend to increase the variability in I.

4.4 Discussion

4.4.1 Comparison with the PDSI

The PDSI has been extensively analyzed and applied in research studies (e.g.
Dai et al., 2004, Van der Schrier et al., 2006a,b) and is arguably the most
prevalent drought index in operational use. It is a proxy for soil moisture
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that correlates well with soil moisture and streamflow observations (Dai et al.,
2004), but has been criticized for its hydrologic simplicity and lack of spatially
consistency (Alley, 1984). In this section we compare the soil moisture index
with a PDSI dataset driven by the same precipitation and temperature forcings
and the PDSI dataset of Dai et al. (2004). To calculate the PDSI we use
the self-calibrating algorithm of Wells et al. (2004) that removes the spatial
inconsistency. At global scales the soil moisture index correlates well with
both PDSI datasets (Figure 4.8) and all show decreasing tendencies since the
mid-1970s. The soil moisture index shows greater month to month variability
compared to the PDSI datasets. This has been attributed, in part, to the
PDSI ignoring the daily variation of precipitation and the effects of snowmelt,
and the use of time invariant vegetative cover, which will tend to dampen
the index over seasonal scales (Sheffield et al., 2004a). At the grid scale, the
datasets are generally well correlated but tend to diverge in cooler seasons
and high latitudes and substantially so in dry regions (Figure 4.9), which is
consistent with Sheffield et al., (2004a) who analyzed a similar soil moisture
dataset generated at high resolution over the contiguous USA.

4.4.2 Identification of severe drought events

Figure 4.2 gives a general overview of the monthly spatial extent of drought on
a regional basis but does not take into account the severity (combined inten-
sity and duration) which are relevant for evaluating the impacts. Figure 4.10
shows regional time series of the spatial extent of drought in a similar manner
to Figure 4.2, but filtered for high severity to reveal drought events that were
either of long duration or high intensity. The filtering is applied at two scales:
using a moving window of 3 month duration and 10% threshold (D = 3, q0(θ)
= 10.0%; short duration, high intensity droughts) and using a 12 month dura-
tion and 50% threshold (D = 12, q0(θ) = 50.0%; long duration, low intensity
droughts). The filtering process leaves only the severe events and could have
been implemented in any number of ways using different combinations of dura-
tion and intensity. Nevertheless, Figure 4.10 reveals those events that are both
severe and spatially extensive as derived from this dataset. In the following
discussion, short duration, high intensity events are referred to as short-term.
Long duration, low intensity events are referred to as long term. It should be
noted that the spatial extent calculated here is not necessarily contiguous and
this is more likely the case for larger regions as drought can occur in multiple
disconnected locations at the same time.

Over North America, the 1950s were the decade of most spatially extensive
and prolonged drought in the west and central regions, as expected, and would
only be surpassed by the 1930s drought during this century (Andreadis and
Lettenmaier, 2006). In terms of individual years, the winter drought of 1976/77
was considerably more extensive than the drought of 1988 that was purported
to be the worst natural disaster in US history (Trenberth and Branstator, 1992).

The most extensive droughts in CAM occurred in the 1950s, which is con-
sistent with reported conditions (Liverman, 1999) and with gauge based pre-
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Figure 4.8: Time series of globally averaged VIC soil moisture index
and two PDSI datasets for 1950-2000. The data are averaged over global
land areas excluding Greenland and Antartica. Bottom panel shows the
data after standardization (subtract the mean and divide by the standard
deviation) and filtering using a 13-month running mean. The PDSIV IC

dataset is calculated using the self-calibrating algorithm of Wells et al.
(2004) forced by the same precipitation and temperature data as the VIC
soil moisture index. The PDSIDAI dataset is from the study of Dai et al.
(2004).

cipitation records that show an increasing trend since the early 1960s (Aguilar
et al., 2005). In the Amazon, maximum extent coincides quite satisfactorily
with El Nino events, including 1957/8, 1972/3, 1992 and 1997, which are as-
sociated with dry and warm conditions, especially in the northern part of the
region (Foley et al., 2002). In southern South America, 1962 and 1988 stand
out as years of spatially extensive long term drought. These years coincide
with La Nina events which are known to cause dry conditions in the east of
this region (Boulanger et al., 2005), although curiously other La Nina events
are not reflected in the drought record which requires further investigation.

The series for NAS is interesting for two reasons. Firstly, the extent of severe
drought is much greater since the mid-1970s for short term droughts, possibly
a result, in part, of the switch to a positive NAO phase (Visbeck et al., 2001).
Secondly, the peaks tend to occur at regular intervals. Closer inspection of the
data shows that these occur in the autumn and winter. As the soil column
freezes, the soil moisture at any location tends to remain fairly constant over
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Figure 4.9: Correlation between the VIC soil moisture index and the
PDSIV IC dataset at monthly, annual and seasonal time scales.

87



0

10

20

0
10
20
30
40

0

10

20

0

10

0

10

0

10

0

10

20

0
10
20
30

0

10

20

0

10

20

0

10

0

10

20

0

10

20

0
10
20
30
40

0

10

20

0

10

20

0

10

Short time scale: q
0
 = 10%, D = 3

1950 1960 1970 1980 1990 2000
0

10

Long time scale: q
0
 = 50%, D = 12

WNA

CNA

ENA

CAM

AMZ

SSA

NAS

CAS

TIB

EAS

SAS

SEA

AUS

NEU

MED

WAF

EAF

SAF
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the winter period, which will tend to prolong any preceding drought conditions.
CAS shows major events in the early 1950s and at the end of the record, the
latter analyzed by Barlow et al. (2002), with a spate of less extensive events
in the 1970s. For TIB, the series of short-term drought is dominated by a
prolonged event during the late 1950s to early 1960s, although peak spatial
extent occurs in 1997 (short term) and 1994 (long term). In EAS, which covers
most of eastern China and Japan, spatially extensive severe drought is limited
at the short term but peak coverage for long term drought is evident in 1951,
1968 and 1992.

SAS shows a few major events which tend to occur in the middle part
of the period. In SEA there are distinct major events in 1972, 1982/3, and
1997 at both time scales (short and long term) that coincide with major El
Nino episodes. For AUS, drought events are more extensive in the earlier part
of the period most notably in 1952 and 1965 for short term droughts and
multiple years in the 1950s and 1960s for long term droughts, which may be
due to changes in the influence on ENSO on Australian climate since the 1970s
(Nicholls et al., 1996).

For Europe, NEU has far more spatially extensive droughts than the MED
region. Spatially extensive short term droughts in NEU occur in 1954 and
1996. Other drought events, such as that in 1975/6, are less extensive but span
multiple 3-month periods, and 1975 is the most extensive long term drought.
1954 is the most extensive short term drought year in the MED region, yet this
stands alone in the first half of the period and drought appears to be much
more extensive in the second half for both time scales, especially in the late
1980s and 1990s. This is generally consistent with Lloyd-Hughes and Saunders
(2002) and van der Schrier et al. (2006b) who found that the 1950s and 1990s
were the most drought prone periods across the whole of Europe in terms of
PDSI and 3 and 12 month SPI.

WAF is dominated by prolonged drought in the 1970s and 1980s (Hulme,
1992; L’Hôte et al., 2002) that reached peak extent in 1984 and 1972. This
is reflected in EAF but the spatial coverage is considerably lower. In SAF,
peak events occur in 1970 and 1992 for short term drought and 1992 for long
term drought which corresponds well with the SPI analysis of Rouault and
Richard (2005) who determined that the majority of major drought events
were coincident with El Nino episodes.

4.4.3 Analysis of selected major drought events

Several major drought events are selected for further analysis. These are chosen
because of their documented socio-economic impacts and the large number
of studies carried out into their origins and dynamics. We are interested in
whether the hydrologic conditions, as represented by the soil moisture index,
are good indicators of such events and how this compares with the PDSI.
Other major droughts have been identified in the previous section but may not
have impacted as greatly because of a sparse population or low agricultural
activity, or may be less well reported. Snapshots of the spatial distribution of
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soil moisture quantiles for four selected major historic regional drought events
are shown in Figure 4.11: USA, 1988; the Sahel, 1983-84; India, 1965-66; and
Australia, 1982-83. These four droughts are put in the context of the statistical
analysis presented in Section 4.2 by determining the regional extent of drought
for q0(θ) = 10.0% and the mean regional intensity and duration for q0(θ) =
50.0% on a seasonal basis. We compare this with the other years in the record
and the results from the two PDSI datasets in Figure 4.12. The maximum
values and years in which they occur are summarized in Table 4.2.

VIC index PDSIV IC PDSIDAI

CNA

Amax (%) 74.7 (1952) 70.4 (1956) 58.9 (1956)
Amax (%), JJA 36.7 (1988) 63.6 (1956) 50.5 (1956)
Smax (mo %), JJA 43.5 (1988)

Sahel

Amax (%) 68.8 (1984) 86.0 (1984) 92.0 (1984)
Amax (%), MJJASO 38.9 (1984) 69.5 (1984) 74.2 (1984)
Smax (mo %), MJJASO 70.8 (1986)

India

Amax (%) 46.7 (1987) 48.2 (1988) 55.1 (1966)
Amax (%),JJASON 37.1 (1987) 35.6 (1987) 48.2 (1966)
Smax (mo %), JJASON 78.4 (1987)

East Australia

Amax (%) 64.5 (1965) 77.1 (1983) 86.4 (1983)
Amax (%), SONDJF 46.7 (1982/3) 50.3 (1982/3) 59.0 (1982/3)
Smax (mo %), SONDJF 86.6 (1994)

Table 4.2: Year and value of maximum regional drought extent, Amax,
and severity, Smax, on a monthly and seasonal basis for four example
regions as derived from the VIC soil moisture index and two PDSI datasets.
The first value is the extent or severity. The value in parentheses is the
year in which the maximum occurred.

USA 1988

The drought of 1988 over the central United States is estimated to have cost
$30 billion in agricultural losses alone and has been considered to be the worst
natural disaster in U.S. history (Trenberth and Branstator, 1992). It is gen-
erally agreed that a combination of sea surface temperature (SST) anoma-
lies, persistent stationary atmospheric circulation anomalies and soil moisture-
precipitation feedbacks were key factors in the development and longevity of
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Figure 4.11: Examples of monthly soil moisture quantiles for four major
regional droughts: a) the Sahel, 1983-84; b) northeast India, 1965-1966;
c) Australia, 1983; d) USA, 1988.

the drought (Sud et al., 2003). Drought conditions, as derived from the soil
moisture data, developed through the spring and summer of 1988, reaching a
peak spatial extent in June 1988 (65.5% at q0(θ) = 10.0%, region CNA) that
was only exceeded by conditions in October 1952 (74.7%). In the context of the
full time period (Figure 4.12), 1988 is ranked 1st, in terms of summer (JJA)
drought extent, with 1980 and years of the early to mid 1950s ranked next. In
terms of regional severity, defined as the regional intensity multiplied by the
regional duration, 1988 is ranked 2ndwith 1980 being the exceptional year by
this definition. 1977 is ranked highly in annual terms, but dry conditions were
manifested in the winter months (peak extent in January 1977 of 59.9%). The
PDSI datasets exhibit similar spatial extent to the VIC index for 1988, but
show 1956 to have a much greater spatial extent, also found by Van der Schrier
et al. (2006a) (see their Figure 4.6).
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Figure 4.12: Regional time series of spatial extent of drought andscatter
plots of average run duration versus intensity for the CNA, Sahel , India
and east AUS regions. The spatial extent data calculated for q0(θ) = 10%
and are shown for the VIC index, PDSIV IC and PDSIDAI datasets. The
PDSI datasets are first transformed into quantile space. Each point in
the scatter plots represents the average duration and intensity of runs for
within each season averaged over all grid cells within the region. Selected
historic drought event years are highlighted.
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Sahel 1983-84

Long-term drought conditions in the Sahel region of Africa during the 1970s
and 1980s had devastating social and environmental consequences (Mortimore
and Adams, 2001; Tarhule and Lamb, 2003). Decreasing precipitation trends
over the region have been well documented (Hulme, 1992; L’Hôte et al., 2002)
but the forcing mechanisms have been the subject of debate. Previously, it
was thought that overuse, in the form of overgrazing, deforestation and poor
land management, was responsible. However, recent studies have shown that a
combination of land-atmosphere interactions (Nicholson, 2000), ocean temper-
atures (Giannini et al., 2003) and anthropogenic forcing (Held et al., 2005) are
likely causes. From the soil moisture data, the highest monthly spatial extent of
drought over the Sahel region (10-20N, 20W-20E) occurred during September
1984 (68.7%). For the growing season average (May-October), 1984 also has
the highest spatial extent (38.9%) closely followed by 1987 (38.5%). The PDSI
spatial extent values are similarly ranked, although they are much higher (69.5
- 74.2%). The scatter plot of duration versus intensity (Figure 4.12) shows that
1983 was by far the severest drought year, with 1984 ranked 6th and showing
particularly high intensities but relatively lower durations. For the encompass-
ing WAF region, the maximum extent of drought conditions occurred during
October 1983 (46.0%) and 18 out of the top 20 ranked months of spatial extent
occurred in the 1980s.

India 1965-6

India has experienced a multitude of severe droughts over the last century,
which are generally forced by inter annual variability in the Indian monsoon
during June to September (Krishnamurthy and Shukla, 2000). In the last 50
years, the droughts of 1965/66, 1972 and 1987 have been the most widespread
and damaging (OFDA/CRED, 2006). Conditions in 1965-66 were particularly
devastating because of two consecutive years of drought. The soil moisture
data reveal that the maximum monthly spatial extent of drought over India at
q0(θ) = 10.0% was 35.3% in November 1965, although 1987 had five months
with higher values up to 46.7%. The PDSI datasets are generally in agreement
but show slightly larger values. Notably the PDSIDAI dataset ranks the 1965
event highest, which may be due, in part, to the coarser spatial resolution and
different source for the forcings. Figure 4.12 shows that, in terms of regional
severity, 1965 and 1966 are not ranked highly within the full time period.
However, this does not take into account multi-year droughts that spanned
1965-66 and it is conceivable that the overall impacts were compounded by
consecutive years of severe drought conditions.

Australia 1982-3

Australia has experienced multiple drought events over the 20th century that
are generally forced by variability at inter-annual and inter-decadal scales asso-
ciated with El Nino (Chiew et al., 1998) and modified by Pacific inter-decadal
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variability (Power et al., 1999). The strong El Nino of 1982/83 forced drought
conditions that affected much of Australia during this time. Figure 4.11 shows
a map of soil moisture quantiles in February 1983 indicating severe drought
conditions in eastern Australia, the culmination of record low precipitation
from July 1982 to February 1983. Drought conditions (q0(θ) = 10.0%) cov-
ered more than 45% of the east AUS region on average from September 1982
to February 1983, with the maximum spatial extent of 62.1% during Febru-
ary 1983. Mean regional drought duration during the 1982/83 warm season
(SONDJF) was 2.7 months and mean intensity was 27.5% and is ranked highly
relative to the whole period. In terms of spatial extent, 1982/83 is easily the
highest ranked year according to the VIC index and both PDSI datasets. Like
other regions, the PDSI datasets tend to give larger values of spatial extent.

4.5 Summary and conclusions

A monthly soil moisture based drought index is developed for global terrestrial
areas, excluding Greenland and Antarctica, from an off-line land surface model
simulation forced by an observation based meteorological dataset. The index is
used to investigate the occurrence and variability of drought globally over 1950-
2000. Drought is described in terms of duration, intensity and severity, and
various statistics that summarize their distributions in time and space. These
variables are analyzed spatially, at global and regional scales, and temporally
with respect to severity and spatial coverage. The inter-dependence of these
correlated variables is also explored along with the sensitivity to the threshold
soil moisture value that defines drought.

An analysis of the statistics of drought events reveals considerable global
variability and some interesting relationships between drought characteristics.
Based on a soil moisture quantile threshold of qo(θ)= 10%, the frequencies
of short-term droughts (6 months and less) and droughts of any length are
highest in humid regions. Medium term droughts (6-12 months) are more
prevalent in mid- to high-latitudes, which for the latter is a result in part
of freezing temperatures causing static soil moisture conditions and forcing
drought conditions to persist through the wintertime. Over the Sahel and
parts of high northern latitudes, the frequency of long-term droughts is at a
maximum.

Drought intensity is defined as the mean departure below the threshold
soil moisture quantile over the drought duration and tends to be higher over
humid regions. This is likely a result of the higher inter annual variability in
soil moisture that tends to prevail in humid regions, even if the range in soil
moisture is small in absolute terms. Drought severity, calculated as intensity
times duration, tends to be lowest in more humid regions and is highest in
regions of high mean duration, such that drought duration is a more dominant
factor in severity for longer duration droughts. The Sahel region stands out
globally for having long-term and severe drought conditions.

The relationship between duration and intensity, and thus the distribution
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of severity, is of particular interest as this governs the impacts of drought. A
more detailed analysis of the joint and conditional distributions of duration,
intensity and severity (e.g. Kim et al., 2003) would be required to quantify
the relationship between these highly correlated drought attributes, but some
general remarks can be made nevertheless. The data shows that for some
regions, the drought intensities will tend to converge to a small range of values
at higher duration. This is consistent with the possibility that drought duration
dominates severity at longer durations, as discussed previously. Elsewhere,
strong seasonality in a region’s climate may result in a wider spread of intensity
values and cluster the distribution of long-term drought durations into annual
and multi-annual lengths.

Severe drought events are systematically identified in terms of spatial cov-
erage for various regions based on different thresholds of duration and intensity
that relate to either high intensity, short duration droughts or low intensity,
long duration droughts. For example, in northern Europe 1975 was the year of
most spatially extensive drought at annual time scale and 1996 was the equiv-
alent year at 3-month time scale. In northern Asia, severe drought events at
short and long time scales are characterized by persistent soil moisture anoma-
lies over the wintertime. Droughts in western and eastern Africa are dominated
by events in the Sahel.

The drought index identifies several well-known drought events, including
the 1988 USA, 1982/83 Australian, 1983/4 Sahel and 1965/66 Indian droughts,
which are analyzed in more depth. These are generally ranked as the severest
events in the record, although some are ranked relatively low and the severity
of their reported impacts is likely compounded by socio-economic and other
factors. Comparison of the results with those from two PDSI datasets shows
general agreement, although the PDSI tends to give larger spatial extent values.
Some events, however, (e.g. 1988 CNA and 1965 India) are ranked somewhat
differently by each dataset that may be due to differences in scale and forcings,
but is also likely a result of fundamental differences in the modeling approach
between the VIC index and the PDSI. At global scales the VIC index and the
PDSI are reasonably well correlated but this breaks down in cooler regions and
seasons, and especially in the latter half of the 20th century, when the PDSI
shows a larger drying trend. Given these comparisons, the known deficiencies
and simplifications in the PDSI and the history of evaluations of the VIC model,
we conclude that the VIC index is a good indicator of major drought events
that is applicable to a wider range of climate regimes than the PDSI.

The overall analysis is inevitably subject to errors in the representation
of the actual variation in soil moisture and drought occurrence, which are
listed in Section 4.2.3 and Sheffield et al. (2004a). However, the soil moisture
based index can provide a useful indicator of drought given its physical basis
and consistent global coverage. The utility of a drought index is nevertheless,
measured by how well it describes the development and recession of drought
and whether this information can be used to monitor and react to drought.
As the impacts of a certain magnitude and duration of soil moisture deficit
are particular to the region, time of year and sector it is impossible to specify
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whether drought is occurring as a simple yes or no. Rather it is more useful to
present the actual deficit and duration and let the user decide the implications
of this.

This dataset forms a climatology that provides a useful benchmark against
which current and potential future changes in drought can be assessed. An in-
crease in the number of droughts and/or drought severity is a possible outcome
of future global warming and intensification of the water cycle (Wetherald and
Manabe, 1999). Predicted temperature rise will lead to increased evaporation
and thus reduced soil moisture, yet accompanying changes in precipitation,
in terms of totals and statistics, may act to increase or decrease drought oc-
currence. Projections of precipitation changes are highly scenario and model
dependent (Covey et al., 2003) and regional variability (Giorgi and Bi, 2005)
compounds the uncertainty in future changes in drought regime. Recent in-
creases in global temperatures may already have acted to change the global
drought regime (Dai et al. 2004). An analysis of changes and trends in various
drought statistics over the second half of the 20th century using this dataset is
work in progress that will also examine the processes that force and modulate
the temporal and spatial variation of drought at large scales.
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Chapter 5

Trends and variability in
20th century global drought

This chapter is a slightly modified version of: Sheffield, J., and E. F. Wood, Global
trends and variability in soil moisture and drought characteristics, 1950-2000, from
observation driven simulations of the terrestrial hydrologic cycle. J. Climate, in press.
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Abstract

Global and regional trends in drought for 1950-2000 are analyzed using a soil
moisture based drought index over global terrestrial areas, excluding Green-
land and Antarctica. The soil moisture fields are derived from a simulation of
the terrestrial hydrologic cycle driven by a hybrid reanalysis-observation forc-
ing dataset. Drought is described in terms of various statistics that summarize
drought duration, intensity and severity. There is an overall small wetting trend
in global soil moisture, forced by increasing precipitation, which is weighted by
positive soil moisture trends over the western hemisphere and especially in
North America. Regional variation is nevertheless apparent and significant
drying over West Africa, as driven by decreasing Sahel precipitation, stands
out. Elsewhere, Europe appears to have not experienced significant changes
in soil moisture, a trait shared by southeast and southern Asia. Trends in
drought duration, intensity and severity are predominantly decreasing but sta-
tistically significant changes are limited in areal extent, of the order of 1.0
– 7.0% globally, depending on the variable and drought threshold and being
generally less than 10% of continental areas. Concurrent changes in drought
spatial extent are evident, with a global decreasing trend of between -0.021
and -0.035% yr−1. Regionally, drought spatial extent over Africa has increased
and is dominated by large increases over West Africa. Northern and East Asia
show positive trends and central Asia and the Tibetan plateau show decreasing
trends. In south Asia all trends are insignificant. Drought extent over Australia
has decreased. Over the Americas, trends are uniformly negative and mostly
significant.

Within the long-term trends there are considerable inter-annual and decadal
variations in soil moisture and drought characteristics for most regions, which
impact the robustness of the trends. Analysis of detrended and smoothed soil
moisture time series reveals the leading modes of variability are associated with
sea surface temperatures, primarily in the equatorial Pacific and secondly, in
the north Atlantic. Despite the overall wetting trend there is a switch since the
1970s to a drying trend, globally and in many regions, especially in high north-
ern latitudes. This is shown to be caused, in part, by concurrent increasing
temperatures. Although drought is driven primarily by variability in precipita-
tion, projected continuation of temperature increases during the 21st century
indicate the potential for enhanced drought occurrence.

5.1 Introduction

Drought can be regarded as one of the most damaging of natural disasters in
human, environmental and economic terms. It occurs as a result of extremes
in climate that are driven by natural variability but may be exacerbated or
dampened by anthropogenic influences. The variability of global climate is
driven in the main by the El Nino Southern Oscillation (ENSO), which impacts
the Tropics and many regions in mid-latitudes (Ropelewski and Halpert, 1987).
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Other climate oscillations and modes of large-scale variability, such as the North
Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the
Atlantic Multi-Decadal Oscillation (AMO), act on generally longer time scales
and interact with ENSO or are the primary climate drivers elsewhere and more
regional in their impacts. For example, the NAO is known to affect climate
in eastern North America and Europe (Hurrell and VanLoon, 1997) as well
as North Africa (Wang, 2003). The PDO (Mantua et al., 1997) is a primary
driver of climate around the Pacific basin and interacts with ENSO resulting
in modifications of climate globally (Newman et al., 2003; Verdon and Franks,
2005). The AMO (Kerr, 2000) impacts on the North Atlantic and especially
on North American (Enfield et al., 2001; McCabe et al., 2004 ) and European
climate (Sutton and Hudson, 2005), and is a potential modulating force of
ENSO (Dong et al., 2006).

Of considerable interest is the change in variability and extremes under re-
cent and future global warming and the potential acceleration of the water cycle
which may act to alter the occurrence and severity of drought. As temperatures
rise, the capacity of the atmosphere to hold moisture would increase as governed
by the Clausius-Clapeyron equation (Held and Soden, 2000), with potential for
increased evaporation and/or precipitation (Trenberth, 1999), although these
may be limited by other factors such as available energy and aerosol concen-
tration. Climate model studies have shown that variability is likely to increase
under plausible future climate scenarios (Wetherald and Manabe, 2002), depen-
dent upon climate sensitivity, with large regional changes in the water cycle.
The potential for more droughts and of greater drought severity is a worrisome
possibility (Wetherald and Manabe, 1999; Wang 2005).

Huntington (2006) reviews the observational evidence so far for water cycle
intensification to date and concludes that despite some contradictions the over-
all picture points towards intensification. For drought specifically, trends have
been analyzed over the past 50 to 100 years at regional (e.g. Lloyd-Hughes and
Saunders, 2002; Rouault and Richard, 2005; Andreadis and Lettenmaier, 2006)
and global scales (Dai et al., 2004). When analyzing the Palmer Drought Sever-
ity Index (PDSI) and the Standardized Precipitation Index (SPI) over Europe,
Lloyd-Hughes and Saunders (2002) found insignificant change in the proportion
of land experiencing medium to extreme drought during the 20th century. A
drought analysis of South African SPI by Rouault and Richard (2005) found a
substantial increase in 2-year droughts since the 1970s. They also found inter-
decadal variability in the spatial extent of drought since the beginning of the
century, most of the severest of which are associated with ENSO. Andreadis
and Lettenmaier (2006) analyzed a long-term (1915-2003) hydrological simula-
tion over the USA and found a general increasing trend in soil moisture, with
concurrent decrease in drought duration and extent, except for the Southwest
and parts of the West. Globally, Dai et al., (2004) showed the global pattern of
trends in annual PDSI and found that generally drier conditions have prevailed
since the 1970s.

In this paper, we investigate variability and trends in soil moisture and
drought characteristics, globally and regionally over the second half of the 20th
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century. The analysis is based on a global soil moisture dataset derived from a
model simulation of the terrestrial hydrologic cycle. The simulation is driven
by a hybrid observation/reanalysis based meteorological dataset and provides
a globally consistent and physically based view of moisture availability. As
drought can be described by any one or combination of characteristics, and
these are important to varying degrees depending on the situation, we are
interested in changes in a number of aspects of drought. These include dura-
tion, intensity and severity, which are dependent on the threshold for defining
drought that is specific to the application. We focus on how soil moisture and
drought characteristics vary at annual to decadal time scales, and whether there
are any significant trends over the second half of the 20th century. Intuitively,
changes in precipitation will be the primary driver of variability in drought
but will be modified by temperature changes, which is especially relevant given
recent and potential future increases in surface air temperature. We therefore
investigate the direct (precipitation, temperature) and indirect (large-scale cli-
mate oscillations) forcing mechanisms to understand what is driving changes
and variability in soil moisture and drought occurrence.

5.2 Datasets and methods

To represent drought globally, we use soil moisture fields from a land surface
hydrological model simulation driven by observation-based meteorological forc-
ings (Sheffield and Wood, 2007). Soil moisture balances the fluxes of precipi-
tation, evapotranspiration and runoff and thus provides an aggregate measure
of water availability and drought. In drought terminology, soil moisture falls
somewhere in between meteorological and hydrological drought and may be
representative of agricultural drought through its control on transpiration and
thus vegetative vigor. We calculate an index of drought as the deficit of soil
moisture relative to its seasonal climatology (Sheffield et al., 2004a). Wetspells
can be calculated similarly but as the surplus of soil moisture. The simula-
tion and the derivation of the drought index and related statistics are briefly
described next. Further details can be found in Sheffield et al. (2004a).

5.2.1 Land surface hydrological simulation

The Variable Infiltration Capacity (VIC) land surface model (Liang et al., 1994;
Cherkauer et al., 2002) was used to generate spatially and temporally consistent
fields of soil moisture and other water budget flux and state variables. The VIC
model simulates the terrestrial water and energy balances and distinguishes
itself from other land surface schemes through the representation of sub-grid
variability in soil storage capacity as a spatial probability distribution, to which
surface runoff is related, and by modeling base flow from a lower soil moisture
zone as a nonlinear recession. The VIC model has been applied extensively
at regional (e.g. Maurer et al., 2002) and global scales (Nijssen et al., 2001;
Sheffield et al., 2004b).
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For this study, the VIC model was run globally at 1.0 degree spatial reso-
lution and 3-hourly time step for the period 1950-2000. This simulation was
forced by a hybrid dataset of precipitation, near-surface meteorological and
radiation data derived from the National Centers for Environmental Predic-
tion (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis
(Kalnay et al., 1996) and a suite of global observation-based products. In effect,
the sub-daily variations in the reanalysis are used to downscale the monthly ob-
servations. These observations, which are generally available at higher spatial
resolution, are concurrently used to downscale the reanalysis in space. Known
biases in the reanalysis precipitation and near-surface meteorology were cor-
rected at the monthly scale using observation-based datasets of precipitation,
air temperature and radiation. Corrections were also made to the rain day
statistics of the reanalysis precipitation which have been found to exhibit a
spurious wave-like pattern in high-latitude wintertime. Other meteorological
variables (downward short- and longwave, specific humidity, surface air pres-
sure and wind speed) were downscaled in space with account for changes in
elevation. The forcing dataset is described in detail by Sheffield et al. (2006).
The simulation has been validated against available observations of terrestrial
hydrology (J. Sheffield and E. F. Wood, Evaluation of retrospective off-line
simulation of the global terrestrial water budget, 1950-2000, in preparation)
including in-situ measurements of soil moisture, large basin streamflow and
remote sensing based snow datasets.

Given recent and future potential increases in air temperature, we also car-
ried out a second simulation to investigate the impact of trends in temperature
on the drought trends. Higher temperatures will increase potential evapotran-
spiration and possibly result in increased drought occurrence, although actual
changes will be controlled by available moisture from precipitation and be mod-
ified by temperature impacts on snow. Following Hamlet et al. (2006) and Dai
et al. (2004) we forced the VIC model with climatological surface air temper-
ature, instead of annually varying values. In this way, any differences in the
trends in soil moisture and drought characteristics between the two simulations
would be attributable to trends in temperature. In the discussion in section
5.5.2, the original simulation with annually varying air temperature forcing is
referred to as TANN and the simulation with climatological air temperature as
TCLIM.

5.2.2 Relationship with previous studies of drought using
the VIC model

Previously, soil moisture fields from a retrospective simulation of the VIC model
for the USA (Maurer et al., 2002) have been analyzed in terms of drought occur-
rence by Sheffield et al. (2004a), who found that the simulated soil moisture
values were able to represent historic drought events, display coherency and
sufficient detail at small space scales, and compare well with standard drought
indices such as the PDSI. The PDSI is one of the most widespread used drought
indices both operationally and in climate research (Dai et al., 2004; Burke et al.,
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2006) and uses a generic two-layer soil model to describe the cumulative depar-
ture of moisture supply (Palmer, 1965). In snow dominated regions, Sheffield
et al. (2004a) found that the VIC based dataset and the PDSI dataset di-
verged, likely due to inadequate representation of cold season processes in the
calculation of the PDSI.

The simulations analyzed in Sheffield et al. (2004a) and in this paper were
both generated by the VIC model (albeit slightly different versions) but differ
substantially in terms of their domain (USA versus global), the meteorological
forcings (gauge based versus a hybrid reanalysis/observation dataset), spatial
resolution (0.125 degree versus 1.0 degree) and parameter data (different un-
derlying datasets for the soil and vegetation distributions). Despite this, com-
parison of their representation of drought over the USA shows good agreement
with respect to major drought events (not shown). Furthermore, the trends
described in section 5.3 are consistent with Andreadis and Lettenmaier (2006)
who used an extended version of the Maurer et al. (2002) USA dataset at
0.5 degree resolution. Work in progress has compared the 0.5 degree extended
dataset with this global dataset in the framework of severity-area-duration
curves (Andreadis et al., 2005) and shows close agreement that is encouraging
given the differences in the simulations.

5.2.3 Soil moisture based drought index

The drought index is calculated using the method of Sheffield et al. (2004a)
and is briefly described here. Simulated soil moisture data at multiple model
soil layers are aggregated over the total soil column, converted to volumetric
values and averaged to monthly values. For each model grid cell and month,
a beta distribution is fitted to the 51 monthly values (1 value for each year
in 1950-2000) using the method of moments. The current level of drought or
wetness for a particular month and point in space can then be gauged relative
to this fitted distribution or climatology. A drought is defined as a period
of duration D months with a soil moisture quantile value, q(θ), less than an
arbitrary threshold level, q0(θ), preceded and followed by a value above this
level. The departure below this level at any particular time is the drought
magnitude:

M = q0(θ)− q(θ) (5.1)

and the mean magnitude over the drought duration is the intensity:

I =
1
D

t1+D−1∑
t=t1

q0(θ)− q(θ)t (5.2)

The product of duration and intensity gives the drought severity,

S = I ×D (5.3)

or
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S =
t+D−1∑

t=t1

q0(θ)− q(θ)t (5.4)

acknowledging that the impacts of drought are a balance between the length
and the intensity of deficits. We also define classes of drought event based on
their duration as follows:

D1−3, very short− term : 1 ≤ D ≤ 3, q(θ) <= q0(θ) (5.5)
D4−6, short− term : 4 ≤ D ≤ 6, q(θ) <= q0(θ) (5.6)

D7−12, medium− term : 7 ≤ D ≤ 12, q(θ) <= q0(θ) (5.7)
D12+, long − term : D > 12, q(θ) <= q0(θ) (5.8)

where the subscript to D indicates the range of drought duration in months.
A climatological analysis of this dataset is given in Sheffield and Wood (2007).

5.3 Trends in soil moisture and drought

5.3.1 Trends in soil moisture

Trends are calculated using the non-parametric Mann-Kendall trend test (Mann,
1945; Kendall, 1975; Hirsch and Slack, 1984), which is robust and distribution
independent. We tested for serial correlation in the monthly data, which would
invalidate the assumption of independent data. The areal extent of statistically
significant serial correlation (0.01 level) is between 12 and 17% depending on
the month with about 50% of this area in drier regions and the majority of the
remainder in very high latitudes. Therefore, the area that potentially invali-
dates the independence assumption is small and generally restricted to drier
regions, such as the Sahara, which we ignore in the analysis. Figure 5.1 shows
a map of the trends in annual volumetric soil moisture on a grid by grid basis.
Results for the Sahara and other desert regions have been masked out based on
a threshold of mean annual precipitation < 0.5 mm.day−1 to screen out serially
correlated data and trend values that are essentially zero but are picked up by
the ranked based test. Table 5.1 summarizes trends of regional averaged time
series. The regions are defined by Giorgi and Francisco (2000) and are shown
in Figure 5.2. For brevity, these regions may be referred to by acronyms that
are defined in Chapter 4. The GRL region was originally defined as Greenland
and northeastern Canada but as the VIC model is not designed to simulate
permanent ice sheets and glaciers we exclude the interior of Greenland from
the definition of the GRL region and rename it northeastern Canada (NEC).
We discuss the trend results in relation to precipitation and temperature trends
in the forcing dataset (Figure 5.3), which are calculated in the same manner
as for the soil moisture quantiles.

At global scales, the trend in soil moisture is positive (wetting). Generally
speaking, wetting trends occur in the Americas, Australia, Europe and western
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Region Soil Moisture Precipitation Air Temperature

(% yr−1) (mm dy−1 yr−1) (K yr−1)

World 0.017 (1.137) -0.001 (-0.999) 0.015 (5.166)
Europe
NEU 0.096 (1.592) 0.003 (1.811) 0.018 (2.307)
MED -0.048 (-0.780) -0.002 (-1.430) 0.009 (2.201)
Africa
WAF -0.299 (-4.207) -0.009 (-3.964) 0.008 (3.647)
EAF -0.144 (-2.713) -0.004 (-2.355) 0.016 (5.556)
SAF -0.149 (-1.901) -0.003 (-1.446) 0.012 (4.524)
North Asia
NAS -0.073 (-1.868) -0.001 (-0.650) 0.023 (3.233)
CAS -0.016 (-0.227) -0.001 (-1.056) 0.018 (3.411)
TIB 0.133 (1.689) -0.000 (-0.032) 0.021 (4.768)
EAS -0.083 (-1.982) -0.001 (-1.413) 0.016 (3.891)
South Asia and Oceania
SEA 0.020 (0.211) -0.006 (-1.040) 0.009 (4.776)
SAS -0.055 (-1.251) -0.007 (-2.534) 0.007 (2.843)
AUS 0.214 (2.079) 0.003 (1.218) 0.014 (4.427)
North America
ALA 0.169 (1.527) 0.002 (2.339) 0.032 (3.947)
WNA 0.212 (2.713) 0.002 (1.933) 0.020 (3.281)
CNA 0.253 (2.892) 0.006 (1.998) 0.007 (1.162)
ENA 0.108 (1.836) 0.001 (0.569) 0.002 (0.528)
NEC 0.252 (2.437) 0.003 (2.485) 0.007 (1.007)
South America
CAM 0.091 (1.429) -0.002 (-0.877) 0.007 (2.063)
AMZ 0.152 (2.331) 0.004 (1.348) 0.009 (3.225)
SSA 0.184 (2.827) 0.005 (2.290) 0.004 (1.998)

Table 5.1: Non-parametric trends in regional average soil moisture quan-
tile, precipitation and surface air temperature. Trends values in bold are
significant at the 0.05 level. Statistical test values are given in parentheses.
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Figure 5.1: Global distribution of linear trends in annual mean volu-
metric soil moisture, 1950-2000, calculated using the Mann-Kendall non-
parametric trend test. Regions with mean annual precipitation less than
0.5mm day−1 have been masked out because the VIC model simulates
small drying trends in desert regions that, despite being essentially zero
are identified by the non-parametric test. The trends in the bottom panel
have been filtered for significance at the 0.05 level.
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Figure 5.2: Map of regions used in the analysis as defined by Giorgi and
Francisco (2000). The GRL region has been modified from its original def-
inition that covered Greenland and eastern Canada to exclude the interior
of Greenland. This is because the VIC model is not designed to simu-
late permanent ice caps and glaciers. The region is renamed northeastern
Canada (NEC).

Asia and negative trends (drying) occur in Africa and parts of eastern Asia.
The trends are generally collocated with equivalent trends in precipitation (Fig-
ure 5.3). Statistically significant trends in soil moisture at the 0.05 level are,
however, restricted to relatively small sub-areas of these continents. Regions of
wetting trends are evident in the central Northern Territories of Canada (up to
0.2 %vol yr−1), central USA (0.05 – 0.2 %vol yr−1) and northern Mexico (< 0.1
%vol yr−1). These are coincident with statistically significant increasing trends
in precipitation (Figure 5.3). For northern Canada, increased precipitation has
also been noted by Zhang et al. (2000) and McBean (2005). Nevertheless, the
simulated increase in soil moisture (and increase in precipitation) appears con-
tradictory to decreasing river discharge into the Arctic and North Atlantic from
Canadian rivers since the mid 1960s (Dèry and Wood, 2005a). This could be ex-
plained by increasing evapotranspiration driven by higher temperatures (Zhang
et al., 2000) that results in increased precipitation and decreased streamflow,
although changes to snow will complicate this. However, calculation of soil
moisture trends over a similar period (1964-2000) as used by Dèry and Wood
(2005a) shows widespread decreasing (but not always significant) trends over
much of northern Canada that is consistent with decreasing streamflow. This
indicates the large influence of increasing moisture during 1950-1963 on the
overall trend, which is further discussed in general in section 5.4.2. The trends
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Figure 5.3: Global distribution of linear trends, 1950-2000, in surface air
temperature and precipitation as used to force the VIC model. The data
are taken from the dataset of Sheffield et al. (2006) which are based on
the CRU TS2.0 dataset of Mitchell and Jones (2005). The trends in the
right hand panels have been filtered for significance at the 0.05 level.

over the USA are also consistent with increases in precipitation and soil wet-
ness during the 20th century reported by Groisman et al. (2004) and Andreadis
and Lettenmaier (2006). Scattered regions in Brazil and Columbia, and a large
part of central Argentina show increasing trends up to 0.1 %vol yr−1. These
are generally collocated with increasing precipitation trends, and the trends
are consistent with increased streamflow in large South American basins (Gar-
cia and Mechoso, 2005) and increased precipitation and streamflow in the La
Plata basin (Berbery and Barros, 2002). In the western hemisphere, parts of
Scandinavia, eastern Europe and western Russia show increasing trends (up to
0.2 %vol yr−1). A few small regions of significant increasing trend of up to 0.4
%vol yr−1 occur in western China in the northern Tibetan plateau. In western
Australia there are significant increasing trends up to 0.25 %vol yr−1. These
trends are generally consistent with increasing precipitation in these regions,
also noted over the 20th century by Dai et al. (1997).

Drying trends are most prominent in the Sahel (up to -0.6 %vol yr−1 for
individual grid cells), which has been well documented in terms of precipi-
tation deficits during the 1970s and 1980s (Hulme, 1992; L’Hôte et al., 2002).
Also, significant decreasing trends occur in parts of central Africa and in south-
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ern Africa (up to -0.15 %vol yr−1 through Angola and Zambia) that coincide
with the southern extent of the ITCZ and are again collocated with decreasing
trends in precipitation. Although the Arctic as a whole has likely experienced
increased precipitation over the latter half of the 20th century (McBean et
al., 2005), several regions show significant drying trends, such as northern and
southeastern Alaska. The majority of northeastern Asia shows drying trends
(up to -0.2 %vol yr−1) that are coincident with decreasing precipitation as
shown in Figure 5.3 and reported by McBean (2005), although the area of sta-
tistically significant values is relatively small, being restricted to the central
Yenesei and eastern Amur basins and far northeastern Siberia. The consis-
tency of these trends with observed changes in related variables is unclear, as
there is lack of consistency between increasing Arctic discharge from Siberian
rivers (Peterson et al, 2002; Shiklomanov et al., 2006) and precipitation (Bere-
zovskaya et al., 2004) and much debate over the impact of other processes such
as changes in permafrost and fires (McClelland et al., 2006). Significant drying
trends are also apparent in northern China and parts of southeast Asia, up to
-0.2 %vol yr−1. This is consistent with Zou et al. (2005) who analyzed trends in
PDSI data in China during 1951-2003 and found no significant changes except
for northern regions.

To investigate whether the trends vary by season, which is more likely in
monsoonal regions and continental interiors where inter-seasonal climate vari-
ability is relatively high, we also calculated trend values for each season sepa-
rately (Figure 5.4). Over the USA, the overall increasing trend is most promi-
nent in winter months. In South America, the tendency is for higher trends
in Argentina during the Austral summer and autumn (DJF, MAM) whereas
trends in Brazil and elsewhere in the north are greater in the drier seasons
(JJA, SON). Over Africa, the largest trends tend to coincide with the peak or
retreat of the ITCZ (JJA and SON over the Sahel; DJF and MAM in central
and southern Africa). The few scattered regions of significant trends in Europe
are mainly restricted to the winter months. Decreasing trends in far north-
eastern Siberia are dominant in the summer, whereas increasing trends east of
the Urals are dominant in the spring. Decreasing trends in China are highest
in the DJF-MAM, and decreasing trends in northern India and southeast Asia
are highest in the Monsoon season (JJASON). In Australia, increasing trends
in the west are highest in the Austral summer (DJF).

5.3.2 Global trends in drought characteristics

Next we investigate trends in droughts characteristics (duration, magnitude,
and severity) over the 50-yr period. Trends are again calculated using the
Mann-Kendall non-parametric test. Individual drought events are assumed to
be independent and the period between events is calculated from the beginning
of an event to the beginning of the next. We tested for serial correlation in
the characteristics of events and found that about 5% or less of grid cells had
significant values (0.05 level) and, similar to the results for soil moisture, that
most of these were located in the Sahara region which we ignore in the analysis.
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Figure 5.4: Global distribution of linear trends in seasonal mean volu-
metric soil moisture, 1950-2000, calculated using the Mann-Kendall non-
parametric trend test. Regions with mean annual precipitation less than
0.5mm day−1 have been masked out in the same way as for Figure 5.1.
The bottom panel shows the seasonal range in trends calculated as the
maximum minus the minimum trend of the four seasonal values at each
grid cell.

The geographic distribution of trends in drought duration, intensity and sever-
ity is shown in Figure 5.5 for statistically significant trends only, at the 0.05
level for soil moisture quantile threshold q0(θ) = {10.0, 50.0}, corresponding to
severe and mild drought respectively. Table 5.2 shows the percent area of each
continent that has statistically significant trends in drought characteristics. In
general, hydrological and meteorological variables exhibit spatial correlation,
which reduces the number of independent data points over a region. To deter-
mine the field significance of the area of significant trends, we estimated the
distribution of trend areas using a bootstrap approach in which we generate
1000 time series of soil moisture fields by resampling from the original dataset.
Tests over a single region showed that 1000 samples were sufficient to give stable
results. The area of significant trends was then calculated for each resampled
series and the 95th percentile calculated from the total sample. If the original
trend area is greater than this percentile value then it is field significant.
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Figure 5.5: Non-parametric trend in drought duration D, intensity Iand
severity S for q0(θ) = {10.0, 50.0%} threshold values for 1950-2000. Note
that the units have been scaled by 10000, 1000 and 100, respectively.
Regions with average precipitation < 0.5mm day−1 have been masked
out.

Overall, the area that has undergone statistically significant changes in
drought characteristics is small (Table 5.2). In general, the area of negative
trends is greater than that of positive trends, a result of the global wetting
trend in soil moisture. Significant trends are more spatially extensive for q0(θ)
= 50%, a result influenced by the greater number of droughts at this thresh-
old value. Also, the area of significant trends in drought severity is generally
greater than that for drought intensity, which is in turn greater than that
for duration. Globally, only 0.6 - 4.1% of the land has experienced increas-
ing trends in duration, intensity and severity, and 1.8 – 6.8% has experienced
decreasing trends. At continental scales, Africa is dominated by significant
increasing trends in drought severity (area = 10.4% for q0(θ) = 50%). Over
Asia, the areas of significant decreasing trends at q0(θ) = 50% are highest for
duration (4.5%), intensity (4.0%) and severity (4.0%). Negative trends tend to
dominate over Europe, especially for drought duration (area = 9.6% for q0(θ)
= 50%). Elsewhere, decreasing trends are more prevalent in North America
(e.g. area of decreasing trends in duration = 8.3%) and Oceania especially for
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drought intensity (area = 10.3% for q0(θ) = 50%). In South America, the area
of decreasing trends is dominant, especially for q0(θ) = 50% (8.1, 8.1 and 9.7%
for duration, intensity and severity respectively).

5.3.3 Regional trends in drought spatial extent

Table 5.3 gives trends in the spatial extent of drought for the world and region-
ally, for various threshold values. Globally, there is an overall decreasing trend
in drought extent of –0.021 to -0.035 % yr−1, although only for a threshold
q0(θ) <= 20% are the trends statistically significant at the 0.05 level. Re-
gionally there are distinct differences in the sign of the trends as well as the
magnitude and statistical significance that are consistent with the trends in soil
moisture. Over northern Europe the tendency is for a decrease in spatial extent,
although only trends for q0(θ) <= 20.0 are significant and in the Mediterranean
region all trends are positive but essentially statistically zero. Lloyd-Hughes
and Saunders (2002) analyzed PDSI and SPI over Europe, and similarly found
generally insignificant change in the proportion of land experiencing medium
to extreme drought during the 20th century. West Africa is dominated by
events in the Sahel, which result in large increases in spatial extent that are
approximately proportional to the threshold. For example, for q0(θ) = 50% the
trend is 0.527 %yr−1, which translates into about 28% increase over the full
period. Although eastern Africa shows consistently increasing trends also (up
to 0.15%yr−1), they are only significant for q0(θ) >= 40%. In southern Africa
(SAF), positive trends of 0.038 – 0.234 %yr−1 are only significant at the 0.1
level.

Over the northern part of Asia (regions NAS, CAS, TIB and EAS) the
picture is mixed, with positive and significant trends over northern Asia, posi-
tive but insignificant trends over eastern Asia and negative trends over central
Asia and the Tibetan Plateau, although only over TIB are the majority of the
trends significant. All trends in southern Asia are insignificant with negative
trends for SEA and positive for SAS. The Australian region trends are negative
and all significant ranging from –0.08 to –0.32% yr−1. For north America, the
trends in spatial extent are uniformly negative and almost always significant
(the exceptions are in WNA for q0(θ) = {10, 20}, ENA for q0(θ) = {10, 20,
30} threshold and ALA for q0(θ) = {40, 50} threshold). The largest trends are
in CNA for q0(θ) = 50% (approx. -0.4%yr−1 or 19% decrease in spatial extent
over the full period) and NEC for q0(θ) = 50% (approx. -0.5 %yr−1 or 26%
decrease). Over south America, all trends are negative, with all AMZ trends
significant, but only trends for q0(θ) <= 30% significant in CAM and for q0(θ)
>= 30% in SSA.

5.3.4 Epochal changes in drought frequency

We next calculated the change in drought statistics between the first (1950-
75) and second (1976-1999) halves of the simulation period (Figure 5.6), which
shows that the number of droughts has tended to decrease over most parts
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Trend in Drought Spatial Extent (% yr−1)
q0(θ)

Region 10.0 20.0 30.0 40.0 50.0

World -0.021 -0.032 -0.035 -0.027 -0.021
Europe
NEU -0.102 -0.143 -0.139 -0.139 -0.140
MED 0.014 0.022 0.022 0.026 0.022
Africa
WAF 0.068 0.179 0.319 0.435 0.527
EAF 0.029 0.064 0.088 0.117 0.154
SAF 0.038 0.090 0.150 0.203 0.234
North Asia
NAS 0.055 0.102 0.129 0.139 0.140
CAS -0.049 -0.098 -0.151 -0.176 -0.203
TIB -0.063 -0.130 -0.166 -0.208 -0.206
EAS 0.011 0.023 0.053 0.083 0.093
South Asia and Oceania
SEA -0.011 -0.016 -0.026 -0.031 -0.009
SAS 0.022 0.031 0.037 0.032 0.032
AUS -0.082 -0.191 -0.258 -0.319 -0.318
North America
ALA -0.115 -0.206 -0.238 -0.241 -0.207
WNA -0.052 -0.113 -0.195 -0.248 -0.279
CAN -0.108 -0.199 -0.264 -0.325 -0.376
ENA -0.050 -0.108 -0.152 -0.177 -0.185
NEC -0.181 -0.315 -0.407 -0.481 -0.509
South America
CAM -0.060 -0.118 -0.139 -0.130 -0.111
AMZ -0.069 -0.125 -0.172 -0.216 -0.238
SSA -0.034 -0.090 -0.155 -0.214 -0.258

Table 5.3: Trends in the spatial extent of drought for various q0(θ) values.
The trends are calculated using the Mann-Kendall non-parametric test.
Trend values in bold are significant at the 0.05 level.
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of the world. For short-term droughts, D4−6, mid-latitudes are dominated
by decreases, most notably in central and eastern Europe, Australia, south-
ern South America and central North America. Increases are evident across
southern Canada, southwest Europe and across northern Russia and most of
Siberia, although these are localized. The pattern for medium-term (D6−12)
droughts is more organized with large and spatially coherent decreases across
most of Alaska and northern Canada, eastern Europe and western Russia, sub-
Tropical Asia and central Australia. Conversely, a large expanse of increased
frequency traverses Siberia. The number of long-term droughts (D12+) in both
epochs is limited to a few regions (northern Canada, Tibetan plateau) and the
changes are all decreasing. Mean drought duration has decreased in northern
mid-latitudes and northern Canada, but has increased over the Northwest US
and large regions of Siberia. In Africa, mean drought duration increased in the
Sahel and southern Africa. For drought intensity, the changes are generally
small and localized and where they are more prominent, tend to collocated
with regions of large changes in mean drought length. For drought severity,
the distribution of changes is similar to that for mean drought duration, and
given that changes in mean drought intensity are relatively small, the indication
is that changes in drought severity are driven mainly by changes in drought
duration.

5.4 Temporal variability of soil moisture and
drought

5.4.1 Regional temporal variability

Within the long-term linear trends identified there is considerable variability at
interannual to decadal time scales. Figure 5.7 shows the temporal variation of
several drought characteristics (mean drought duration, D̄ for {q0(θ)=50.0%};
number of very short, high intensity droughts {q0(θ)=10.0%, D = D1−3};
number of long, low intensity droughts {q0(θ)=50.0%, D = D12+}; spatial
extent of drought {q0(θ)=50.0%, D = D1} calculated for an 11-yr moving
window. The drought characteristics are averaged over each region. The time
series for long, low intensity droughts is multiplied by a factor of 3 to aid
visualization. At global scales, there is little variation over the time period
in drought duration and frequency, although the spatial extent of drought has
swung from the high of the 1950s, through a low in the 1960-70s and back up
again in recent years.

Figure 5.8 shows the spatial loadings of the first three principal compo-
nents of monthly soil moisture quantiles and represents the major modes of
variability in global drought and wetspells. Figure 5.9 shows smoothed time
series of these principal components. Although the variance explained by the
first three components is small, the value decreases rapidly for higher order
components, and so we show only the first three components for brevity. PC1
explains 8.1% of the global variability in soil moisture and is negative in the
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Figure 5.6: Percent change in frequency of short- (D4−6), medium
(D6−12), and long-term (D12+) duration droughts and mean drought dura-
tion (D̄), intensity (Ī) and severity (S̄) for q0(θ) = 10.0%, between 1950-75
and 1976-99.

Amazon, the Sahel, southern Africa, northeastern Siberia, southeast Asia and
Australia among other places. It is positive in southern South America, cen-
tral and southern US, northern Canada and central and eastern Asia. The
distribution of loadings for PC1 reminisce ESNO impacts. In fact the time
series in Figure 5.9 is correlated with Nino 3.4 SST variability (r = 0.50) and
so, notwithstanding the variability associated with the overall trend, tropical
Pacific temperatures appear to be the primary driver of global variability in
soil moisture, a result also shown by Dai et al. (2004) for PDSI data. PC2
explains 6.4% of the variance and shows strong positive loadings over northern
Canada, the Amazon, southern Africa and central Australia. Negative loadings
are highest in Alaska, northern Europe and far eastern Asia. The time series of
PC2 shows a low frequency multidecadal oscillation that covaries well with the
AMO index (r = 0.67) and is consistent with the PDSI analysis of McCabe and
Palecki (2006). The third component, PC3, explains 6.0% of the variance and
shows strong positive loadings over central Europe through Russia, Australia,
south America and Alaska, and strong negative loadings over northern Siberia,
east Africa and northeast Canada. The decadal variability follows the NAO
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Figure 5.7: Regional average time series of various drought statis-
tics: mean duration of drought {q0(θ)=50.0%}, number of droughts
{q0(θ)=10.0%, D = D1−3}, number of droughts {q0(θ)=50.0%, D =
D12+} and spatial extent of drought {% area, q0(θ)=50.0%, D = D1}.
The statistics are calculated over an 11-year moving window and are plot-
ted at the center of the window. The data series for the number of long-
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comparison.
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somewhat (Figure 5.9), however the correlation is insignificant (r = 0.21) and
especially weak during the mid-1980s to mid-1990s.

Regionally, considerable variation in drought characteristics is evident (Fig-
ure 5.7) and we can also relate the variations in soil moisture to large scale
climate oscillations that act at inter-annual to decadal time scales. Table
5.4 shows the correlation between regional principal components of smoothed
monthly soil moisture quantiles and various climate indices. The soil moisture
data are detrended to avoid spurious correlations at multi-decadal time scales
and the PCs are smoothed using a 13-month moving window. It should be
noted that the large extent of some regions may hide any strong connectivity
at smaller scales.

In northern Europe a decadal oscillation, most evident in the spatial extent,
underlies the small decreasing trend in drought (Section 5.3.3), with peaks in
the 1950s, 1970s and 1990s (Figure 5.7). Lloyd-Hughes and Saunders (2002)
and van der Schrier et al. (2006) also found the 1950s and 1990s to be the
most drought prone periods in terms of PDSI and 3 and 12 month SPI. For
the Mediterranean, although overall trends are insignificant, there is a slight
decreasing trend until the early 1980s when there is a sharp increase in fre-
quencies, especially for drought spatial extent. The underlying soil moisture
variability in the Mediterranean appears to be weakly correlated with the NAO
(r=0.56), as documented previously (e.g. Rodo et al., 1997). The relationship
in northern Europe is insignificant (r=-0.19, Table 5.4) which may be a result
of the variability in strength of connectivity across the region and seasonally
(Uvo, 2003).

The change in the number of droughts over West Africa is dominated by
the increasing trend up to the mid-1980s but there is a large reversal in trend
in the following years. Correlations between the detended soil moisture time
series and the AMO are modest (r= -0.46 for PC1) but are consistent with
observational and model based studies (Zhang and Delworth, 2006). Previous
studies have shown that NAO has some influence over the climate in this region
(Oba et al., 2001), although there is contradictory evidence (Wang, 2003) and
the correlation here is weakly significant (r= -0.43 for PC2) which reflects this
uncertainty. A similar, but less pronounced picture is apparent in East Africa,
with a noticeable decrease in drought frequency in the 1950-60s. The AMO and
Nino3.4 SSTs provide the highest, but weak, correlations (r= 0.43 and 0.48,
respectively). In southern Africa, peaks occur in the late 1960s and early 1990s
which overlays the positive trend in drought characteristics and decreasing soil
moisture trend. Rouault and Richard (2005) analyzed South African SPI and
found a substantial increase in 2-year droughts since the 1970s. They surmised
that the change was likely driven by stronger connections with ENSO, although
correlations here with the Nino3.4 index are low, likely due to the large size of
the SAF region.

A decadal oscillation in north Asia (NAS) overlays the general increasing
trend for all characteristics that is consistent with decreasing soil moisture. Of
note is the increase in the number of long, low intensity droughts during the
1980s and 1990s, which may be related to the switch to a positive NAO phase
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Figure 5.8: Spatial loadings of the first three principal components of
annual soil moisture quantile for 1950-2000. The amount of variance ex-
plained by each component is also given.
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Figure 5.9: Smoothed time series of the first three principal components
of monthly soil moisture quantile for 1950-2000 compared to climate in-
dices. Nino3.4 SSTs are defined as over 5.0S-5.0N, 120.0-170.0W. AMO:
Atlantic multidecadal oscillation defined as detrended area weighted av-
erage SSTs over the North Atlantic, 0 to 70N. NAO: DJFM wintertime
North Atlantic Oscillation defined as the difference of normalized sea level
pressure between stations in Portugal and Iceland.
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Climate Index
Region Nino3.4 PDO AMO NAO

World -0.50 -0.22 -0.67 -0.21
Europe
NEU -0.20 0.23 0.24 -0.19
MED 0.21 0.19 -0.20 0.56
Africa
WAF -0.16 -0.17 -0.46 -0.43
EAF -0.48 -0.16 0.43 -0.32
SAF -0.39 0.16 -0.36 0.18
North Asia
NAS -0.17 -0.08 0.16 -0.16
CAS -0.46 -0.22 -0.49 -0.13
TIB 0.08 -0.23 0.42 -0.24
EAS 0.42 0.17 -0.28 0.22
Southern Asia and Oceania
SEA -0.87 -0.17 -0.12 0.04
SAS 0.39 0.12 -0.20 -0.14
AUS -0.49 -0.13 0.20 -0.04
North America
ALA -0.12 0.12 0.46 0.33
NEC -0.34 -0.19 0.49 -0.18
WNA 0.38 0.22 0.45 0.23
CNA 0.39 -0.12 0.26 -0.15
ENA 0.24 -0.09 0.32 -0.12
South America
CAM 0.36 0.22 0.42 -0.22
AMZ 0.72 0.11 -0.37 -0.23
SSA 0.33 -0.1 -0.18 -0.21

Table 5.4: Correlation between regional principal components of de-
trended annual soil moisture quantile and various climate indices. The
climate indices are also annual values and are compared year for year (51
values) with no lag relative to the soil moisture data. The correlations
are the maximum values for the first three PCs and those in bold are
statistically significant at the 0.01 level. Nino3.4: SST anomalies in the
Nino3.4 region, 5.0S-5.0N, 120.0-170.0W. PDO: Pacific decadal oscillation
defined as the leading PC of monthly SST anomalies in the North Pacific
Ocean, poleward of 20N. AMO: Atlantic multidecadal oscillation defined
as detrended area weighted average SSTs over the North Atlantic, 0 to
70N. NAO: DJFM wintertime North Atlantic Oscillation defined as the
difference of normalized sea level pressure between Portugal and Iceland.
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(Visbeck et al., 2001), although correlations of soil moisture with climate indices
are insignificant. Central Asian droughts also follow a decadal cycle, peaking
in the 1970s and ending with an upward trend in the 1990s. Correlations with
climate indices are weak but greatest with the Nino3.4 and AMO indices. Over
the Tibetan plateau, the series are dominated by a peak in all variables around
1960, and a decreasing trend thereafter until the early 1990s, when there are
slight increases again, which has continued into recent years (Barlow et al.,
2002). The AMO provides the only significant, although weak, correlation (r
= 0.42). Drought in East Asia shows little variation over the 50 years as seen
before and is most closely tied to Nino3.4 variability.

For southeast and south Asia, there are small but increasing trends over
much of the period with a slight decreasing trend in the 1990s. Note the
high and expected correlation (r= -0.87, PC1) with the Nino3.4 index. The
decreasing trends over Australia are dominated by a large amplitude decadal
variation that peaks in the 1960s and late 1980s. The correlation with Nino3.4
is expected (r= -0.49, PC1) but is weak, likely owing to the size of the AUS
region.

Over North America, the overall wetting trend is reflected in decreasing
trends in all drought variables, yet there is large variability within this. Alaska
and Northeastern Canada show large decreases since the 1950s but an upturn
in the 1990s with weak correlation between soil moisture and the AMO (r=
0.46 and 0.49, respectively, PC1). The number and spatial extent of droughts
in western North America decreases until the early 1970s, at which time they
increase to the end of the record. In central North America there is an overall
decreasing trend, although both the western and central regions exhibit an
upward jump in longer duration drought frequencies during the 1970s. In
eastern North America the series are dominated by decadal variability overlaid
by a decreasing trend. Low values occur during the 1970s and for a brief
period around the early 1990s. The changes across these three latter regions
are generally consistent with the overall decreasing drought trends found by
Andreadis and Lettenmaier (2006) for the USA.

A decreasing trend is apparent in Central America, most prominently at the
beginning of the period. The Amazon is dominated by a decadal cycle, peaking
in the early 1960s and mid 1980s that relates to Nino3.4 SSTs (r= -0.72). In
southern South America there are similar oscillations with peaks in frequencies
and extent in the mid-1960s followed by a drop until the early 1980s and then
increasing conditions thereafter.

5.4.2 Variation and robustness of trends

The regional time series of soil moisture and drought statistics show large vari-
ability within the long-term trends identified in Section 5.3. Of interest is how
these variations affect the robustness of the global wetting trend, especially
as we move into the 21st century and the potential impacts of global warm-
ing. Recent increases in global temperatures (e.g. Jones et al., 1999; Jones
and Moberg, 2003; Hansen et al., 1999; Brohan et al., 2006) may have already
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caused an acceleration of the water cycle (Huntington, 2006) and intensification
of drought. For example, many regions show decadal variations that switch dur-
ing the 1970s, that has been reported previously (Dai et al., 2004; Rouault and
Richard, 2005), which may be indicative of temperature impacts on drought,
either directly or indirectly through intensification of climate drivers such as
ENSO (Hunt, 1999; Herbert and Dixon, 2003). Nevertheless, evidence of in-
creasing summertime soil moisture across Asia despite increasing temperatures
(Robock et al., 2000) and forcing of increased drought by large scale climate
anomalies (e.g. decreased late-spring precipitation in China driven by a shift to
positive phase of the NAO (Xin et al., 2006)) add to the uncertainty of current
and future drought response to changing temperatures.

Figure 5.10 shows a time series of trends in regional mean soil moisture
quantile calculated over an 11-yr moving window. The trends are color coded
according to the sign of the trend and the statistical significance at the 0.05
level. At the global scale the trends oscillate from wetting to drying around the
mid-1970s with peak drying trends in the mid-1980s and subsequent reduction
in magnitude towards the end of the century. Over northern Europe, mostly
insignificant wetting trends are separated by drying trends at the beginning
and end of the series. In the Mediterranean, initially increasing soil moisture
is overwhelmed by decreasing trends from the mid-1960s onwards. For Africa,
generally decreasing trends dominate (with a spate of increasing trends centered
on 1970 in southern Africa) although all regions begin to experience increasing
trends at the end of the time period. Over northern Asian regions, mostly
increasing trends are juxtaposed with decreasing trends in the last 20 years,
although the north Asia region shows drying trends since the mid 1960s. The
decadal oscillation in trends over southeast and southern Asia, Australia and
the Amazon indicating a consistency over most of the Tropics which mirrors
the variation at the global scale as well. Over the Americas, all regions (except
the Amazon) end the period with decreasing trends, although there is consid-
erable variability previously in some regions (e.g. central North America). Of
particular note are the large trends in Alaska and Northern Canada in the last
10-20 years that are concurrent with increasing temperatures (not shown).

These results indicate a switch to drying trends in soil moisture in many
regions and more generally at global scales, despite a long-term wetting trend.
Although there is considerable variability over the whole period, we hypothesis
that this is caused in part by warming temperatures that act to increase evap-
otranspiration and/or early snowmelt and therefore the occurrence of drought.
This is despite the possibility of concurrent increases in precipitation, although
this is unlikely in some regions because of the anti-correlation of precipita-
tion and temperature (Dèry and Wood, 2005b). We explore the relationship
between soil moisture/drought and precipitation and temperature variability
next and then address the impact of warming trends.
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Figure 5.10: Trends in regional average soil moisture for a 21-yr moving
window. The x-axis indicates the middle date over which the trend is
calculated. Trends that are significant at the 0.05 level are shaded in darker
colors. Positive (negative) trend values are shaded in warm (cool) colors.
The values for “world” have been multiplied by 3 for ease of visualization.
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5.5 Relationships with meteorological forcings

5.5.1 Relationship with precipitation and temperature vari-
ability

Drought is driven primarily by lack of precipitation, but this is accentuated
or diminished by associated changes in temperature and other meteorological
processes. Anomalously high temperatures will tend to increase evapotran-
spiration, while low precipitation will obviously reduce recharge of the soil
column. These processes may interact in complex and non-linear ways such
that drought can be, for example, induced by many months of below normal
rainfall, be prolonged by high temperatures and then be alleviated by a single
storm. These relationships may also have implications for the occurrence of
drought under future climates that are likely to be warmer but with associated
changes in precipitation that are regionally dependent and may show increase
or decreases. Drought development may also lag anomalies in precipitation and
other meteorological forcings but this relationship is not well understood. For
example, months of anomalously low precipitation may not result in drought
conditions until some time later. A subsequent return to normal conditions
may similarly be delayed as moisture takes time to filter through the hydro-
logic system and replenish depleted stores. These processes are complicated by
seasonal variations where precipitation may dominate in cool seasons and be
modified in warm seasons by temperature effects.

Figure 5.11 shows scatter plots of the trends in precipitation and tempera-
ture stratified by trends in soil moisture quantile for several regions chosen to
represent a diversity of climates. Wetting (drying) trends that are significant
at the 0.05 level in soil moisture are associated with positive (negative) trends
in precipitation in all regions. Of note is the small spread in the distribu-
tion of precipitation trends and clear delineation between wetting and drying
soil moisture trends in high latitude regions (ALA and NAS). Tropical and
southern hemisphere regions (e.g. AMZ, SAF, SAS) show larger spread in pre-
cipitation trends and some overlap in the range of positive soil moisture trends
with negative precipitation trends. The relationship between soil moisture and
temperature is somewhat unclear, however (in part, because decreasing tem-
perature trends are uncommon). As significant trends in soil moisture (wetting
and drying) are generally associated with positive temperature trends, indi-
cating that increasing temperatures do not necessarily hinder increasing soil
moisture and conversely, that they may enhance decreasing soil moisture.

At seasonal scales, the relationship between soil moisture, precipitation and
temperature is more complex, especially for cooler regions where snow pack
storage and seasonally frozen soil water play an important role. As an example,
the results for the NAS region (Figure 5.12) show very different relationships
between trends in soil moisture and those in the forcing variables. During
summer (JJA) and autumn (SON), drying (wetting) soil moisture trends are
generally associated with decreasing (increasing) precipitation. However, in
the cooler months (DJF and MAM) this distinction is not apparent and the
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Figure 5.11: Scatter plot of trends in precipitation and surface air tem-
perature, stratified by trends in soil moisture for selected regions. Blue
(red) symbols represent positive (negative), significant trends in soil mois-
ture at the 0.05 level.

sign of trends in soil moisture is independent of the sign of the precipitation
trend. Springtime soil moisture is dominated by snowmelt which, although
driven in part by springtime temperatures and precipitation, is a function of
the snowpack accumulated over the preceding winter. As a comparison, humid
regions such as the Amazon (not shown) show little seasonal variability in the
precipitation-temperature-soil moisture relationships.

5.5.2 Sensitivity of drought to temperature trends

To further investigate the impact of temperature on soil moisture and drought
trends we compare the results of the TANN (annually varying temperature
forcing) and the TCLIM (climatological temperature forcing) simulations. Fig-
ure 5.13 shows the difference between the two simulations in terms of mean
soil moisture and trends in soil moisture, and indicates where changes are at-
tributable to trends in temperature. Regions of maximum differences in mean
soil moisture tend to occur in the northern Hemisphere, in mid to high latitudes,
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Figure 5.12: Scatter plot of seasonal trends in precipitation and surface
air temperature, stratified by trends in soil moisture for the NAS region.
Blue (red) symbols represent positive (negative), significant trends in soil
moisture at the 0.05 level.

with TANN driving increases in soil moisture in eastern Europe, northern Eura-
sia, southern Alaska and southeastern Canada and decreases in eastern USA,
Pacific Northwest, eastern Canada and small parts of central Europe, central
Asia and eastern Siberia. Globally, the tendency is for equal areas of increases
and decreases in the Northern Hemisphere and a ratio of 3:2 in favor of in-
creases in the southern hemisphere. The differences in trends between the two
simulations are small (of the order of 0.002% yr−1 or less), although this is
the trend over the full 50 years (≈ 0.1% 50yr−1). The largest differences are
found in high northern latitudes, with increased trend magnitude for TCLIM
over northern Canada and northern Europe and decreased trend magnitude
for from eastern Europe through to central Siberia. Eastern Siberia also shows
decreased magnitudes. Elsewhere, the northern half of the Andes shows lower
magnitudes in Peru and higher magnitudes in Columbia.

In Figure 5.14, the differences between the two simulations are shown for
11-yr moving averages in trends in regional mean soil moisture quantile. For the
majority of regions the differences are generally less than 1% yr−1. However,
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Figure 5.13: Comparison of soil moisture between the original simulation
with annually varying air temperature forcing (TANN) and that with time
invariant or climatological air temperature (TCLIM). Top panel: difference
in mean soil moisture, 1950-2000. Bottom panel: difference in soil moisture
trend, 1950-2000.
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outstanding are a few regions with differences up to 6% yr−1 (ALA, NEC) and
2-3% yr−1 (NEU, NAS). Note that these are differences in trends over 11-yr
windows and will generally be much higher than the 50-yr trends. Of particular
interest are the large differences in regions ALA and NEC during the last 20
years of the record that indicate that decreasing soil moisture is exaggerated by
the increasing trend in air temperature. The temperature trend is particularly
pronounced during 1990-2000 (not shown). Similar behavior in the latter years
of the record exists for other regions, such as EAS, WNA, ENA and SSA but
the magnitude of the differences are considerably smaller. Even at the global
scale a difference is noticeable in the last 20 years. Despite some long term
variability over the full period in most regions, the evidence points towards a
temperature effect in recent years that tends to exaggerate or force decreasing
trends in soil moisture.

5.6 Discussion and conclusions

5.6.1 Uncertainties in the meteorological forcings and hy-
drologic modeling

The trends discussed are only as robust as the meteorological data that forces
the simulation and the land surface model that is used to derive the soil mois-
ture data. It has been shown that modeled land surface hydrology is sensitive
to the forcing dataset that drives it, and especially precipitation (Ngo-Duc et
al., 2003; Fekete et al., 2004; Berg et al., 2004; Sheffield et al., 2004b; Guo et
al., 2006). Fekete et al. (2004) showed that the uncertainty in precipitation
datasets was of the order of interannual variability and that the impact of pre-
cipitation uncertainties on the terrestrial water budget was of at least the same
magnitude, especially in semi-arid regions where the hydrologic response is
highly non-linear. In the second Global Soil Wetness Project (GSWP-2) multi-
model comparison, Guo et al. (2006) found that uncertainties in the forcings
were as large as differences between land surface models. The first order drivers
of drought, monthly precipitation and temperature, are derived in this study
from the Climatic Research Unit (CRU) TS2.0 gauge based dataset (Mitchell
and Jones 2005). For time periods when station observations are limited or
non-existent the CRU dataset relies on climatological values, or so-called “re-
laxation to climatology” (Mitchell and Jones, 2005). Additionally, the gauge
density that contributes to a grid cell may force errors in the simulated hydrol-
ogy for densities of the order of less than 30 gauges per 106 km2 (Oki et al.,
1999).

It is therefore likely that errors in the forcing dataset used here will result
in errors in the representation of drought and that the reliability of the time
series at the grid scale (1.0 degree) may be reduced (Patz et al., 2002), al-
though this can be alleviated through spatial and temporal averaging (Giorgi,
2002). Nevertheless, at larger scales, and especially in data-poor regions, we
argue that this is our best estimate. In data rich regions such as the USA and
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Europe, our estimates may compare less favorably against that obtained when
using data from dense station networks. For example, Decharme and Dou-
ville (2006) showed that the GSWP-2 forcing dataset drastically overestimated
precipitation compared to data from a dense network in France with resulting
impacts on modeled river discharge and that this overestimation was system-
atic globally. However, comparisons of drought characteristics derived from the
dataset in this paper and datasets based on higher spatial resolution modeling
forced with gauge-based observations (Sheffield et al. (2004a), Andreadis et
al., 2005; Andreadis and Lettenmaier, 2006) are encouraging (section 5.2.2).
Furthermore, biases in the modeling of the land surface budgets, through sim-
plifications in the modeling and uncertainties in the parameter data, may result
in errors in the trends (Sheffield et al., 2004a). These biases are generally un-
quantifiable but most importantly are systematic and therefore uniform over
time. Therefore it is likely they will not impact the sign or strength of the cal-
culated trends appreciably. We similarly argue that comparable results would
be obtained if we used a different model. Inter-comparison of land surface
models driven by the same forcings has been carried out regionally (Wood et
al., 1998; Mitchell et al., 2004) and globally (Guo and Dirmeyer, 2006) and
have concluded that although the models do poorly at reproducing the abso-
lute values of observed soil moisture they do reasonably well at mimicking the
anomalies and interannual variability. They may, therefore, provide useful in-
formation on drought occurrence and trends when viewed with respect to their
own climatologies.

The PDSI can be considered as another type of model but designed specif-
ically to monitor drought (although much simpler in its treatment of physical
processes when compared to hydrologic land surface models) and has been
used to assess trends in global drought previously (Dai et al., 2004; Burke et
al., 2006). Burke et al. (2006) looked at trends in PDSI over the second half
of the 20th century as calculated from i) the observation driven PDSI data set
of Dai et al. (2004) and ii) a PDSI dataset driven by precipitation and tem-
perature from coupled and uncoupled runs of the Hadley climate model. They
found that the two datasets show a global drying trend of between -0.2 and
-0.3 decade−1 in PDSI units. This is at odds with the results of this paper that
shows a small wetting trend globally, although the pattern of regional trends
is similar (compare Figure 5.1 with their Figure 3). The difference is mainly
because of the larger drying trend in the PDSI datasets for the last 20 years as
shown by Burke et al. (2006) and Sheffield and Wood (2007) and is systematic
of the PDSI, whether driven by the Burke et al. (2006), the Dai et al. (2004),
or the VIC forcings (Sheffield and Wood, 2007). This may be due to a number
of differences in the PDSI and VIC modeling approaches, such as the model
time step (PDSI is monthly, VIC is 3hourly), the sensitivity of the model to
precipitation and temperature changes (e.g., the PDSI uses the Thornthwaite
method to calculate PE that may be biased for higher temperatures (Burke et
al., 2006)), and the fundamental physical processes that are modeled (e.g. the
PDSI does not include snow processes) and requires further investigation.

There are also a number of non-meteorological boundary conditions, such
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as land cover, that are assumed time invariant (although vegetation param-
eters such as leaf area index do vary seasonally) but may actually have an
appreciable impact on the trends. For example, anthropogenic factors, includ-
ing irrigation, water withdrawals and land use change, and natural processes
such as vegetation dynamics and wildfire, are not modeled explicitly and the
impact of these may vary in time also, thus affecting the trends. Estimates of
current day irrigation are that 16.3% of cultivated regions are equipped for ir-
rigation (Siebert et al., 2005) which can have a significant impact on the water
cycle (Haddeland et al., 2007), although historically this may have been offset
by changes in land use. Land cover has changed dramatically over the past
300-years (Foley and Ramakutty, 1999) and more so in tropical/developing re-
gions over the 20th century (Goldewijk, 2001). The impact that this has had
on the water cycle may be substantial (Zhang and Schilling, 2006; Scanlon et
al., 2007), likely reducing evapotranspiration and increasing runoff with pos-
sible implications for the results presented here. Furthermore, elevated levels
of CO2 and increased growing season length may be responsible for recent in-
creases in net primary productivity (NPP) and thus transpiration (Friend et
al., 2007), although stomatal closure response to elevated CO2 levels may have
had the opposite effect (Gedney et al., 2006).

5.6.2 Summary and conclusions

Global and regional trends in drought over the past 50 years are analyzed us-
ing a soil moisture based drought index over global terrestrial areas, excluding
Greenland and Antarctica. Drought is described in terms of various statistics
that summarize drought duration, intensity and severity. Trends in soil mois-
ture and drought characteristics were calculated using a non-parametric trend
test on a grid cell basis and for regional averages. Despite some uncertainties
in the forcings and the modeling process we have confidence in the results as
derived from a validated dataset, especially at larger scales and when put in
context of other studies.

An overall increasing trend in global soil moisture, driven by increasing pre-
cipitation underlies the whole analysis, which is reflected most obviously over
the western hemisphere and especially in North America. Regional variation is
nevertheless apparent and significant drying over West Africa, as driven by de-
creasing Sahel precipitation, stands out. Elsewhere, Europe appears to have not
experienced significant changes in soil moisture, a trait shared by southeast and
southern Asia. Trends in drought characteristics are predominantly decreasing
but statistically significant changes are limited in areal extent, of the order of
1.0 – 7.0% globally, depending on the drought threshold and variable and being
generally less than 10% of continental areas. Concurrent changes in drought
spatial extent are evident, with a global decreasing trend of -0.021 to -0.035%
yr−1. Regionally, drought extent over Africa has increased and is dominated by
large increases over West Africa. Northern and East Asia show positive trends
and central Asia and the Tibetan plateau show decreasing trends. In south
Asia all trends are insignificant. Drought extent over Australia has decreased.
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Over the Americas, trends are uniformly negative and mostly significant.
Within the long-term trends there are interannual and decadal variations

in soil moisture and drought characteristics that are apparent in many regions.
Globally, variations are driven mainly by ENSO variability, although the AMO
appears to play an important role globally and in many regions, such as west
and east Africa, central Asia and the high latitudes of North America. How-
ever, the short length of record relative to the scale of the AMO precludes any
definite conclusions. High correlation values are found between the Mediter-
ranean and the NAO, and southeast Asia and the Amazon basin and Nino3.4
SSTs. Stronger connection are likely at scales smaller than the regions exam-
ined here and by using seasonal and lagged correlations. The decadal variations
in soil moisture and drought characteristics impact the robustness of the long-
term trends. In general, they are responsible for diminishing the long-term
trends. In fact, despite the overall wetting trend, there is a switch in later
years to a drying trend, globally and in many regions, which is concurrent with
increasing temperatures. Although drought is driven primarily by variability in
precipitation, temperature has an effect that appears to be exaggerated in the
last decade or so especially in high northern latitudes. This is most pertinent
within the context of potential continued temperature increases during the 21st

century.
Future climate projections from coupled models predict increases in global

temperatures and generally increasing temperatures over land regions for most
emission scenarios (e.g. Giorgi and Bi, 2005). The range in predictions varies
among scenarios but is generally increasing. If temperature is a secondary
forcing of drought (precipitation being the primary forcing) in most regions
then the implication is that droughts will increase in the future, especially
given the magnitude of predicted temperature increases. On the other hand,
predicted changes in precipitation are highly variable in space and are scenario
dependent to the extent that precipitation is predicted to increase in some
regions and decrease in others (Giorgi and Bi, 2005). Temperature driven
changes in drought will be modified by the changes to precipitation, although
the fact that precipitation and temperature are anti-correlated in many regions
(Trenberth and Shea, 2005; Dèry and Wood, 2005b), may lead to enhanced
drought occurrence.
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Chapter 6

Projected changes in 21st

century drought

This chapter is a slightly modified version of: Sheffield J., and E. F. Wood, Projected
changes in drought occurrence under future global warming from multi-model, multi-
scenario, IPCC AR4 simulations. Clim. Dynam., in press.
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Abstract

Recent and potential future increases in global temperatures are likely to be
associated with impacts on the hydrologic cycle, including changes to precipi-
tation and increases in extreme events such as droughts. We analyze changes in
drought occurrence using soil moisture data for the SRES B1, A1B and A2 fu-
ture climate scenarios from eight AOGCMs that participated in the IPCC AR4.
The models show decreases in soil moisture globally for all future scenarios with
a corresponding doubling of the spatial extent of severe soil moisture deficits
and frequency of short-term (4-6 month duration) droughts from the mid 20th

century to the end of the 21st. Long-term (more than 12 month duration)
droughts become three times more common. Regionally, the Mediterranean,
west African, central Asian and central American regions show large increases
most notably for long term frequencies as do mid latitude North American re-
gions but with larger variation between scenarios. In general, changes under
the higher emission scenarios, A1B and A2 are the greatest, and despite follow-
ing a reduced emissions pathway relative to the present day, the B1 scenario
shows smaller but still substantial increases in drought, globally and for most
regions. Increases in drought are driven primarily by reductions in precipitation
with increased evaporation from higher temperatures modulating the changes.
In some regions, increases in precipitation are offset by increased evaporation.
Although the predicted future changes in drought occurrence are essentially
monotonic increasing globally and in many regions, they are generally not sta-
tistically different from natural variability for multiple decades, in contrast to
primary climate variables, such as global mean surface air temperature and
precipitation. On the other hand, changes in annual and seasonal means of
terrestrial hydrologic variables, such as evaporation and soil moisture, are es-
sentially undetectable within the 21st century. Changes in the extremes of
climate and their hydrological impacts may therefore be more detectable than
changes in their means.

6.1 Introduction

The climate varies naturally in response to external forcings, such as solar ra-
diation (Christensen and Lassen, 1991) and atmospheric aerosols (Robock and
Mao, 1995), and because of internal interactions between components of the
climate system (Trenberth and Hurrell, 1994). The extremes of these variations
have consequences on the terrestrial water cycle that impact human activities
in terms of changes to the availability or absence of water, e.g. flooding or
drought (Higgins et al., 2000; Dai et al., 1998). When coupled with poten-
tial climate change, which may impact regionally and exaggerate the influence
of natural variability, the extremes of climate may become more pronounced
(Easterling et al., 2000; Palmer and Räisänen, 2002). To design and implement
strategies to minimize climate change or mitigate against the detrimental im-
pacts (Hasselmann, 2003), it is essential to be able to detect whether climate
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change is actually occurring and to what extent. This is problematic because
the climate change signal may be small relative to the natural variability of
the climate system (Hulme et al., 1999) and may thus be undetectable, at least
over the short term. The possibility then arises that by the time the signal
becomes detectable, adverse impacts may have already occurred and it may be
too late to reverse the change or even adapt to it (Pittock, 1999; King, 2004).

Climate change is often measured by changes in primary climate variables
such as global surface air temperature and precipitation. These variables are
first order drivers of climate impacts, inducing changes in weather extremes,
sea ice thinning and glacier retreat, and thus are appropriate for studying the
broader issues in climate change. They are also the best observed variables over
large scales with relatively long historical records. Recent changes in climate
may be large enough to be detectable now, although this will depend on the
climate variable and our level of confidence in detecting change (Hergerl et
al., 2006). Analysis of the instrumental record indicates that recent increases
in global annual temperature are anomalous and more rapid compared to the
long-term record (e.g. Jones et al., 1999; Hansen et al., 1999, Brohan et al.,
2006) and model results suggest that this cannot be due to natural variability
alone (Jansen et al., 2007). However, changes in global variables may bear little
relation to regional changes, especially for precipitation (Giorgi and Bi, 2005)
and thus changes in, for example, droughts and floods that may have serious
impacts on human and environmental welfare.

The potential acceleration of the hydrologic cycle under recent and future
global warming is of considerable interest (Huntington, 2006), especially in
terms of changes in regional variability and extremes. Of all natural disas-
ters, the economic and environmental consequences of drought are among the
highest, due primarily to the longevity and widespread spatial extent of many
droughts (Wilhite, 2000). Thus the potential impacts of climate change on
drought are most pertinent. As temperatures rise, the capacity of the atmo-
sphere to hold moisture would increase as governed by the Clausius-Clapeyron
equation (Held and Soden, 2000), with potential for increased evaporation
and/or precipitation (Trenberth, 1999), although these may be limited by other
factors such as available energy and aerosol concentration. Climate model
studies have shown that variability is likely to increase under plausible future
climate scenarios (Wetherald and Manabe, 2002), dependent upon climate sen-
sitivity, with large regional changes in the water cycle. The potential for more
droughts and of greater severity is a worrisome possibility (Gregory et al., 1997;
Wetherald and Manabe, 1999; Wang 2005).

Several studies using climate models have suggested that the interior of
the northern hemisphere continents will become drier over the next century,
especially in the summer (Rind et al, 1990; Gregory et al., 1997; Wether-
ald and Manabe 1995; 1999; 2002). Gregory et al. (1997) analyzed summer
drought over southern Europe and central North America in terms of pre-
cipitation and soil moisture from a single integration of the Hadley climate
model forced by 1% yr−1 increasing CO2 concentrations. They found increases
in multivariate drought statistics that were driven primarily by evaporation
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through increased temperatures but also decreased precipitation in the form of
fewer events. Wetherald and Manabe (1999) analyzed soil moisture from the
GFDL climate model for three scenarios: increasing greenhouse gases, increas-
ing sulphate-aerosol and combination of both. They similarly found summer
dryness and winter wetness in North America and southern Europe as well
as other semi-arid regions, although high latitudes showed increasing wetness.
Based on a threshold of one standard deviation, changes in soil moisture did
not become detectable for several decades. In summarizing such studies, the
third Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 2001)
concluded that increased drought risk over these regions was “likely”.

More recently, Giorgi (2006) analysed a set of IPCC 4th Assessment Report
(AR4) simulations and calculated a climate change index based on changes in
precipitation and temperatures means and variability. He found major climate
change “hot-spots” in the Mediterranean and Northern Europe, followed by
high northern latitudes and Central America. Other hot-spots occur in South-
ern Equitorial Africa, the Sahara and eastern North America. Wang (2005)
analyzed a large set of IPCC AR4 models in terms of consensus changes in pre-
cipitation, temperature and soil moisture and found inter-model consistency in
some regions of northern mid- and high-latitudes in predicting summer dryness
and winter wetness. In terms of drought, Burke et al. (2006) calculated the
Palmer Drought Severity Index (PDSI), a commonly used drought index, from
the latest version for the Hadley centre climate model for the SRES A2 scenario
and found regionally strong wetting and drying, but a net global drying trend
resulting in an increase in the area of extreme drought from 1% to 30% by end
of this century. The conclusion of the latest IPCC report (IPCC, 2007, chapter
10, pg 783) was that “In a warmer future climate, most Atmosphere-Ocean
General Circulation Models project increased summer dryness and winter wet-
ness in most parts of the northern middle and high latitudes. Summer dryness
indicates a greater risk of drought.”

The consensus from these and other studies into the hydrologic impacts of
future warming and the synthesis conclusions of the past two IPCC reports
point towards a greater risk of drought during the 21st century. In this paper
we investigate how drought is expected to change in the future by analyzing soil
moisture and drought characteristics over global land areas, excluding Antarc-
tica, from a suite of climate model simulations carried out under the auspices
of the IPCC AR4. We quantify the change in global and regional drought
occurrence relative to the pre-industrial era as represented by climate model
control simulations. We take into account the uncertainty in regional climate
change by using data from multiple climate models and for three future climate
scenarios that represent a range of plausible emission pathways.

Although global warming is expected to accelerate the hydrologic cycle and
thus the occurrence and severity of drought, the changes may not become de-
tectable for several decades (Wetherald and Manabe, 1999). The detectability
of climate change can be quantified by how long we have to monitor for to
detect significant changes against the background of natural variability, which
is basically a signal to noise problem (McCabe and Wolock, 1997; Zheng and
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Basher, 1999; Ziegler et al., 2003). The greater the variability, the harder it
is to detect a signal. We use this concept to evaluate the detectability of po-
tential future changes by applying statistical analyses to time series of drought
occurrence to determine when and where changes will become detectable. De-
tectability is a function of the natural variability of the system, the magnitude
of the change we are interested in and the level of risk we are prepared to accept
in statistical testing, among others factors, and we carry out a set of sensitivity
experiments to evaluate their impact.

This study is the first that we are aware of that analyzes potential changes in
drought under future global warming, as characterized by persistence in severe
soil moisture deficits, from multiple models and scenarios. Previous studies
have assessed predicted changes in mean climate and specifically soil moisture
(Wetherald and Manabe, 2002; Wang 2005) that will likely (but not necessar-
ily) induce changes in drought. Here, we take into consideration changes in
the full distribution of pertinent variables and not just the mean or some other
tendency measure. Furthermore, we analyze actual model output as opposed
to derived products such as the PDSI that may suffer from inadequacies which
will enhance uncertainty in the results. In terms of models and scenarios an-
alyzed, previous studies have focused on single models and/or single scenarios
(e.g. Wetherald and Manabe, 2002; Wang 2005; Burke et al., 2006). To instil
confidence in the robustness of assessment of future change, it must take into
account the uncertainty in future climates because of model differences as well
as the diversity of possible emission pathways as represented by the different
scenarios. Nevertheless, uncertainties are inherent in this study, such as biases
induced by the specific models and approaches we take and we highlight theses
where relevant.

The paper is laid out as follows. After presenting the datasets and meth-
ods we briefly evaluate how well the models represent drought during the 20th

century against off-line estimates. We then show how drought is expected to
change over the 21st century for the three future climate scenarios, globally
and regionally, and where these changes are statistically significant relative to
natural variability as derived from pre-industrial control simulations. Mech-
anisms for the expected changes are presented next, that show how changes
in evaporation, as forced by increasing temperatures, modify the primary im-
pacts of precipitation changes and how this can be altered by changes in snow
at higher latitudes. In section 6.4 we investigate the detectability of these
changes and how this depends on the time period, drought characteristic, level
of significance and background variability against which the change is quanti-
fied. This section also looks at how drought detectability compares to that for
other hydro-climatic variables and whether we are likely to detect changes in
extremes, such as drought, earlier than changes in the mean of primary climate
variables, such as annual precipitation.
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6.2 Datasets and methods

6.2.1 Climate model simulations

To estimate potential future climate change we use data from the IPCC AR4
General Circulation Model (GCM) simulations. The range of future climates
predicted by GCMs is large and regionally dependent (NRC, 2003; Giorgi and
Bi, 2005) and we therefore use data from multiple GCMs and three scenarios:
the Special Report on Emissions Scenarios (SRES) A2, A1B and B1 (Naki-
cenovic et al., 2000). Each scenario represents different mixes of changes in
population, economic output, land use, and energy and technology use, among
others, but can be generally characterized by maximum atmospheric CO2 con-
centrations. B1 represents relatively slow population growth and an emphasis
on environmental protection, with CO2concentrations stabilized at 550ppm by
the end of the century. A1B describes a future of very rapid economic growth,
global population that peaks in mid-century and declines thereafter, and the
rapid introduction of new and more efficient technologies with a balance be-
tween fossil and non-fossil energy sources and is characterized by maximum con-
centrations of 720ppm. A2 describes a heterogeneous world with continuously
increasing global population and regionally orientated economic development
and fragmented technological change and is generally regarded as a worst-case
scenario that sees a four to five fold increase in CO2 emissions over 2000-99
during which CO2 concentrations increase from about 350 to 850ppm. We also
use data from the corresponding pre-industrial control (PICNTRL) and 20th

century simulations (20C3M), which were also run in coupled mode, i.e. with
a free-running ocean component. The 20C3M simulations are driven by pre-
scribed historical greenhouse gas concentrations, sulphate-aerosol loadings and
other forcings since the start of the industrial revolution. We use data for eight
models (Table 6.1) which were selected as those which had soil moisture and
ancillary data available for all these scenarios. Where ensemble simulations for
a particular scenario were available we use the first ensemble member but it
should be noted that single simulations were available more often than not.

6.2.2 Drought estimation

We define drought occurrence as an extended period of anomalously low soil
moisture. The amount of water in the soil provides a useful indicator of drought
as it reflects the aggregate effect of all hydrologic processes from changes in
short-term precipitation events and temperature swings to long-term changes
in climate, and can represent the status of agriculture and potential hydrologic
recharge to rivers and reservoirs (Sheffield et al., 2004). Empirical probability
distributions are derived for the modelled soil moisture fields for each month
from the pre-industrial control simulations and the current state of drought is
characterized by the quantile of the current soil moisture value in relation to
the control period distribution. A drought is defined as a consecutive sequence
of months of length D with soil moisture quantile values, q(θ), less than a
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Model Name Modeling Group Country

CGCM3.1(T47) Canadian Centre for Climate Modelling
& Analysis

Canada

GFDL-CM2.1 US Dept. of Commerce / NOAA / Geo-
physical Fluid Dynamics Laboratory

USA

GISS-ER NASA / Goddard Institute for Space
Studies

USA

INM-CM3.0 Institute for Numerical Mathematics Russia
IPSL-CM4 Institut Pierre Simon Laplace France
MIROC3.2(medres) Center for Climate System Research

(The University of Tokyo), National In-
stitute for Environmental Studies, and
Frontier Research Center for Global
Change (JAMSTEC)

Japan

MRI-CGCM2.3.2 Meteorological Research Institute Japan
ECHAM5/MPI-OM Max Planck Institute for Meteorology Germany

Table 6.1: Models used in this study, which have monthly soil moisture
data available for the PICNTRL, 20C3M and SRES B1, A1B and A2
scenarios.

chosen threshold, q0(θ). Here we use a value of 10%, which reflects conditions
that occur only once every 10 years for a particular month on average and so
reflects rare events, and has been shown to be applicable to identifying historic
events at global scales (Sheffield and Wood, 2007). We are particularly inter-
ested in how individual dry months are organized into sequences of consecutive
dry months that can then be considered a drought with associated deleterious
impacts. Drought can be characterized in various ways and we define a number
of statistics based on duration (D), intensity (I), severity (S) and areal extent
(A) that are also dependent on q0 (θ):

I =
1
D

t+D−1∑
t=t1

q0(θ)− q(θ)t (6.1)

S = I ×D (6.2)

Intensity is the mean magnitude over the duration of the drought and
severity is the time integrated deficit below the threshold. We also define
three classes of drought depending on their duration: short-term (4-6 months),
medium term (7-12 months), and long-term (longer than 12 months).
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D4−6, short− term : 4 ≤ D ≤ 6, q(θ) <= q0(θ) (6.3)
D7−12, medium− term : 7 ≤ D ≤ 12, q(θ) <= q0(θ) (6.4)
D12+, long − term : D > 12, q(θ) <= q0(θ) (6.5)

The spatial extent of drought, A, is defined as follows:

A =

N∑
i=1

A(i) = {q(θ) <= q0(θ)}

N∑
i=1

A(i)
(6.6)

where A(i) is the area of grid cell i weighted by the cosine of the grid cell
latitude and N is the total number of grid cells in the region of interest.

6.2.3 Statistical methods

Changes in the occurrence of drought are calculated between the pre-industrial
control and future climate simulations from the ensemble of climate models.
To show how future changes compare to modeled present day conditions, we
also show results relative to the 20th century simulations in section 6.4.4. For
each model, we calculated the frequency of drought and other statistics in each
30-year period within the control simulation and in 30-year periods in the fu-
ture climate simulation. In this way we take into account the uncertainty due
to model differences and the natural variability of the climate system as repre-
sented by the control simulations. To account for the differences in simulation
length among models, which would bias the results towards a model with a
longer control simulation, we averaged the results over the 30-yr periods in the
control simulations.

Changes in drought are identified by testing the null hypothesis that the
distribution of a drought statistic across all models has the same mean as the
distribution across all models during a future time period. The Student’s t-
test statistic, which is a measure of the ratio of the difference in means to the
combined variance of the two distributions, is calculated at each grid cell and
the null hypothesis is rejected for t-test values greater than the critical value at
confidence level α (usually taken as 0.05 or 95%). In this case we conclude that
a statistically significant change has occurred. Application of the test assumes
that the means of the two samples do not deviate substantially from a normal
distribution.

6.2.4 Data preparation

We focus on monthly values for all calculations, which is the smallest time scale
for which data are available for the complete period of each simulation from the
IPCC database. Monthly values of soil moisture for each model are available as
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depths of water and are normalized to volumetric values by dividing by the field
capacity, which is given for each model as a fixed field. This ensures that the
soil moisture data for each model are analyzed with respect to their dynamic
range as governed by soil characteristics and meteorological conditions, and are
thus inter-comparable. The volumetric data are then interpolated from each
model’s native grid to a 2.0 degree regular grid, which is a representative scale
across the set of models. Ancillary variables (e.g. precipitation) that are used
in subsequent analysis of drought forcing are interpolated in the same manner.

6.3 Results

First, we evaluate the representation of drought in the climate models by con-
sidering i) the natural occurrence of drought as derived from the control simu-
lations and ii) drought under contemporary climate from the 20th century sim-
ulations. In section 6.3.2 we compare the 20th century results with observation-
based data to determine whether the models are capable of reproducing our
best estimates of large scale contemporary drought occurrence.

6.3.1 Natural variability of drought from GCM control
simulations

Figure 6.1 shows the global distribution of drought statistics in terms of the
multi-model ensemble mean. The statistics are the frequency of D4−6 and D12+

droughts, the mean drought duration, Dmean, and the mean drought severity,
Smean. For each model, the drought statistics are calculated over 30-yr blocks
within the control period and then the mean is calculated over all blocks. The
maps in Figure 6.1 show the multi-model mean and standard deviation (inter-
model variability) of the individual model means.

For D4−6 droughts, the highest frequencies are located in mid-latitudes
and the Tropics, with peak values of about 1-2 droughts per 30 years in the
Pacific northwest and eastern United States, central Europe and Asia, China
and central Africa. Low frequencies (< 0.5 droughts 30 yr−1) occur in arid
regions where soil moisture is persistently low and does not change much from
year to year, and in high latitudes where freezing temperatures and snow cover
prolong soil moisture anomalies (Wang, 2005; Sheffield and Wood, 2007). The
standard deviation or inter-model variability of is largest in regions of high
seasonality, such as the edges of the footprint of the Inter Tropical Convergence
Zone (ITCZ) in Africa and lowest in dry regions and high latitudes.

The distribution of D12+ frequencies is generally the opposite of that for
short-term droughts, with maxima in central and northern North America,
eastern south America, Siberia, and eastern Asia among others. High values
are also prevalent in dry regions although as the range in soil moisture is so
small, the absolute magnitude of drought is also very small. Minima are mostly
located in regions with more seasonally uniform climates such as central tropical
Africa, parts of southeast Asia and the eastern and Pacific northwest coasts of
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Figure 6.1: Multimodel ensemble drought statistics for the pre-industrial
control (PICNTRL) simulation. The statistics are number of 3-6 month
duration droughts (30yr−1), number of 12+ month duration droughts
(30yr−1), mean drought duration (months) and mean drought severity
(% months). The statistics are calculated for 30-yr periods within the
each models control period and then averaged all 30 year periods. The
multimodel ensemble mean and standard deviation are shown on the left
and right hand side respectively.
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North America. The standard deviation values are also at a maximum in high
latitudes and globally are relatively high compared with the mean, possibly
indicating a lack of consensus across models in how drought varies on longer
time scales. Mean drought duration and severity are similarly distributed being
that severity is dominated by drought duration at low threshold values. Mean
drought duration is at a maximum in high latitudes, central North America,
Brazil, southern Africa and Australia.

6.3.2 20th century drought and comparison with off-line
modeling

Comparison of soil moisture data from the IPCC AR4 20C3M simulations with
field measurements have been carried out by Li et al., (2007) over small regions
in the Northern Hemisphere based on the database of Robock et al. (2002).
They found that the models simulated the seasonal cycles for Ukraine, Rus-
sia, and Illinois adequately, but were generally poor for Mongolia and China.
Importantly, all models failed to replicate observed summer drying in Russia
and the Ukraine during the latter part of the 20th century. Here we are in-
terested in the large-scale, long-term statistics of drought as characterized by
persistent soil moisture deficits. A comparison of global and regional averaged
drought characteristics from the 20C3M simulations with observation-based es-
timates is shown in Figure 6.2. The regions are defined by Giorgi and Francisco
(2000) with the inclusion of the northeast Canada region (NEC) in place of the
Canadian-Greenland (GRL) region. We also define the WORLD region as
continental land areas excluding Greenland and Antarctica. The observation-
based statistics are derived from off-line simulations using the Variable Infiltra-
tion Capacity (VIC) land surface model (Sheffield and Wood, 2007), forced by
an observation-based meteorological dataset (Sheffield et al., 2006). Because of
the lack of large scale, long-term monitoring of soil moisture, observation forced
off-line modeling provides the best possible estimate of historic soil moisture
values at continental to global scales (Maurer et al., 2002; Sheffield et al., 2006,
Guo and Dirmeyer, 2006).

The climate model values in Figure 6.2 generally encapsulate observation-
based values, although the spread among models and the occurrence of outliers
can be large depending on the region and statistic (e.g. CAM for D4−6, SAS
for D12+, AUS for Dmean). For D4−6 droughts the agreement is remarkably
good and the observation-based values fall within the maximum and minimum
range for all regions and generally lie within the inter-quartile range of the
model distribution. This is consistent with Seneviratne et al., (2006) who, as
part of the Global Land Atmosphere Coupling Experiment (GLACE), showed
that AGCMS were capable of distinguishing between observed regions of high
and low soil moisture memory on monthly time scales. For the other drought
statistics, the climate model values tend to be higher, most notably for D12+

frequencies and Smean, although for the former this is a result, in part, of the
zero lower bound in most regions. The general overestimation by the models of
long term drought frequencies and mean drought duration points to an under-
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Figure 6.2: Regionally averaged D4−6 and D12+ frequencies, Dmean and
Smean for 1961-1990 from the 20th century (20C3M) simulations (box and
whispers) and an observation forced land surface model simulation (black
dots). The box and whispers represent the inter-quartile range and the
range (maximum and minimum values) of the set of GCMs.
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estimation of climate variability that has been noted previously (e.g. Collins
et al., 2002; Hunt, 2006).

6.3.3 Global and regional drought under future climate
scenarios

Next we investigate how soil moisture and drought are predicted to change un-
der future climates. Global averaged time series of monthly mean soil moisture
and drought characteristics for the three future climate scenarios are shown in
Figure 6.3. For these models, the future climate simulations were initialized
from the end of the 20C3M simulation and we prepend these data (in terms of
the multi-model distribution) to the future scenario time series. Globally, soil
moisture decreases under all scenarios, with corresponding increases in drought
spatial extent. Note that the spatial extent of drought may not be contigu-
ous which is more likely for larger regions. Corresponding changes in drought
statistics (frequency of D4−6 and D12+ droughts and Smean) are all increasing.
In general, the increases in drought statistics are greatest under the higher
emissions scenario, A2, and least under the lower emissions scenario, B1 (Table
6.2). The global spatial extent of drought across all models roughly doubles by
2070-99 under all scenarios relative to the control scenario. The frequency of
D4−6 droughts also doubles and D12+ droughts become over three times more
frequent. The spread in model projections as quantified by the inter-quartile
range (IQR) is, however, fairly large, even at the beginning of the 21st century
(also noted previously in the 20th century comparisons in section 6.3.2) and this
increases by the end of the century, such that the lower bound on projections
shows little change over the century, although these are invariably increases.

Figures 6.4-6.6 show the multi-model mean, regionally averaged time series
of D4−6 and D12+ frequencies and A. Similar to the global results, most regions
show increases in drought statistics, but with large variation between regions
and across scenarios. In particular, the MED, WAF, CAS and CAM regions
show large increases, most notably for D12+ frequencies. The mid latitude
North American regions (WNA, CNA, ENA) also show increases but with
larger variation between scenarios. Changes over high latitudes (ALA, NEC,
NEU, NAS), eastern mid-latitude Asia (EAS, TIB) and regions bordering the
Indian ocean (EAF, SAS, SEA) are relatively small. The frequency of D12+

droughts actually decreases in NEU. Again, changes under the B1 scenario are
the least and the A1B and A2 results are similar.

6.3.4 Statistical significance of changes

We next evaluated the statistical significance of changes in drought by the end
of the 21st century with respect to natural variability as represented by the
model control simulation (Figures 6.7 and 6.8). In general, D4−6 drought fre-
quency increases globally between the control and the future period (Figure
6.7). Large areas experience greater than 5 short-term droughts per 30 years
(averaged over all models) that are statistically significant at the 95% level, in-
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Figure 6.3: Global average time series of soil moisture and various
drought statistics for the 21st century for the SRESB1, SRESA1B and
SRESA2 scenarios. Monthly soil moisture and drought extent (q0(θ) =
10.0% ) is shown as the 121-month running mean. The frequency of 3-6
month duration droughts (q0(θ) = 10.0% ), 12+ month duration droughts
(q0(θ) = 50.0% ) and the maximum severity (defined as the drought in-
tensity times the drought duration) are calculated over a 30-yr moving
window. The data are shown as the 0, 25, 50, 75 and 100% percentiles of
the distribution of the multimodel ensemble of soil moisture and drought
statistics.
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Figure 6.4: Regional time series of multimodel ensemble mean of fre-
quency of short-term droughts (D3−6, q0(θ) = 10.0%) for the 21st century
for the SRESB1, SRESA1B and SRESA2 scenarios. The values are calcu-
lated over a 30-yr moving window and then averaged over each region.
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Figure 6.5: As Figure 6.4 but for long-term (D12+) drought frequency.
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Figure 6.6: As Figure 6.4 but for the spatial extent of monthly drought,
q0(θ) = 10%.
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PICNTRL 20C3M SRES B1 SRES A1B SRES A2
(1961-90) (2070-99) (2070-99) (2070-99)

SM 50.8, 0.9 49.8, 3.8 45.8, 5.6 44.7, 7.4 44.9, 7.3
(%)

A 9.2, 1.0 11.2, 3.5 18.9, 6.2 22.3, 7.2 18.9, 6.7
(%)

D4−6 1.2, 8.3 1.4, 0.3 2.1, 0.8 2.4, 1.0 2.5, 1.1
(30yr−1)

D12+ 0.2, 2.1 0.3, 0.2 0.7, 0.6 0.7, 0.7 0.7, 0.6
(30yr−1)

Dmean 3.0, 2.0 3.2, 1.7 5.4, 3.3 6.6, 4.9 6.3, 3.6
(mos.)

Smean 14.8, 9.9 17.2, 9.3 38.0, 22.2 48.9, 40.7 45.3, 29.3
(mos. %)

Table 6.2: Summary of multi-model global mean soil moisture and
drought characteristics for the PICNTRL, 20C3M and future climate
SRES B1, A1B and A2 scenarios. The first of each pair of values is the
multi-model mean and the second is the multi-model IQR. The individ-
ual model PICNTRL values are calculated as the average over the whole
simulation period, which varies among models and is between 330 and 500
years.

cluding southern Europe, large parts of the US and Central America, southern
South America, central west Africa and parts of southern Asia. Statistically sig-
nificant changes in D12+ drought frequency are less spatially extensive (Figure
6.8), with both increases and decreases scattered across the globe. Decreases
are mostly restricted to high latitudes and generally result in zero frequen-
cies. Increases in the southern US, Central America, the Mediterranean and
southern Africa, are of the order of 2 droughts 30yr−1. The spatial distribu-
tion of changes is fairly robust across scenarios, but with magnitudes greatest
under the A2 scenario, and lowest under B1. Figure 6.9 and Table 6.3 sum-
marize the regionally averaged D4−6and D12+drought frequencies and spatial
extent of drought for the PICNTRL simulation and the predicted changes and
their statistical significance for the 20C3M (1961-1990) and the three future
climate scenarios (2070-2099). Note that increases in D4−6drought frequency
and spatial extent are statistically significant for most regions and scenarios.
Significant changes in D12+frequencies are restricted to the MED, WAF, SAF,
CAS, CAM, SSA and WORLD regions for all scenarios and in TIB and CNA
for the higher emission scenarios only. In particular the MED region shows
more than 3, 6 and 4 times increase in D4−6 and D12+drought frequency and
A, respectively.
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Figure 6.7: Multimodel ensemble mean of frequency of D4−6 droughts
in the control simulation (PICNTRL) and for 2070-99 in the SRESB1,
SRESA1B and SRESA2 future climate scenarios. Also shown are the
standard deviation of the PICNTRL multimodel ensemble and the statis-
tical significance of the difference in ensemble means between the PICN-
TRL simulation and the future climate predictions. Statistically significant
changes were estimated by calculating t-test statistics under the null hy-
pothesis that the mean of distribution of control period drought frequency
equals the mean of distribution for the future climate period. Results are
shown for significance levels of 90.0, 95.0, 99.0 and 99.9% with negative
values indicating a decrease in the frequency of drought.
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Figure 6.8: As for Figure 6.7, but for frequency of D12+ droughts.
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Figure 6.9: Regionally averaged drought statistics for 1961-90 (20C3M)
and three future climate scenarios for 2070-99 (SRES B1, SRES A1B,
SRES A2). Drought statistics are frequency of 3-6 month duration
droughts, frequency of 12+ month duration droughts, mean drought du-
ration and mean drought severity. Box and whispers represent the inter
quartile range and maximum and minimum values of the set of models.
The mean model value is shown as colored circles if the change is sta-
tistically significant at the 95% level relative to the control simulation
(PICNTRL).
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6.3.5 Drivers of changes in drought occurrence

Figure 6.10 shows how predicted changes in regional drought are skewed to-
wards the warm season. The figure shows the multi-model mean of regional
averaged, monthly frequency of occurrence of soil moisture deficits for q0(θ) <
10.0% for the PICNTRL, 20C3M and the three future climate scenarios. By
definition the PICNTRL frequencies are 10% for all months. The 20C3M and
SRES frequencies are progressively larger, with 20C3M < B1 < A1B < A2 as
noted previously. Warm season increases are nearly always greater than those
in cooler seasons. For southern hemisphere regions, such as SAF, AMZ, SSA
and AUS, the largest changes are predominantly in the austral spring. In cooler
regions (NAS, ALA, NEC), increased frequencies tend to be concentrated in
the warm season and increases in the cool season, especially for ALA and NAS,
are minimal.

Precipitation and temperature are the primary drivers of drought. Increases
in temperature will potentially increase transpiration and direct evaporation
from the soil through increased atmospheric demand, while increases in precip-
itation will tend to increase soil moisture. Conversely, decreases in temperature
and precipitation will tend to increase and decrease soil moisture respectively.
However the contribution of future changes in temperature and precipitation
to changes in drought occurrence under future climates in not straightforward
because of the complex interactions between these forcing variables and hydro-
logic processes at the earth’s surface. This is complicated further by changes
in mean precipitation versus changes in precipitation frequency and intensity
and the seasonality of changes, especially in snow dominated regions. Apart
from precipitation, the key linkage between climate change and changes in soil
moisture is evaporation. Although temperature increases will tend to increase
potential evaporation, actual evaporation may be enhanced or diminished by
precipitation increases and decreases respectively.

Model projections of future climates show increases in temperature globally
and for all regions whereas changes in precipitation are regionally and often
scenario dependent as shown for three example regions in Figure 6.11. These
regions were chosen as they show diversity in changes in future drought. The
MED region shows some of the largest increases in drought frequency that
is robust across models (section 6.3.3). This can be directly attributed to
reductions in precipitation totals, especially in the warm season, accompanied
by reductions in runoff and soil moisture (Figure 6.11). Changes in evaporation
are limited to small decreases in the summer, driven by reduced precipitation
that is not offset by increased atmospheric demand from higher temperatures in
an already water limited environment. In the CNA region, drought occurrence
is expected to increase but changes in other variables are mixed. Precipitation
is expected to increase in the spring but decrease in the summer. Coupled
with increased temperature, this leads to increased evaporation in the spring
but little change in the summer as decreased precipitation likely outweighs any
increases in potential evaporation.

Changes in drought in the NAS region are modest but are focused on the
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Figure 6.10: Multimodel regional average of frequency of monthly soil
moisture deficits for the PICNTRL, 20C3M, SRES B1, A1B and A2 scenar-
ios, relative to the 10th percentile of the PICNTRL simulations. For each
model, the number of months with soil moisture deficits below the 10th

percentile soil moisture value of the PICNTRL simulation are summed and
averaged across all models and the region and converted to a percentage.
The values are calculated separately for each month. The PICNTRL data
are by definition equal to 10% for all months. The 20C3M data are calcu-
lated for 1961-1990. The future climate SRES scenarios are calculated for
2070-99.
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Figure 6.11: Mean seasonal cycle of air temperature and the main com-
ponents of the terrestrial hydrological cycle for the MED, CNA and NAS
regions for the PICNTRL, 20C3M (1961-90) and SRES A2 (2070-99) sce-
narios. The boxes and whispers represent the inter-quartile range and
range, respectively across the models.
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summertime and are generally representative of other high latitude regions.
The hydrology in these regions is dominated by snow and ice processes which,
given increases in air temperature in these regions, can explain the seasonally
disproportionate changes in soil moisture deficits. Warmer temperatures tend
to reduce the snow cover through melting of the existing pack and increasing
the ratio of rainfall to snowfall. Precipitation is also predicted to increase in the
winter (and throughout the rest of the year). Rain falling on the existing snow
pack will also increase the rate of melting. This will in turn shift the spring
melt earlier. These changes force wetter soil moisture conditions in the winter
and spring, although this is offset somewhat by increased evapotranspiration
due to higher temperatures. During the summer, soil moisture is reduced, de-
spite increased precipitation, because of earlier spring melt that is compounded
by evapotranspiration increases as a result of increased temperatures. The fre-
quency of soil moisture deficits therefore increases disproportionately in the
summer time compared to the wintertime.

6.4 Detectability of changes in drought

The detection of statistically significant changes in drought is dependent upon,
among other factors, the strength of the change (signal) against the background
of natural variability (noise). As these factors vary, a change will be detected
earlier or later, and the time of detection can be used to quantify detectability
(e.g. Ziegler et al., 2003). The above analysis shows that statistically significant
changes are predicted to occur in many regions by the end of this century, in
particular the MED, SAF, CNA and CAM regions. However, these changes
may actually have become significant at earlier times and there may be other
regions where changes become significant or detectable at later time periods (if
simulation data are available).

6.4.1 Examples of regional detectability

Figure 6.12 shows some examples of the detectability of drought occurrence
for the A2 scenario for the WORLD and five regions (MED, CNA, TIB, AMZ
and SEA). These regions were chosen as they represent a variety of increasing
drought responses (some regions, such as NEU and NAS, show no statistically
significant changes). As the mean change in drought occurrence increases over
time, because of, for example, decreasing precipitation, the statistical signifi-
cance of the change generally also increases. Whether the changes in drought
occurrence are statistically significant is dependent on the region, drought char-
acteristic and scenario, although we only show results here for A2 (results for all
scenarios are shown in section 6.4.2). The variance (or spread) among models is
also a factor. For some regions (e.g. MED) the changes are already detectable
in the 20th century or early 21st century. In others, such as WORLD, changes
at the same confidence level vary by several decades between drought char-
acteristics. Elsewhere, changes can flip between being detectable or not (e.g.
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CNA for D12+ frequency) or between two levels of significance (e.g. SEA for
D4−6frequency), which has implications for decision making based on discrete
thresholds. In general, D4−6 frequency is more detectable than D12+frequency,
although the TIB region shows the opposite behaviour and in the AMZ region
only changes in D4−6 frequency are detectable. Changes in D4−6droughts in
the SEA region become detectable relatively early (around 2010) despite their
small magnitude.

6.4.2 Detectability under different scenarios

Table 6.4 summarizes the detectability of changes in regional drought for the
three future climate scenarios. Detectability is quantified as the mid year of
the 30-yr period in which the mean change in the regional average drought
characteristic first becomes statistically significant (at the 0.05 level), although
in reality we would not be able to make an assessment until the end of the period
once observations had been made. An earlier year of detection represents higher
detectability in the predicted changes. Because of decadal variability during the
20th century there are periods of high drought occurrence that are statistically
detectable but are followed by periods of non-detectability. We therefore look
for the first detectable year after any period of decadal variability.

Table 6.4 indicates that changes in D4−6 frequencies are more detectable
than the other drought characteristics. Dmean changes are undetectable in
most regions. Changes in regions such as MED, CAM and the WORLD are
detectable for all drought characteristics and scenarios (shown previously in
the end of century summary, Figure 6.9). For some regions (e.g. NEU, ALA,
NAS), the changes are undetectable within the simulation period. Calculations
with data from lower emission scenarios, such as B1, tend to increase the time
to detection as the magnitude of the changes are lower (although variance may
decrease if models show more consensus and tend to increase detectability).
Detectability under higher emission scenarios is increased (detection time de-
creases) because the magnitude of change increases (increased signal to noise
ratio), although this is complicated by the possibility that the uncertainty in
future changes under higher greenhouse gas concentrations may increase the
spread in model projections.

6.4.3 Detectability as a function of risk

The time of detection is also inherently controlled by the level of risk that one
is willing to take in making the determination. The estimates in section 6.3.3
and section 6.4.2 are made using a conservative, low-risk probability (α = 0.05)
of making an error in detection. This low risk value could be representative
of a conservative attitude to global warming in which more time is needed for
detection before taking steps toward mitigating the impacts of global warm-
ing; higher risk values imply less time is required for detection. Figure 6.13
shows the sensitivity of detection times to the test significance. As we instil
more confidence in the detection process and α decreases, our willingness to
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Figure 6.12: Detectability of changes in drought occurrence for the world
and five selected regions. The frequency of D4−6 and D12+ droughts, and
the mean drought duration Dmean in a 30-year moving window centred
on the year is averaged over each region. The colours indicate statistical
significance of the changes in drought occurrence relative to the climate
model control period values at 90.0, 95.0 and 99.0% confidence levels.
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falsely detect a change when none is occurring decreases. Therefore the size
of the change has to be larger for us to be confident that it is statistically
different from background variability, which generally implies that we have to
wait longer to detect the change and thus detectability decreases. At α = 0.05
the detection times for changes in drought characteristics vary widely depend-
ing on the region and variable, and changes for some variables are essentially
undetectable (e.g. NAS for all variables). Detection times for lower confidence
levels are earlier, as expected, although often not substantially different from
the 95% values. However, above the 99% level, the changes generally become
undetectable within the simulation period. For example, detection times for
changes in D12+ frequency over CNA increase from about 2050 at 95% and be-
low, to undetectable for 99% and above. Note that some changes are detectable
during the early part of the 20th century (e.g. NEU for D12+ frequency and
Smean), but reflect decadal variability rather than a global warming induced
long-term trend.

6.4.4 Detectability relative to the 20th Century

Detection of change is dependent on the background noise used to quantify
the natural variability of the system. The results shown so far are relative
to the model control simulations, which represent a “pristine” climate without
anthropogenic influence. Variability in these simulations results from a number
of sources including variability in solar output and internal variability of the
coupled atmosphere-ocean-land system. Our perception of change, however,
may be better realized relative to contemporary climate as this encompasses
observed climate variability, including the occurrence of drought of which we
have first hand experience. Figure 6.14 gives the detection times when using
either the PICNTRL or the 20C3M (1961-90) data to estimate the background
variability. Detectability generally decreases when using the 20C3M data as
would be expected, as drought frequency has already increased relative to the
control simulation (as shown in the regional time series in Figures 6.4-6.6 and
the 20th century detection times for many regions in section 6.4.2). It should
be noted though that decadal variability within the 20th century means that
for some regions 1961-90 is a wet period and the changes become detectable
earlier than when using the PICNTRL data.

6.4.5 Multi-Model ensemble versus single model de-
tectability

Given the uncertainty in future climate projections by a single model, this study
is based on a multi-model ensemble. This enables us to capture the uncertainty
in the representation of climate processes. However we have chosen to use a
single model simulation as representative of each particular model despite the
variability among same model simulations that differ only by their initial con-
ditions. To assess how detectability differs when using the predicted climate of
a single model we calculated the year to detection for each of the five available
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Figure 6.13: Detectability as a function of statistical significance for
the world and selected regions for the SRES A1B scenario. The year of
detection is calculated as the mid year of the 30-yr period in which the
model mean change in the drought variable is statistically different at
the given significance level relative to the control (PICNTRL) simulation.
Detection years equal to 2100 indicate that the change is not detectable
within the period of the simulation. The minimum possible detection time
is 1900, which is the mid point of the first 30-yr period, and changes may
have become detectable before this time.

163



w
o
rl
d

n
e
u

m
e
d

w
a
f

e
a
f

s
a
f

n
a
s

c
a
s

ti
b

e
a
s

s
a
s

s
e
a

a
u
s

a
la

n
e
c

w
n
a

c
n
a

e
n
a

c
a
m

a
m

z

s
s
a

1900

1950

2000

2050

2100

 Y
e

a
r 

o
f 

d
e

te
c
ti
o

n
  

  
  

  
 f

o
r 

D
4
-6

SRES A2 (PICNTRL)

SRES A2 (20C3M 1961-90)

Figure 6.14: Comparison of detection times for different estimates of
natural variability. Detection times are when regional average changes
in drought characteristics for the SRES A2 scenario become statistically
different at the 0.05 level from natural variability estimated from either
the PICTNRL scenario or the 20C3M scenario (1961-90).

ensemble members for the CGCM3.1(T47) model for the A2 scenario (Figure
6.15). This model was chosen because of the availability of a relatively large
number of ensemble members and it is assumed that similar results would be
obtained when using other models if multiple members were available. As mul-
tiple integrations of the control simulation are not available for a single model,
we represent the natural variability of the climate system by the variation be-
tween 30-year periods in the control simulation. The results show reasonable
agreement (within 25 years) for Europe, parts of Asia and the Americas but
large differences in detectability elsewhere. For example, the SAF region shows
differences up to 150 years, although this is because of detectable changes at
the start of the 20C3M scenario for the single model. The time series of mean
values for the single and multi-model ensembles are actually similar and it is
the larger magnitude of the change for the single model ensemble that results
in the large differences in detectability. For the WORLD the single model year
of detection is 2008 and the multi-model values is 1963. Assuming that a multi-
model ensemble gives a better estimate of the magnitude and detectability of
future changes in drought occurrence (as is seen in multi-model comparisons
with observations, e.g. Guo and Dirmeyer, 2006), the implication is that a
single model estimate may be considerably biased in some regions.

6.4.6 Comparison with detection times of primary cli-
mate variables

Climate change is usually described in terms of primary climate variables, such
as global mean temperature and precipitation. Current estimates indicate that
recent trends in temperature are statistically unusual compared with the his-
toric (Jones and Moberg, 2003) and paleoclimatic records (Osborn and Briffa,
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Figure 6.15: Comparison of detection times for statistically significant
changes (0.05 level) in regionally averaged frequency of D4−6 droughts for
the multi model ensemble and the single model ensemble means.

2006). For precipitation, observations are generally less extensive in time and
space and are plagued by errors due to, among other factors, measurement
error (e.g. wind induced undercatch), orographic effects, temporal inconsis-
tencies, and spatial sampling errors, especially in data sparse regions (Hulme
and New, 1997). Table 6.5 shows the year of detection for statistically signifi-
cant changes in annual and seasonal values of surface air temperature and the
main components of the terrestrial water balance for the MED region under the
A2 scenario. We also repeat the detection values for drought. Air temperature
changes are detectable within the first half of the 21st century at all time scales.
Changes in precipitation and runoff are also detectable, except for DJF, but at
later times. For evaporation and soil moisture, changes are only detectable in
JJA and DJF respectively and not until beyond mid century. The MED region
was chosen as it shows some of the largest increases in drought and correspond-
ing detectable changes in other variables. Few other regions show detectable
changes and changes at global scales are only detectable for air temperature
which is consistent with observed trends in relation to estimates of natural
variability (Hansen et al., 2006; Osborn and Briffa, 2006). In fact, changes in
air temperature are detectable for all regions and time scales between 1991 and
2043. Changes in snow as represented by snow water equivalent (SWE) are
only detectable in mid-latitudes of North America (WNA, CAN, ENA) and
Asia (CAS, EAS) where variability in snow cover is higher than more northerly
regions and thus likely to experience detectable changes earlier.

6.5 Discussion and conclusions

We have analyzed soil moisture data for three future climate scenarios from
eight AOGCMs that participated in the IPCC AR4. The models show decreases
in soil moisture at global scales for the future scenarios with a corresponding
doubling of the spatial extent of severe soil moisture deficits and frequency of
short-term (D4−6) droughts from the mid 20th century to the end of the 21st.
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Annual/ No season DJF MAM JJA SON

T 2025 2031 2024 2034 2028
P 2040 - 2061 2043 2036
Q 2075 - - 2063 2051
E - - - 2060 -
SM - 2071 - - -
D4−6 1941
D12+ 1956
A 1943

Table 6.5: Year of detection of statistically significant changes in annual
and seasonal mean surface air temperature and the main components of the
terrestrial water cycle (precipitation (P), evapotranspiration (E), runoff
(Q), and soil moisture (SM), and three drought characteristics for the
MED region under the SRES A2 scenario. Also shown are the detection
times for drought characteristics repeated from Table 6.3. Note that a
drought may span multiple seasons.

Long-term (D12+) droughts become three times more common. Regionally,
the MED, WAF, CAS and CAM regions show large increases, most notably
for D12+ frequencies as do mid latitude North American regions (WNA, CNA,
ENA) but with larger variation between scenarios. Changes elsewhere are gen-
erally increasing but relatively small. Changes under the B1 scenario are the
least and the A1B and A2 results are similar. We tested the statistical signif-
icance of changes at the end of the 21st century relative to natural variability
as represented by the pre-industrial control simulations and found significant
increases in D4−6 drought frequency globally and in most regions. Significant
changes in D12+ frequency are less spatially extensive with increases for the
MED, WAF, SAF, CAS, CAM and SSA regions for all scenarios and for TIB,
CAN and AMZ for the higher emission scenarios only. Statistically significant
decreases in D12+ frequency exist but are restricted to small areas of high
latitudes.

A number of other studies have analyzed the current IPCC and other cli-
mate model simulations in terms of changes in soil moisture and drought at
large scales and the results presented here are generally consistent with these.
Although these studies were based on either different models (Gregory et al.,
1997) and/or versions (Wetherald and Manabe, 2002) or different sets of the
IPCC AR4 models (Wang, 2005; Burke et al., 2006) and use different metrics
for defining changes in soil moisture or droughts, there is general consensus
that global drying of soil moisture will occur. Wetherald and Manabe’s (2002)
analysis of an earlier version of the GFDL coupled model showed annual reduc-
tion in soil moisture and large reduction in summertime soil moisture in some
semi-arid regions including southern North America and the Mediterranean.
This is consistent with our study in terms of soil moisture (see Figure 6.11 for
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the MED and CNA regions) and reflected in the particularly large increases in
drought occurrence for the MED, CNA and CAM regions (section 6.3.4). They
also noted summer time reductions in soil moisture in mid-continental middle
to higher latitudes but increases in winter, which we see, for example, in the
NAS region (Figure 6.11).

The study of Wang (2005) has considerable overlap with this study in terms
of the data used, although we use fewer models but more scenarios (Wang an-
alyzed data from 15 models for the SRES A1B scenario) and we analyze the
occurrence of drought as opposed to changes solely in the soil moisture mean.
Wang found significant variation in the global pattern of changes in soil mois-
ture, despite the direction of changes in precipitation being quite consistent
across models, perhaps indicating the complexity of the soil moisture response
and/or the variation across models in how they simulate surface fluxes that
has been extensively noted in off-line land surface model comparisons (Wood
et al., 1998; Mitchell et al., 2004; Guo and Dirmeyer, 2006). This may also be
a result of differences in the sub-monthly statistics, for example, the simulated
storm frequencies and intensities. Only in some regions of northern mid- and
high-latitudes did Wang find consistency in predicting summer dryness and
winter wetness (again consistent with this study and the study of Wetherald
and Manabe, 2002). Elsewhere, the general consensus is for drier soils. Re-
gions where the models were unanimous in predicting drying include southwest
North America, Central America, the Mediterranean, South Africa, and Aus-
tralia. This is reflected in our results that find statistically significant changes
in drought occurrence in these regions (with the exception of Australia, which
for our analysis showed large mean changes but with high uncertainty across
models).

In terms of changes in drought specifically, Gregory et al. (1997) and Burke
et al. (2006) analyzed earlier and current versions of the Hadley climate model.
Despite looking at different metrics to quantify drought (Gregory et al. (1997)
looked at changes in the frequency of low summer precipitation, length of dry
spells and frequency of dry soils; Burke et al. (2006) looked at the PDSI as
driven by climate model predicted precipitation and temperature) and different
scenarios (a 1% yr−1 increasing CO2 concentration and the SRES A2 scenario,
respectively) they found substantial drying at global scales and similar changes
to this study in most regions. In both cases, a single model and single future
climate scenario were considered. Crucially, both studies note that these results
need to be corroborated by other climate models. The analysis of detectabil-
ity from a single model (section 6.4.5) shows how different the result can be
when using one model, although the sign of changes is likely to be the same
even under different scenarios. This is reflected in multi-model analyses of soil
moisture from off-line modelling, where individual models are generally capa-
ble of mimicking observed anomalies and trends (Guo and Dirmeyer, 2006),
but importantly, multi-model means do better at replicating observations than
almost any individual model (Guo et al., 2007).

Wetherald and Manabe (2002) and earlier papers referenced within, pro-
vide mechanisms for summer time drying in mid-latitudes that are supported
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by Wang (2005). We find the same mechanisms are at play here, with reduc-
tions in precipitation the primary forcing of increased drought with increased
evaporation driven by higher temperatures modulating the changes. In some
regions, increases in precipitation are offset by increased evaporation. At higher
latitudes where snow processes have a dominant role we see evidence for redis-
tribution of soil moisture from spring to winter forced by earlier spring melt
and a likely increased rain to snow ratio during the cooler seasons. This has
a knock-on effect during the summer when reduced soil moisture persistence
from the spring coupled with increased evaporative demand from increased
temperatures conspires to reduce soil moisture, also found by Wang (2005).

Although the predicted future changes in drought occurrence are essentially
monotonic increasing globally and in many regions, they are generally not sta-
tistically different from natural variability for multiple decades. Detectability
of change is however dependent on many factors, including the magnitude of
the change, and the background noise or natural variability as estimated from
the control simulations, which in turn depend on the type of drought statistic.
It also depends on the chosen level of significance in the statistical testing or
risk that one is willing to take in detecting the impacts of climate change. As
this is generally an arbitrary choice the implication is that this can by itself
introduce great uncertainty in the detection of climate change. A 95% confi-
dence level is ubiquitous in the scientific literature, but a 90 or 99% confidence
level could just as easily be used with dramatic changes in the results as seen
for the example of CNA in Figure 6.13.

In contrast to primary climate variables, such as global mean surface air
temperature, changes in drought are predicted to become detectable only after
multiple decades, if at all. This lag can be crucial with respect to implementing
mitigative or adaptive measures against such changes (Pittock, 1999). On the
other hand, changes in annual and seasonal means of terrestrial hydrologic
variables, including soil moisture, are essentially undetectable within the 21st

century. Although related studies of future drought occurrence (e.g. Wetherald
and Manabe, 2002; Wang, 2005) focused on changes in the mean, such as
mean monthly precipitation or soil moisture, it has been noted (Gregory et al.,
1997; Kharin and Zwiers, 2005) that changes in the mean are accompanied by
lengthening of distribution tails and larger changes in extremes, such as drought
as shown here. The implication is that changes in the extremes of climate
and their hydrological impacts may be more detectable than changes in mean
climate, although observing and quantifying extreme events, and comparing
them to model output, is much harder in practice (Hergerl et al., 2006).

Despite the robustness of the changes in drought, globally and across many
regions, and for all scenarios, there are still many uncertainties in this study
that arise not only from our approach but also from the simulations themselves.
Firstly, we have by necessity used eight models to represent the uncertainty
across models, although 24 models contributed data for one or more scenar-
ios to the IPCC AR4. The error in doing this is difficult to quantify but our
estimates are consistent with results for a larger set of models for a single sce-
nario (Wang, 2005). Secondly, the models themselves may be biased because
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of inadequacies in the modelled physical processes and parameterizations and
because of processes that are not included in the modelling. Evaluation of the
models’ ability to replicate observed climate variability and the terrestrial wa-
ter cycle has been addressed elsewhere with mixed results (e.g. Dai, 2006; Frei
and Gong, 2005; Lau et al., 2006; Li et al., 2007; Swenson and Milly, 2006).
For drought specifically, we have shown that the models do reasonably well
in replicating our best estimates of 20th century drought statistics at regional
scales yet with large spread among the models. Although they may do better
at replicating atmospheric and large scale climate variability (e.g. AchutaRao
and Sperber, 2006), the uncertainty in modelled land surface processes and soil
moisture in particular, coupled with the uncertainties in future climate projec-
tions is reason to incorporate as many models as possible in any assessment of
future change.

Processes that have a direct impact on drought occurrence but are not
present in the models include anthropogenic forcings such as irrigation, water
diversion and land use and natural processes such as vegetation dynamics and
wildfire. Anthropogenic processes are difficult to quantify, even historically.
Estimates of current day irrigation are that 16.3% of cultivated regions are
equipped for irrigation (Siebert et al., 2005) which can have a significant impact
on the water cycle (Haddeland et al., 2007), although historically this may have
been offset by changes in land use. The impact of vegetation dynamics, through
feedbacks with climate and interactions with climate induced changes in plant
phenology and species composition may have a profound impact on drought
occurrence through controls on water use, with potential positive feedbacks
from natural deforestation (Cox et al., 2000; Gullison et al., 2007).

Notwithstanding the uncertainties in detectability, we can make some final
general observations regarding the results. The consensus among this set of
the latest GCM projections of future climates is that drought frequency will
increase relative to the control period but will not show statistically signifi-
cant changes for several decades, indicating that the impacts of climate change
will not be felt immediately at regional scales. In general, there is a greater
propensity to increased warm season drought which may be especially perti-
nent when specific impacts are taken into consideration, such as drought effects
on agriculture that are most important during the growing season. Drought is
shown to increase under all scenarios, including the B1 scenario that follows
a reduced greenhouse gas emission pathway through the 21st century relative
to the present day. The implication is that drought occurrence will increase,
despite future emission reductions and this will be exacerbated by the thermal
inertia of the oceans(Wigley et al., 2005; Meehl et al., 2005) and already accu-
mulated greenhouse gases, which in turn will increase the time to stabilization
of concentrations. Under high emission pathways (A1B and A2), the magnitude
of the drought changes are expected to be even higher, but more worrisome is
that these scenarios may already be underestimating observed changes as has
been seen since the IPCC Third Assessment Report simulations (Rhamstorf et
al., 2007).
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Chapter 7

Synthesis

7.1 Summary

Drought is a pervasive and costly natural hazard that inflicts substantial so-
cial, environmental and economic cost globally. As part of the general scientific
effort to quantify and understand the occurrence of drought and potential fu-
ture changes, this work has described the analysis of retrospective and future
projected soil moisture data in terms of drought occurrence, its trends and
variability. This section summarizes the conclusions of each chapter and is
followed by some final remarks and future directions.

An integral part of the analysis of historic drought occurrence was the devel-
opment of the retrospective dataset and the meteorological forcings that drove
the off-line simulation. In itself the forcing dataset provides a useful resource
for studies of the variability of the large scale water cycle and the evaluation
of coupled models, among other applications. Chapters 2 and 3 described the
development of the forcing dataset and the steps taken to provide long tem-
poral and global coverage, and ensure its consistency and accuracy in time
and space. In this respect, the dataset made use of the latest available global
meteorological datasets and combined them with state of the art reanalysis to
form a consistent, high quality dataset, globally for 1948-2000, at 3-hourly, 1.0
degree resolution.

In Chapter 2, the initial development of the forcing dataset was described.
This work was motivated by the identification of a spurious wave-like pattern
identified in the monthly precipitation statistics of the NCEP/NCAR reanalysis
dataset (which formed the basis for the daily variability of the forcings) over
terrestrial areas in high latitudes in winter. Comparison with three observation
based precipitation datasets verified the anomaly and other regional biases in
the reanalysis precipitation field. The rain day anomaly was corrected using a
re-sampling approach to replicate the monthly precipitation statistics from each
of the three comparison datasets. The resulting daily precipitation values were
then scaled so that their monthly totals matched those of the CRU dataset,
which had the longest temporal extent. The monthly statistics of the resulting
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corrected datasets matched well the statistics of the respective dataset used for
the correction but the degree to which it did this depended on the statistical
similarity of the reanalysis and correcting dataset.

In the context of land surface modeling, the need for the correction was
clear, as the high latitude anomalous pattern was reflected in the modeled land
surface states using the VIC model. A number of experiments were carried out
to investigate the effect of the correction on the land surface by forcing the
model with the original and corrected reanalysis datasets. The results showed
that the land surface water budget is sensitive to the sub-monthly distribu-
tion of precipitation. Simulations forced with identical monthly precipitation
totals but different rain day statistics differed significantly in the partitioning
of precipitation into canopy evaporation and throughfall with implications for
the level of accuracy required of the correcting dataset. Ultimately, the choice
of the correcting dataset would be based on the level of confidence in the data
and the accuracy of the rain day statistics at the grid scale. However, attention
must also be paid to the temporal extent of the data and whether it is represen-
tative of the long-term variability over the multiple decades of the reanalysis
dataset period. In the absence of a single dataset that fulfills these criteria it
may be that a hybrid dataset would have to be used.

This hybrid approach was taken in the development of the full meteoro-
logical forcing dataset described in Chapter 3. The dataset was constructed
by combining a suite of global observation-based datasets with the reanaly-
sis. Known biases in the reanalysis precipitation and near-surface meteorology
have been shown to exert an erroneous effect on modeled land surface water
and energy budgets, and were thus corrected using observation-based datasets
of precipitation, air temperature and radiation. As described in Chapter 2,
corrections were also made to the rain day statistics of the reanalysis precipi-
tation. Wind-induced undercatch of solid precipitation was removed using the
results from the WMO Solid Precipitation Measurement Intercomparison. Pre-
cipitation was disaggregated in space to 1.0 degree by statistical downscaling
using relationships developed with the GPCP daily product. Disaggregation
in time from daily to 3-hourly was accomplished similarly, using the TRMM
3-hourly real-time dataset. Other meteorological variables (downward short-
and longwave, specific humidity, surface air pressure and wind speed) were
downscaled in space with account for changes in elevation. The dataset was
evaluated against the bias-corrected forcing dataset of the GSWP-2, a similar
product developed for a much shorter period.

In Chapter 4, a monthly soil moisture based drought index was developed for
global terrestrial areas from an off-line land surface model simulation forced by
the meteorological dataset. The index was used to investigate the climatological
aspects of drought occurrence, globally over 1950-2000. The variability and
trends in drought, and its forcings were explored in Chapter 5. Drought was
described in terms of duration, intensity and severity, and various statistics that
summarize their distributions in time and space. These variables were analyzed
spatially, at global and regional scales, and temporally with respect to severity
and spatial coverage. The inter-dependence of these correlated variables was
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also explored along with the sensitivity to the threshold soil moisture value
that defines drought.

An analysis of the statistics of drought events revealed considerable global
variability and some interesting relationships between drought characteristics.
Based on a soil moisture quantile threshold of 10%, the frequencies of short-
term droughts (6 months and less) and droughts of any length were found
to be highest in humid regions. Medium term droughts (6-12 months) are
more prevalent in mid- to high-latitudes, which for the latter is a result in
part of freezing temperatures causing static soil moisture conditions and forc-
ing drought conditions to persist through the wintertime. Over the Sahel and
parts of high northern latitudes, the frequency of long-term droughts was at a
maximum. Drought intensity, defined as the mean departure below the thresh-
old soil moisture quantile over the drought duration, tended to be higher over
humid regions. This is likely a result of the higher inter annual variability in
soil moisture that tends to prevail in humid regions, even if the range in soil
moisture is small in absolute terms. Drought severity, calculated as intensity
times duration, tended to be lowest in more humid regions and highest in re-
gions of high mean duration, such that drought duration is a more dominant
factor in severity for longer duration droughts. The Sahel region stands out
globally for having long-term and severe drought conditions.

Severe drought events were systematically identified in terms of spatial cov-
erage for various regions based on different thresholds of duration and intensity
that relate to either high intensity, short duration droughts or low intensity,
long duration droughts. In northern Asia, severe drought events at short and
long time scales were found to be characterized by persistent soil moisture
anomalies over the wintertime. Droughts in western and eastern Africa are
dominated by events in the Sahel. The drought index identified several well-
known drought events, including the 1988 USA, 1982/83 Australian, 1983/4
Sahel and 1965/66 Indian droughts, which were analyzed in more depth. These
events were generally ranked as the severest events in the record, although some
were ranked relatively low and the severity of their reported impacts was likely
compounded by socio-economic and other factors. Comparison of the results
with those from two PDSI datasets showed general agreement, although the
PDSI tended to give larger spatial extent values. Some events, however, (e.g.
1988, central North America and 1965, India) were ranked somewhat differently
by each dataset that may be due to differences in scale and forcings, but is also
likely a result of fundamental differences in the modeling approach between the
VIC index and the PDSI. At global scales the VIC index and the PDSI were
reasonably well correlated but this breaks down in cooler regions and seasons,
and especially in the latter half of the 20th century, when the PDSI showed a
larger drying trend. The simplified temperature based approach for calculating
potential evaporation in the PDSI may have contributed to this trend. Given
these comparisons, the known deficiencies and simplifications in the PDSI and
the history of evaluations of the VIC model, this chapter concluded that the
VIC index is a good indicator of major drought events that is applicable to a
wider range of climate regimes than the PDSI.
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In Chapter 5, trends and variability in the retrospective soil moisture and
drought index were analyzed. Trends were calculated using a non-parametric
trend test on a grid cell basis and for regional averages. An overall increasing
trend in global soil moisture, driven by increasing precipitation underlay the
whole analysis, which was reflected most obviously over the western hemisphere
and especially in North America. Regional variation was nevertheless apparent
and significant drying over West Africa, as driven by decreasing Sahel precip-
itation, stood out. Elsewhere, Europe has not experienced significant changes
in soil moisture, a trait shared by southeast and southern Asia. Trends in
drought characteristics were predominantly decreasing but statistically signifi-
cant changes were limited in areal extent, of the order of 1.0 to 7.0% globally,
depending on the drought threshold and variable and being generally less than
10% of continental areas. Concurrent changes in drought spatial extent were
found, with a global decreasing trend of -0.021 to -0.035% yr−1. Regionally,
drought extent over Africa has increased and is dominated by large increases
over West Africa. Northern and East Asia showed positive trends, and central
Asia and the Tibetan plateau showed decreasing trends. In south Asia all trends
were found to be insignificant. Drought extent over Australia has decreased.
Over the Americas, trends were uniformly negative and mostly significant.

Within the long-term trends we found interannual and decadal variations in
soil moisture and drought characteristics in many regions. Globally, variations
were driven mainly by ENSO variability, although the AMO appears to play
an important role globally and in many regions, such as west and east Africa,
central Asia and the high latitudes of North America. However, the short length
of record relative to the scale of the AMO precluded any definite conclusions.
High correlation values were found between Mediterranean soil moisture and
the NAO, and between soil moisture in southeast Asia and the Amazon basin
and Nino3.4 SSTs. Stronger connections are likely at scales smaller than the
regions examined and by using seasonal and lagged correlations. The decadal
variations in soil moisture and drought characteristics were found to impact
the robustness of the long-term trends. In general, they were responsible for
diminishing the long-term trends. In fact, despite the overall wetting trend,
there is a switch in later years to a drying trend, globally and in many regions,
which is concurrent with increasing temperatures. Although drought is driven
primarily by variability in precipitation, temperature has an effect that, given
the results of a simulation forced by climatological temperature, appears to be
exaggerated in the last decade or so especially in high northern latitudes.

Finally, Chapter 6 extended the work of the retrospective analyses of Chap-
ters 4 and 5 to explore the projected changes in drought over the 21st century.
An increase in the number of droughts and/or drought severity is a possible out-
come of future global warming and intensification of the water cycle. To evalu-
ate projected changes, we focused on data from climate models. Soil moisture
data were analyzed for three future climate scenarios (B1, A1B, A2) from eight
AOGCMs that participated in the IPCC AR4. The models showed decreases
in soil moisture at global scales for the future scenarios with a corresponding
doubling of the spatial extent of severe soil moisture deficits and frequency of
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short-term (4-6 month duration) droughts from the mid 20th century to the end
of the 21st. Long-term (longer than 12 month duration) droughts were found
to become three times more common. Regionally, the Mediterranean, West
African, Central Asian and Central American regions showed large increases,
most notably for long-term frequencies, as did mid latitude North American
regions but with larger variation between scenarios. Changes elsewhere were
generally increasing but relatively small. Changes under the B1 scenario were
the least and the A1B and A2 results were similar. Tests of the statistical
significance of changes at the end of the 21st century relative to natural vari-
ability as represented by the pre-industrial control simulations showed signif-
icant increases in short-term drought frequency globally and in most regions.
Significant changes in long-term frequency were less spatially extensive with
increases for the Mediterranean, West African, South African, Central Asian
and Central American and southern South American regions for all scenarios
and for the Tibetan plateau, central North America and the Amazon for the
higher emission scenarios only. Statistically significant decreases in long-term
frequency existed but were restricted to small areas of high latitudes.

Although the projected future changes in drought occurrence were found
to be essentially monotonic increasing globally and in many regions, they were
generally not statistically different from natural variability for multiple decades.
Detectability of change is, however, dependent on many factors, including the
magnitude of the change, and the background noise or natural variability as
estimated from the control simulations, which in turn depend on the type of
drought statistic. It also depends on the chosen level of significance in the
statistical testing or risk that one is willing to take in detecting the impacts of
climate change. As this is generally an arbitrary choice, the implication is that
this can by itself introduce great uncertainty in the detection of climate change.
A 95% confidence level is ubiquitous in the scientific literature, but a 90 or 99%
confidence level could just as easily be used with dramatic changes in the re-
sults. In contrast to primary climate variables, such as global mean surface
air temperature, changes in drought were predicted to become detectable only
after multiple decades, if at all. This lag can be crucial with respect to imple-
menting mitigative or adaptive measures against such changes. On the other
hand, changes in annual and seasonal means of terrestrial hydrologic variables,
including soil moisture, were essentially undetectable within the 21st century.
Although other studies of future drying have focused on changes in the mean,
such as mean monthly precipitation or soil moisture, it was noted in Chapter
6 that changes in the mean are accompanied by lengthening of distribution
tails and larger changes in extremes, such as drought. The implication is that
changes in the extremes of climate and their hydrological impacts may be more
detectable than changes in mean climate, although observing and quantify-
ing extreme events, and comparing them to model output, is much harder in
practice.

Notwithstanding the uncertainties in detectability, the consensus among
this set of the latest GCM projections of future climates is that drought fre-
quency will increase relative to the control period but will not show statistically
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significant changes for several decades, indicating that the impacts of climate
change will not be felt immediately at regional scales. In general, there is
a greater propensity to increased warm season drought which may be espe-
cially pertinent when specific impacts are taken into consideration, such as
drought effects on agriculture that are most important during the growing sea-
son. Drought is shown to increase under all scenarios, including the B1 scenario
that follows a reduced greenhouse gas emission pathway through the 21st cen-
tury relative to the present day. The implication is that drought occurrence
will increase, despite future emission reductions and this will be exacerbated
by the thermal inertia of the oceansand already accumulated greenhouse gases,
which in turn will increase the time to stabilization of concentrations. Under
high emission pathways (A1B and A2), the magnitude of the drought changes
are expected to be even higher, but more worrisome is that these scenarios may
already be underestimating observed changes as has been seen since the IPCC
Third Assessment Report simulations.

7.2 Conclusions and Future Directions

One of the greatest challenges in the hydrologic sciences is the quantification
of the large scale water cycle because of the importance of water not only
as a resource but also as a potential hazard. This is especially pertinent in
the context of potential future global warming in which the strength of the
water cycle is expected to change, with impacts on the availability of water
and the occurrence and severity of extreme events. Drought is one of the key
manifestations of water cycle variability but poses some of the most difficult
questions in terms of our understanding of its occurrence, driving mechanisms
and predictability. In particular we wish to know how drought has varied
historically, what are the mechanisms that are associated with its initiation,
persistence and recovery, and what changes can be expected in the future.
Progress towards answering these questions is a long-term goal of many research
initiatives and it is hoped that this thesis provides some added knowledge to
this process and is a platform for further work in this area.

Overall, we have shown that retrospective off-line simulation of the global
terrestrial water cycle is a feasible tool for recreating historic soil moisture vari-
ability and analyzing the occurrence of drought. A crucial part of this has been
the development of the meteorological forcing dataset, which has also formed
the basis of a multitude of other research activities in progress. In fact, in the
past 18 months since its release, this dataset has been downloaded over 100
times by various research groups and individuals, with stated purposes ranging
from evaluation of land surface models, to assessments of glacier melt, to stud-
ies of regional land-atmospheric coupling. The development of this dataset was
originally motivated by the necessity for accurate estimates of the spatial and
temporal variation in terrestrial water and energy fluxes and states that require
the development of high resolution and long-term hydroclimatological datasets.
The development of the highest quality forcing datasets is a first and vital step
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towards this. Through research initiatives such as the World Climate Re-
search Programme (WCRP) Climate Variability and Predictability (CLIVAR)
program and Global Energy and Water Cycle Experiment (GEWEX) the em-
phasis has been on the development and enhancement of large scale datasets,
through the use of increasingly better observational datasets and the use of
new assimilation and modeling techniques. The work described in Chapters
2 and 3 is intended to form a part of this process by providing a benchmark
forcing dataset that combines state of the art reanalysis products with the
most recent observation-based datasets. The goals in the development of this
dataset are to provide consistency in time and space among variables from con-
tributing datasets whilst trying to achieve the highest resolution that can be
supported by the data. The dataset provides a significant improvement over
the original reanalysis variables, and can be used for a wide variety of applica-
tions and diagnostic studies in the climatological, hydrological, and ecological
sciences. The final product provides a long-term, globally-consistent dataset
of near-surface meteorological variables that can be used to drive models of
the terrestrial hydrologic and ecological processes for the study of seasonal and
inter-annual variability and for the evaluation of coupled models and other land
surface prediction schemes.

Future improvements in the forcing dataset are recommended for a number
of reasons. Although the emphasis has been on using global scale observation
datasets to ensure consistency in space, better quality data sets do exist in
terms of spatial and temporal resolution but with smaller spatial and tempo-
ral extents. For example, for the temporal disaggregation of precipitation at
high northern latitudes, it was assumed, because of the lack of coverage by the
TRMM dataset (restricted to 50S - 50N), that the diurnal cycle in cold, mid-
latitude climates is representative of neighboring polar regions. Sub-daily sta-
tion data from Canadian surface airways products and the Former Soviet Union
(Razuvaev et al., 1998) are available for a significant number of high-latitude
locations and can be used to derive the probability distributions used for the
disaggregation. Furthermore, most monthly gridded precipitation datasets do
not allow for orographic effects. As the network of rain gauges that contribute
to these data sets are generally not located in regions of complex and elevated
topography, this usually results in an underestimation of precipitation, by as
much as three times (Adam et al., 2006). The correction method of Adam et
al. (2006) uses a simple catchment water balance method to calculate adjust-
ments to precipitation. These changes could be incorporated into new versions
of the dataset in the future, although concerns over consistency in time and
space may make this somewhat counter-productive. In addition, as improved
and extended versions of observation-based datasets used in this study become
available these can be incorporated where applicable.

At present, one degree is relatively high spatial resolution at global scales,
especially in comparison to climate model grids. Nevertheless, one grid cell
still represents a large area (approximately 100km in mid-latitudes) which can
encompass large variation in physiography and climate. The associated spatial
variability of soil moisture can also be high (Western et al., 2002) with impli-
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cations for the development of drought. Higher resolution forcing data may
therefore provide added information of the finer scale variations in drought
and how drought develops as a spatially connected process. In terms of the
temporal extent, the dataset covers the period 1948-2000 and so the derived
hydrologic simulation captures many historically important regional drought
events and some decadal variability in soil moisture. Nevertheless, this period
still misses some significant drought events, such as the 1930s US drought and
the series of early 20th century droughts in China and the Soviet Union that
had such severe consequences. Extensions to the forcing dataset will add fur-
ther information on drought occurrence and the long-term variability of the
water cycle in general. Of course, the availability and density of observations
during the first half of the 20th century and earlier is reduced, which increases
the uncertainty in the associated forcings. Additionally, before 1950, the lack of
reanalysis data means that most variables would have to be modeled or derived
from predictive relationships with observed precipitation and temperature.

Moisture availability and drought are also inextricably linked to anthro-
pogenic influences and other non-meteorological boundary conditions. For ex-
ample, anthropogenic factors including irrigation, water withdrawals and land
use change, and natural processes such as vegetation dynamics and wildfire, are
not modeled explicitly. The impact of these may also vary in time, thus affect-
ing the estimates of drought occurrence and the estimated trends. Estimates
of current day irrigation are that 16.3% of cultivated regions are equipped for
irrigation (Siebert et al., 2005) which can have a significant impact on the water
cycle (Haddeland et al., 2007), although historically this may have been offset
by changes in land use. Land cover has changed dramatically over the past
300-years (Foley and Ramakutty, 1999) and more so in tropical/developing re-
gions over the 20th century (Goldewijk, 2001). The impact that this has had
on the water cycle may be substantial (Zhang and Schilling, 2006; Scanlon et
al., 2007), likely reducing evapotranspiration and increasing runoff with pos-
sible implications for the results presented here. Furthermore, elevated levels
of CO2 and increased growing season length may be responsible for recent in-
creases in net primary productivity (NPP) and thus transpiration (Friend et
al., 2007), although stomatal closure response to elevated CO2 levels may have
had the opposite effect (Gedney et al., 2006). Further investigation of these
processes and their impact on drought are required. In particular, the contri-
bution of changes in land use and irrigation to changes in soil moisture and
drought are needed, especially in the context of future global warming and our
ability to adapt to potential changes.

Despite these uncertainties, the retrospective drought index has been shown
to be consistent with previous studies and captures well historic major drought
events. It has been shown to be comparable to the most ubiquitous drought in-
dex in use, the PDSI. The weight of evidence as to the deficiencies of the PDSI,
coupled with the availability of forcing data and computing power, indicate
that state of the art land surface models are a viable alternative in retrospec-
tive analyses and realtime drought monitoring activities. We have shown that
drought is driven mainly by precipitation variability, which has been modu-
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lated in recent years by increases in temperature. The results also hint that
the PDSI may have over-predicted the drying trend over the recent decades
but this needs further investigation. At broader scales, soil moisture variability
is connected to large scale climate variability, most notably the ENSO, AMO
and NAO. This has important implications for understanding the mechanisms
of drought occurrence and the potential for seasonal prediction, although the
mechanisms that link large scale oscillations to drought occurrence are not fully
clear. In addition, this is confounded by the trends in the data and compound
impacts of multiple modes of climate variability. Further analysis is required
to understand the driving forces of drought, at local and remote scales, and
this is the focus of intensive research at present.

One of the greatest uncertainties in the depiction of historic drought is the
lack of data describing its variation. At present off-line retrospective modelling
driven by observation based forcings is the most promising source, yet uncer-
tainties still remain, as noted above. Furthermore, estimates of the terrestrial
hydrology have been shown to vary widely among models, even when driven
by the same boundary conditions (e.g. Mitchell et al., 2004) with sometimes
up to a factor of two difference in the calculated hydrologic variables. The
VIC model used here is just one of many land surface schemes available. Our
probabilistic approach for describing drought occurrence may overcome some
of the systematic differences, but the non-linear nature of the hydrologic cycle
means that drought may develop quite differently between models. One of the
recommendations of this thesis is that multi-model retrospective datasets of
global water cycle variability are constructed, analyzed and compared to get a
better sense of uncertainties in the representation of historical drought.

As we look to the future, drought is expected to become more frequent,
more extensive and more severe in many regions, with obvious impacts on agri-
culture and water availability. Some of these changes may happen despite any
immediate efforts to reduce greenhouse gas emissions because of already ele-
vated concentrations in the atmosphere and the thermal inertia of the oceans.
However, there is still great variation in these projections because of uncer-
tainty in the models and the processes and feedbacks that they describe. The
wide variation in the sign and magnitude of regional precipitation change is one
example of this. Our reliance on climate models to provide believable projec-
tions of the future is based on their ability to replicate observations or at least
off-line estimates of the historic water cycle, in terms of its mean, variability
and extremes. Therefore, future directions should seek greater understanding
of the ability of climate models to reproduce historic drought and the retro-
spective dataset provides one benchmark against which they can be assessed.
The greatest uncertainty may, however, be which emissions pathway we take
in the future.
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Samenvatting

Deze studie analyseert mondiale en regionale droogte gedurende de tweede
helft van de 20ste eeuw op basis van hydrologische model simulaties. Veran-
deringen in droogte karakteristieken in de 21ste eeuw worden onderzocht met
behulp van multi-scenario gegevens van verschillende klimaatmodellen. Een
mondiale dataset van meteorologische gegevens voor de periode 1948-2000 is
ontwikkeld voor deze simulaties door metingen te combineren met her-analyses.
Systematische fouten en foutieve trends in neerslag, temperatuur en straling
van deze her-analyses zijn gecorrigeerd omdat deze anders fouten in de water-
balans zouden veroorzaken. De simulaties zijn gebruikt om een maandelijkse
op bodemvocht gebaseerde droogteindex te ontwikkelen, die is gebruikt om het
voorkomen, de variaties en de trends van droogte in de periode 1950-2000 te
onderzoeken. Kortdurende droogtes (6 maanden of korter) komen het meest
voor in vochtige gebieden. Droogtes van middellange duur (6 tot 12 maanden)
komen vaker voor op gematigde breedtes, gedreven door persistente afwijkingen
in bevroren bodemvocht. In de Sahel en delen van noordelijke hoge breedte-
graden komen langdurige droogtes het vaakst voor. Ernstige droogtes wor-
den systematisch gëıdentificeerd op basis van de ruimtelijke dekking, zoals de
droogtes in 1988 in de VS, in 1982/83 in Australië, in 1983/84 in de Sahel en in
1965/66 in India. Er is een door neerslag gedreven mondiale toenemende trend
in bodemvocht, die vooral tot uiting komt in Noord Amerika. Desalniettemin
zijn regionale verschillen duidelijk aanwezig, waarbij significante uitdroging in
West Afrika met name opvalt. Trends in karakteristieken van droogte nemen
over het algemeen af, maar statistisch significante veranderingen komen alleen
voor op kleine schaal, en hebben betrekking op minder dan 10% van het con-
tinentale landoppervlak. De gelijktijdige afname van de ruimtelijke dekking
van mondiale droogtes bedraagt 0.04% per jaar. Binnen de lange-termijn
trends vinden we dat de jaarlijkse en tienjaarlijkse variaties in bodemvocht en
droogtekarakteristieken die vooral worden veroorzaakt door ENSO variabiliteit,
terwijl ook AMO in een aantal gebieden een belangrijke rol hierin kan spelen.
Droogte wordt vooral veroorzaakt door variaties in neerslag, hoewel ook de
temperatuur een effect heeft. Dit effect lijkt aan het einde van de 20ste eeuw
steeds belangrijker te worden, vooral op hoge noordelijke breedtes. Op mondi-
ale schaal zijn de bodemvochtindex en de PDSI redelijk goed gecorreleerd, maar
deze correlatie verdwijnt in koudere gebieden en seizoenen. Vooral recentelijk
is dit goed te zien als de PDSI wijst op een sterke droogte-trend, mogelijk
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door het gebruik van de temperatuur om verdamping te schatten. Om pro-
jecties van toekomstige droogtes te onderzoeken zijn bodemvochtgegevens van
acht verschillende GCMs voor drie IPCC AR4 klimaatscenario’s (B1, A1B,
A2) gebruikt. Een afname in mondiaal bodemvocht in de 21ste eeuw gaat
gepaard met een verdubbeling van de ruimtelijke dekking en frequentie van
kortdurende droogtes. Langdurige droogtes komen drie keer zo vaak voor. Op
regionale schaal laten het Middellandse Zeegebied, West Afrika, Centraal Azië
en Centraal Amerika grote toenames zien, net als het gematigde breedte ge-
bied van Noord Amerika, maar dan met grotere verschillen tussen scenario’s.
Onder scenario B1 zijn de veranderingen het kleinst, terwijl de veranderingen
voor A1B en A2 vergelijkbaar zijn. Hoewel de veranderingen over het algemeen
monotoon stijgend zijn, zijn ze niet statistisch verschillend van natuurlijke vari-
aties over meerdere decennia, anders dan voor de temperatuur, en deze hangt
af van de droogtevariabele, de grootte van de verandering, de natuurlijke vari-
abiliteit en de statistische betrouwbaarheid. In contrast hiermee staat het feit
dat veranderingen in de gemiddelden van hydrologische variabelen, inclusief
bodemvocht, bijna niet te detecteren zijn in de 21ste eeuw, hetgeen impliceert
dat veranderingen in extremen beter meetbaar zouden kunnen zijn dan veran-
deringen in gemiddelden.
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