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Aan mijn ouders,
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Voorwoord

Mijn eerste kennismaking met het onderwerp van mijn proefschrift gaat te-
rug tot 1995 toen ik als afstudeervakker ging werken bij het toenmalige DLO
Staring Centrum. Na een korte periode werkzaam te zijn geweest bij de Meet-
kundige Dienst van Rijkswaterstaat, ben ik in 1997 in dienst getreden bij het
DLO Staring Centrum waar ik eerst enige jaren gewerkt heb aan het Lande-
lijk Grondgebruiksbestand Nederland (LGN). In 2001 heb ik de ontwikkeling
van LGN overgedragen en ben ik samen met collega’s weer gaan werken aan
regionale toepassing van gewasgroeimodellen en remote sensing voor oogst-
voorspellingen.

Terugkijkend op deze periode van meer dan 10 jaar concludeer ik dat ik
met veel plezier gewerkt heb aan een groot aantal projecten op het gebied
van remote sensing, GIS, gewasgroeimodellen, geostatistiek en landgebruik
waarvan de resultaten in meer of mindere mate hebben bijgedragen aan mijn
proefschrift. Enerzijds is er het voordeel dat je, als onderzoeker in dienstver-
band, aan een proefschrift kunt werken zonder de druk van een deadline van
vier jaar. Anderzijds is het soms moeilijk om voldoende prioriteit te geven om-
dat er zo veel andere zaken (projecten, voorstellen, vergaderingen, reizen en
administratie) om aandacht vragen. Dat het mij uiteindelijk gelukt is om een
proefschrift te voltooien is dan ook mede dankzij de inbreng en steun van een
aantal mensen die ik hierbij wil bedanken.

Ten eerste de geestelijk vader van CGMS en de toepassing daarvan op re-
gionale schaal: Kees van Diepen. Dit proefschrift bouwt direct voort op het
werk van Kees en zonder zijn inhoudelijke kennis en inzet had ik nooit zo ver
kunnen komen. Daarnaast ben ik hem zeer erkentelijk voor zijn bereidheid
om de administratieve last op zich te nemen van een aantal grote projecten.
Hierdoor stelde hij mij in staat om me op de inhoud te richten en de resultaten
te produceren die deels in dit proefschrift zijn opgenomen.

Mijn promotor en co-promotoren, Michael Schaepman, Sytze de Bruin en
Paul Torfs wil ik bedanken voor de wetenschappelijke ondersteuning die nodig
is om een proefschrift te voltooien. Michael heeft bovendien de gave om zeer
snel de lacunes in mijn teksten te kunnen vinden, waardoor ik op efficiënte wij-
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ze een verzameling artikelen heb kunnen combineren tot een proefschrift. Syt-
ze en Paul zijn onmisbaar geweest bij het uitwerken van de (geo)-statistische
details die belangrijk zijn bij het berekenen en interpreteren van de resultaten
in hoofdstukken 4 & 5. Peter Troch wil ik bedanken voor zijn hulp en ideëen
ten aanzien van data assimilatie.

Hendrik Boogaard heeft mij wegwijs gemaakt in de praktische kanten van
CGMS en de achterliggende database en heeft een belangrijke bijdrage gele-
verd aan hoofdstukken 2 & 3. De hulp van Joost Wolf, Henk van der Ham en
Daniël van Kraalingen t.a.v. allerhande inhoudelijke en praktische zaken over
WOFOST en ORACLE mag niet onvermeld blijven. Verder wil ik Bart van den
Hurk bedanken voor zijn bereidheid om mij gebruik te laten maken van de
ELDAS datasets waarop hoofdstukken 3 & 4 deels gebaseerd zijn.

Gerard Nieuwenhuis en Jandirk Bulens wil ik bedanken voor de ruimte
die ik heb gekregen om het in dit proefschrift beschreven onderzoek uit te
voeren. Bij het bijeenbrengen van de onderdelen die tezamen mijn proefschrift
vormen, ben ik begeleid door Maja Kooistra. De hulp van Maja is onmisbaar
geweest bij het formuleren van projecten waarvan ik de resultaten in mijn
proefschrift heb kunnen gebruiken. De strakke layout van dit proefschrift is
voor een belangrijk deel te danken aan Arend Ligtenberg wiens LaTeX stijl ik
heb hergebruikt en de mooie omslag is verzorgd door mijn zus: Leonie de Wit.

The help of Klaus Scipal and Wolfgang Wagner from the Institute of Pho-
togrammetry and Remote Sensing of the Vienna University of Technology is
acknowledged for providing the SWI dataset and the rapid answers to ques-
tions from my side.

Ten slotte wil ik Marlies bedanken voor de morele steun de afgelopen
maanden. Hoewel je zelf zegt dat het je ‘is meegevallen’ heb ik toch min-
der tijd en aandacht geschonken dan ik normaal zou hebben gedaan. Ik hou
van jou en ik zie de toekomst met jou en Geert met vertrouwen tegemoet.



Abstract

Information on the outlook of yield and production of crops over large regions
is essential for government services dealing with import and export of food
crops, for agencies playing a role in food relief, for international organisations
with a mandate in monitoring the world food production and trade, as well as
for commodity traders. In Europe, such information is provided by the MARS
(Monitoring Agriculture with Remote Sensing) Crop Yield Forecasting System
operated by the Joint Research Centre. An important component in the MARS
Crop Yield Forecasting System is the so-called Crop Growth Monitoring System
(CGMS). This system employs the WOFOST crop growth model to determine
the influence of soil, weather and management on crop yield with a spatial
resolution of 50×50 km grid. Aggregated CGMS results are used as predictors
for crop yield at the level of EU member states.

CGMS is being applied succesfully within the framework of the MARS crop
yield forecasting system. Nevertheless, there are large uncertainties related to
applying WOFOST over large areas such as poorly known sowing dates and
soil parameters, application of irrigation and the effect of drought due to lim-
ited weather station density. This thesis focuses on developing and testing
methods for quantifying and reducing uncertainty in crop model simulations
with a focus on reducing the uncertainty related to drought. The uncertainty
in crop model simulations is quantified through the variability within an en-
semble of models, while it is reduced by combining crop model simulations
with satellite-derived information through an ensemble Kalman filter (EnKF).
A key aspect in this approach is that the uncertainty of the different compo-
nents of the system can be estimated. The ultimate goal is to improve the
accuracy and timeliness of regional crop yield forecasts.

It was demonstrated that the uncertainty in the interpolated meteorolog-
ical forcings is important, particularly the uncertainty in precipitation fields.
Therefore, a method was developed to generate equiprobable realisations of
precipitation inputs which can be used as input in the crop simulation model.
It was demonstrated that the statistical properties of the precipitation field
were reproduced reasonably well in the realisations, while the deviations from
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the target statistics that were found are of minor importance for crop models.
Further, an ensemble Kalman filter was used to assimilated satellite obser-

vations of root-zone soil moisture for Spain, France, Germany and Italy over
the period 1992–2000 for winter-wheat and grain maize. It was demonstrated
that the assimilation of satellite observations lowered the error on a linear re-
gression model between crop simulation model output and EUROSTAT winter-
wheat yield statistics for 66% of the administrative regions. For grain maize
the improvement was less evident because improved relationships could be
found for 56% of the regions. At national level, the results of the regression
only improved for Spain, but not for Germany, France and Italy. Although the
results at national level were somewhat disappointing, it is encouraging that
the results did improve for Spain where crop production is most affected by
water limitation and thus the potential for improvement is greatest.

Finally, it was concluded that the developed approach is operationally fea-
sible because the algorithms are applicable at continental scale, the satellite
data applied will be available at least until 2018 and the method does not rely
on site-specific data. Therefore, the approach presented in this thesis can be
applied within the European MARS system and has the potential to provide
improved crop yield indicators for crop yield forecasting in many areas with
major agricultural production of rainfed crops.
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Chapter 1

Introduction

1.1 Background

In 1988 the Council of Ministers of the European Union (EU) decided to set up
a project to improve the provision of agricultural statistics which are necessary
to manage the large budgets involved in the European Common Agricultural
Policy (CAP). This project has become known as the MARS project (Monitor-
ing Agriculture by Remote Sensing) and it comprised different activities such
as regional crop inventories, satellite-based rapid crop area estimates, assess-
ment of foreign agricultural production and an agricultural information system
(Council of the European Community, 1988).

The agricultural information system activity focused on providing early
crop yield forecasts for the EU countries and used two approaches for pro-
viding indicators for crop yield prediction. The first approach used indicators
derived from low resolution (1-km) sensors such as NOAA’s AVHRR sensor
(Advanced Very High Resolution Radiometer) onboard POES (Polar Opera-
tional Environmental Satellite). Daily AVHRR imagery were recorded, stored
and processed into 10-day composites. Crop growth indicators such as surface
temperature or Normalised Difference Vegetation Index (NDVI) where derived
that could help in characterizing the growing season and quantifying the crop
yield (Sharman, 1992).

The second approach focused on developing an agrometeorologic system
employing crop growth models to estimate crop yield. For this purpose,
weather data from weather stations were interpolated to a 50× 50 km grid
and the WOFOST crop growth model (WOrld FOod STudies) was applied to
each grid. The simulation results per crop type were stored in a database and
spatially aggregated to administrative regions in order to be used as predictors
for crop yield forecasting. This system has become known as the Crop Growth
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Monitoring System (CGMS) (Diepen, 1992; Vossen and Rijks, 1995; Gen-
ovese, 1998).

Despite the initial focus on the use of remote sensing techniques for crop
yield forecasting within the MARS project, it was gradually recognized that re-
mote sensing derived indicators played a minor role in forecasting of crop yield
in Europe, as Vossen and Rijks (1995, page 5) state: “Although remote sensing
techniques are presently being turned into operational tools for crop acreage in-
ventories, land utilisation assessment and low resolution vegetation condition
monitoring, they do not permit yet, for various reasons, the quantitative predic-
tion and assessment of regional or national mean crop yields within the E.U.”

Vossen and Rijks (1995, pages 5 & 108) also mention several reasons for
the relatively poor performance of using optical, low resolution satellite data
for crop yield forecasting in Europe:

• Land cover in Europe is highly fragmented and interpretation of low
resolution data is therefore often ambiguous because it represents most
often a mixture of several land cover types;

• Lack of consistent time-series of remote sensing data due persistent
cloud cover, sensor calibration problems or satellite mission continu-
ity. This renders regression analyses on time-series of remote sensing
derived indicators for yield forecasting problematic;

• The non availability of proven models to relate satellite information to
quantitative yield estimates on a regional scale. This is related to the lack
of sensitivity of commonly used remote sensing indicators (e.g. NDVI) in
much of Europe due to the high crop production levels and the relatively
small year-to-year variability.

Except for a lack of sensitivity for some regions and crop types, the
agrometeorologic approach employed within CGMS does not suffer from the
above-mentioned drawbacks: The interpretation of results is straightforward
because specific crops can be modelled and the results can be easily com-
pared with statistical data. Moreover, the results are available and consistent
over long time-series due to a long-term record of meteorological observa-
tions available. As a result, the approach for quantitative crop yield predic-
tion within the MARS project gradually shifted towards an agrometeorologic
approach, while remote sensing derived indicators were merely used as quali-
tative descriptors of the growing season.

Although the Crop Growth Monitoring System was originally envisaged as
a backup system in case of unavailability of satellite data (Kees van Diepen,
pers. comm.), it has become the backbone of the MARS crop yield forecasting
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system. Since 1994, CGMS operationally monitors crop growth in the Euro-
pean Union, Eastern-Europe, Anatolia and the Maghreb. Its main purpose is
to provide information on weather indicators and crop status during the grow-
ing seasons and to provide objective forecasts of crop yield on the level of EU
member states early in the crop growth season (see http://www.marsop.info).

After the initial MARS project phase (1988–1994), the Crop Growth Mon-
itoring System has been improved incrementally on a number of aspects over
the last 15 years:

• CGMS has been implemented for the EU12 and then gradually extended
towards EU15, the Central European countries, Eastern Europe up to the
Ural mountains, Turkey and the Maghreb;

• In parallel with the spatial extension, the network of weather stations
has been extended and densified so that the system could profit from
improved interpolated meteorologic fields;

• Operational aspects of the system have been gradually improved and in-
tegrated into an automated processing chain covering the full cycle from
ingestion of weather to the forecasting of crop yield and the automated
production of maps, charts and tables;

• Improvements in database technology and processing speed have greatly
improved the ability to interactively query the database and generate
maps and tables on-the-fly using a dedicated client application or a web-
site.

Despite the success of CGMS in an operational framework and the tech-
nological improvements listed above, the thematic approach in CGMS is still
largely similar to what was developed within the MARS project. Few improve-
ments have been made to the original WOFOST modelling concept and some
of the key uncertainties related to applying WOFOST on the regional scale
have not been resolved. Examples of these uncertainties are the generally un-
known within-season sowing dates, the uncertainty in the effect of drought
due to limited weather station density and poorly known soil parameters, the
lack of information about irrigation and the weighting of individual simulation
results to administrative regions (Vossen and Rijks, 1995, pages 105–109).

Moreover, the deterministic modelling approach which is currently imple-
mented in CGMS is not capable of accounting for uncertainties and quantifying
their influence on the crop yield forecast. Remote sensing has often been men-
tioned as a means to resolve some of the uncertainties mentioned, but the use
of remote sensing in crop models has its own set of challenges which will be
outlined in the following section.
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1.2 Application of remote sensing in crop growth
models in an operational context

Crop yield forecasting applications applied over large areas and relying on a
spatially distributed crop growth model are typically confronted with large
uncertainty in the spatial distribution of soil properties and initial soil condi-
tions, crop parameters and meteorologic forcings (Hansen and Jones, 2000).
Within the crop growth model, this uncertainty influences the simulation of
two important physiological processes: 1) the simulation of the crop canopy
development which determines light interception and, when combined with
temperature data, the potential for photosynthesis; 2) the simulation of mois-
ture content in the soil which determines the actual evapotranspiration and
reduction of photosynthesis as a result of drought stress. Improving the simu-
lation of these two processes by using remotely sensed observations has been
a field of intense research and an overview will be given in relation to opera-
tional application in yield forecasting systems.

Research on improving the simulation of crop canopy development has
mostly focused on the use of sequences of high spatial resolution satellite
imagery (20-30 m) to either recalibrate crop model parameters such as the
emergence date, or to integrate the observations in a model using a forc-
ing or updating approach (Bach and Mauser, 2003; Boegh et al., 2004;
Bouman, 1995; Guérif and Duke, 2000; Maas, 1988; Moulin et al., 1998; Pre-
vot et al., 2003; Schneider, 2003). Although results demonstrated that many
crop model states (e.g. simulated biomass, leaf area index, yield) could be
improved using satellite observations, such methods have proven difficult to
be applied in crop yield forecasting applications operating at regional to con-
tinental scales.

The main reason for this slow adoption is the disparity in scales between
the process (crop growth on fields often as small as 1 hectare) and the type of
observing system that can be used operationally and economically over large
areas with high temporal frequency (satellite sensor observations with a spa-
tial resolution ranging from 250 m to 1 km). Given the relatively coarse spatial
resolution of such satellite sensors, in many parts of the world the instan-
taneous field of view (IFOV) covers a mixture of various land cover types,
making if difficult to estimate the value of crop states (assessed through LAI
or biomass) for specific crops. Some studies attempted to cope with the sub-
pixel heterogeneity directly (De Wit, 1999; Fischer, 1994; Moulin et al., 1995),
while others attempted to unmix a coarse resolution signal into its underlying
spectral components (Cherchali et al., 2000; Faivre and Fischer, 1997). The
general drawback of these approaches is that they rely on the availability of
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ancillary data (e.g. land cover/crop maps) which are usually not available
over large areas for the current growing season.

A few studies describe yield forecasting results obtained by integrating
coarse resolution satellite observations in crop simulation models at regional
scales over areas with relatively homogeneous land cover. For example, Do-
raiswamy et al. (2005) used Leaf Area Index derived from MODIS 250m obser-
vations over Iowa (U.S.) to recalibrate crop model parameters, while Mo et al.
(2005) used Leaf Area Index derived from NOAA-AVHRR as a forcing vari-
able in a crop model for the North China Plain. Their results demonstrate that
crop yield estimates improve when satellite observations are used to update or
force a crop model. Nevertheless, these techniques can only be applied over
regions with homogeneous land cover and a limited number of crop types.
These studies also recognise that the results deteriorate in areas with complex
land cover patterns where the satellite sensor signal consists of a mixture of
many crop types.

Considerable work has also been carried out on the estimation of veg-
etation evapotranspiration or soil moisture by satellite thermal infrared ob-
servations with the aim of improving estimates of drought stress or water
use (Courault et al., 2005; Olioso et al., 2005). Although promising semi-
operational results have been demonstrated (Bastiaanssen and Ali, 2003; Roe-
beling et al., 2004), the use of these kind of observations in crop models re-
mains very limited (Olioso et al., 2005). Besides the scale issues outlined be-
fore, other factors which limit operational application play a role, such as that
no generally accepted operational systems have been available to routinely es-
timate actual evapotranspiration over large areas using satellite observations.

Additional to the thematic issues outlined above, it is also appropriate to
state that remote sensing often has not delivered a convincing operational
scenario that would justify the investments needed for operational implemen-
tation. Satellite missions often consist of a single or a few satellites being
launched with no warranties on data continuity beyond the expected life-
time of the satellite (e.g. LandSat 7 ETM+, VGT on SPOT4/5 and MODIS
on TERRA/AQUA). The exceptions here are the operational meteorological
satellites such as the geo-stationary satellites (MeteoSat first and second gen-
eration, GOES, etc.) and their polar orbiting counterpart the NOAA-AVHRR.
In the near future the NOAA-AVHRR type of satellites will be succeeded by
the METOP and NPOESS satellites of the Joint Polar System (JPS) developed
jointly by NOAA and EUMETSAT. Both the polar orbiting and geostationary
systems managed by EUMETSAT have a mandate until 2018 and provide near-
realtime data products for various operational services.



6 Introduction

1.3 Use of remote sensing derived products in
CGMS

Despite the challenges in the use of remote sensing listed in the previous sec-
tion there are key uncertainties in regional crop modelling (section 1.1) where
advantage could be taken from remote sensing products. However, for any sus-
tainable operational use of remote sensing derived products in CGMS it is thus
necessary to focus on the products that can be delivered by the geostationary
and polar orbiting meteorological satellites.

Two products derived from geostationary satellites that can be used di-
rectly in CGMS are estimates of radiation and rainfall (Beyer et al., 1996;
Grimes et al., 2003). Although these products can be used to improve the
quality of CGMS meteorologic inputs, they are merely replacements of ex-
isting meteorological products and their implementation is a technical issue
rather then a scientific challenge. Next, there is a range of biophysical prod-
ucts that can be derived from new optical instruments on the geostationary
and polar orbiting satellites such as SEVIRI onboard MSG (Camacho de Coca
et al., 2003) or in the near future VIIRS on NPOESS. These products will be
useful for qualitative monitoring of the growing season, but have an inappro-
priate spatial resolution as was argued already in section 1.2.

A third product that will become available from the METOP satellites are
soil moisture estimates derived from scatterometer measurements over land
(Hasenauer et al., 2006). These soil moisture measurements are instantaneous
measurements of the upper few centimeters only and therefore not directly
useful for a crop model which needs root zone soil moisture and operates
in daily time-steps. However, methods exist to derive a so-called soil water
index (SWI) which is representative of the root-zone soil moisture (Ceballos
et al., 2005; Wagner et al., 1999; Wagner et al., 2003).

Within CGMS, soil moisture is currently the only factor which limits the
potential production, while its estimation is still one of the key uncertainties
in the application of WOFOST on the regional scale (section 1.1). Therefore,
the SWI product could potentially improve the soil water balance and increase
the predictive capabilities of CGMS in terms of crop yield. An additional ad-
vantage of the SWI product is that a global archive is available over the period
1992–2000 based on observations of the scatterometer instruments onboard
the European Radar Satellites (ERS1/2). This ensures that time-series of simu-
lation results can be compared with time-series of regional crop yield statistics.

The spatial resolution of the SWI product derived from METOP is in the or-
der of 25×25 km. This resolution is even lower than the products derived from
the low resolution optical sensors and it is therefore impossible to derive crop



1.3 Use of remote sensing derived products in CGMS 7

specific estimates of root-zone soil moisture. However, two particular aspects
of soil moisture make the resolution aspect less critical compared to products
derived from low resolution optical sensors. First of all, in contrast to biophys-
ical variables (e.g. LAI, biomass) or actual evapotranspiration, soil moisture
is derived independently from the plant canopy and the retrieval process is
therefore less influenced by the particular arrangement of land cover/crop
patches within the resolution cell. In fact, the algorithms for soil moisture
retrieval aim to remove all vegetation influence from the scatterometer signal
before estimates of soil moisture can be made (Wagner et al., 1999).

Secondly, the spatial correlation length of variability in soil moisture is
not only depending on local interactions between the land surface and the
soil, but for a large part also on atmospheric patterns (rainfall, temperature,
radiation) operating on spatial scales with a much larger spatial correlation
length. Moreover, it has been shown that with increasing depth of the soil layer
the atmospheric patterns become dominant in describing the spatial variability
of the soil moisture fields, while the temporal variability is strongly reduced
(Vinnikov et al., 1996; Vinnikov et al., 1999). This makes the root-zone soil
moisture estimates derived from SWI more suitable for use in a crop model
running at daily time-steps.

After having identified suitable satellite derived data products, appropri-
ate methods must be selected to combine the model output and observation
through an assimilation procedure. Various approaches are available to as-
similate satellite observation in crop models (section 1.2). However, the op-
erational character of the system puts some constraints on the type of data
assimilation that can be applied. First of all, the assimilation approach should
be robust in order not to compromise the operational system when satellite
observations are not available, for example due to sensor or telecommunica-
tions failure. Secondly, the data assimilation procedure must be able to in-
gest satellite observations on-the-fly as the growing season progresses. These
requirements are most easily met by using a sequential data assimilation ap-
proach. Particularly the ensemble Kalman filter (EnKF) is one of the more
attractive algorithms because the structure of many crop models lends itself
well for implementation in the EnKF and the state vector in crop models is
relatively small (Dorigo et al., 2006)

One of the conditions for successfully applying the ensemble Kalman filter
is that the uncertainty on the model states (in terms of co-variance) can be
properly estimated. This means that the factors that cause the uncertainty in
the model states must be properly represented during model initializing and
simulation. Within this thesis, it is assumed that the influence of uncertainty
in weather is the major factor (Aggarwal, 1995; Easterling et al., 1998; Mathe-
Gaspar et al., 2005; Mearns et al., 2001) which determines the uncertainty on
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the modelled soil moisture (Syed et al., 2004).

1.4 Scope and objectives

The thematic limitations of CGMS outlined in section 1.1 combined with
the thematic and operational limitations of remote sensing derived products
(sections 1.2 and 1.3) have led to the following overall objective of this thesis:

Providing a basis for probabilistic crop growth modelling and remote sens-
ing data assimilation for improved regional crop yield forecasting.

More specifically, this thesis will address:

• Exploring the uncertainties related to the spatial and temporal variability
of the main meteorologic forcings necessary for running a crop growth
model (temperature, radiation, precipitation);

• Modelling of the uncertainty in precipitation inputs using a stochastic
approach on a spatial and temporal scale which is consistent with the
needs of regional crop growth modeling;

• Developing a probabilistic framework for crop growth modelling cou-
pled to an ensemble Kalman filter for assimilation of remote sensing
derived observations;

• Applying the developed probabilistic framework in a case study and
demonstrating the improvements in the relationships between model
output and crop yield statistics through the assimilation of soil moisture
estimates.

Additionally, the components in this study have been carried out with the
following constraints in mind:

• No algorithms or methods have been used in this study which cannot
be applied and calibrated in an operational context (e.g. locally derived
relationships between NDVI and LAI).

• All satellite data products that have been used in this study can provide
frequent global coverage and are operated by an organisation with a
long-term mandate;

• The results of this study do not depend in any way on local ancillary data
(e.g. detailed land cover or crop maps) which often impedes scaling up
the results from field to region.
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1.5 Outline of this thesis

The core of this thesis (Chapters 2–5) is based on a series of four peer-reviewed
journal papers. Each chapter is introduced separately by stating its research
goals and by outlining its relationship with other relevant work.

Chapter 2 explores the use of AVHRR-derived surface temperature as a
replacement for interpolated maximum air temperature in a spatial crop mon-
itoring and yield forecasting system (Wit et al., 2004). Chapter 3 describes
the effect of uncertainty in the CGMS radiation and precipitation estimates on
the crop simulation results and yield forecast (Wit et al., 2005). This work
is carried out by comparing the output from the standard CGMS system with
the results obtained from using a high resolution precipitation and radiation
database as input. Furthermore, the spatial scaling behaviour of CGMS is
analysed with regard to precipitation and radiation inputs.

Chapter 4 builds on chapter 3 by developing a method to capture the un-
certainty in the CGMS precipitation patterns through a stochastic approach
(Wit et al., 2007). The method treats the CGMS precipitation field as a first
guess for the true precipitation field and uses an additive error model to gen-
erate many equiprobable realisations. Together, this ensemble of realisations
characterises the uncertainty in the precipitation field and it is demonstrated
how such an ensemble can be used to characterise the uncertainty on the crop
yield forecast.

Chapter 5 presents results obtained from a spatially distributed probabilis-
tic version of the WOFOST crop growth model coupled to an ensemble Kalman
filter (Wit and Diepen, 2007). We used this framework to assimilate coarse res-
olution satellite microwave sensor derived soil moisture estimates for correct-
ing errors in the water balance of the WOFOST model caused by uncertainty
in rainfall or model initialisation. The results of this work are validated by
determining whether this approach results in improved relationships between
model output and crop yield statistics for administrative regions.

Finally, Chapter 6 concludes this thesis with a summary and discussion of
the main findings and suggestions for further work.





Chapter 2

Using NOAA-AVHRR estimates
of land surface temperature
for regional agrometeorogical
modelling∗

2.1 Introduction

During the last decade agrometeorological crop simulation models have been
used to provide information on soil/crop conditions at the scale of fields and
regions (Bouman et al., 1996). The application domain of these models is
diverse and includes: yield risk and yield variability analyses, crop yield fore-
casting, crop rotation analyses and the effect of climate change on crop growth
(Hoogenboom, 2000; Supit et al., 1994). Moreover, a relatively new range of
applications for agrometeorological models has been developed by including
the spatial domain in agrometeorological modelling.

Traditionally, agrometeorological models have been developed using daily
meteorological input data measured at specific sites; the model outputs there-
fore are site-specific. If the spatial dimension is to be included in the agrome-
teorological modelling system, then spatially representative values of various
model parameters (i.e. crop parameters, soil parameters and sowing dates)
need to be gathered as well as spatially representative meteorological input
data. Usually this is (partly) accomplished by linking the crop model with
a GIS (Hartkamp et al., 1999). The use of a GIS facilitates handling spatio-

∗Chapter based on: Wit, A.J.W d., Boogaard, H. and Diepen, C.A. v.: 2004, Using NOAA-
AVHRR estimates of land surface temperature for regional agrometeorogical modelling, Inter-
national Journal of Applied Earth Observation and Geoinformation 5(3), 187–204
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temporal information both in input as well as model output. Furthermore, the
GIS can be used to derive some crop model parameters like soil type and slope
from digital soil maps and elevation models. The GIS itself does not fulfil the
task of finding spatially representative meteorological input data, because the
weather variables measured at weather stations represent ‘point’ information.

Various approaches exist to tackle the fact the weather stations are often
widely spaced. One can simply assume that point observations are represen-
tative for a larger area. Usually this is not a valid assumption depending
on the size of the area and factors like orography, the dimension and path-
way of rainstorms, land cover and micro-climate. If data from a network
of weather stations is available, one can interpolate the weather variables
between the stations before running the crop model (Carbone, 1993; Voet
et al., 1994). The other option is to run the model with the site-specific
weather variables and interpolate the results after the simulation (Bindi and
Maselli, 2001). The handling of the spatial component of meteorological in-
put data is currently one of the main concerns in spatial agrometeorological
modelling (Hoogenboom, 2000).

The solutions that were described above all assume that meteorological
variables can only be obtained through weather stations. Two alternatives
exist that can be of great relevance to spatial agrometeorological modelling
systems. The first alternative is to obtain input data through a weather
forecasting model such as the one operated by the European Centre for
Medium Range Weather-Forecasting (ECMWF). The ECMWF weather fore-
casting model provides weather variables on a 0.25-degree grid, which is
a much higher density compared to most meteorological networks. A sec-
ond advantage is that large time-series of simulated weather variables are
becoming available through for example the ERA15 and ERA40 projects
(http://www.ecmwf.int/research/era/). However, a complete discussion on
the use of simulated weather variables is beyond the scope of this paper.

The second alternative involves the use of satellite sensor observations to
estimate meteorological variables. In this respect, temperature and solar radi-
ation are particularly interesting. Temperature can be derived from a variety of
satellite platforms that carry thermal scanners, while operational procedures
have been developed for determining daily solar radiation from Meteosat ob-
servations (Beyer et al., 1996). The use of satellite sensor observations has a
number of advantages:

• The spatial density of the satellite sensor observations is far greater than
any meteorological network.

• Satellite sensor observations have the advantage that data can be gath-
ered at the actual location where the crop is growing.
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• The data are readily available and data from many sensors can be down-
loaded through the internet without cost.

Besides these advantages of satellite sensor data, also some disadvantages
have to be taken into account:

• Often a large effort is required to process satellite sensor data into useful
information.

• The overpass time and frequency can be limiting factors.

• The presence of cloud cover complicates obtaining continuous time-
series of surface temperature estimates.

The objective of this study is to evaluate the use of AVHRR-derived tem-
perature as a substitute for interpolated maximum air temperature in a spatial
crop monitoring and yield forecasting system; the Crop Growth Monitoring
System (Vossen and Rijks, 1995). First, a short introduction to the WOFOST
crop simulation model and the Crop Growth Monitoring System (CGMS) is
given; the ancillary data are described and the processing steps are docu-
mented that were applied to a two-years set of daily NOAA-AVHRR data.
Next, the AVHRR-derived temperature estimates are validated against mea-
surements of maximum air temperature from weather stations and the spa-
tial patterns of the temperature sums are visualised. Furthermore, the crop
model results are evaluated and compared with the standard CGMS approach
(Diepen, 1992; Vossen, 1995; Vossen and Rijks, 1995). Finally some conclu-
sions on the use of AVHRR-derived surface temperature in CGMS are pre-
sented.

2.2 Models

2.2.1 WOFOST crop simulation model

The WOFOST (WOrld FOod STudies) crop simulation model (Diepen et al.,
1989; Supit et al., 1994) is a mechanistic crop growth model that describes
plant growth by using light interception and CO2 assimilation as growth driv-
ing processes and by using crop phenological development as growth control-
ling process. The WOFOST model can be applied in two different ways: (1) a
potential mode, where crop growth is purely driven be temperature and solar
radiation and no growth limiting factors are taken into account. (2) A water-
limited mode, where crop growth is limited by the availability of water. The
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difference in yield between the potential and water-limited mode can be in-
terpreted as the effect of drought. Currently, no other yield-limiting factors
(nutrients, pests, weeds, farm management) are taken into account.

In the WOFOST model, temperature exerts influence on many different
aspects of plant growth and development. First of all, temperature influences
the duration of the successive growth stages, and hence on the duration of the
total growth cycle because the length of each growth stage is defined by the
summation of the daily effective temperature. Daily effective temperature is
a function of the daily average temperature and is calculated by linear inter-
polation between a crop-specific base temperature, below which no phenolog-
ical processes take place, and a crop-specific maximum temperature, beyond
which phenological activity does not increase. Higher temperatures lead to
faster ageing of the crop and shortening of successive growth stages.

Moreover, temperature influences the life span of green leaves, the mainte-
nance respiration and the photosynthetic capacity. For example, when temper-
ature increases, the maintenance requirements of the crop increase, leading to
a lower net growth, even if the photosynthetic capacity of the crop remains at
the same level. The highest potential biomass production is therefore obtained
when the weather is cool and sunny throughout the year.

2.2.2 Crop Growth Monitoring System

The Crop Growth Monitoring System has been developed for crop monitor-
ing and yield forecasting in the European Union and consists of a weather,
soil and crop database, the WOFOST crop simulation model and a GIS
(Diepen, 1992; Vossen, 1995; Vossen and Rijks, 1995). Within the frame-
work of the MARS (Monitoring Agriculture with Remote Sensing) project at
JRC (Joint Research Centre) Ispra (Italy), CGMS monitors from 1994 onward
the agricultural production in Europe, Anatolia and the Maghreb with a spatial
resolution of 50× 50 km and a temporal resolution of one day.

Within CGMS three operational levels can be distinguished:

1. interpolation of weather variables to a 50× 50 km grid;

2. simulation of crop growth and;

3. forecasting of crop yield.

At the first level weather data are interpolated from weather stations to
centres of climatic grid cells. These grid cells are assumed to be homogeneous
regarding the weather. Each grid cell receives values for temperature, radia-
tion, air humidity and wind speed as the average from suitable surrounding
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weather stations. Determination of the most suitable weather stations takes
place on the basis of the so-called “meteorological distance” (Voet et al., 1994).
This meteorological distance is a virtual distance which is not only based on
the true distance between the grid cell and the weather station, but also on
factors like altitude, distance to coast and the existence of climate barriers
(e.g. mountain ridges, water bodies) between the grid cell and the weather
station. In case of rainfall a grid cell receives the value of the weather station
with the smallest meteorological distance from the grid cell.

At the second level, the actual crop modelling is carried out. For this pur-
pose, data from the European soil map (King et al., 1995) are used as input
in the calculation of the water balance. Soil moisture contents at different
pressure heads (saturation, field capacity, wilting point) determine the water
retention of the soil. Besides the hydrologic soil characteristics, the soil map
is used to estimate the suitability of soils for different crops. The climatic
grid and the soil map are combined in an overlay procedure that results in a
number of unique simulation units: combinations of climatic grid cell and soil
type. For these simulation units the potential and water-limited crop growth
are simulated with the WOFOST crop growth model.

At the third level, CGMS aggregates the daily biomass values per simula-
tion unit into dekadal values per administrative unit. The CGMS model out-
puts are gathered for time-series of 15 to 20 years and are regressed against
the historic known values of crop yields for each administrative unit.

2.3 Data

2.3.1 NOAA-AVHRR data

The AVHRR sensor (Advanced Very High Resolution Radiometer) onboard
NOAA’s (National Oceanic and Atmospheric Administration) POES (Polar Op-
erational Environmental Satellite) satellites records radiation reflected and
emitted by the land surface at spectral intervals centered at 0.63, 0.91, 3.7, 11
and 12 µm with a spatial resolution of 1.1 by 1.1 km at nadir. At each overpass
the sensor scans a 2400 km wide strip of the Earth. Due to the characteristics
of its Sun synchronous orbit each NOAA-AVHRR sensor scans the entire Earth
at least two times a day. The tracks of the NOAA satellite do not repeat on a
daily basis, although the local solar time of the satellite’s passage is essentially
unchanged for any latitude.

For this study, a dataset from the AVHRR sensor onboard the NOAA-14
satellite has been used which overpasses western Europe between 13.00 and
14.00 local solar time. This dataset contains daily images and spans almost
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two years, starting at February 1st 1995 and ending at November 28th 1996.
The dataset covers an area that is bounded by the 10th meridian west and 5th

meridian east. In the north-south direction it covers an area starting in East
Anglia and The Netherlands (54◦ N) in the north to Morocco in the extreme
south (30◦ N).

The pre-processing of the AVHRR data was carried out at the Free Uni-
versity of Berlin (Koslowsky, 2003; Koslowsky et al., 2001) and consisted of
registering the data to a geographic co-ordinate system and calibrating the
AVHRR channels to top-of-atmosphere (TOA) reflectance (channels 1,2,3) and
TOA brightness temperature (channels 4,5). The pre-processing chain also
provided ancillary information like cloud masks, Normalised Difference Vege-
tation Index (NDVI) and broadband albedo.

2.3.2 Weather station locations and variables

The CGMS database contains daily meteorological observations from a large
number of weather stations in Europe. To compare surface temperature
data obtained from the AVHRR sensor with the observed air temperature,
daily weather variables including minimum/maximum air temperature, wind
speed, precipitation and cloud cover were extracted from the database for 11
weather stations over western Europe (Figure 2.1). Most of these weather
stations are located in major agricultural production areas.

2.3.3 Pan-European Land Cover Database

The PELCOM database (Pan-European Land COver Monitoring) is based on
classifications of monthly NDVI composites that were derived from NOAA-
AVHRR observations (Mücher et al., 2000). The goal of the PELCOM project
was to establish a 1-km Pan-European land cover database with a consistent
classification methodology. The nomenclature of the database discriminates
eight classes that are divided into various subclasses depending on the region
of interest. The purpose of the database is to meet the demands of environ-
mental and meteorological models for reliable and accurate land cover data at
a European scale.

The accuracy and reliability of the PELCOM database varies significantly
between classes and also between different regions in the database (Mücher
et al., 2001). Furthermore different methods of validation result in different
estimates of accuracy and reliability. During this study the PELCOM database
has been used to identify areas with agricultural land cover. The validation of
the PELCOM database has demonstrated that the PELCOM class ‘arable land’
is classified with an accuracy in the order of 80%.
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Figure 2.1: The location of selected weather stations over western Europe.



18 Using NOAA-AVHRR land surface temperature

2.4 Methods

2.4.1 Comparing surface temperature to maximum air
temperature

Surface temperature and air temperature are two different physical quantities
which are related through the exchange of energy fluxes near the Earth’s sur-
face. During daytime the surface temperature is normally higher than the air
temperature because of the existence of a sensible heat flux induced by solar
radiation. The physical relationship between the air temperature and the sur-
face temperature is complex and depends on factors like moisture condition,
radiation, vegetation density and micrometeorological conditions (Monteith
and Unsworth, 1990). In this study we try to relate surface temperature to
maximum daily air temperature. Maximum daily air temperature corresponds
to the maximum air temperature measured during the day and is usually mea-
sured in the early afternoon. Surface temperature is defined as the surface
temperature during the time of satellite overpass. For the NOAA-14 satellite,
the time of overpass compares favourably with the period of maximum air
temperature. Differences between the maximum daily air temperature and
the AVHRR-derived surface temperature are thus caused by:

1. Differences between the estimated surface temperature and the true sur-
face temperature due to assumptions in atmospheric corrections and
emissivity.

2. Differences between the true surface temperature and the maximum air
temperature measured at a weather station, due to the physical differ-
ence of the quantities that are being compared.

3. The distribution of vegetation and bare soil within the pixel and the
effect of water stress on the vegetation canopy temperature.

4. Differences in the local time of the acquisition of the surface temperature
and maximum air temperature.

Because these influences are difficult to separate we will apply an empirical
model that is fitted using observations of maximum air temperature at weather
stations.

2.4.2 Correction and aggregation of surface temperature

The NOAA-AVHRR channels 4 (10.5 – 11.5 µm) and 5 (11.5 – 12.5 µm) are
sensitive to radiation emitted in the thermal part of the electromagnetic spec-
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trum and are used to estimate the Earth’s surface temperature. Before the sur-
face temperature of the Earth can be determined it is necessary to minimise
the effects of the Earth’s atmosphere on the recorded signal. For this purpose,
algorithms have been developed that can determine the atmospheric effects
on the signal from slight differences in the observed brightness temperature in
the AVHRR channels 4 and 5.

These so-called split-window algorithms were originally developed for de-
termining sea surface temperature but have been extended to land applica-
tions as well. In this study a split-window algorithm developed by Sobrino
et al. (1991) has been applied. This algorithm describes the split-window co-
efficients for a number of standard atmospheric conditions and a given emis-
sivity of the Earth’s surface in AVHRR channels 4 and 5. For the period of
April to September the coefficients for the standard atmosphere ‘mid-latitude
summer’ were used, all other months were corrected with the coefficients for
‘mid-latitude winter’. More advanced split-window algorithms have been de-
scribed in literature (Ouaidrari et al., 2002; Qin and Karnieli, 1999) but these
algorithms require additional information like atmospheric water vapour dis-
tribution which was not available for this study.

A fixed surface emissivity of 0.95 was assumed for both AVHRR channels.
This assumption is based on the work of Salisbury and D’Aria (1992) who
demonstrated that the emissivity for different terrestrial materials is less vari-
able within the 10.5 – 12.5 µm AVHRR spectral window compared to the
whole 8 – 14 µm thermal atmospheric window. Therefore, an emissivity of
0.95 is a reasonable estimate. Another approach is to estimate emissivity from
NDVI using an empirical relationship (Van de Griend and Owe, 1993). How-
ever, this approach provides an estimate of broadband (8 – 14 µm) emissivity,
which is not representative for the emissivity in the AVHRR spectral bands.

The AVHRR sensor has a spatial resolution of 1.1 kilometre at nadir while
CGMS monitors crop growth at a spatial resolution of 50 kilometres. To com-
pensate for this scale difference, some form of aggregation must be applied to
the surface temperature data. The most straightforward aggregation approach
would be to take the average of all AVHRR pixels within each CGMS grid cell.
This approach has the disadvantage that many pixels will be included that are
not representative of crop growth conditions (urban areas, forests, mountains,
etc.). Therefore, we decided to use the PELCOM land cover database to strat-
ify the surface temperature images prior to aggregation. Only those pixels
classified as ‘arable land’ in the PELCOM land cover database were selected.

The last step in the processing chain involves the influence of cloud cover.
To exclude clouded pixels from the aggregation, the cloud masks supplied with
the AVHRR images were used to select only cloud-free pixels. Figure 2.2 gives
an overview of the processing steps that were carried out to obtain the average
surface temperature per CGMS grid cell.
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Figure 2.2: A schematic overview of the processing steps that were applied to the
daily AVHRR images in order to obtain the average surface tempera-
ture for each CGMS grid cell.

2.4.3 Temporal interpolation of the surface temperature

A clear disadvantage of the use of temperature data from satellite sensors is
the difficulty of obtaining continuous time-series of land surface temperature
estimates due to the effect of cloud cover. One approach to estimate the land
surface temperature on clouded overpasses is to derive a relationship between
the surface temperature on cloud-free overpasses and the observed maximum
air temperature at a weather station, because good relationships exist between
surface temperature and maximum air temperature (figure 2.3). Next, this
relationship can be used to estimate the surface temperature on clouded over-
passes from the observed maximum air temperature.

The drawback is that this approach is only valid near a weather station.
Therefore, we decided to use a second approach where we substitute the
surface temperature on clouded overpasses with the monthly average surface
temperature obtained from cloud-free overpasses. This approach is based on
the following considerations:

• In the WOFOST crop model, the cumulative air temperature is driving
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Figure 2.3: Two examples of scatter plots between the maximum air temperature
obtained from weather station (T max

a ) and the area-averaged surface
temperature obtained from NOAA-AVHRR (T0).

the development stages of the crop. It is therefore important to obtain a
correct development of the cumulative air temperature, while deviations
in air temperature on a daily basis are permissible.

• We assume that we introduce little bias in the cumulative surface tem-
perature when we substitute the monthly average surface temperature
on clouded overpasses. One could argue that our approach always
overestimates the surface temperature, because we are using estimates
obtained on cloud-free overpasses to estimate surface temperature on
cloudy overpasses when the surface temperature will be lower as a re-
sult of cloudiness. However, this cannot be solved in this study.

• The approach is fast and easy to implement, which is important when
processing large datasets.

We selected five grid cells where a weather station provided the observed
maximum air temperature and both approaches could be applied. The de-
velopment of the cumulative surface temperature for both interpolation ap-
proaches demonstrates that differences are small (figure 2.4). For all loca-
tions, the relative differences at the end of the years are within 2% and the
absolute differences through the season are smaller than 200 degrees.



22 Using NOAA-AVHRR land surface temperature

Figure 2.4: Development of cumulative surface temperature (T0) for five loca-
tions in 1996, using two different approaches to account for miss-
ing data: Interpolation using the maximum air temperature (dashed
lines) and substitution of the monthly average surface temperature
(solid line).

2.4.4 Magnitude correction of the surface temperature

A final correction to the surface temperature data is necessary, because the
AVHRR-derived surface temperature at overpass time is usually higher than
the maximum air temperature measured during the day (figure 2.3). Without
this correction, the temperature sums in the WOFOST model would be reached
too early in the growing season and thus the simulated crop would develop
too fast. We use a simple empirical model to apply this correction. The under-
lying assumption is that a single correction model can be used throughout the
entire study area in order to convert surface temperature at overpass time to
a simulated maximum air temperature. The empirical model was of the type:

T0 = aT max
a + bT m

a ax (2.1)

We assume that the relationship between surface temperature (T0) and
observed maximum air temperature (T max

a ) is almost linear at low air tem-
perature, but the difference between T0 and Ta-max gets progressively larger
at higher air temperature. We determined the model coefficients using the
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Table 2.1: Regression parameters and correlation co-
efficient derived from an empirical rela-
tionship between T0 and T max

a .

Year Coefficient a Coefficient b R2

1995 1.11855 1.06250 0.91
1996 1.10137 1.06973 0.90

observed maximum air temperature from 5 weather stations (Wattisham, Or-
leans, Auch, Valladolid and Seville) and the surface temperature of the CGMS
grid cells where these weather stations were located.

Table 2.1 shows the model coefficients found and the correlation coeffi-
cients between the observed surface temperature and the surface temperature
estimated from the observed maximum air temperature. The results illustrate
that the correlation coefficient is high and the regression coefficients found for
1995 and 1996 are similar. We decided to use the coefficients derived from
1995 because the data that were obtained during the 1995 season cover a
slightly larger temperature range.

2.4.5 CGMS model simulation approach

Crop simulations for Spain were carried out using CGMS for two different
crops (winter-wheat and sunflower) during the 1995 and 1996 growing sea-
sons. One CGMS model run was carried out using the standard CGMS system,
which derives the spatial weather variables by interpolation from weather sta-
tions. This approach will be herein referred to as the ’classic CGMS approach‘.
The second CGMS model run used the AVHRR derived temperature. This ap-
proach will be herein referred to as the ’satellite CGMS approach‘.

The satellite CGMS approach differed from the classic CGMS approach on
two aspects: First, the interpolated maximum air temperature for each grid
cell was replaced with the simulated maximum air temperature derived from
the AVHRR surface temperature. For January 1995, we had to use the inter-
polated maximum air temperature because no AVHRR images were available
for this month.

Second, a simulated minimum air temperature replaced the measured min-
imum air temperature. The simulated minimum air temperature was derived
by subtracting a daily long-term average temperature difference from the sim-
ulated maximum air temperature. This daily long-term average temperature
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difference was calculated using the long-term record of weather variables in
the CGMS weather database. For an operational procedure, the daily mini-
mum air temperature might be derived from night-time AVHRR-observations
but these were not available for this study.

2.5 Results

2.5.1 Comparison with independent weather-stations

We compared the simulated maximum air temperature (T sim
a ) with the max-

imum air temperature (T max
a ) measured at six independent weather stations.

The results are plotted as the difference in the cumulative temperature (T max
a

- T sim
a ) over the period 1 February 1995 to 28 November 1996 (figure 2.5).

For the stations ‘De Bilt’, ‘Cognac’ and ‘Grenoble’ the differences are small and
within 300 degrees over the entire period. For the stations ‘Zaragoza’ and
‘Valencia’ the maximum air temperature is overestimated leading to a differ-
ence in cumulative temperature of 1000 and 750 degrees. The most southern
weather station at Albacete shows a strong overestimation of the maximum
air temperature leading to a difference in cumulative temperature of 2700
degrees at the end of the two-year period.

2.5.2 Spatial distribution of the temperature sums

We calculated the yearly temperature sum in each CGMS grid cell in Spain
for both the classic and the satellite CGMS approaches in order to analyse
the distribution and the spatial patterns of the yearly temperature sum. The
temperature sum for 1995 was calculated over the entire year, while the tem-
perature sum for 1996 was calculated over the period from January 1st to
November 28th. Therefore, the histograms of the temperature sum cannot be
compared directly between 1995 and 1996 (figure 2.6a,b).

The histograms demonstrate that the temperature sums for the classic and
the satellite CGMS approach are similar at the cool side of the histograms.
However, at the warm side of the temperature histograms the satellite CGMS
approach reaches higher temperature sums compared to the classic CGMS ap-
proach. These results confirm that the cumulative temperature is overesti-
mated by the satellite CGMS approach. Note that the overall shapes of the
histograms are similar for both approaches in 1995 as well as 1996.

We visualised the spatial patterns of the yearly temperature sums using
1/8 quantile maps, where each interval in the legend represents 12.5% of
the total data (figure 2.7). A general north-south pattern exists of relatively
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Figure 2.5: The difference (
∑

T max
a −
∑

T sim
a ) between the cumulative maximum

air temperature (
∑

T max
a ) measured at six independent stations and

the cumulative simulated maximum air (
∑

T max
a ) derived from the

AVHRR data.
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Figure 2.6: Histogram of the 1995 (A) and 1996 (B) cumulative temperature for
the CGMS gridcells in Spain, obtained using classic CGMS approach
(thin line) and the satellite CGMS approach (thick line).
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Figure 2.7: Spatial patterns of the yearly temperature sums that were derived
from observed weather and AVHRR-derived surface temperature for
1995 and 1996. Each map is plotted as a 1/8 quantile map, where
each legend interval represents 12.5% of the total data.

low temperature sums in north Spain to high temperature sums in southwest
Spain. Also the relatively high temperature sums in the Ebro valley can be eas-
ily discriminated in both approaches, as well as the strip of high temperature
sums along the Mediterranean coast. Differences in the spatial patterns can
be found in the south-central parts of Spain (Extremadura en Sierra Morena).
Given the fact that few weather stations are available in this area, it can be ar-
gued that the AVHRR-derived patterns are probably a better indication of the
true spatial variability of the cumulative temperature than the interpolated
spatial patterns.

2.5.3 Crop simulation results

Next, we compare crop simulation results from using the satellite and clas-
sic CGMS approaches. The WOFOST crop model generates a number of crop
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Figure 2.8: Histograms of the 1995 (A) and 1996 (B) CGMS simulated potential
biomass for winter-wheat using the classic CGMS approach (thin line)
and the satellite CGMS approach (thick line).

parameters that can be used for comparing the two approaches. We selected
the potential biomass and the potential leaf area index because these parame-
ters reflect the effect of differences in temperature, whereas the water-limited
biomass and water-limited leaf area index are also influenced by the availabil-
ity of water.

Winter-wheat

The histograms for the total potential biomass at the end of the growing sea-
son show clear differences between the 1995 and 1996 growing seasons (fig-
ure 2.8a,b). For the classic CGMS approach the peaks of the distributions lie
between 18,000 and 20,000 kg ha−1 in 1995 as well as 1996 with an average
biomass of 16,500 in 1995 and 16,800 kg ha−1 in 1996. For the satellite CGMS
approach the peaks of the distributions lie around 14,000 kg ha−1 in 1995 and
around 17,000 kg ha−1 in 1996 with an average biomass of 14,600 kg ha−1 in
1995 and 15,700 kg ha−1 in 1996.

The development of the simulated potential LAI through time explains why
the satellite CGMS approach yields lower biomass values. We selected a rep-
resentative example of the simulated leaf area index near Zaragoza (figure
2.9a). This figure demonstrates that the ascending parts of the LAI curves
are similar and the peak LAI values are nearly identical for both approaches
in 1995 as well as 1996. However, for the satellite CGMS approach the de-
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scending part of the LAI curve starts earlier compared to the classic CGMS
approach. In 1995, the crop simulation for the satellite CGMS approach fin-
ishes three decades (i.e. 10-day periods) before the classic CGMS approach.
In 1996, the satellite CGMS approach is only one decade ahead of the classic
CGMS approach.

The early descent of the LAI curves for the satellite CGMS approach is
caused by the higher temperature that was obtained with the satellite CGMS
approach. Due to the higher temperature, the temperature sums in the crop
model are reached earlier in the season and thus the model changes to a sub-
sequent phenological stage earlier in the season. This effect is particularly
evident in the last part of the growing season when temperatures are higher.
The effect of the differences in LAI development on the biomass development
is clear since the simulated plant acquires less time to assimilate and conse-
quently less biomass can be accumulated.

Sunflower

The histograms for the total potential biomass at the end of the growing season
(figure 2.10a,b) demonstrate that large differences are present between the
satellite and the classic CGMS approach for sunflower. For the classic CGMS
approach the peaks of the distributions lie between 9,000 and 11,000 kg ha−1

in 1995 as well as 1996 with an average biomass of 9400 kg ha−1 in 1995
and 10,000 kg/ha in 1996. For the satellite CGMS approach the peaks of the
distributions lie around 7,000 kg ha−1 in 1995 as well as 1996 with an average
biomass of 6400 kg ha−1 in 1995 and 7400 kg ha−1 in 1996. In both years the
frequency distributions of the satellite CGMS approach are shifted towards
lower biomass values. This is particularly evident in 1995 where the relatively
‘peaked’ distribution of the classic CGMS approach is in contrast with the flat
distribution of the satellite CGMS approach with a high occurrence of grid
cells with low biomass.

The temporal evolution of the simulated potential leaf area index shows
a pattern similar to that of the simulated potential leaf area index of winter-
wheat (figure 2.9b). The ascending parts of the LAI curves are nearly identical
for the satellite and classic CGMS approaches, while the descending part of
the LAI curve for the satellite CGMS approach is four decades (i.e. 10-day pe-
riods) ahead of the classic CGMS approach. However, the effect of the higher
temperature is more extreme in the case of sunflower because the maximum
LAI value reached during the satellite CGMS approach is roughly two-thirds of
the maximum LAI value reached with the classic CGMS approach. Sunflower
is grown three months later in the crop growth season than winter-wheat.
Therefore the model simulations for sunflower in the satellite CGMS approach
are more influenced by the overestimation of the maximum air temperature.
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Figure 2.9: Simulated potential green leaf area index for winter-wheat (A) and
sunflower (B) during 1995 and 1996 for a CGMS grid cell near
Zaragoza. Classic CGMS approach drawn as solid lines, satellite
CGMS approach drawn as dashed lines



30 Using NOAA-AVHRR land surface temperature

0 5000 10000 15000
Biomass [kg/ha]

0

10

20

30

40

50
Fr

eq
ue

nc
y

A

0 5000 10000 15000
Biomass [kg/ha]

0

10

20

30

40

50

Fr
eq

ue
nc

y

B

Figure 2.10: Histograms of the 1995 (A) and 1996 (B) CGMS simulated potential
biomass for sunflower using the classic CGMS approach (thin line)
and the satellite CGMS approach (thick line).

2.6 Conclusions and discussion

We have explored the use of AVHRR-derived surface temperature as a sub-
stitute for interpolated maximum air temperature in a spatial crop monitor-
ing and yield forecasting system (CGMS). A processing chain was developed
which derives estimates of surface temperature per CGMS grid cell from a two-
year set of NOAA-AVHRR data, interpolates the missing values and converts
the surface temperature estimates into a simulated maximum air temperature
using a simple model and limited weather station data. Next, CGMS crop
simulations were carried our for winter-wheat and sunflower using both inter-
polated maximum air temperature and simulated maximum air temperature.
Our results can be summarised as follows.

We evaluated two approaches to account for missing data due to cloud
cover (1) substituting the monthly average surface temperature (2) interpola-
tion using a relationship with measured maximum air temperature. The two
approaches lead to different estimates of surface temperature on cloudy days,
but these differences are small when time-series of cumulative temperature
are compared. We therefore conclude that, for regional agrometeorological
purposes, substituting the monthly average surface temperature on days with
missing surface temperature is an effective way of accounting for missing data.

A direct use of AVHRR-derived surface temperature in crop growth models
is not possible because the surface temperature obtained from NOAA-AVHRR
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is usually higher then the maximum air temperature measured at a meteoro-
logical station. We used a simple empirical model to correct for this difference
and to convert the AVHRR-derived surface temperature into a simulated max-
imum air temperature. Validation of the simulated maximum air temperature
with measured maximum air temperature from independent weather stations
demonstrates that the differences in cumulative temperature are small for the
northern weather stations (Netherlands, France) but the simulated maximum
air temperature is systematically overestimated for the southern weather sta-
tions (Spain).

The histograms of the yearly temperature sums in Spain confirm that the
simulated maximum air temperature is overestimated. Nevertheless, the 1/8
quantile maps demonstrate that the spatial patterns of the temperature sums
for both approaches agree well. These results therefore indicate that AVHRR-
observations of surface temperature can be used to obtain realistic spatial pat-
terns of the temperature sum. However, a better correction of the surface
temperature must be carried out in order to adjust the AVHRR-derived surface
temperature to daily maximum air temperature.

When the simulated maximum air temperature is used as input in the crop
growth monitoring system, the effects on the simulation of winter-wheat and
sunflower are predictable. For both crops the overestimation of the temper-
ature sums causes a shortening of the growing season and subsequently a
lower accumulation of biomass at the end of the season. This effect is more
pronounced for sunflower because this crop is grown later in the season.

The overall results of this research demonstrate that the AVHRR-derived
surface temperature has good potential for use in regional agrometeorologi-
cal systems. Future work along this line of research could consider a more
quantitative analyses on the performance of surface temperature to predict
air temperature at a particular location and compare it to the performance
that is obtained by using interpolation from surrounding weather stations for
that same location. This approach could be carried out by using co-kriging
to interpolate air temperature measured at weather stations on the basis of
AVHRR-derived surface temperature, thus combining the accuracy of point
measurements with the spatial variability derived from AVHRR land surface
temperature. Other potential extensions include the use of a climatic zona-
tion in combination with a larger number of weather station observations.
Hence, relationships between surface temperature and maximum air temper-
ature could be derived for each climatic zone. Finally, the use of new thermal
satellite sensors (i.e. TERRA-MODIS, ENVISAT-AATSR) could be investigated.





Chapter 3

Spatial resolution of precipitation
and radiation: the effect on
regional crop yield forecasts∗

3.1 Introduction

Agrometeorological crop simulation models are used operationally in many
parts of the world for monitoring the effect of weather conditions on crop
growth and for predicting crop yields from regional to continental scales
(Challinor et al., 2004; Hansen et al., 2004; Nemecek et al., 1996; Thorn-
ton et al., 1997; Vossen and Rijks, 1995; Yun, 2003). The success of the crop
yield forecasting application strongly depends on the crop simulation model’s
ability to quantify the influence of weather, soil and management conditions
on crop yield and on the systems ability to properly integrate model simulation
results over a range of spatial scales (Hansen and Jones, 2000).

Originally, agrometeorological models were developed during the 1970’s
and 1980’s to simulate crop growth at point locations under well known con-
ditions. Since then, these models have been applied in crop monitoring and
yield forecasting systems at regional and continental scales with typical spa-
tial resolutions of 25 to 100 km. At these scales, the conditions for crop
growth are difficult to define due to the large spatial and temporal variability
in weather, soil and crop management. Typically Geographical Information
Systems (GIS) have been applied to derive spatially explicit input (Hartkamp
et al., 1999). However, limitations in soil, weather and management data

∗Chapter based on: Wit, A.J.W. d., Boogaard, H.L. and Diepen, C.A. v.: 2005, Spatial res-
olution of precipitation and radiation: the effect on regional crop yield forecasts, Agricultural
and Forest Meteorology 135(1-4),156-168
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cause a considerable uncertainty in all the components of large area yield fore-
casting systems (Hoogenboom, 2000; Russel and Gardingen, 1997). Currently,
it is often unclear how these uncertainties propagate through the system given
the non-linear behaviour of crop models and the aggregation errors that may
occur when aggregating crop model outputs to larger regions (Hansen and
Jones, 2000).

Considerable research into the effects of uncertainty in weather, soil and
management on crop model outputs has been carried out by both the crop
modelling and climate change research communities. The crop modelling
community has focused on point and local scale studies in order to assess un-
certainty in management (Bouman, 1994), soil (Pachepsky and Acock, 1998)
and weather (Fodor and Kovacs, 2005; Nonhebel, 1994; Soltani et al., 2004)
data as well as integrated approaches assessing combined uncertainty in
weather and soil (Launay and Guérif, 2003) and uncertainty in model param-
eters (Aggarwal, 1995). These results generally show that the uncertainties in
soil and weather data were the main drivers for the uncertainty in the model
output. However, the local scale of these studies makes the results hardly
representative of uncertainty in regional to continental scale crop yield fore-
casting systems.

Within the climate research community much research has been dedicated
to quantifying the effects of climate change on crop yield and studying the
response of crop models to the uncertainty in climate change scenarios de-
rived from general circulation models (GCMs) at a range of spatial scales.
These studies demonstrated that crop models are sensitive to the variabil-
ity of precipitation and temperature inputs (Mearns et al., 2001; Semenov
and Porter, 1995) and that the spatial scale of the weather inputs matters
(Carbone et al., 2003; Mearns et al., 1999; Mearns et al., 2001). Furthermore,
when aggregating model output to regional scale, weather becomes the dom-
inant uncertainty while the soil strongly affects the spatial variance but hav-
ing less effect on the mean aggregated yield (Easterling et al., 1998; Mearns
et al., 2001). A limitation of these climate-related studies is that they focused
primarily on the uncertainty in the GCM simulations, rather then the true
weather patterns. Moreover, the spatial resolution of ‘high resolution’ climate
change scenarios (0.5◦) applied in these studies, can still be regarded as fairly
low.

This study positions itself between the local to point scale crop modelling
studies using observed data on the one side, and the regional climate change
studies using simulated weather data on the other side. The objective is to
quantify the influence of uncertainty in radiation and precipitation on (1) the
crop simulation results at 50 × 50 km grid level, (2) the spatially averaged
crop simulation results at regional level and, (3) the national yield forecasts
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for France and Germany through the growing season. Moreover, we eval-
uate the influence of averaging of radiation and precipitation values on the
model output. These results are obtained by comparing output from an oper-
ational crop yield forecasting system (which uses interpolated meteorological
variables from weather stations) with output obtained by integrating a high-
resolution (0.2◦) precipitation and radiation database into the system.

3.2 Methodology

3.2.1 The crop simulation model

To assess the effect of uncertainty in precipitation and radiation input, we used
the WOFOST (WOrld FOod STudies) crop simulation model (Diepen et al.,
1989). WOFOST is a mechanistic crop growth model that describes plant
growth by using light interception and CO2 assimilation as growth driving
processes and by using crop phenological development as growth controlling
process. The model can be applied in two different ways: 1) a potential mode,
where crop growth is purely driven by temperature and solar radiation and
no growth limiting factors are taken into account; 2) a water-limited mode,
where crop growth is limited by the availability of water. The difference in
yield between the potential and water-limited mode can be interpreted as the
effect of drought. Currently, no other yield-limiting factors (nutrients, pests,
weeds, farm management) are taken into account.

WOFOST and the other Wageningen crop models (Bouman et al., 1996;
van Ittersum et al., 2003) have been applied and validated in temperate,
Mediterranean, sub-tropical and tropical environments under different soil
and management conditions. The WOFOST model is capable of simulating
many crop types using crop specific parameter sets. Although validation has
mainly been carried out at field scale, WOFOST was developed with regional
applications in mind which has led to modest input requirements in terms
of weather, soil and crop management. The model results are sensitive to
weather, soil and management parameters as well as crop variety.

3.2.2 The Crop Growth Monitoring System

The Crop Growth Monitoring System (CGMS) allows regional application of
WOFOST by providing a database framework which handles model input
(weather, soil, crop parameters), model output (crop indicators such as to-
tal biomass and leaf area index), aggregation to statistical regions and yield
forecasting (Boogaard et al., 2002; Diepen, 1992; Genovese, 1998; Vossen and
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Rijks, 1995). CGMS is a typical example of a ‘simulate first – aggregate later’
type of system which implies that individual crop simulations are first carried
out on the smallest spatial unit possible: a soil unit. In a subsequent step,
simulations results are aggregated to grids or statistical regions by weighing
on the relative area of the soil unit. The idea underlying this approach is that
aggregation errors caused by non-linear response of crop models to inputs can
be avoided as much as possible.

Yield forecasting in CGMS takes place at the level of European Union (EU)
countries by searching for a relationship between CGMS crop indicators aggre-
gated to national level and the crop yield statistics available from the European
Statistical Office (EUROSTAT). It is assumed that crop yield for a region can
be divided into three factors: mean yield, multi-annual trend (or technology
trend) and residual variation (Vossen, 1992). CGMS uses a running time-series
of yield statistics of at least nine years to determine a linear technology trend
assuming that the trend is stable over this period. The time-series of crop
simulation results are then used to explain the residual deviation. The sys-
tem selects the best predictor out of four CGMS crop indicators (simulation
results): potential yield biomass, potential yield storage organs, water-limited
yield biomass and water-limited yield storage organs. Crop yield forecasting
takes place by using the crop simulation results to predict the deviation from
the technology trend already at the beginning of the growing season. More
information on the crop yield forecasting algorithm can be found in Boogaard
et al. (2002).

CGMS is part of the MARS (Monitoring Agriculture by Remote Sensing)
crop yield forecasting system developed by the AgriFish unit of the Joint Re-
search Centre in Ispra, Italy. The MARS system was developed in the early
nineties and consists of several components including crop monitoring with
low resolution satellite data and an agrometeorological crop monitoring sys-
tem currently known as CGMS. Since 1994, CGMS monitors crop growth in
Europe, Anatolia and the Maghreb with a spatial resolution of 50×50 km and
a temporal resolution of one day. Its main purpose is to provide information on
weather indicators and crop status during the growing seasons and to provide
objective forecasts of crop yield on the level of EU member states early in the
crop growth season. Its main user is the European Commission’s Directorate
General for Agriculture.

3.2.3 Study area

The study area is located in Germany and France (Figure 3.1). The motiva-
tions for this choice were that from north to south a clear gradient exists from
temperate maritime conditions in Northern Germany to Mediterranean condi-
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tions in the south of France. Besides, time-series of yield statistics are available
for Germany and France which could be used for yield forecasting purposes.
Finally, the study area is small enough to allow reasonable processing times.

3.2.4 Soil and weather inputs

Soil inputs for CGMS are derived from the 1:1,000,000 European soil map
(King et al., 1995) and from the 1:5,000,000 global soil database developed
by the Food and Agriculture Organisation for areas outside Western and Cen-
tral Europe. The CGMS 50 × 50 km grid was overlayed with the soil data
in order to determine which soils were available in each CGMS grid. Soil
moisture contents at different pressure heads (saturation, field capacity, wilt-
ing point) are estimated from the soil physiological description and together
with the estimated rooting depth they determine the water retention capac-
ity and hydraulic conductivity of the soil. This information is used for the
water balance calculations that are needed for water-limited production esti-
mates. Besides estimating soil hydraulic properties, the soil map is also used
for estimating the suitability of soils for different crops and for weighing the
simulation results to grids and administrative units.

The weather information in CGMS is currently derived from about 2500
weather stations over the entire area, the total number of stations varies some-
what over time. For France and Germany 182 weather stations are available.
These weather stations provide daily estimates of minimum and maximum
temperature, wind speed, vapour pressure and precipitation. Radiation is only
available from a limited number of stations and therefore radiation is esti-
mated at station level using relationships with temperature, cloud duration or
sunshine hours (Supit and van Kappel, 1998).

Next, an interpolation routine is applied to estimate weather variables for
each 50 × 50 km grid cell (Voet et al., 1994). Each cell receives values for
temperature, radiation, vapour pressure, evapotranspiration and wind speed
as the weighted average from suitable surrounding weather stations using in-
verse distance weighting. Determination of the most suitable weather stations
takes place on the basis of the so-called ‘meteorological distance’. This me-
teorological distance is a virtual distance which is not only based on the true
distance between the grid cell and the weather station, but also on factors like
altitude, distance to coast and the existence of climate barriers (e.g. moun-
tain ridges, water bodies) between the grid cell and the weather station. In
case of rainfall a grid cell receives the value of the weather station with the
smallest meteorological distance from the grid cell. This method was chosen
in order to avoid the distortion of precipitation sequences caused by averaging
precipitation values from multiple weather stations.
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Figure 3.1: Overview of the study area showing the NUTS0 regions (thick black
country borders), the NUTS1 regions (grey provincial borders), the
50× 50 km CGMS grid (black square grid) and the 10× 10 km grid
(grey square grid).
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3.2.5 High resolution precipitation and radiation inputs

The high temporal and spatial resolution databases used in this study were
generated in the framework of the ELDAS (European Land Data Assimilation
System) project. This EU 5th framework project aimed at the development of a
data assimilation infrastructure for estimating continental scale soil moisture
fields and to validate the use of these fields in numerical weather prediction
models.

The ELDAS radiation database is based on the output of a numerical
weather forecasting model which was improved by assimilating MeteoSat-
derived shortwave radiation and cloud patterns into the model. This sys-
tem is currently known as the ELDORADO assimilation scheme (Meetschen
et al., 2004). The system generated three-hourly estimates of average down-
welling longwave and shortwave radiation at approximately 16-km spatial res-
olution over Europe for the period from 1 October 1999 until 31 December
2000. Validation of the radiation estimates provided by ELDORADO demon-
strated that the system provided accurate unbiased estimates of longwave and
shortwave radiation. For our purpose, the three-hourly values were aggre-
gated and converted to total daily shortwave radiation in KJ/day.

The ELDAS precipitation database consists of daily precipitation values on
a 0.2◦ grid over Europe for the period from 1 October 1999 until 31 Decem-
ber 2000 (Rubel and Hantel, 2001; Rubel et al., 2004). The precipitation
values were interpolated using block kriging based on more than 20,000 bias-
corrected rain gauge measurements. Validation has demonstrated that system-
atic measurement errors for over 90% of the number of stations were within 1
mm/day. Given the sheer volume of rain gauge measurements that were used
to generate this database, it will give a far better estimate of the true rainfall
patterns compared to the estimates in the CGMS meteorological database.

3.2.6 Setup of the experiment

First, an exploratory analysis was carried out to determine the differences
between the radiation and precipitation fields of the CGMS and ELDAS
databases. The results of this analyses provided necessary background infor-
mation in order to explain the differences in crop simulation results when us-
ing ELDAS precipitation and radiation inputs. We determined the uncertainty
in the CGMS radiation and precipitation fields by calculating the average ra-
diation and total precipitation over a period of 10 days for dekads1 1, 10, 19
and 28 for both the CGMS and ELDAS databases. The average precipitation

1The use of the term ‘dekad’ refers to an FAO convention in order to distinguish 10-year
periods (decade) from 10-day periods (dekad).
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and radiation values of all ELDAS grid points within a CGMS grid cell were
used. We subtracted the ELDAS values from the CGMS values for all grids,
calculated mean and standard deviation of the differences and created maps
of the differences (maps are not presented).

We carried out three experiments, summarized in Table 3.1. Experiment
one (hereafter referred to as ‘CGMS-Standard’) comprised the running of the
operational CGMS system for the year 2000 using interpolated weather from
about 180 stations over France and Germany. Model simulations were carried
out for winter-wheat and grain maize which are good examples of a typical
winter and summer crop. No modifications were made to this system and the
results therefore served as a baseline for the other two experiments.

In experiment two, we replaced the CGMS interpolated precipitation and
radiation values with the average radiation and precipitation values of all EL-
DAS grid points within a 50× 50 km CGMS grid box (hereafter referred to as
‘CGMS-ELDAS-50’). This experiment allowed us to estimate the influence of
uncertainty in the precipitation and radiation inputs on the crop simulations
and its effect on regional aggregated yields and national yield forecasts. All
other meteorological input variables and other data were kept to the values
that were obtained by the interpolation routine in the CGMS-Standard exper-
iment.

Possible interrelationships between the ELDAS weather variables and the
equivalent CGMS interpolated weather variables were not taken into account.
For example, consider a situation where the CGMS interpolation routines esti-
mate the maximum temperature for a certain grid on the basis of the surround-
ing weather stations which were located in areas with clear days. In contrast,
at this location the ELDAS database provides a considerable amount of precipi-
tation and also lower radiation values as a result of overcast conditions. Then,
one might expect a lower maximum temperature than the interpolated one
because the precipitation and lower radiation values were completely ‘missed’
by the interpolation routine. This kind of relationships have not been taken
into account and as a result, we assume that the inconsistency between the
interpolated and the ELDAS weather variables has little effect on the final sim-
ulation results. The CGMS-ELDAS-50 experiment was applied for the year
2000 in order to simulate growth of winter-wheat and grain maize.

In the third experiment, we introduced a major change in the system by
increasing the grid density from 50×50 km to 10×10 km (hereafter referred to
as ‘CGMS-ELDAS-10’). This experiment allowed us to estimate the within-grid
variability of the crop simulation results in order to infer if averaging weather
inputs has a linear impact.

We defined a 10 × 10 km grid that coincides with the 50 × 50 km grid,
each 50× 50 km grid box contained 25 10× 10 km grids. Each 10× 10 km
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Table 3.1: Summary of experiments and related scales and input data.

Experiment Scale Precipitation input Radiation input
CGMS-standard 50 km CGMS CGMS
CGMS-ELDAS-50 50 km ELDAS 50-km mean ELDAS 50-km mean
CGMS-ELDAS-10 10 km ELDAS 0.2◦ ELDAS 0.2◦

grid received the precipitation and radiation values of the nearest ELDAS grid
point, while all other meteorological variables were derived from underlying
50×50 km grid based on the CGMS-Standard experiment. Our approach was
basically a shortcut in order to avoid redefining and recalibrating the CGMS
interpolation procedure on the 10× 10 km grid. We assume that this shortcut
has little influence on the simulation results. The final adaptation we made
was to create an overlay between the soil map and the 10× 10 km grid. This
procedure results in a new set of simulation units (unique combinations of
climatic grid cell and soil type). The CGMS-ELDAS-10 experiment was applied
for the year 2000 in order to simulate growth of winter-wheat and grain maize.

For determining the influence of the weather inputs on the yield forecast
at national level we used the EUROSTAT yield statistics (EUROSTAT, 2005)
and the output of the operational CGMS system over the period 1990–1999
to develop the forecasting regression equations. We applied those regression
equations to the crop simulations results of the CGMS-Standard and CGMS-
ELDAS-50 experiments (aggregated to national level) for France and Germany
for the year 2000. Note that a true assessment of the influence of the uncer-
tainty in weather inputs on the yield forecast cannot be carried out because
this exercise would need 10 years of ELDAS type radiation and precipitation
data. Our approach merely determines the influence of the ELDAS results on
the forecasting regression equations calibrated on the operational CGMS.

3.3 Results

3.3.1 Comparison of CGMS and ELDAS radiation and
precipitation fields

In Table 3.2, the differences between the CGMS and ELDAS radiation values
demonstrate that CGMS has a tendency to overestimate radiation (positive
differences). In general CGMS overestimates radiation values in the south-
ern Mediterranean areas in all four dekads. For all other areas large positive
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Table 3.2: Summary statistics of the differences between the CGMS and
ELDAS databases (CGMS minus ELDAS) for radiation and
precipitation averaged over all CGMS grids.

Dekad Average radiation [kJ/m2] Total precipitation [mm]
Mean Mean St. Dev. Mean Mean St. Dev.

CGMSa diffb diff c CGMSd diff e diff f

1 3929 564.6 1137.0 10.6 -5.4 17.7
10 12597 -231.0 1946.6 16.3 -4.8 12.1
19 20202 1182.6 3649.7 18.9 -1.6 14.5
28 9222 539.0 1495.8 17.8 -3.2 16.9

a Average dekadal radiation, averaged over all CGMS grids.
b Average of the differences in average dekadal radiation of all 50× 50 km

grids.
c Standard deviation of the differences in average dekadal radiation of all

50× 50 km grids.
d Total dekadal precipitation, averaged over all CGMS grids.
e Average of the differences in total dekadal precipitation of all 50× 50 km

grids.
f Standard deviation of the differences in total dekadal precipitation of all

50× 50 km grids.

and negative differences occur, for example in dekad 10 radiation is under-
estimated with values of 3000 to 4000 kJ/m2 in northern Europe, while in
dekad 19 radiation is overestimated with 3000 to 5000 kJ/m2 in large parts
of Central and Eastern Europe.

The differences between the CGMS and ELDAS precipitation values (Table
3.2) demonstrate that CGMS has a tendency to underestimate precipitation
(negative differences). In general no clear trends can be derived from the spa-
tial distribution of the differences and under or overestimation of precipitation
tends to occur rather randomly.

3.3.2 Uncertainty of simulated crop yields

The uncertainty in the radiation and precipitation fields as demonstrated in
the previous section will have influence on the crop simulation results. We
assessed this uncertainty by comparing the results for the simulated potential
and water-limited biomass of the storage organs of the CGMS-Standard and
CGMS-ELDAS-50 experiments.
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Table 3.3: Summary statistics of the crop yield at 50× 50 km grids obtained
by the CGMS-Standard and CGMS-ELDAS-50 experiments.

Winter-wheat Grain maize
Potential Water-lim. Potential Water-lim.

yield yield yield yield
Simulation results [kg/ha]
A: CGMS-Standarda 9217.0 7461.8 8780.2 5782.4
B: CGMS-ELDAS-50a 9195.7 8130.7 8649.7 6203.0
Differences (A-B)
Meanb 21.3 -668.8 130.5 -420.6
St. Deviationc 644.4 1164.9 351.5 1479.4
RMSEd 644.0 1342.1 374.6 1536.3
a Yield storage organs averaged over all 50× 50 km grids.
b Average of the differences in yield storage organs of all 50× 50 km grids.
c Standard deviation of the differences in yield storage organs of all 50× 50 km grids.
d RMSE of the differences in yield storage organs of all 50× 50 km grids.

For winter-wheat under potential production, the mean of the differences
is slightly positive (21.3 kg/ha) which can be explained by the overestimation
of radiation by CGMS leading to higher CGMS-Standard yields compared to
CGMS-ELDAS-50 yields (Table 3.3). For water-limited production on the other
hand, the mean of the differences becomes strongly negative (-668.8 kg/ha)
due to the underestimation of precipitation by CGMS; also the standard de-
viation and root mean squared error (RMSE) become twice as large. This is
confirmed by the scatter plot of CGMS-Standard versus CGMS-ELDAS-50 yield
which shows a considerable deviation from the 1:1 line and a majority of pix-
els above the diagonal (Figure 3.2A).

For grain maize under potential production, the mean of the differences is
also positive (130.5 kg/ha) which confirms the overestimation of radiation by
CGMS-Standard. The effect of uncertainty in the precipitation on grain maize
simulation is even larger compared to winter-wheat because the standard de-
viation and RMSE of the differences are four times larger compared to the
potential simulations. These results demonstrate that the effect of uncertainty
in precipitation is particularly strong for summer crops which are more influ-
enced by high transpiration rates during the summer. The scatter plot confirms
the large uncertainty in the CGMS-Standard simulation results (Figure 3.2B).
The plot also shows a clustering of pixels near the origin and the upper right
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Figure 3.2: Scatter plot between water-limited yield storage organs (yield) at 50-
km grid level obtained from the CGMS-Standard and CGMS-ELDAS-
50 experiments for winter-wheat (A) and grain maize (B).

part of the chart which indicates that yield is not influenced under wet (po-
tential yield) or dry (no yield) conditions, but instead the marginal zones are
sensitive to uncertainty in precipitation.

For yield forecasting it was necessary to aggregate the yield of individual
grid cells to larger spatial regions. When the CGMS-Standard and CGMS-
ELDAS-50 simulation results at the 50× 50 km grid level were spatially ag-
gregated to NUTS1 regions the variability between the CGMS-Standard and
the CGMS-ELDAS-50 water-limited yield storage organs became much smaller
(Figure 3.3A). For winter-wheat an upward bias remains (Table 3.4) and even
increases in magnitude from -668.8 kg/ha at 50×50 km grid level to -1000.9
kg/ha at NUTS1 level. As a result of this bias, the RMSE between CGMS-
Standard and CGMS-ELDAS-50 yields at NUTS1 level is still relatively high
(1255.6 kg/ha). However, the standard deviation decreases from 1164.9
kg/ha at 50 × 50 km grid level to 774.3 kg/ha at NUTS1 level indicating a
decrease in variability (Table 3.3).

The results for grain maize at NUTS1 level are more evenly distributed
along the 1:1 axis (Figure 3.3B). The mean of the differences (Table 3.4) de-
creases in magnitude from -420.6 kg/ha to -368.8 kg/ha and also the standard
deviation and RMSE decrease from 1479.4 and 1536 kg/ha to 651.4 and 736.7
kg/ha indicating a considerable decrease in variability. These results demon-
strate the necessity to aggregate CGMS results to larger regions in order to
decrease uncertainty on the simulation results.
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Figure 3.3: Scatter plot between water-limited yield storage organs (yield) at
NUTS1 level obtained from the CGMS-Standard and CGMS-ELDAS-
50 experiments for winter-wheat (A) and grain maize (B).

3.3.3 Scaling of crop yield simulation results

We investigated the spatial scaling of CGMS by comparing the water-limited
biomass of the storage organs of the CGMS-ELDAS-50 and CGMS-ELDAS-10
experiments. The mean and standard deviation of the water-limited biomass
of the storage organs of the CGMS-ELDAS-10 simulations were calculated for
each corresponding 50×50 km grid in the CGMS-ELDAS-50 experiment (Fig-
ure 3.1). The results demonstrate that for water-limited production consider-
able subgrid variability exists (Y-error bars), but that the results at 50-km grid
resolution are almost linearly related to the average of the 10× 10 km results
(Figure 3.4). The few outliers in the scatter plots could be traced back to frag-
mented CGMS grids located along an irregular coastline. A linear regression
on the relationship between the CGMS-ELDAS-50 results and the 50-km av-
eraged CGMS-ELDAS-10 results shows that for both winter-wheat and grain
maize the regression coefficient is nearly one and R2 reaches values of 0.96 to
0.97 (Table 3.5). The intercept was set to zero in the regression.

3.3.4 Results at national level and influence on the crop
yield forecast

The simulation results at the end of the growing season aggregated to national
level show that the differences between the results of the CGMS-Standard and
CGMS-ELDAS-50 experiments for potential production are within 3% (Table
3.6). For water-limited production the differences are larger ranging from -
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Table 3.4: Summary statistics of the simulated crop yield at NUTS1 level of
the CGMS-Standard and CGMS-ELDAS-50 experiments.

Winter-wheat Grain maize
Potential Water-lim. Potential Water-lim.

yield yield yield yield
Simulation results [kg/ha]
A: CGMS-Standarda 9276.2 6905.2 8619.1 6793.0
B: CGMS-ELDAS-50a 9428.8 7906.2 8605.4 7161.8
Differences (A-B)
Meanb -152.4 -1000.9 13.7 -368.8
St. Deviationc 481.7 774.3 258.7 651.4
RMSEd 495.6 1255.6 253.6 736.7
a Yield storage organs averaged over all NUTS1 regions.
b Average of the differences in yield storage organs of all NUTS1 regions.
c Standard deviation of the differences in yield storage organs of all NUTS1 regions.
d RMSE of the differences in yield storage organs of all NUTS1 regions.

Table 3.5: Results from a linear regression between water-limited
yield storage organs of the CGMS-ELDAS-50 experiment
(50 × 50 km) and the water-limited yield storage or-
gans of the CGMS-ELDAS-10 experiment (10× 10 km).
CGMS-ELDAS-10 results are averaged over the CGMS-
ELDAS-50 grid. The intercept of the regression is as-
sumed to be zero.

Regression coefficient R2 RMSE [km/ha]
Winter-wheat 0.989 0.967 327.8
Grain maize 0.997 0.989 335.0
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Figure 3.4: Scatter plot between water-limited yield storage organs (yield) ob-
tained from the CGMS-ELDAS-50 experiment and the average water-
limited yield storage organs obtained from the CGMS-ELDAS-10 ex-
periment for winter-wheat (A) and grain maize (B). Error bars are
plus and minus one standard deviation.

1.10% for water-limited yield biomass of grain maize in Germany to -10.38%
for water-limited yield storage organs for winter-wheat in Germany. The fact
that all results of the water-limited CGMS-ELDAS-50 experiment are higher
compared to the CGMS-Standard experiment confirms the underestimation of
rainfall in CGMS.

The influence of these differences in simulated biomass on the yield fore-
cast could only be evaluated for grain-maize. Table 3.7 lists the R2 values
of the regression equations produced by the yield forecasting module. For
winter-wheat in Germany and France, the CGMS yield forecasting module re-
jected all CGMS indicators because a regression based on a combination of
the technology trend and one of the CGMS indicators could not improve the
yield forecast beyond a yield forecast based on the technology trend only. For
grain maize in France and Germany good relationships could be established
which improved the R2 value from 0.731 and 0.745 for the trend only, to 0.895
and 0.912 for the combined trend and CGMS indicators. The system selected
the CGMS indicator ‘water-limited yield biomass’ as the best predictor of grain
maize yield in Germany and France.

The time evolution of the yield forecast of grain maize in Germany demon-
strates that the influence of uncertainty in radiation and precipitation on the
yield forecast is small and the difference between the CGMS-Standard fore-
cast and the CGMS-ELDAS-50 forecast is never larger than 0.53% except for
dekad 14 (2.59%), but this is at the beginning of the growing season and
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Table 3.6: Simulation results obtained by the CGMS-Standard and CGMS-ELDAS-
50 experiments at the end of the growing season aggregated to the na-
tional level for France and Germany.

France Germany
Winter- Grain Winter- Grain
wheat maize wheat maize

A: CGMS-Standard [kg/ha]
Potential yield biomass 19169 24814 18388 22533
Potential yield storage organs 9480 8742 9398 8939
Water-limited yield biomass 17810 16865 15516 21491
Water-limited yield storage organs 8142 3910 6960 8527
B: CGMS-ELDAS-50 [kg/ha]
Potential yield biomass 19146 24777 18468 22111
Potential yield storage organs 9758 8569 9485 8876
Water-limited yield biomass 18311 18213 16334 21727
Water-limited yield storage organs 8925 4131 7683 8781
(A-B)/A [%]
Potential yield biomass 0.12% 0.15% -0.44% 1.87%
Potential yield storage organs -2.93% 1.98% -0.93% 0.71%
Water-limited yield biomass -2.81% -7.99% -5.27% -1.10%
Water-limited yield storage organs -9.61% -5.65% -10.38% -2.97%

Table 3.7: R2 values describing the results from the regression be-
tween the official yield statistics as reported by the Eu-
ropean Statistical Office (EUROSTAT) and the crop yield
indicators derived from the Crop Growth Monitoring Sys-
tem (CGMS) over the period 1990–1999.

France Germany
Winter- Grain Winter- Grain
wheat maize wheat maize

Trend only 0.550 0.731 0.756 0.745
Trend + CGMS indicator - 0.895 - 0.912
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Figure 3.5: Time evolution of the yield forecast for grain maize in Germany for
the year 2000. The thick line is the official yield for the year 2000 as
reported by the European Statistical Office (EUROSTAT). The dotted
lines are plus and minus one standard deviation of the de-trended
EUROSTAT yields over the period 1990–1999.

therefore unreliable (Figure 3.5). The progression of the yield forecast during
the growing season is similar for the CGMS-Standard forecast and the CGMS-
ELDAS-50 forecast. Moreover, the CGMS-ELDAS-50 forecast is closer to the
EUROSTAT official yield, but, more importantly, the difference between the
CGMS-Standard forecast and the CGMS-ELDAS-50 forecast is much smaller
than the standard deviation of the de-trended EUROSTAT yield over the period
1990–1999. This demonstrates that the effect of uncertainty in precipitation
and radiation on the forecast is small compared to the dynamic range of the
signal we are trying to model.

The time evolution of the yield forecast of grain maize in France demon-
strates that the influence of uncertainty in radiation and precipitation on the
yield forecast is considerably larger compared to Germany and the difference
between CGMS-Standard and CGMS-ELDAS-50 yield forecast is 2.38% at the
end of the growing season (Figure 3.6). This is not surprising given the much
larger difference in the water-limited yield biomass for France compared to
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Figure 3.6: Time evolution of the yield forecast for grain maize in France for the
year 2000. The thick line is the official yield for the year 2000 as
reported by the European Statistical Office (EUROSTAT). The dotted
lines are plus and minus one standard deviation of the de-trended
EUROSTAT yields over the period 1990–1999.

Germany (Table 3.4). However, the difference between the CGMS-Standard
and CGMS-ELDAS-50 forecasts is still considerably smaller than the standard
deviation of the de-trended EUROSTAT yield over the period 1990–1999.

3.4 Discussion

The results of our study demonstrate that uncertainty in precipitation and
radiation estimates obtained by the interpolation from weather stations can
produce a considerable uncertainty on the simulation results aggregated to
50-km grid level. When the simulation results were aggregated to NUTS1 re-
gions this uncertainty strongly decreased as a result of averaging. No analyses
was carried out on the ability of CGMS to forecast crop yield at NUTS1 level
and the influence of uncertainty in weather inputs at this level. On the one
hand, the influence of uncertainty in radiation and precipitation inputs on the
aggregated yields will be larger at NUTS1 level compared to NUTS0 level. This
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may deteriorate CGMS ability to forecast yields on NUTS1 level compared to
NUTS0. On the other hand it can be argued that the dynamic range in the
official yield statistics at NUTS1 level is also larger compared to the national
level (NUTS0). These two effects may compensate each other down to a cer-
tain scale level at which the input precipitation and radiation fields have an
inadequate spatial resolution and no reliable forecast can be made.

At the national level, we demonstrated that the uncertainty in the crop
simulation results has a small effect on the yield forecast of grain maize. For
France, uncertainty is larger compared to Germany probably as a result of
France being a more marginal climate for maize growth compared to Ger-
many. It is useful to point out that the uncertainty for France is probably even
overestimated. The comparison of the ELDAS precipitation database with the
precipitation values in the CGMS database demonstrates that rainfall is sys-
tematically underestimated by CGMS. As a result, the CGMS-ELDAS-50 water-
limited simulation results indicate systematically larger production compared
to the CGMS-Standard results. However, the regression equations were devel-
oped with the simulation results from the operational CGMS. If those regres-
sion equations could have been developed with 10 years of CGMS-ELDAS-50
simulation results then the bias in model output could have been compensated
by the forecasting regression.

Based on the results of the simulations at 10× 10 km grid (CGMS-ELDAS-
10) with distributed rainfall and radiation data we conclude that there is little
merit in increasing the resolution of the CGMS grid. The average simulation
results at 10×10 km scale almost linearly with the simulation results at 50×50
km using averaged rainfall and radiation. Therefore the operational CGMS is
able to make unbiased estimates of crop yield if unbiased average radiation
and rainfall would be available at the 50× 50 km grid. These results support
the notion by other authors that some level of spatial partitioning of climate
data exists which preserves linear climate-crop model interactions. Easterling
et al. (1998) found this level to be 0.9◦ × 0.9◦ and found no improvement
between simulated and observed crop yields when increasing the density of
weather input to 0.5◦ × 0.5◦. These results are consistent with the results
found in this study, but may not be generally applicable depending on factors
such as climate and orography.

An aspect not treated in this study is the influence of uncertainty in soil
properties. A number of studies have demonstrated that the uncertainty in soil
data has relatively little influence on the aggregated regional simulation re-
sults (Easterling et al., 1998; Mathe-Gaspar et al., 2005; Mearns et al., 2001).
Since the prime focus of CGMS is to forecast crop yield at national level its
investigation is therefore not of prime importance. There are other arguments
not mentioned so far why the soil is of minor importance. Crop yield forecast-
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ing applications are mainly driven by year-to-year variability in a yield level
rather then the yield level itself because a bias in yield level is compensated
by the forecasting regression equations. Soil mainly determines the yield level
and, although it can moderate the effects of year-to-year variability in weather
conditions on yield, it is not a driver of year-to-year variability. Given the dif-
ficulties that exist in characterizing soil parameters (Gijsman et al., 2002) it
may be worthwhile to investigate how yield forecasting applications perform
using a standardized soil.

3.5 Conclusions

The results presented in this paper lead us to concluded that uncertainty in
radiation and precipitation values in the Crop Growth Monitoring System has
little influence on the CGMS yield forecasts at national level. This conclusion
was validated for grain maize in Germany and France; but is probably valid
for other European countries with similar climates and crops as well. On the
level of individual grids and NUTS1 regions the uncertainty is much larger and
more research is needed to investigate if CGMS results can be used for decision
making at this level. Furthermore, we conclude that the CGMS grid size of
50 × 50 km is an appropriate resolution because the distributed simulation
results at 10 × 10 km scale almost linearly with the results at 50 × 50 km
using aggregated rainfall and radiation. Improvements of the system should
therefore focus on providing average unbiased estimates of weather variables
at 50× 50 resolution, rather then increasing the grid resolution.



Chapter 4

Representing uncertainty in
continental-scale gridded
precipitation fields for
agrometeorological modelling∗

4.1 Introduction

Process-based mechanistic crop models are an important tool for translating
the effect of crop management, weather and soil on crop growth. Although
many crop models were originally designed and tested at the plot scale, they
are nowadays applied in systems with typical spatial resolutions of 0.5 to 2.5
degrees and their aggregated output is used to predict crop yield and pro-
duction at regional, national and continental scales. Such information on the
outlook of yield and production of crops over large regions is essential for gov-
ernment services dealing with import and export of food crops, for agencies
playing a role in food relief, for international organisations with a mandate in
monitoring the world food production and trade, and for commodity traders.

Given the scales at which these systems operate, the model simulation re-
sults are subject to large uncertainties because the conditions to crop growth
are difficult to define due to the large spatial and temporal variability in
weather, soil and crop management. It is generally acknowledged that
at the spatial scales under consideration, the weather input represents the
largest uncertainty (Aggarwal, 1995; Easterling et al., 1998; Mathe-Gaspar

∗Chapter based on: Wit, A.J.W. d., Bruin, S. d. and Torfs, P.: 2007, Representing uncertainty
in continental-scale gridded precipitation fields for agrometeorological modelling, Journal of
hydrometeorology revised version submitted
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et al., 2005; Mearns et al., 2001). The main reason for the dominant effect
of uncertainty in weather is that systems aimed at regional yield prediction
do not predict crop yield directly, but merely aim to capture the year-to-year
pattern of crop response to weather variability. The forecasting of crop yield
then takes place by searching for a relationship between the historic time-
series of simulated yearly crop yields and the reported crop yield statistics
for administrative regions. In such a system, the influence of relatively sta-
ble factors like soil and management is secondary to factors that generate the
year-to-year variability in simulated crop yield (mainly variability in weather).
Although crop management and crop varieties do change (often improve) over
the years, this is usually taken care of by de-trending the statistical crop yields
before regression models are established.

The currently operational yield forecasting systems are generally determin-
istic in nature and are not capable of quantifying uncertainties that are inher-
ent in all parts of the system. A shift is therefore necessary towards probabilis-
tic systems which are commonplace nowadays in meteorological and hydro-
logical applications. Of particular interest is the comparison with hydrological
land surface models which aim to characterise the hydrologic state of the land
surface, but have otherwise large similarity with crop models (both models
simulate processes like evapotranspiration, plant growth and soil moisture).
Two import insights can be learned from probabilistic applications of land sur-
face models: 1) Rainfall is the key input for modelling the hydrologic state of
the land surface (Syed et al., 2004) and 2) ensemble-based approaches are of-
ten used to represent uncertainty of an available rainfall product which allows
for hydrologic error propagation in a probabilistic way (Carpenter and Geor-
gakakos, 2004; Crow, 2003; Georgakakos et al., 2004; Reichle, McLaughlin
and Entekhabi, 2002; Seo et al., 2000). A first step for ensemble-based proba-
bilistic crop modelling is thus to develop a rainfall ensemble product tailored
to the temporal and spatial scale required for regional crop modelling.

Nevertheless, there are evident differences between a crop model and a
land surface model. From a temporal perspective, land surface models often
operate at time steps of an hour or less to take into account the effect of high
intensity–short duration rainfall events. This is necessary because the parti-
tioning of energy and water fluxes is dependent on the antecedent conditions
(in particular near surface soil moisture) which change in a highly dynamic
way. In contrast, crop models simulate root-zone soil moisture in order to esti-
mate the effect of water stress on plant growth and are therefore less sensitive
to instantaneous events, but more to the cumulative effect of rainfall events
on soil moisture levels. This is illustrated by the fact that most crop models
operate at steps of one day or more and by the development of simple indices
such as the FAO crop water satisfaction index which is basically an index re-
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lating seasonal accumulated evapotranspiration to accumulated precipitation
(Frère and Popov, 1986; Verdin and Klaver, 2002).

Another important aspect is the spatial scale at which to generate an
ensemble-based rainfall product for regional crop modelling. Defining the
appropriate spatial scale is necessary because of the non-linear behaviour of
many crop models to weather inputs and the resulting aggregation errors that
may occur when aggregating model output to administrative regions (Hansen
and Jones, 2000). Existing studies are not entirely consistent on this aspect.
Easterling et al. (1998) report maximum correlation between simulated and
observed yield for maize in the US Great Plains when weather data at a scale
of 100× 100 km was used as input. Challinor et al. (2003) found maximum
correlation between rainfall data and ground nut yield over India at a scale
roughly corresponding to 250× 250 km, while Wit et al. (2005) found linear
scaling of crop model simulated biomass when precipitation and radiation in-
puts were scaled from 10× 10 km to 50× 50 km. In contrast, Oleson et al.
(2000) found relatively little influence of scale of precipitation inputs to the
explanatory power of crop model results for winter-wheat in Denmark. How-
ever, the authors notice that the variability in winter-wheat yield in Denmark
is dominated by secondary effects (disease, pests, harvest conditions), rather
then weather conditions. The above-mentioned results are not conclusive on
the spatial scale, however they point to a spatial scale between 50× 50 km to
100× 100 km as being relevant for regional crop modelling.

Many ensemble generation approaches for rainfall can be found in the lit-
erature. They can be divided into two main categories. In the first category,
ensemble techniques are used in weather generator applications which gen-
erate synthetic time-series of precipitation on single locations or on multiple
locations with or without spatial dependence. The generator is often condi-
tioned on a set of observed rainfall properties (for example monthly totals).
The variability in the precipitation ensemble aims to represent the natural vari-
ability in the precipitation process. Therefore, an ensemble of precipitation se-
quences is more informative then a single precipitation sequence, particularly
for risk assessment applications. Examples of generating precipitation ensem-
bles on single or multiple point locations were summarised by Wilks and Wilby
(1999) and have recently been extended using generalised linear models by
Yang et al. (2005). The applications are often limited to weather generation
at single stations or otherwise relatively small areas with multiple stations.

In the second category, ensemble techniques are used to characterise the
spatio-temporal properties of the rainfall sequence or field that actually oc-
curred in a given area, but which is uncertain as a result of limitations in the
observed or forecasted data itself. For example, the ensemble can quantify
the uncertainty as a result of limited rain gauge network density or inaccu-
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rate precipitation estimates from numerical weather prediction (NWP) mod-
els, radar satellites or ground radar. Additionally, ensemble techniques are
used to downscale a coarse-resolution precipitation field to equiprobable pre-
cipitation fields at a higher spatial and/or temporal resolution.

Examples for ensemble predictions on weather station locations by down-
scaling NWP forecasts have been provided by Bates et al. (1998) and (Charles
et al., 2004). Although their methods do not necessarily preserve spatial cor-
relation between sites in the ensemble, post-processing techniques have been
developed for recovering the spatial correlation (Clark et al., 2004). Seo et al.
(2000) proposed an ensemble technique method for downscaling coarse res-
olution daily NWP forecasts (64 × 64 km) to high-resolution precipitation
ensembles (4 × 4 km), for input into a river stage forecasting model. Simi-
larly, Mackay et al. (2001) use ensembles to downscale GCM precipitation at
40 × 40 km resolution to 8 × 8 km. In the temporal domain, Margulis and
Entekhabi (2001) use ensemble techniques for disaggregation of coarse reso-
lution satellite-based monthly precipitation estimates to daily values. Hossain
and Anagnostou (2006) developed an ensemble-based framework for charac-
terising the error in satellite radar rainfall estimates.

Examples of ensemble techniques applied to classical interpolation from
rain gauge networks have also been described by various authors. Carpenter
and Georgakakos (2004) use a simple multiplicative approach for generating
ensembles of precipitation inputs at catchment level. With such an approach
there is no uncertainty when the input precipitation is zero. More advanced
approaches have been proposed by Lanza (2000) who simulated the precipi-
tation fields as Gaussian random fields conditioned on rainfall at station loca-
tions and Pardo-Igúzquiza et al. (2006) who used a similar technique for gen-
erating ensembles of intermittent rainfall fields, but modelled the processes of
rainfall occurrence amounts separately. Finally, Kyriakidis et al. (2004) did not
model the rainfall amounts directly but used sequential simulation to generate
realisations of the precipitation residuals which were then added to temporal
trend models of precipitation at individual grid points.

In the current paper, we propose a relatively simple method for generat-
ing ensembles of gridded precipitation fields at a temporal and spatial scale
(daily values and 50× 50 km averages) which is consistent with the require-
ments for crop model applications that target large area crop yield prediction.
The developed methodology does not simulate the precipitation field directly,
but it simulates residual error fields that have to be added to the precipi-
tation field in order to obtain the ensemble trace. This procedure has the
advantage of simplicity and eliminates the need to account for temporal auto-
correlation and seasonality because it assumes that the operational product
contains enough information to represent the basic patterns of seasonal, re-



4.2 Data 57

gional and day-to-day variability. Additionally, the use of residuals avoids the
problem of climate variability at decadal scales given that the decadal variabil-
ity should be reflected in the measured data itself rather then in the residuals.
This is particularly important for agrometeorological applications, given that
often fairly long times-series of data need to be generated (≥ 10 years). The
developed method takes into account spatial correlation in the ensemble; it
should reproduce the input statistics and presents a pragmatic solution that
can be parameterised relatively easily.

For the implementation, we used the weather database of the European
Crop Growth Monitoring System (CGMS) as the operational (but uncertain)
precipitation product and we calibrated the ensemble generator using a highly
accurate rainfall product available for a limited period. Next, we generate
an ensemble of precipitation inputs that characterises the uncertainty in the
CGMS precipitation product, and validate the statistical properties of the en-
semble with the reference dataset. Finally, we illustrate the use of precipita-
tion ensembles in crop yield forecasting by running the precipitation ensemble
trough a distributed crop growth model for a district in South-France.

4.2 Data

4.2.1 CGMS meteorological database

An important component of the Crop Growth Monitoring System is the CGMS
meteorological database. This database contains daily weather data measured
at stations starting in the 1970’s and it is continuously updated with weather
information. This long time-series of weather data is important for retrospec-
tive analyses of crop stress situations and validation of crop yield forecasts.
The information in the database is currently derived from about 2500 weather
stations over Europe, Turkey and the Maghreb. The total number of stations
varies over time as a result of stations being discontinued or new ones estab-
lished.

CGMS operates at grid cells of 50 × 50 km, therefore an interpolation
routine is applied to estimate weather variables for each 50 × 50 km grid
cell (Voet et al., 1994). Each cell receives values for temperature, radiation,
vapour pressure, evapotranspiration and wind speed using inverse distance
weighting, while rainfall is assigned from the nearest most similar station in
terms of elevation and distance to the coast. This method was chosen to avoid
the misrepresentation of precipitation sequences caused by averaging values
from multiple weather stations. In spite of its simplicity, the CGMS interpo-
lation scheme is known to perform well in terms of accuracy and robustness
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in comparison with more advanced interpolations schemes (Gozzini and Pani-
agua, 2000). Uncertainty in the CGMS precipitation fields is thus a combined
uncertainty as a result of limited station density and rain gauge sampling er-
ror which cannot be separated but which is known to influence the crop model
simulation results (Wit et al., 2005).

4.2.2 ELDAS precipitation data

The ELDAS precipitation database consists of daily precipitation values on a
0.2◦ grid (± 15 km) over Europe for the period 1 October 1999 until 31 De-
cember 2000 (Rubel and Hantel, 2001; Rubel et al., 2004). The precipitation
values were interpolated using block kriging based on more than 20,000 bias-
corrected rain gauge measurements. The collection of these rain gauge mea-
surements was a one-off activity and no update is to be expected in the near
future. Validation has demonstrated that systematic measurement errors for
over 90% of the number of stations are within 1 mm/day.

It is important to notice that the ELDAS precipitation estimates are much
smoother then a real precipitation field and should be regarded as spatial av-
erages. Nevertheless, given the sheer volume of rain gauge measurements
that were used to generate this database, it will give a far better estimate of
the true daily average rainfall field as compared to the estimates in the CGMS
meteorological database.

We used the ELDAS database as a reference for modelling the error struc-
ture in the CGMS precipitation fields. The ELDAS precipitation database was
converted to the 50× 50 km CGMS grid by taking the average precipitation
of ELDAS cells within a CGMS grid cell (on average 7.5 ELDAS nodes in one
CGMS grid cell).

4.2.3 Exploratory analyses of ELDAS and CGMS
precipitation databases

Spatial distribution of RMSE between ELDAS and CGMS precipitation
databases

We calculated the root mean squared error (RMSE) between the ELDAS and
CGMS daily precipitation values at the resolution of the 0.2◦ ELDAS grid over
the entire period 1 October 1999 until 31 December 2000. Each ELDAS grid
was combined with the precipitation value of the CGMS grid in which it was
located. The results (Figure 4.1) demonstrate that the spatial patterns in the
RMSE are dominated by areas of high RMSE values which correspond mainly
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to mountainous areas with west-wind driven precipitation patterns. The pre-
cipitation values in the CGMS database do not properly represent the strong
temporal and spatial variability of precipitation in these areas leading to higher
RMSE values.

Based on these results we decided to remove grids with high RMSE due to
mountainous terrain because these grids are not relevant for agricultural ap-
plications. CGMS grids were removed using the criteria that the average slope
was larger then 3.5◦ over the 50× 50 km grid. Slope was derived from the
USGS HYDRO1K dataset (http://lpdaac.usgs.gov/gtopo30/hydro/index.asp)
as the average value within a 50× 50 km CGMS grid cell. Figure 4.1 demon-
strates that mainly grids in the Alps, Scandinavia, Spanish and Italian moun-
tain ranges, Greece, Turkey as well as in Rumania were removed from the
analysis. Although the number of grids that were removed is considerable,
there are no important agricultural areas with annual crops located within
these grids.

Scatter plot of CGMS precipitation versus precipitation residuals

Figure 4.2 shows the scatter plot of CGMS daily precipitation versus the pre-
cipitation residuals (ELDAS minus CGMS) over the period 1 October 1999
until 31 December 2000. Some important observations can be made from this
figure:

• The vertical banding shows that most CGMS precipitation values are in-
tegers, whereas the ELDAS precipitation values are real numbers. Based
on this observation we decided to convert all CGMS precipitation val-
ues to integer values during further analyses by rounding them to the
nearest integer.

• The distributions of the residuals are asymmetric and vary with CGMS
precipitation. With low CGMS precipitation, the residuals are mainly
clustered near zero, but this tendency vanishes with increasing CGMS
precipitation values.

Comparison of precipitation distribution classes

An overview of the errors in the CGMS precipitation database is provided by
an error matrix between precipitation distribution classes in the CGMS and
ELDAS databases (Table 4.1, page 84). The average ELDAS precipitation per
CGMS grid was used over the period 1 October 1999 until 31 December 2000.
The number of counts in the first column corresponds to roughly 60% of the
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Figure 4.2: Scatter plot of precipitation residuals (ELDAS - CGMS) versus CGMS
precipitation amounts.



62 Representing uncertainty in precipitation fields

total grid/day combinations. In order to avoid small fractions, all values are
given as a percentage of the column total. Precipitation values larger then 80
mm were removed from the analyses, because these events are rare and not of
interest for the application at hand and they would thus needlessly complicate
further analysis.

The first observation that can be made from table 4.1 is the large percent-
age of events (47.3%) where CGMS precipitation equals zero, while ELDAS
precipitation is between zero and one. There are probably several reasons for
this effect:

• Greater accuracy of the precipitation values in the ELDAS database;

• The interpolation applied for creating the ELDAS database (block krig-
ing) causes a smoothing of precipitation values;

• Averaging of multiple ELDAS grid points within one CGMS grid.

To compensate for this effect we decided to treat ELDAS precipitation val-
ues lower then one mm as zero mm for events where CGMS precipitation was
zero. This procedure effectively adds the 47.3% to the 39.6% in the upper left
cell of the matrix (table 4.1). This decision is justified because the precipita-
tion values lower then one mm are insignificant from an agricultural point of
view. The second important observation is that the distribution of ELDAS pre-
cipitation classes within one CGMS precipitation class is often not normal and
that the standard deviation of the distribution becomes larger with increasing
CGMS precipitation.

4.3 Method

4.3.1 Conceptual modelling

We consider Prec(x , t) to be the (unknown) true average precipitation at grid
cell x and day t, PrecCGMS(x , t) the precipitation as recorded in the CGMS
system, and ε(·) a random spatially and/or temporally correlated residual.
Our spatio-temporal error model for the data concerned is then given by:

ε(x , t) = Prec(x , t)− PrecCGMS(x , t) (4.1)

Note that no statement is made about ε(·) having zero mean, as PrecCGMS(x , t)
might be biased.
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We assume that a sample or observed realisation of the residual variable
can be obtained using the ELDAS precipitation data resampled to the CGMS
grid, PrecELDAS(x , t), as a reference:

ε0(x , t) = PrecELDAS(x , t)− PrecCGMS(x , t) (4.2)

Where ε0(x , t) denotes an observed residual at location x and date t.
Figure 4.2 is a scatter plot of the observed residuals, which obviously

do not follow a Gaussian distribution. The basic assumption underlying
our method is that the residuals ε0(x , t) can be transformed to standard
(marginal) normality by some transform function f (·) and that correlated
standard Gaussian fields can be back transformed to residual precipitation
fields by the inverse of that function, i.e. f −1(·). Note that by design the trans-
formation functions should handle any bias in the CGMS precipitation data.
We thus obtain the following model for the random residual precipitation field,
εM(x , t):

εM(x , t) = f −1(δ(x , t), ar gs) (4.3)

Where δ(·) denotes a correlated standard Gaussian random field and ar gs
are any required additional arguments. Section 4.3.2 (below) explains that
the residuals in case of zero CGMS precipitation require additional modelling.
Once the transformation functions f (·) and f −1(·) and the random function
generating δ(·) are configured using the observed ε0(x , t), we are able to gen-
erate multiple realisations of εM(x , t) using a standard Gaussian simulation
algorithm. By summing the simulated residuals to observed CGMS precipita-
tion data the required ensemble traces are obtained.

4.3.2 Normal score transformation

We tried several mathematical expressions to transform the observed ε0(x , t)
to a standard Gaussian distribution as a function of PrecCGMS(x , t), but with
our data set we could not find any useful parametric function. Also, checks for
seasonal and spatial trends (the latter as a function of the density of weather
stations) in the means of the precipitation residuals were unsuccessful with
our time-series.

We thus decided to use quantile based normal score transforms for a se-
ries of PrecCGMS(·) intervals. The dataset for the year 2000 was divided into
13 CGMS precipitation intervals (the same as listed in table 4.1) and for each
of these a histogram of the observed residuals ε0(·) was produced. These his-
tograms were visually compared with histograms constructed on data from the
last 3 month of 1999 as a second check on our assumption of absence of a tem-
poral trend. Next, the normal scores of the observed residuals and 13 transfor-
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mation tables were obtained by finding the z scores of a standard Gaussian dis-
tribution corresponding to quantiles of the observed cumulative distributions.
The computations were done using the GSLIB2 program nscore (Deutsch
and Journel, 1998). Note that the random de-spiking algorithm which is part
of the original program was disabled as it would cause artefacts that would
interfere with subsequent analysis (particularly variogram determination).

The first bin PrecCGMS(x , t) = 0 required additional processing, because the
transformation algorithm could not properly transform the large number of
zeros (i.e. ε0(x , t) < 1 mm) in the residuals. Therefore, we introduced a
multiplicative —spatially correlated— indicator variable (also: step variable)
i(x , t) to treat the ε0(x , t) < 1 mm data given PrecCGMS(x , t) = 0 mm sepa-
rately. Hence, in the first bin only the residuals ε0(x , t) ≥ 1 mm are handled
by a normal score transform and Eq. 4.3 was modified into:

εM(x , t) =
�

i(x , t) · f −1(δ(x , t), PrecCGMS(x , t)) i f P recCGMS(x , t) = 0
f −1(δ(x , t), PrecCGMS(x , t)) i f P recCGMS(x , t)> 0

(4.4)
In the current work, dependence of i(x , t) on PrecCGMS(·)|PrecCGMS(x , t) > 0
and δ(·) is not considered.

4.3.3 Variogram modelling

Normal score transformed data

Normal score transformed residuals ε0
′(x , t) were computed for all

PrecCGMS(x , t) > 0 mm and for PrecCGMS(x , t) = 0 mm with ε0(x , t) ≥ 1 mm.
The thus obtained data was exhaustively sampled in the spatial domain and
thrice-monthly, i.e. on the 1st , 11th and 21st of a month in the temporal do-
main to determine the experimental variogram of the spatially auto-correlated
Gaussian variable.

Indicator variable

The indicator variable i(·) (see Eq. 4.4) was considered to be spatially auto-
correlated. The indicator variogram was obtained by transforming the precip-
itation data according to Eq. 4.5.

i(x , t) =







null i f P recCGMS(x , t)> 0 mm
1 i f ε0(x , t)≥ 1 mm
0 otherwise

(4.5)
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The upper option just states that the indicator variable is not used in case
PrecCGMS(x , t)> 0 mm.

Checking two-point normality

The normal score transformed residuals ε0
′(x , t) are by construction univari-

ate normally distributed, but the nscore transform does not impose multi-
variate normality on ε0

′(x , t). Nonetheless, the random function δ(·) (Eq.
4.4), which is configured on ε0

′(x , t) assumes the two-point distribution of
any pair of values at different locations to be Gaussian. To check the conse-
quences of this assumption for the intended use of the data, we employed a
procedure given in Goovaerts (1997, pages 271–275) and Deutsch and Journel
(1998, pages 142–144) which consists in graphically comparing experimental
and Gaussian model-induced indicator variograms of the normal score data at
different p-quantiles of the cumulative distribution. The procedure is equiv-
alent to comparing theoretical and empirical proportions of the transformed
residuals below selected thresholds for a series of distances.

We used the GSLIB2 program bigaus to derive the model-induced indi-
cator variograms from the variogram of ε0

′(x , t) (see 4.3.2). The experimen-
tal indicator variograms were obtained by applying thresholds on the data
ε0
′(x , t) as follows:

j(x , t) =
�

1 i f ε0
′(x , t)≥ z(p)

0 otherwise (4.6)

where j(x , t) denotes an indicator transformed data point and z(p) is the z
score of the standard normal distribution for quantile p (p = 0.10, 0.25, 0.5,
0.75, 0.90). Subsequently, date-averaged variogram values were computed
from j(x , t) data that was exhaustively sampled in the spatial domain and
three per month in the temporal domain.

4.3.4 Simulation of residual fields

Figure 4.3 shows how we implemented Eq. 4.4 in our simulation method
which needs the CGMS precipitation data, the Gaussian random fields,
the indicator random fields and a set of transformation tables as input.
If PrecCGMS(x , t) > 0 mm, then the right-hand branch of the flow diagram
suffices, i.e. unconditional standard Gaussian simulation followed by a back
transform. In the other case, unconditional indicator simulation is used to
model the event of a positive residual εM(x , t) given PrecCGMS(x , t) = 0 mm.
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Note, however, that both branches are always executed and that the condi-
tions PrecCGMS(x , t) = 0 mm or PrecCGMS(x , t) > 0 mm are handled by post
processing (lower box in figure 4.3).

The Gaussian and indicator simulations were performed using the pub-
lic domain sequential simulation programs sgsim and sisim included in
GSLIB2 (Deutsch and Journel, 1998). Both programs employ sequential
stochastic simulation which implies that in random order they simulate the
nodes of a recursively refined grid. Previously simulated nodes are used as
conditioning data for subsequent simulations within the same realisation if
they are within a given search neighbourhood.

The back transforms and post processing were performed by the LINT2
module in the TTUTIL Library (Kraalingen and Rappoldt, 2000) and the
Python scripting language. A set of 100 alternative realisations of daily pre-
cipitation was generated by adding back transformed simulated residuals to
the CGMS precipitation data.

4.3.5 Evaluation of precipitation realisations

We evaluated the realisations of the precipitation fields on four different as-
pects. Firstly, the reproduction of the histograms of the ELDAS precipita-
tion was checked by quantile-quantile plots of ELDAS and CGMS precipitation
against 100 precipitation realisations for selected grids. Secondly, variogram
reproduction of the ELDAS precipitation fields was evaluated for two selected
days and five realisations. Thirdly, the rainfall temporal intermittency charac-
teristics for both dry and wet periods were compared for 6 representative sites
for the CGMS precipitation, ELDAS precipitation and 25 realisations. Finally,
an error matrix similar to table 4.1 was generated which shows the distribu-
tion of CGMS precipitation classes versus the precipitation realisations over
the whole grid and the complete time-series.

4.3.6 Probabilistic crop yield forecasting

In order to illustrate the use of rainfall realisations in agrometeorological ap-
plications, we used the WOFOST crop growth model (Diepen et al., 1989)
implemented in the framework of the Crop Growth Monitoring System
(Genovese, 1998; Vossen and Rijks, 1995) to make a probabilistic yield fore-
cast for the year 2000, for grain maize in the region ‘Centre-Est’ in south-east
France. First, individual rainfall realisations were used as input for WOFOST
simulations to obtain an ensemble of simulated biomass values. This pro-
cedure was repeated for all 50 × 50 km grids in the region ‘Centre-Est’ and
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the resulting time-series of simulated biomass values for individual grids were
spatially aggregated. The final result of this procedure was an ensemble of
space-averaged simulated biomass values that was representative for the re-
gion.

In a second step, we used the deterministic version of CGMS for the
same crop and region to simulate grain maize biomass values over the pe-
riod 1992–1999. The time-series of official reported grain maize yields
(EUROSTAT, 2005) for this region were used as dependent variable in a regres-
sion model with a time-trend and the simulated biomass results as indepen-
dent variables (Supit, 1997). The coefficients of this regression model were
determined for each dekadal1 time step during the growing season. Finally,
the regression models explaining the relationship between reported yield and
simulation results over the years 1992–1999 were applied in prognostic mode
in order to make a forecast using both the deterministic output for 2000 as
well as the output from all ensemble members for the year 2000.

4.4 Results

4.4.1 Distribution of precipitation residuals for selected
CGMS precipitation classes

Figure 4.4 shows four selected histograms of the precipitation residuals
(CGMS-ELDAS) for a given CGMS precipitation value or interval. The distri-
bution of precipitation residuals per CGMS precipitation interval were used to
model the residuals as a function of the CGMS precipitation itself. Histograms
were calculated separately for the year 2000 and the three remaining months
in 1999 in order to check if the histograms were stable over time.

At CGMS precipitation zero, the precipitation residuals were zero for
nearly 50% of the data while a relatively large percentage of precipitation
residuals had values between zero and one (Figure 4.4A). At CGMS precipita-
tion of 4 mm the width of the whole histogram becomes wider demonstrating
larger errors in the CGMS precipitation values (Figure 4.4B). A small peak is
present at residual of -4 mm, indicating a relative overrepresentation of cases
where ELDAS predicts no precipitation at all. Note that there is a good match
between the precipitation residuals obtained with the ELDAS data from 1999
and 2000, although the overrepresentation is not present in the 1999 his-
togram. At CGMS precipitation values between 10 and 12 mm and between

1The use of the term ‘dekad’ refers to an FAO convention in order to distinguish 10-year
periods (decade) from 10-day periods (dekad).
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15 and 30 mm (Figures 4.4C & 4.4D) the shape of the histogram remains a
more or less truncated normal distribution which becomes progressively wider.
This confirms that the magnitude of the errors is related to the precipitation
amount itself. A small shift seems to be present between the histograms of
1999 and 2000 where the distribution of the 2000 data is shifted to more neg-
ative residuals. Although the effect is small, this could indicate an effect of
seasonal differences in precipitation residuals.

4.4.2 Variogram modelling

Transformed precipitation residuals

Figure 4.5 shows the variograms of normal score transformed precipitation
residuals, for PrecCGMS(x , t) > 0 mm. The black dotted lines correspond to
variograms of individual dates while the grey continuous line represents the
average variogram over all sampled dates. There is considerable spread among
the variograms of the individual dates; however, they all indicate that the
transformed residuals are spatially correlated with similar range. The av-
erage variogram was modelled by the sum of two exponential components
(Goovaerts, 1997); one with a partial sill of 0.802 and a practical range of
315 km and another with 0.198 and 6000 km for partial sill and practical
range respectively. This variogram model was used in the Gaussian simula-
tions. Likewise, the indicator variogram for the data transformed by Equation
4.5 (not shown here) was modelled by two exponential components with par-
tial sills and ranges of (0.0372, 180 km) and (0.0828, 1500 km) respectively.

The level of temporal auto-correlation in was assessed by computing tem-
poral variograms for 6 CGMS grid cells that were selected to represent climatic
variability over the region (southern Spain, northern Spain, southern France,
northern France, central Germany and Denmark). The temporal variography
for 6 selected CGMS grid cells, shown in Figure 4.6, did not point at significant
temporal correlation of the transformed residuals. Therefore, our model did
not account for such correlation.

Two point normality

Based on graphical comparisons of the experimental and Gaussian model-
induced indicator variograms of the normal score data, shown in Figure 4.7,
we decided to accept the assumption of two-point normality in space for the
purpose of our study. Nonetheless, the experimental indicator values for the
first decile (p = 0.1) deviate substantially from the model induced variogram.
This indicates that observed small transformed residuals were more connected
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Figure 4.6: Temporal variograms of the normal score transformed residuals for
selected CGMS grids.

in space than under the Gaussian model. However, for the other quantiles
(and the vast majority of the data) the fits of the two models are remarkably
good. Also in the temporal domain, the density plot of normal score data on
subsequent days (not shown) demonstrated that the normal score date are
approximately bivariate normally distributed.

4.4.3 Precipitation realisations

The reproduction of the histograms of the ELDAS precipitation for the en-
tire year at grid locations in South-Spain (30032), South-France (43044) and
Central-Germany (59061) is shown in the quantile-quantile (Q-Q) plots of
Figures 4.8A–4.8F. Both the Q-Q plots of ELDAS vs. CGMS and ELDAS vs. 100
realisations to allow comparisons between the original CGMS precipitation
data and the realisations of the error model.

For the grid in South-Spain (30032) the distributions of ELDAS and CGMS
are nearly identical showing a clustering of points along the 1:1 line (Figure
4.8A). Also in the Q-Q plot of ELDAS vs. 100 realisations, most points are
clustered near the 1:1 line except for the 100th percentile which is located
near the top of the chart (Figure 4.8B). The grid in South-France shows a
similar pattern with a slight underestimation of precipitation values by CGMS
up to 15 mm and an overestimation of values larger then 20 mm (Figure 4.8C).
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The underestimation is corrected for in the realisations but the overestimation
cannot be corrected and could even be slightly amplified (Figure 4.8D). Also
in this case, the 100th percentile in the realisations is strongly shifted towards
the upper part of the chart. Finally, the grid located in Central Germany shows
a similar pattern, except for a slight overestimation of precipitation values
greater then 10 mm and again a shifting of the 100th percentile to higher
precipitation values (Figure 4.8E–F).

These results demonstrate that the method reproduced the histograms for
the selected sites fairly well, but generated too large precipitation values when
compared to the largest values present in the original precipitation sequence.
This result is caused by the random character of the procedure which will
inevitably sample the tails of the distribution in some realisations thereby pro-
ducing large precipitation values.

The variograms of the 5 realisations at 21 November 2000 and 11 July
2000 are shown in figure 4.9A and 4.9B. The figures demonstrate that the
overall variance (the sill) of the realisations can be both smaller and larger
then the ELDAS variance (grey line), but that the range of the spatial corre-
lation was similar to the ELDAS reference dataset. However, at small ranges
all realisations had larger semi-variance compared to the target variance, in-
dicating larger variability in precipitation values at small ranges compared to
ELDAS.

The intermittency characteristics of the dry periods were determined for six
representative sites located in areas with major agricultural production (Figure
4.10). The results for South-Spain (Andalusia) demonstrate that the proposed
simulation approach was not able to reproduce the dry period statistics well.
The characteristic long dry summer in Andalusia with dry periods as long as
130 days is not reproduced in the realisations. This is a result of the fact
that the simulation approach can generate a precipitation residual for zero
CGMS precipitation, depending on the outcome of the independent indicator
simulation, which was configured on averages rather than on site and season
specific data. This property of the simulation approach may break the very
long dry periods typical of the Andalusian summer. Similar effects can be
observed in the results for Northern Spain and Southern France albeit less
pronounced (Figures 4.10 B & C).

The results for the sites located in more temperate climate regions
(Northern-France, Central-Germany, Denmark) demonstrated that the simu-
lation approach performed better in reproducing the dry period statistics. For
these three sites, there are realisations which reproduce the maximum, or even
larger, dry period length, although the dry period lengths in the realisations
are, on average, still shorter.

The intermittency characteristics of the wet periods were determined for
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Figure 4.8: Quantile-Quantile plots of precipitation quantiles for precipitation
time-series of three selected grids in South-Spain (30032), South-
France (43044) and C-Germany (59051): ELDAS precipitation se-
quence vs. CGMS precipitation sequence (figure A, C & E) and EL-
DAS precipitation sequence vs. 100 realised precipitation sequences
(figure B, D & F).
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Figure 4.9: Variograms of the ELDAS precipitation data (continuous line) and sim-
ulated precipitation fields (symbols; five realisations).

the same six sites (Figure 4.11). It can be observed that, compared to the dry
period length, the simulation approach performs much better in reproducing
the wet period intermittency characteristics. Nevertheless an increase in the
number of wet day sequences greater or equal to one day can be observed for
nearly all sites.

Figure 4.12 (page 79) shows precipitation maps for 11 July 2000 accord-
ing to the CGMS, ELDAS and the first of a series of realisations of our model
(marked with ‘sim1’ in figure 4.9A). The map of the precipitation realisations
shows that large precipitation amounts were drawn from the error distribution
for locations in Western Germany and Belgium as well as in the Eastern part
of the Alps. This is consistent with figure 4.9A showing that precipitation re-
alisation 1 has a larger variance compared to the ELDAS precipitation field. In
Northern Finland, small rainfall amounts were generated on locations where
no precipitation is present in the CGMS gridded precipitation, demonstrating
the effect of the indicator kriging which creates occurrences of precipitation in
dry areas.

A final check on the validity of our methodology was carried out by deter-
mining the distribution of CGMS precipitation classes versus the precipitation
realisations over the whole grid and the year 2000, averaged over 100 re-
alisations (Table 4.2, page 85). Tables 4.1 and 4.2 can be compared directly
and demonstrate that our method reproduces the target distributions (ELDAS)
well. The only exception is that for CGMS precipitation classes larger then 15
mm, there was an increase in the number of zero precipitation occurrences in
the ensembles. Due to the large width of the precipitation intervals used in the
back transform, negative precipitation values can be produced. For example,
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Figure 4.10: Dry-spell lengths from the CGMS and ELDAS precipitation datasets
and dry-spell lengths for 25 precipitation simulations, for six repre-
sentative sites.
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Figure 4.11: Wet-spell lengths from the CGMS and ELDAS precipitation datasets
and wet-spell lengths for 25 precipitation simulations, for six repre-
sentative sites.
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for a CGMS precipitation amount of 16 mm, a residual of up to -30 mm can
be generated. In our current implementation, negative precipitation amounts
are set to zero.

4.4.4 Probabilistic crop yield forecasting

The regression models that were established between historic EUROSTAT re-
ported yields and the simulated biomass values, could explain a considerable
percentage of variance in the yield statistics with R2 values starting at 0.57 in
dekad 16, then gradually increasing up to 0.83 in dekad 26 and finally slightly
decreasing to 0.78 in dekad 30. The regression was significant starting at
dekad 21 (significance level = 0.05) up to dekad 30. The probabilistic yield
forecast (Figure 4.13, page 83) based on the regression models demonstrates
that the uncertainty in precipitation has a profound influence on the value of
the yield forecast during the growing season. Compared to the deterministic
yield forecast (blue line), the probabilistic yield forecast shows a diverging
ensemble of yield forecasts which keeps diverging almost up to end of grow-
ing season with maximum spread in the yield forecast of around 0.65 ton/ha.
Given that EUROSTAT uses a tolerance of 0.2 ton/ha as an acceptable accuracy
for yield forecasts (G. Genovese, pers. comm.), this is a significant deviation.
The average ensemble yield forecast is clearly higher then the deterministic
forecast. However, this is probably due to underestimation of precipitation in
the CGMS data set (Wit et al., 2005). This bias is corrected in the precipi-
tation ensemble, but not in the forecast regression. Finally, the density plots
demonstrate that the shape of the yield forecast ensemble is non-Gaussian and
propagates in a non-linear way.

4.5 Discussion

This paper presents a methodology for generating precipitation ensembles tai-
lored to the temporal and spatial scale required for regional crop modelling.
Given that crop models are relatively insensitive to intermittency of precipi-
tation, we used an additive approach to create ensembles of daily precipita-
tion values. For applications where intermittency characteristics at small time
scales (hourly values) are of prime importance, our approach is probably not
suitable and other methods should be applied which are more tailored to such
requirements (Hossain and Anagnostou, 2006).

Our method uses a histogram-based approach for transforming heteroge-
neously distributed precipitation residuals into a Gaussian random variable.
The thus transformed precipitation residuals appeared to be approximately
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multivariate Gaussian. Similar to results obtained by Kyriakidis et al. (2004),
they exhibited strong spatial correlation, while temporal correlation was very
weak. The virtually absent temporal correlation in the residuals indicates that
the daily CGMS records captured temporal precipitation patterns relatively
well in our time series. We therefore decided to disregard the temporal corre-
lation component.

The possibility of having precipitation at locations where CGMS predicted a
dry day was handled by an independent indicator simulation which generates
rain storms in areas where no precipitation was recorded. The precipitation
amount is then obtained through the Gaussian simulation. Currently, the in-
dicator simulation is assumed to be temporally uncorrelated and stationary in
space and time.

A potential drawback of our approach is that the Gaussian simulation and
the indicator simulation are implemented as independent processes. There-
fore, it is not guaranteed to produce small precipitation amounts near dry
sites and new precipitation events along the fringes of existing wet areas. De-
pendency between these processes will be difficult to implement within the
current framework given that the precipitation amounts are not simulated di-
rectly but are only retrieved by post-processing of the results of the Gaussian
simulation. Yang et al. (2005) also signalled this problem but they pointed
out that currently available simulation methods addressing this problem also
suffer from drawbacks, because these typically assume the same spatial cor-
relation structure for occurrence and amount of rainfall. The extent to which
this problem propagates through applications is not clear yet.

Currently, our approach assumes stationary processes in space and time
for both the Gaussian simulation and the indicator simulation which use one
variogram model each and a single set of back-transforms. Consequently, it
reproduces the histogram of the entire dataset, but it does not necessarily re-
produce the histogram or other statistical properties of any particular location
or time-instant. Many of the deviations from the target properties (ELDAS)
that we found during our evaluation of the precipitation realisations can be
related to this design choice.

One example is that the approach does not reproduce dry-spell lengths in
Spain because too many precipitation events are generated during summer.
Although this is an unfavourable characteristic of the proposed simulation ap-
proach, its effect should not be overestimated. The results in figure 10 are
based on binary sequences of rain/no-rain events which do not take into ac-
count the amount of precipitation. When the wet day threshold was raised to
2.5 mm/day, the situation greatly improves. Another example is the consistent
shifting of the 100th percentile in the distribution of precipitation realisations
(Figure 4.8) to large precipitation values. Similar effects on monthly total pre-
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cipitation have been described by Margulis and Entekhabi (2001) who sug-
gested resampling of the realisations in order to select only those realisations
with the desired characteristics.

Finally, an important aspect in ensemble generation is the performance of
the system in terms of computation time. Our system is build around parts of
the TTUTIL library, the sgsim and sisim tools from the GSLIB2 library and
the MySQL database. These components are glued together using the Python
scripting language. Currently it takes 7.5 minutes to generate 100 realisations
for one day over the full CGMS grid (11330 nodes) on a 2.6 GHz PC running
GNU/Linux. For operational use, realisations would only need to be generated
incrementally and this performance would be sufficient. However, generating
a full year of data (100 realisations) for retrospective analyses takes nearly
46 hours.

Profiling of the application showed that of the different steps within the
simulation, 61% was used for generating the Gaussian and indicator simula-
tions with sgsim and sisim, 31% was used for post-processing the Gaussian
and indicator simulations using Python and only 8% was used for database
communication and miscellaneous tasks. Performance could thus be greatly
increased when more efficient methods would be used for simulation of ran-
dom fields such as a Modified Turning Bands algorithm (Mellor et al., 2000).

4.6 Conclusions

This paper presents a methodology for characterising and quantifying uncer-
tainty in gridded precipitation fields through an ensemble of precipitation
realisations with a specific application as target: regional agrometeorologi-
cal modelling for crop yield prediction. We defined the temporal and spatial
scales which are relevant for this application and developed a relatively sim-
ple histogram-based approach which generates residual error fields that are
added to the input precipitation field in order to obtain the ensemble traces.

We calibrated our method using a highly accurate precipitation database
and applied it to the precipitation database of the European Crop Growth Mon-
itoring System. Histograms, intermittency characteristics and spatial structure
of the rainfall field were reproduced reasonably well in the realisations and
the deviations that were found (shifting of 100th percentile, failure to produce
prolonged dry spells) are of minor importance for the application at hand.

Finally, we demonstrated that the uncertainty in input precipitation fields
and the resulting variability in crop model simulation results considerably in-
fluence the yield forecast for a region in South-France. These results demon-
strate that there is considerable potential benefit from a probabilistic approach
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in agrometeorological modelling and crop yield forecasting. Such an approach
could be an important support to quantitative risk analysis in a decision mak-
ing process.

Figure 4.13: Crop yield forecast during the growing season in 2000. Thick black
line is the official reported yield by EUROSTAT, the blue line repre-
sents the deterministic yield forecast and the dotted lines represent
the influence of uncertainty in precipitation on the yield forecast.
Density plots indicate the shape of the yield forecast ensemble at
three moments during the growing season.
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Chapter 5

Crop model data assimilation
with the ensemble Kalman filter
for improving regional crop yield
forecasts∗

5.1 Introduction

Crop yield forecasting applications applied over large areas and relying on a
spatially distributed crop growth model are typically confronted with large
uncertainty in the spatial distribution of soil properties and initial soil condi-
tions, crop parameters and meteorological forcings (Hansen and Jones, 2000).
Within the crop growth model, this uncertainty influences the simulation of
two important physiological processes: 1) the simulation of the crop canopy
development which determines light interception and the potential for photo-
synthesis; 2) the simulation of moisture content in the soil which determines
the actual evapotranspiration and reduction of photosynthesis as a result of
drought stress. Improving the simulation of these two processes by using re-
motely sensed observations has been a field of active research and an overview
will be given in relation to the impact on operational application in yield fore-
casting systems.

Research on improving the simulation of crop canopy development has
mostly focused on the use of sequences of high-resolution satellite imagery
(20-30 m) to either recalibrate crop model parameters such as the emer-

∗Chapter based on: Wit, A.J.W d. and Diepen, C.A. v.: 2007, Crop model data assimilation
with the ensemble Kalman filter for improving regional crop yield forecasts, Agricultural and
Forest Meteorology in press
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gence date, or to integrate the observations into the model using a forcing
or updating approach (Bach and Mauser, 2003; Boegh et al., 2004; Bouman,
1995; Guérif and Duke, 2000; Maas, 1988; Moulin et al., 1998; Prevot
et al., 2003; Schneider, 2003). Although results demonstrated that many crop
model states (simulated biomass, LAI, yield) could be improved using satel-
lite observations, such methods have proven difficult to apply in crop yield
forecasting applications at regional to continental scales.

The main reason for this slow adoption is the disparity in scales between
the process (crop growth on fields often as small as 1 hectare) and the type of
observing system that can be used operationally and economically over large
areas with high temporal frequency (satellite sensor observations with a spa-
tial resolution ranging from 250 m to 1 km). Given the relatively coarse
spatial resolution of such satellite sensors, in many parts of the world the
observations consist of a mixture of various land cover types, making if dif-
ficult to estimate the value of crop states (LAI, biomass) for specific crops.
Some studies have attempted to cope with the sub-pixel heterogeneity directly
(De Wit, 1999; Fischer, 1994; Moulin et al., 1995), while others attempted
to unmix a coarse resolution signal into its underlying spectral components
(Cherchali et al., 2000; Faivre and Fischer, 1997). The general drawback of
these approaches is that they rely on the availability of ancillary data (e.g.
land cover/crop maps) which are usually not available over large areas for the
current growing season.

A few studies describe yield forecasting results obtained from directly in-
tegrating coarse resolution satellite observations in crop simulation models at
regional scales (Doraiswamy et al., 2005; Mo et al., 2005). Although, these
results show the benefit of using such an approach, the application is limited
to regions with homogeneous land cover and a limited number of crop types.
These studies also recognise that the results deteriorate in areas with complex
land cover patterns where the satellite sensor signal consists of a mixture of
many crop types.

Considerable work has also been carried out on the estimation of vegeta-
tion evapotranspiration or soil moisture by satellite thermal infrared observa-
tions with the aim of improving estimates of drought stress or water use, see
an overview by Courault et al. (2005) and the work of Olioso et al. (2005). Al-
though promising semi-operational results have been obtained by some stud-
ies (Bastiaanssen and Ali, 2003; Roebeling et al., 2004), the use of these kind
of observations in crop models is very limited (Olioso et al., 2005). Besides
the scale issues outlined before, other factors which limit operational applica-
tion play a role, such as that no generally accepted operational systems have
been available to routinely estimate evapotranspiration over large areas using
satellite observations.
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Besides the limitations on the observation side, it is justified to say to that
crop models have not evolved in a way that would make it easy to assimilate
satellite observations into the model. Crop models are still generally determin-
istic in contrast to models within the fields of oceanography, meteorology and
(more recently) land surface hydrology, where probabilistic approaches are
generally accepted and advanced algorithms for sequential data assimilation
such as nudging, variational methods and (Ensemble) Kalman filtering have
been developed. As a result, crop models provide no information on uncer-
tainties of the model states during simulation which is crucial for a successful
application of most sequential data assimilation algorithms.

In principle, probabilistic methods and data assimilation can be applied to
crop growth models as well. Particularly the use of the Ensemble Kalman fil-
ter (EnKF) is interesting for crop models because it combines a probabilistic
approach with sequential data assimilation. Moreover, the structure of many
crop models lends itself well for implementation in the EnKF and the state vec-
tor in crop models is relatively small (Dorigo et al., 2006). An example of such
an approach has been provided by Pellenq and Boulet (2004), who applied an
ensemble Kalman filter to assimilate field-scale satellite observations of NDVI
and land surface temperature in a crop growth model.

Within this paper we present results obtained from a spatially distributed
probabilistic crop growth model coupled to an ensemble Kalman filter, ap-
plied to selected European countries over the period 1992–2000. Currently,
there are no databases available of remote sensing derived crop-specific vari-
ables (e.g. LAI, actual evapotranspiration) that span large time series and are
available over the whole study area. Our system currently uses coarse resolu-
tion satellite microwave sensor derived soil moisture estimates for correcting
errors in the water balance of the model during the crop simulation caused
by uncertainty in rainfall or model initialisation. We assume that soil moisture
estimates on this scale are still relevant for crop modelling because spatial pat-
terns in soil moisture are not only driven by local crop - soil interactions, but
also by atmosphere related patterns (rainfall) acting on a much larger scale
(Vinnikov et al., 1996; Vinnikov et al., 1999). Some evidence on the suitabil-
ity of coarse resolution soil moisture patters for correcting models with grids
of much smaller resolution has been provided previously by Crow and Wood
(2003).

The main objective of this work is to determine if the assimilation of satel-
lite observations of soil moisture into the crop yield forecasting system results
in improved relationships between model output and crop yield statistics for
administrative regions. Additionally, the innovations of the ensemble Kalman
filter can provide some diagnostics that can help to trace deficiencies in the
model. With the development of this probabilistic crop modelling and data
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assimilation system, we anticipate on the near real-time availability of satel-
lite soil moisture estimates as can be expected from the sensors aboard the
METOP satellites (Hasenauer et al., 2006), as well as the SMOS mission (Kerr
et al., 2001). Furthermore, when satellite sensors are available with sufficient
spatial resolution and temporal frequency to provide crop specific variables
operationally over large areas, they can be assimilated within the same frame-
work relatively easily.

5.2 Spatially distributed probabilistic crop
growth model

5.2.1 The crop growth model

We used the WOFOST (WOrld FOod STudies) crop simulation model as a ba-
sis for our work (Diepen et al., 1989; van Ittersum et al., 2003). WOFOST is
a mechanistic crop growth model that describes plant growth by using light
interception and CO2 assimilation as growth driving processes and by using
crop phenological development as growth controlling process. The model can
be applied in two different ways: 1) a potential mode, where crop growth is
purely driven by temperature and solar radiation and no growth limiting fac-
tors are taken into account; 2) a water-limited mode, where crop growth is
limited by the availability of water. The difference in yield between the po-
tential and water-limited mode can be interpreted as the effect of drought.
Currently, no other yield-limiting factors (nutrients, pests, weeds, farm man-
agement) are taken into account.

The WOFOST model was cast into a probabilistic framework using an en-
semble approach which means that an ensemble of models is used to represent
the probability distribution of model results at each time step during model
execution. Model uncertainty can be assessed by sampling from probability
distributions of crop parameter values and by providing ensembles of meteo-
rological forcings that characterise the uncertainty in the forcing data. Finally,
an Ensemble Kalman filter was integrated into the probabilistic framework,
see section 5.2.3 for details.

5.2.2 Spatial implementation of crop growth simulations

Our crop simulation model was implemented spatially by building on the
framework provided by the Crop Growth Monitoring System (CGMS). CGMS
allows regional application of WOFOST by providing a database framework
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which handles model input (weather, soil, crop parameters), model out-
put (crop indicators such as total biomass and leaf area index), aggrega-
tion to statistical regions and yield forecasting (Boogaard et al., 2002; Diepen
et al., 1998; Genovese, 1998; Vossen and Rijks, 1995). CGMS is part of the
MARS (Monitoring Agriculture by Remote Sensing) crop yield forecasting sys-
tem developed by the AgriFish unit of the Joint Research Centre in Ispra, Italy.
Since 1994, CGMS monitors crop growth in Europe, Anatolia and the Maghreb
with a spatial resolution of 50× 50 km and a temporal resolution of one day.
Its main purpose is to provide information on weather indicators and crop sta-
tus during the growing seasons and to provide objective forecasts of crop yield
on the level of EU member states early in the crop growth season. Its main
user is the European Commission’s Directorate General for Agriculture.

Modifications to the CGMS framework were made in order to store ensem-
ble meteorological forcings and to (temporarily) store the ensemble output
from the WOFOST model ensemble.

5.2.3 The ensemble Kalman filter

For the implementation of the ensemble Kalman filter (EnKF) we based our-
selves on the work of Evensen (2003) who describes the theoretical framework
and practical implementation for the EnKF. The basic analyses step in an EnKF
for each ensemble member can be defined as:

Aa = A+ PeH(HPeH
T + Re)

−1(D−HA) (5.1)

where A and Aa are the forecasted and analysed matrices of ensemble states,
Pe and Re are the ensemble and observation covariance matrices, H is the
measurement operator and (D−HA) are the innovation vectors.

In our current setup the model soil moisture is the only variable which
is used for the assimilation process. The WOFOST model has a root-zone
soil water balance consisting of only one layer and the observations that we
assimilate are direct observations of the root zone soil moisture in this layer. In
this setting Aa and A are vectors, Pe and Re are variances and the measurement
operator H is an identity matrix because the model state is observed directly.
Equation 5.1 then reduces to:

Aa
i = Ai + Pe(Pe + Re)

−1(Di − Ai) (5.2)

where Aa
i and Ai are the analysed and forecasted soil moisture state for ensem-

ble member i, Pe and Re are the variances on the modelled soil moisture and
the observed soil moisture and Di is the perturbed soil moisture observation
which is used to update ensemble member i (Burgers et al., 1998). Note that
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Figure 5.1: Overview of the study area (greyed area) including country borders,
provincial borders (NUTS1) and 50× 50 km CGMS grid.

for simultaneous assimilation of more observations (e.g. soil moisture and
Leaf Area Index) equation 5.2 cannot be used and equation 5.1 will need to
be used. However, because our state vector is small, the matrix (HPeH

T+Re)−1

can be inverted directly.

5.3 Study area

Our study area consists of Germany, France, Spain and Italy (Figure 5.1). The
motivation for this choice is based on the fact that from north to south a clear
gradient exists from temperate maritime conditions in northern Germany to
semi-arid Mediterranean conditions in the south of Italy and Spain. Moreover,
crop yield statistics at various administrative levels were available that could
be used for assessing the relationship with crop yield statistics.
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5.4 Data and methods

5.4.1 Deterministic crop, soil and weather inputs

Soil inputs for the study area were derived from the 1:1,000,000 European
soil map (King et al., 1995). The CGMS 50× 50 km grid was combined with
the soil data in order to determine which soils were available in each CGMS
grid. Soil moisture contents at different pressure heads (saturation - TWC,
field capacity - FC, wilting level - WL) are estimated from the soil physiological
description and together with the estimated rooting depth they determine the
water retention capacity and hydraulic conductivity of the soil (King, 1990).
In order to reduce the number of simulations that had to be carried out, we
selected the soil type with the largest area coverage (majority) for each CGMS
grid. In case of two soil types having exactly the same majority area fraction,
we selected the soil type with the largest water holding capacity, assuming
that it was more suitable for agricultural production.

Deterministic weather inputs where derived from the operational CGMS
which currently derives its weather information from about 2500 weather sta-
tions over Europe. These weather stations provide daily estimates of minimum
and maximum temperature, wind speed, vapour pressure and precipitation.
Radiation is only available from a limited number of stations and therefore
radiation is estimated at station level using relationships with temperature,
cloud duration or sunshine hours (Supit and van Kappel, 1998).

An interpolation routine is applied to estimate weather variables for each
50 × 50 km grid cell. Each cell receives values for temperature, radiation,
vapour pressure, evapotranspiration and wind speed as the weighted average
from suitable surrounding weather stations using inverse distance weighting.
Determination of the most suitable weather stations takes place on the basis
of the so-called ‘meteorological distance’. This meteorological distance is a
virtual distance which is not only based on the true distance between the
grid cell and the weather station, but also on factors like altitude, distance
to coast and the existence of climate barriers (e.g. mountain ridges, water
bodies) between the grid cell and the weather station. In case of rainfall a grid
cell receives the value of the weather station with the smallest meteorological
distance from the grid cell (Voet et al., 1994).

Finally, crop parameter values and crop calendars were derived from the
operational CGMS.
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5.4.2 Probabilistic weather inputs

According to many studies on land surface hydrology, precipitation is regarded
to be one of the prime sources of uncertainty in land surface hydrological mod-
els (Chaubey et al., 1999; Crow, 2003; Margulis et al., 2006; Syed et al., 2004).
In WOFOST, soil moisture is the only factor during crop growth simulation
which limits the potential production and its proper estimation is therefore
of high importance. Wit et al. (2005) demonstrated that the influence of un-
certainty in precipitation inputs on the outcome of WOFOST simulations can
be large, particularly in areas with climates that are marginal for crop growth.
Moreover, several studies (Easterling et al., 1998; Mearns et al., 2001) demon-
strate that when aggregating model output to regional scales, uncertainty in
the input forcings becomes dominant over uncertainty in soil parameters. Pel-
lenq and Boulet (2004) state that parameter uncertainty represents the largest
source of uncertainty in crop modelling. This is indeed likely for point appli-
cation of a crop model, where meteorological conditions are relatively well
known. However, for regional applications we decided that precipitation was
a prime candidate for specifying input uncertainty in the water balance of our
probabilistic WOFOST simulations.

In order to generate precipitation ensembles, we used an error model fit-
ted to a highly accurate precipitation dataset which was available for the year
2000. Our error model consisted of two components. The first is an addi-
tive component generating precipitation residues over the entire spatial do-
main. The residues are generated by quantile-based back transformation of
standard Gaussian fields using a set of histograms for different CGMS pre-
cipitation bins. The second component is multiplicative and generates binary
rain/no-rain events on locations where the CGMS precipitation records report
zero precipitation. The error model was used to generate an ensemble of 50
realisations for daily precipitation over the period 1990–2005 and 250 realisa-
tions for the year 2000 only. This last set of realisations was used to determine
the influence of the size of the ensemble on the estimation of ensemble mean
and variance. More information about the precipitation ensemble generation
method can be found in Wit and Bruin (2006).

5.4.3 Satellite derived soil water index (SWI)

The Soil Water Index (SWI) dataset was provided by the Institute of Pho-
togrammetry and Remote Sensing (IPF) of the Vienna University of Tech-
nology and is derived from coarse resolution surface (upper few centime-
tre) soil moisture measurements from the Scatterometer instrument aboard
the ERS1/2 satellites (Ceballos et al., 2005; Wagner et al., 1999; Wagner
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et al., 2003). The SWI data are provided on a 0.25◦ grid in regular intervals of
10 days. The dataset covers the period 1992–2000, but the availability of SWI
values varies over years and regions as a result of satellite programming con-
flicts between the scatterometer and SAR instruments aboard ERS1/2. Over
Europe the quality of the SWI product is therefore relatively poor. End of
2007 scatterometer derived soil moisture products will be processed opera-
tionally in near real time by EUMETSAT using data from the METOP Satellites
(Hasenauer et al., 2006).

The SWI is a trend indicator for the root-zone soil moisture (upper 1 me-
ter) ranging from 0 to 1. For converting this trend indicator in an estimate
of volumetric soil moisture content, auxiliary data about soil physical prop-
erties is necessary. We used information about soil physical properties pro-
vided by the CGMS database (wilting level, field capacity, porosity) to estimate
the volumetric soil moisture content with a relationship provided by (Wagner
et al., 1999):

D = SW I(
FC + TW C

2
−W L) +W L) (5.3)

Where D is the observed volumetric soil moisture content, FC and TW C are
field capacity and porosity and W L is the wilting level.

Information about the variance of the SW I is necessary in order to
parametrise Re and to generate an ensemble of perturbed observations Di in
equation 5.2. The variance information was supplied by IPF for each SWI value
and was based on strict error propagation of measurement noise through the
retrieval model. Consequently the calculation of the variance only accounts
for the effects of noise, but not for deficiencies in the model itself, i.e. SW I
can still deviate from the true soil moisture value if for example vegetation is
poorly estimated.

5.4.4 Influence of ensemble size

The EnKF presents a solution to the optimal state estimation problem which
uses an ensemble of model states to approximate the mean state and covari-
ance. Given this approximation, the question then rises how large the en-
semble needs to be to in order to make an acceptable estimate of mean and
covariance. Several studies (Crow and Wood, 2003; Reichle, McLaughlin and
Entekhabi, 2002; Reichle, Walker, Koster and Houser, 2002) have evaluated
the influence of the ensemble size with reference to the true (measured) states.
In our case, such measurements are not available and therefore we compare
the influence of varying ensemble size with reference to the simulation with
the largest ensemble size. We assume that this simulation presents the best es-
timate of state mean and variance. We carried out simulations for grain maize
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for the year 2000 without data assimilation but with ensemble sizes of 10,
25, 50, 100 and 250 members. These simulation were carried out for 5 grids
located in different climatic zones and in areas with major agricultural pro-
duction in southern Spain, northern Spain, southern France, northern France
and central Germany.

5.4.5 Crop yield forecasting experiment setup and
initialisation

We carried out two experiments in order to determine the influence of as-
similating SWI on the yield forecasting performance of the system. The first
experiment used a single WOFOST run using only deterministic inputs to gen-
erate biomass values per grid (further to be called ‘classic experiment’). The
water balance for these simulation was started 30 days before crop emergence
or sowing and the initial soil moisture value was set to field capacity.

In the second experiment, we used the probabilistic WOFOST model fed
with probabilistic precipitation inputs and we used the EnKF to assimilate
SWI soil moisture estimates into the system (further to be called ‘EnKF ex-
periment’). The water balance of each ensemble member was started 30 days
before crop emergence or sowing and uncertainty in the initial soil moisture
value was reflected by drawing the initial value for each ensemble member
from a Gaussian random variable with a mean equal to (FC +W L)/2 and
standard deviation equal to 0.2× (FC−W L). Choosing these settings ensures
that the initial soil moisture distribution in the ensembles is Gaussian and that
more then 95% of the drawn values are between wilting point and field ca-
pacity. Values beyond this range were truncated on these limits. Although the
EnKF experiment provides an ensemble of simulated crop biomass, we only
stored the ensemble average biomass for further analyses.

Both experiments were applied for all grids in Spain, Italy, France and
Germany over the period 1992–2000 for winter-wheat and grain maize. The
simulation results of both experiments were spatially aggregated to national
(NUTS0) and regional level (NUTS1/2).

5.4.6 Spatial aggregation of simulation results

The simulated crop biomass values on individual grids have to be aggregated
to regions in order to establish relationships with yield statistics available from
European Statistical Office. Ideally, the cultivated area of each crop should be
known per CGMS grid cell in order to aggregate simulated yield to regions.
However, crop area estimates are not available at the level of individual CGMS
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grids and quite often not on administrative regions. Therefore, we decided to
substitute crop area with the area arable land within a grid cell. The area
of arable land was derived from the PELCOM land cover database (Mücher
et al., 2000). Aggregation of simulation results to the European NUTS2/1/0
levels was thus performed by weighting on the area of arable land within each
CGMS grid cell within a NUTS region.

5.4.7 Evaluation of model performance

Evaluation of the model performance was carried out by searching for a rela-
tionship between the time-series of WOFOST simulated biomass values aggre-
gated to administrative regions, and the historically known crop yield from the
European Statistical Office (EUROSTAT, 2005). Within this paper, we assume
that these statistical values represent the true crop yield for a region, although
uncertainties in the EUROSTAT statistics are probably large, particularly for
the lower administrative regions (NUTS2). For example, it has been observed
that for some regions the same crop yield value has been reported for a series
of years in a row, which is unlikely. Nevertheless, the period 1992–2000 is
favourable from a political perspective given that a major reform of the Euro-
pean Agricultural Policy (CAP) was carried out in 1992 and no major political
changes were made in the years to follow. Therefore there is no breach of
trend in the yield statistics for this period.

We assumed that the time-series of crop yield for a region is composed
of three factors: mean yield, multi-annual trend (or technology trend) and
residual variation around the trend (Supit, 1997; Vossen, 1992). We used the
time-series of yield statistics over the period 1992–2000 to determine a lin-
ear technology trend assuming that the trend is stable over this period. The
time-series of WOFOST simulation results at each dekad1 during the growing
season were then used to explain the residual deviation from the trend; thus
a separate regression model was established for each dekad. Yield forecast-
ing can be carried out by extrapolating the trend for the following year and
by feeding the WOFOST simulation results for the following year into the re-
gression models to predict the deviation from the trend for each dekad in the
following year.

In the ideal situation, model performance is evaluated using the so-called
one-year-ahead prediction, because this mimics the operational conditions.
However, in our case the period 1992–2000 is too short to evaluate on the one-
year-ahead prediction, given that nine years are already necessary to establish

1The use of the term ‘dekad’ refers to an FAO convention in order to distinguish 10 year
periods (decade) from 10 day periods (dekad).
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the regression models. We therefore decided to measure the yield forecasting
performance by using the residual error of the regression model employing
both the trend and the WOFOST simulation results, relative to the residual
error of the regression model employing the technology trend only.
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Figure 5.2: R2 values of a series of regression models (one per dekad) between
reported EUROSTAT yield of winter-wheat for Spain and WOFOST
simulated total crop biomass of winter-wheat over the period 1992–
2000. One series is based on the trend in the statistics only (marked
as ‘f(trend only)’) and the second series using both the trend and the
WOFOST simulation results (marked as ‘f(trend + WOFOST)’). The
residual error of the regression model with the lowest error is plotted
as a percentage of mean crop yield.

An example of the output from the crop yield forecasting system is pro-
vided in figure 5.2 where the WOFOST simulated total crop biomass of winter-
wheat is used to explain the variations in the reported EUROSTAT yield of
winter-wheat for Spain over the period 1992–2000. At each dekad the R2 of
two models is plotted, one model applying the trend in the crop yield statistics
only (marked as ‘f(trend only)’) and the second model using both the trend
and the WOFOST simulation results (marked as ‘f(trend +WOFOST)’). More-
over, the residual error of the regression model with the lowest error is plotted
as a percentage of mean crop yield.

Up till dekad 12 there is no skill in the WOFOST simulation results in
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explaining the EUROSTAT yield statistics. The R2 of both regressions models
is 0.253 and the residual model error shown is the residual error of the trend-
only model (20.57%). In dekad 12, the WOFOST simulation results show
some skill in explaining the yield variations (lower residual error). The R2 of
model ‘f(trend+WOFOST)’ is higher then the R2 of the model ‘f(trend-only)’.
In the following dekads, the model residual error decreases (7.59%) and the
R2 increases (0.912) until dekad 16 and then increases slightly until a final
regression model is obtained in dekad 20. For dekads 20 to 30 the results do
not change any more because the growing season for winter-wheat in Spain is
finished.

For evaluating the results of the classic and EnKF experiments, we used the
following constraints: 1) A valid regression model must be established up till
the end of the growing season. For example, regions for which a model could
be established for dekads 16 and 17, but not for later dekads were rejected;
2) The final residual error that was used for benchmarking was defined as
the average residual error over dekads 25–30. For winter-wheat the residual
error for dekads 25 to 30 is always the same value because the growing season
is finished for all regions in the study area. For grain maize, small variability
in the residual error is often observed for these dekads because the aggregated
simulated biomass results are still changing slightly because of differences in
growing season length; 3) Two indicators were used in the regression analysis:
the water-limited total crop biomass and the water-limited biomass of the crop
storage organs (harvestable product). The best system was selected on the
basis of the indicator with the lowest residual error in the regression model.

5.5 Results

5.5.1 Impact of ensemble size

The influence of the ensemble size on estimate mean and variance of the soil
moisture is shown in table 5.1 as the root mean squared error (RMSE) be-
tween the reference mean and variance (daily ensemble mean and variance
for ensemble size 250), and the calculated mean and variance for one ran-
domly selected ensemble of that size. For the ensemble mean, the RMSE in-
creases when the ensemble size increases from 10 to 25 members, then the
RMSE strongly decreases when the ensemble size increases to 50 members
and finally a small decreases when the ensemble size increases to 100 mem-
bers (except for grid 59061). Results for ensemble variance show a different
pattern. RMSE on the estimated variance decreases with ensemble size in-
creasing from 10 to 50 members, but then increases again for ensemble size
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100. We found that this behaviour is a result of the limited sample size and it
disappears when the results of repeated samples of a certain ensemble size are
averaged. Nevertheless, the results in table 5.1 are more representative of the
results that can be obtained in practice when only one ensemble is available.

Our results indicate that the soil moisture ensemble mean can be estimated
well with an ensemble size of 50 and improvements are small when the en-
semble size is increased to 100. However, for estimates of variance a larger
ensemble size is necessary because the estimated variance is not yet stable for
ensembles up to size 100. Our results with regard to estimates of mean and
variance in relation to ensemble size are consistent with results from Reichle,
McLaughlin and Entekhabi (2002) who showed that error on soil moisture
estimates could be reduced considerable with relatively small ensemble sizes
(30), but that an ensemble size of at least 500 is necessary for stable variance
estimation. Also, Crow and Wood (2003) found little improvement in model
prediction performance with ensemble sizes larger then 50. Given constraints
on data storage and computational capabilities, we decided that an ensemble
size of 50 was a reasonable trade off between ensemble size and accuracy of
estimated mean and variance.

The temporal patterns in the soil moisture ensemble mean and variance for
different ensembles sizes are shown in figure 5.3 (page 102) for two grids, one
in southern Spain (30032) and one in northern France (54041). For southern
Spain the simulation starts half February and the ensemble means demon-
strate similar patterns of increasing soil moisture content due to spring rain-
fall events during the first 60 days and a large rainfall event at day 62. Soil
moisture levels are relatively stable during days 60–90 and then a gradual dry
down of the soil is simulated due to increased water use by the crop and a lack
of rainfall during the summer period. The temporal patterns in the variance
(Figure 5.3B) show large differences between various ensembles up to day 63
when many ensemble members receive a large amount of rainfall, causing a
sharp decrease in the variance. After day 100, variance decreases further as
the soils of all ensemble members are gradually drying out until the soil of
many ensemble members reaches wilting level at which the variance for all
ensemble sizes becomes nearly zero.

For northern France (Figure 5.3C), the figure shows an in crease in soil
moisture levels due to Spring rainfall and after day 70 a drying trend to due
crop water use, which is often interrupted by isolated large Summer rainfall
events. After day 175, soil moisture increases again due to a decrease in crop
water use in combination with rainfall in Autumn. The ensemble mean can
be estimated well with all ensemble sizes except for ensemble size 10, which
shows a consistent underestimate of the ensemble mean. The ensemble vari-
ance (Figure 5.3D) remains relatively high during most of the growing season,
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Table 5.1: Estimates of RMSE on ensemble average and ensemble
variance of volumetric soil moisture estimates through-
out the growing season. Simulations were carried
out for grain maize for five grids located in south-
ern Spain (30032), northern Spain (40036), southern
France (43044), northern France (54041) and central
Germany (59061).

Grid Ensemble size RMSE of average RMSE of variance

30032 10 0.004908 0.6086 10−3

30032 25 0.009709 0.1794 10−3

30032 50 0.001994 0.0332 10−3

30032 100 0.001509 0.3202 10−3

40036 10 0.007141 0.7125 10−3

40036 25 0.008705 0.1145 10−3

40036 50 0.002017 0.0346 10−3

40036 100 0.000876 0.3496 10−3

43044 10 0.008075 0.4954 10−3

43044 25 0.008657 0.3305 10−3

43044 50 0.001891 0.1559 10−3

43044 100 0.001736 0.3063 10−3

54041 10 0.007507 0.8462 10−3

54041 25 0.011076 0.2813 10−3

54041 50 0.002380 0.1772 10−3

54041 100 0.001193 0.4139 10−3

59061 10 0.009604 0.9358 10−3

59061 25 0.010587 0.3326 10−3

59061 50 0.001462 0.0800 10−3

59061 100 0.002028 0.5202 10−3
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Figure 5.3: Temporal evolution of ensemble mean and variance for grids 30032
and 54041.
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this demonstrates that the frequent rainfall events, whose uncertainty is mod-
elled in the ensemble rainfall inputs, continuously can sustain the ensemble
spread. Ensemble variance is decreasing during periods of soil water replen-
ishment (days 25–100 and days 190–225) during which the soil moisture con-
tent of many ensemble members is near or at field capacity.

5.5.2 Analyses of filter innovations

Analyses of the innovations of the EnKF can provide information about system-
atic deficiencies in the water balance of our model due to for example poorly
estimated soil depth, rainfall input or crop model parameters. We present the
results of this analyses in three ways: 1) maps of yearly summed soil moisture
innovations showing where soil moisture was added or removed; 2) temporal
patterns for selected grids of individual soil moisture innovations to the wa-
ter balance and; 3) a histogram of normalised innovations that characterises
the statistical properties of the filter and that can be used for assessing filter
performance.

Maps of yearly sums of soil moisture innovations

Figure 5.4 (page 105) shows the yearly total soil moisture innovations for
grain maize simulations for the campaigns 1993 and 1999. These campaigns
were chosen because they present two contrasting years, but the map of 1993
is more representative of the overall pattern in other years. A negative sum of
innovations indicates that the soil was too wet and that water was systemati-
cally removed from the soil. A positive sum of innovations indicates that the
soil was too dry and water was systematically added to the soil.

The map of 1993 shows an overall tendency of negative innovations
demonstrating that the modelled amount of soil moisture was too high for
large parts of the test area. Large negative innovations are particularly visi-
ble in northern France and central Germany, to a lesser extent in Spain while
the sum of innovations is only slightly negative for most grids in Italy. Some
isolated grids with positive innovations are visible in southern France. The
map of 1999 shows large areas with positive innovations, particularly north-
ern Germany, central and southern France. Grids in the western part of Spain
and northern Italy also have dominantly positive innovations, but less pro-
nounced.

For winter-wheat (Figure 5.5, page 106), the overall patterns are fairly
similar: large negative innovations for northern France (-20 to -60 mm) and
large positive innovations for north-eastern Germany (20 to 60 mm) in most
of the years. For Spain the overall innovations are slightly negative (-20 to 10
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mm) with the exception of 1993 and 1998 where clusters of grids with large
negative and positive innovations are present.

Temporal patterns of soil moisture innovations

Figure 5.6 (page 107) shows the temporal patterns of the soil moisture inno-
vations for grain-maize simulations for four selected grids of the period 1992-
2000. The plots for the grids in southern Spain (30032), southern France
(43044) and central Germany (59061) demonstrate that there is a temporal
correlation in the innovations: mainly negative innovations during the first
part of the growing season, mainly positive innovations during the second
part of the growing season. The sum of the innovations is dominantly neg-
ative, corresponding with the findings in the previous section. Grid 62063
(Figure 5.6) is located in north-eastern Germany which was characterised by
mainly positive sums of innovations. The temporal pattern of innovations is
also different for this grid showing near-zero innovations during the first part
of the growing season, and slightly positive innovations during the second half
of the growing season.

Results for winter-wheat are different. Grid 30032 (southern Spain) still
shows a pattern of negative innovations during the first part of the growing
season and positive innovations during the second part (Figure 5.7, page 108),
which is similar to the results for grain-maize. Results for grids 43044 (south-
ern France) and 59061 (central Germany) demonstrate a different pattern
which is characterised by a series of near zero innovations during the begin-
ning of the growing season, then the innovations become negative, while at
the end of the growing season the innovations are near zero or slightly positive
again. Good examples of this pattern are the year 1999 for grid 43044 and
1998 for grid 59061 (Figure 5.7).

Normalised filter innovations

The consistency of the EnKF results with regard to the assumptions that un-
derlie the Kalman filter (Gaussian forecast error, temporally and spatially un-
correlated innovations) can be evaluated by looking at the distribution of the
normalised innovations (D−A)/

p

Pe + Re. If all assumptions are met then this
distribution should be Gaussian with mean zero and standard deviation one.
We calculated the normalised filter innovations for all years for both winter-
wheat and grain maize simulations (Figure 5.8, page 109). It is obvious that
the normalised filter innovations do not follow a normal distribution (plotted
for reference). The mean of the distribution is -0.4026 indicating that on av-
erage the innovations were negative (soil moisture was over predicted), while
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Figure 5.6: Temporal patterns of the soil moisture innovations for grain-maize
simulations for four selected grids over the period 1992–2000.
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Figure 5.7: Temporal patterns of the soil moisture innovations for winter-wheat
simulations for four selected grids over the period 1992–2000.
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the standard deviation (2.22) indicates that the assumed error covariances
(Pe+Re) are underestimated. The large negative tail indicates too many large
negative innovations associated with over prediction of soil moisture levels,
while the positive tail indicates too many positive innovations associated with
under prediction of soil moisture levels. The distribution of the normalised
innovations did not improve when grids were selected that were dominated
by winter-wheat demonstrating that the performance of the filter is not de-
pending on the dominant land use within a CGMS grid.

Fr
eq

ue
nc

y

0.05

0.04

0.03

0.02

0.01

0.00
Standard deviation

420-2-4-6

Figure 5.8: Distribution of normalised filter innovations (thick line) and a stan-
dard normal distribution (thin line).

A small case study was carried out to analyse and explain the behaviour
of the normalised filter innovations in terms of mean and standard deviation.
First of all, the negative mean of the normalised filter innovations can be ex-
plained by differences in the mean of the climatology of model forecasts and
SWI (Reichle and Koster, 2005). Therefore, the climatology of the WOFOST
simulated soil moisture for winter-wheat (no assimilation) and the SWI pre-
dicted soil moisture over the period 1992-2000 was analysed for a block of
3× 3 CGMS grids with grid 43044 as the centre grid.

Figure 5.9 (page 110) shows the distribution of soil moisture for the days
that SWI derived soil moisture could be compared with the WOFOST results.
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The distribution of WOFOST soil moisture has a peak around 0.25 which is
corresponds to field capacity. This is a result of WOFOST simulating (nearly)
bare soil conditions for a considerable part of the season during which no wa-
ter is extracted by plant roots. The mean of the distributions is 0.229 and
0.207 for the WOFOST and SWI soil moisture estimates. This result proves
that at least part of the negative mean in the distribution of normalized inno-
vations can be explained from the differences in the mean of the climatology
of the two sources of soil moisture.

Figure 5.9: Soil moisture climatology for WOFOST simulations (mean 0.229, SD
0.047) and Soil Water Index (mean 0.207, SD 0.045).

Secondly, the excessive spread in the distribution of normalised innova-
tions indicates that the assumed error variances (Pe+Re) are underestimated.
Although both Pe and Re are probably to blame, the correct variances cannot
be easily inferred because both Pe and Re are variable in space and time. Nev-
ertheless, the effect of increased variance on the distribution of normalised
innovations can be easily demonstrated by artificially inflating the observation
variance (Re). The WOFOST model coupled to the EnKF was applied for the
same test grids, period and crop, but the observation variance (Re) was inflated
by a factor 4 (double standard deviation). Figure 5.10 (page 111) compares
the distributions of normalised innovations for the normal and inflated ob-
servation variance. The figure demonstrates that the excessive spread in the
distribution is strongly reduced as the standard deviation decreases from 1.97
to 1.17, while the mean becomes closer to zero (from -0.61 to -0.34).



5.5 Results 111

Figure 5.10: Distribution of normalised innovations for normal observation vari-
ance (left) and inflated observation variance (right).

5.5.3 Yield forecasting performance

Regression results for winter-wheat (Table 5.2, page 118) demonstrate that
the assimilation of SWI values has a positive effect on the crop yield prediction.
A relationship could be established for 33 regions based on the results from
both experiments, for the EnKF experiment in 31 regions and for the classic
experiment in 24 regions. Out of these 33 regions, in 22 cases the residual
error on the regression model was lower for the EnKF experiment compared
to the classic experiment.

Nevertheless, table 5.2 also demonstrates that there are clear limitations
for predictability of winter-wheat yield. A relationship could only be estab-
lished for 33 regions out of 88 regions, a score of only 38%. At national level
(NUTS0) a relationship could be established for Germany (DE) and Spain
(ES), but not for Italy (IT) and France (FR). In case of Germany, the resid-
ual error from classic experiment (2.46%) outperforms the results from the
EnKF experiment (2.93%) but both are better then the trend-only (3.43%). In
Spain, the opposite is true where the residual error of the trend-only (20.57%)
can be reduced to 6.66% using the results from the EnKF experiment, while
the residual error of the classic experiment is 8.23%.

We defined the normalised regression performance as the residual error
of the EnKF experiment minus the residual error of the classic experiment,
divided by the residual error of the trend-only. This measure shows the per-
formance of the EnKF results over the classic results, relative to the error on
the trend. Negative values indicate that the residual error of the EnKF results
is larger then the residual error of the classic results. The results for winter-
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wheat clearly show the improvement in the regression results as the majority
of regions is in the right hand (positive) side of the diagram (Figure 5.11, page
112). Most of the improvements in the regression results are between 0 and
10% (13 regions), and between 10% and 25% (7 regions). Nevertheless, the
diagram also shows that for two regions, the results strongly deteriorate with
values between -75% and -50%.

Figure 5.11: Normalised regression performance for winter-wheat and grain
maize.

When the regression results at NUTS1 level are plotted as maps (figure
5.12A, page 113), it is clear that predictability of winter-wheat yield is limited
mainly to regions in Spain and north-eastern Germany. The majority of regions
shows an lower residual error in the regression with EUROSTAT yields for the
EnKF experiment, but for some regions the residual error increases compared
to the classic experiment. Notably for the large central region in Spain the
error increases. At NUTS2 level (Figure 5.12B), results are similar for Spain
while no statistical data for Germany exists at NUTS2 level. Furthermore, a
relationship could be established at NUTS2 level for some regions in southern
Italy, southern France as well as Sardinia and Corsica.

The overall ability of the system to predict yield of grain maize is consid-
erably better compared to winter-wheat (Table 5.3, page 120). A relationship
could be established for 50 regions out of 84 regions, a score of 60%. Im-
provement in performance by the results of the EnKF experiment is however
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less evident: A relationship could be established for 42 regions based on the
results from the EnKF experiment and in 44 regions for the classic experiment.
Out of the 50 regions, in 28 regions the residual error on the regression model
was lower for the EnKF experiment compared to the classic experiment.

At national level, relationships could be found for Germany (DE), France
(FR) and Spain (ES) but only in the case of Spain was the residual error from
the EnKF experiment smaller then the residual error from the classic experi-
ment. The normalised yield forecasting performance (Figure 5.11) confirms
that the improvement in yield forecasting performance is small.

The spatial distribution of the results for NUTS1 regions (Figure 5.13A,
page 115) shows that results improve in north-eastern Germany as well as for
some regions in Spain, although the although overall predictability of yield
in Spain is limited to a few regions. France, Italy and the rest of Germany
show no clear patterns and regions with lower or higher residual error seem
randomly distributed over the study area. At NUTS2 level (Figure 5.13B), the
results for France indicate that for most regions the residual error using results
from the classic experiment were lower then the EnKF experiment. For Italy
and Spain the predictability is limited to a few regions although these regions
generally show lower residual error for the EnKF experiment.

5.6 Discussion and conclusions

Uncertainty in spatial and temporal distribution of rainfall in regional crop
yield simulations comprises a major fraction of the error on crop model simu-
lation results. This is particularly the case for climates marginal to crop growth
where uncertainty in rainfall estimates can have large effect on the simulation
of the final biomass production. In this paper, we present the application of
an ensemble Kalman filter for assimilating coarse resolution soil moisture esti-
mates in a distributed crop growth model in order to compensate the effect of
uncertainty in the rainfall. We evaluated our results with regard to the EnKF
filter innovations and the relationship with yield statistics on administrative
regions.

Our results demonstrate that the assumptions underlying the EnKF are not
entirely fulfilled, given that the normalised innovations are not Gaussian and
that the resulting spatial and temporal patterns show a clear correlation struc-
ture. This indicates that the innovations made to the model water balance are
not the result of random noise, but are the result of systematic deviations in
the model dynamics and/or a poorly known error structure in the satellite-
derived SWI. A small cases study showed that differences in the mean of the
climatology of the forecasted (WOFOST) and observed (SWI) soil moisture
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can (at least partly) explain the non-zero mean in the distribution of the nor-
malised innovations. The excessive spread in the distribution of normalised
innovations indicates that the sum of the variances on observations and fore-
casts (Pe + Re) is underestimated. In hindsight, this is not surprising, since
model error is assumed to be due to only precipitation forcing and observation
error is assumed to be due to only instrument noise. It is therefore likely that
both Pe and Re are to blame and these results clearly indicate that additional
sources of error need to be included in the simulations and observations.

The temporal patterns in the innovations for winter-wheat simulations
show that the innovations in the beginning of the growing season are close
to zero for most grids (Figure 5.7, page 108) indicating that the soil moisture
levels compare well with SWI estimates. In contrast, for grain maize simula-
tions innovations in the beginning of the growing season are strongly negative
(Figure 5.6, page 107). Given that both simulations have the same point of
departure with regard to initial soil moisture (sampled from a random vari-
able with mean half way wilting point and field capacity) this could well be an
initialisation problem which points out that the initial conditions are represen-
tative for winter-wheat simulations which are already starting in Winter, but
not for the grain maize simulations starting several months later. The EnKF
is thus correcting the too wet conditions for the grain maize simulations, but
needs several assimilation steps to do so. A solution to this problem can be to
increase the initialisation period for the water balance for summer crops.

In the second part of the growing season, filter innovations for grain maize
simulations are generally positive, while filter innovations for winter-wheat
simulations are first negative and then become positive. Filter innovations
thus tend to get positive during the warm and relatively dry Summer months
when the soil moisture level during crop simulation becomes too low and
the EnKF starts to correct for it. An explanation for the effect might be that
the crop types in the current system are too drought tolerant and are able to
draw water from the soil up to very low soil moisture levels. This hypothesis
is supported by earlier work by Nieuwenhuis et al. (1998) who compared
satellite estimates of crop evapotranspiration with WOFOST simulated crop
evapotranspiration in southern Spain. The WOFOST simulations sustained
high evapotranspiration levels up to the point where soil moisture became
limiting which resulted in a strong decrease in crop evapotranspiration. In
contrast, the satellite estimates showed a much more gradual decline in crop
evapotranspiration. This model behaviour could be altered by changing model
parameters to make the crop simulations less drought tolerant. The EnKF
could then be re-run to see if filter innovations improve.

With regard to the relationship with crop yield statistics, our results
demonstrate that the assimilation of SWI has clearly improved the relationship
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with crop yield statistics for winter-wheat for the majority of regions (66%)
where a relationship could be established. For grain maize the improvement
is less evident because improved relationships could only be found for 56%
of the regions. At national level, the results of the regression only improved
for Spain, but not for Germany, France and Italy. Although the results at na-
tional level are somewhat disappointing, it is encouraging that the results do
improve for Spain where crop production is most affected by water limitations
and thus the potential for improvement using SWI is greatest.

A possible explanation for the relatively poor results of the EnKF experi-
ment for prediction of grain maize is that grain maize is often partially irri-
gated in southern areas, which is not included in the model. For example,
the average yield of grain maize in Spain over the period 1992–2000 is 8.12
ton/ha compared to 2.38 ton/ha for wheat, clearly showing the effect of ir-
rigation of grain maize. Nevertheless, for many areas relationships can be
established between EUROSTAT yield statistics and WOFOST water-limited
biomass, showing that grain maize is not irrigated to an extent where yield
becomes totally independent of rainfall. However, the effect of irrigation is
probably not reflected in SWI given the difference in size between the scat-
terometer footprint and the size of most irrigation systems and this might
explain why the results from the EnKF experiment cannot ‘add’ much informa-
tion compared to the results of the classic experiment.

The overall conclusion that can be drawn from this study is that the assim-
ilation of SWI in the water balance of the crop growth model has a beneficial
effect on the overall performance of the yield forecasting system. Although the
present results are too limited in scope to claim generality, they are encour-
aging given that the quality of the SWI data is relatively poor over Europe.
Further analyses of the current results will need to focus on the prediction of
total crop production (area × yield) as the current analyses does not take this
into account. Moreover, the precocity of the forecasts needs to be analysed
in order to see if the timeliness of the forecast can be improved. Finally, the
experiment needs to be repeated for other crop types and regions to determine
if similar results can be obtained.
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Table 5.2: Residual error (% of mean yield) on the relationship between regional
simulated biomass values and the EUROSTAT regional crop yield statis-
tics for winter-wheat.

NUTS code Trend- ENKF CLASSIC
only Biomass Storage Biomass Storage

DE 3.43 2.93 · 2.46 ·
DE1 · · · · ·
DE2 · · · · ·
DE4 12.62 6.86 9.92 6.89 12.62
DE5 · · · · ·
DE6 · · · · ·
DE7 · · · · ·
DE8 8.16 5.92 7.22 4.85 ·
DE9 4.23 3.92 · · ·
DEA · · · · ·
DEB · · · · ·
DED 6.8 4.18 3.77 4.19 4.4
DEE 10.82 7.68 · 6.75 ·
DEF · · · · ·
DEG 6.9 5.54 · 5.78 6.54

ES 20.57 6.66 8.58 8.23 9.08
ES1 7.7 7.32 · 7.52 ·

ES11 7.58 7.47 · 7.55 ·
ES12 · · · · ·
ES13 · · · · ·

ES2 · · · · ·
ES21 13.31 9.86 10.8 · ·
ES22 11.06 9.72 9.58 3.96 4.41
ES23 · · · · ·
ES24 18.79 · 16.09 · ·

ES3 21.46 · 16.93 · 17.2
ES4 23.08 14.28 13.59 5.66 5.51

ES41 24.22 21.4 21.81 14.08 14.41
ES42 30.62 16 12 10.23 12.56
ES43 · · · · ·

ES5 9.81 6.73 8.14 6.89 6.78
ES51 · · · · ·
ES52 33.08 20.99 24.11 24.04 23.48

Continued on next page
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Table 5.2 – continued from previous page

ES53 · · · · ·
ES6 48.12 31.89 34.61 42.43 40.86

ES61 48.72 33.2 35.91 43.13 41.89
ES62 · · · · ·

FR · · · · ·
FR1 5.84 · 5.66 · ·
FR2 · · · · ·

FR21 · · · · ·
FR22 · · · · ·
FR23 · · · ·
FR24 5.46 · 4.96 · 5.01
FR25 · · · ·
FR26 · · · · ·

FR3 · · · · ·
FR4 · · · · ·

FR41 · · · · ·
FR42 · · · · ·
FR43 · · · · ·

FR5 · · · · ·
FR51 · · · · ·
FR52 · · · · ·
FR53 · · · ·

FR6 · · · ·
FR61 · · · · ·
FR62 · · · · ·
FR63 · · · · ·

FR7 · · · · ·
FR71 7.91 · · · 6.76
FR72 · · · · ·

FR8 16.29 · · 7.99 ·
FR81 · · · · ·
FR82 17.18 7.59 9.35 10.38 10.31
FR83 11.41 · 10.64 10.64 ·

IT · · · · ·
ITC · · · · ·

ITC1 · · · · ·
ITC3 21.9 · 19.21 · ·

Continued on next page
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Table 5.2 – continued from previous page

ITC4 · · · · ·
ITD · · · · ·

ITD3 · · · · ·
ITD4 · · · · ·
ITD5 · · 4.37 · ·

ITE · · · · ·
ITE1 · · · · ·
ITE2 · · · · ·
ITE3 · · · · ·
ITE4 · · · · ·

ITF · · · · ·
ITF1 · · · · ·
ITF2 · · · · ·
ITF3 · · · · ·
ITF4 18.01 · 12.37 9.89 13.8
ITF5 26.24 22.78 · · ·
ITF6 6.65 6.69 · · ·

ITG · · · · ·
ITG1 · · · · ·
ITG2 29.81 19.19 · · ·

Table 5.3: Residual error (% of mean yield) on the relationship between regional
simulated biomass values and the EUROSTAT regional crop yield statis-
tics for grain maize.

NUTS code Trend- ENKF CLASSIC
only Biomass Storage Biomass Storage

DE 5.35 3.89 · 2.95 4.67
DE1 7.58 5.9 7.07 5.95 ·
DE2 5.43 · · 4.23 ·
DE4 12.72 5.37 9.69 6.22 ·
DE7 3.15 · 2.08 · ·
DE8 14.56 10.48 · · ·
DE9 · · · · ·
DEA 6.82 4.15 4.92 3.6 3.62

Continued on next page
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Table 5.3 – continued from previous page

DEB 3.26 1.91 2.59 · 2.03
DED · · · · ·
DEE 9.16 5.24 · 6.98 ·
DEF · · · · ·
DEG 5.89 · 4.63 · 4.57

ES 7.11 6.02 · 6.23 ·
ES1 · · · · ·

ES11 · · · · ·
ES12 · · · · ·

ES2 · · · · ·
ES21 · · · · ·
ES22 4.09 · 3.55 3.4 3.42
ES23 · · · · ·
ES24 · · · · ·

ES3 11.16 6.33 6.35 9.56 6.73
ES4 · · · · ·

ES41 · · · · ·
ES42 · · · · ·
ES43 · · · · ·

ES5 8.14 6.05 5.04 5.81 ·
ES51 8.6 · 5.53 6.31 6.97
ES52 · · · · ·

ES6 16.16 10.04 14.36 10.76 14.76
ES61 16.74 11.4 14.45 12.4 15.15
ES62 · · · · ·

FR 3.9 2.92 3.69 2.03 3.14
FR1 5.79 3.84 · · ·
FR2 5.38 3.1 5.07 3.06 ·

FR21 8.75 7.06 · 7.55 ·
FR22 7 5.7 · 4.91 ·
FR23 8.64 · · 7.36 7.23
FR24 4.4 · · 2.89 ·
FR25 7.65 · 4.82 · 5.82
FR26 7.52 6.23 · 5.77 ·

FR3 10.16 · · 9.74 ·
FR4 5.37 2.19 4.68 2.84 4.45

FR41 7.62 1.75 4.81 3.36 4.85

Continued on next page
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Table 5.3 – continued from previous page

FR42 5.15 · · 4.79 ·
FR43 8.5 5.88 · 2.99 7.22

FR5 5.21 · 2.65 2.97 3.52
FR51 · · 4.54 4.41 3.12
FR52 9.65 7.75 · · ·
FR53 5.43 · 2.89 2.48 3.25

FR6 6.04 4.41 3.16 3.12 2.73
FR61 5.87 4.31 3.84 2.73 2.89
FR62 6.82 5.06 3.95 3.93 3.94
FR63 · · · · ·

FR7 5.04 2.37 · 3.1 4.01
FR71 5.52 · 1.76 · 2.81
FR72 · · · · ·

FR8 · · · · ·
FR81 16.34 · · 15.29 ·
FR82 · · · · ·
FR83 7.58 6.59 · · ·

IT · · · · ·
ITC 3.48 · · 2.96 ·

ITC1 · · · · ·
ITC3 3.31 · · 2.75 ·
ITC4 · · · · ·

ITD 4.97 3.47 · 3.72 ·
ITD3 6.15 3.17 5.3 3.33 5.87
ITD4 · · · · ·
ITD5 · · · · ·

ITE 3.12 · 2.03 · ·
ITE1 · · · · ·
ITE2 9.59 8.65 · 9.18 ·
ITE3 · · · · ·
ITE4 3.26 · 2.98 · 2.99

ITF · · · · ·
ITF1 · · · · ·
ITF2 · · · · ·
ITF3 · · · · ·
ITF4 · · · · ·
ITF5 · · · · ·

Continued on next page
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Table 5.3 – continued from previous page

ITF6 11.71 · 11.4 · 11.51
ITG · · · · ·

ITG1 · · · · ·
ITG2 · · · · ·





Chapter 6

Conclusions

6.1 Introduction

The main objective of this thesis was to establish a basis for probabilistic crop
growth modelling and remote sensing data assimilation for improved regional
crop yield forecasting. Within this overall objective, the following specific
research topics were identified that structure the approach:

• Exploring the uncertainties related to the spatial and temporal variability
of the main meteorological forcings necessary for running a crop growth
model namely temperature, radiation and precipitation. This research
topic was elaborated in chapters 2 and 3;

• Modelling the uncertainty of precipitation input using a stochastic ap-
proach on a spatial and temporal scale consistent with the needs of re-
gional crop growth modelling. This research topic was elaborated in
chapter 4;

• Developing a probabilistic framework for crop growth modelling cou-
pled to an ensemble Kalman filter for assimilation of remote sensing
derived observations. This research topic was elaborated in chapter 5;

• Applying the developed probabilistic framework in a case study and
demonstrating the improvements in the relationships between model
output and crop yield statistics through the assimilation of soil moisture
estimates. This research topic was elaborated in chapter 5.

This chapter will synthesise the main findings of the above and will reflect
on related issues such as operational applicability, continuity requirements for
satellite missions, computational efficiency and enhanced land cover data. Fi-
nally, suggestions for further research will be given.
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6.2 Synthesis

In chapter 2 it was demonstrated that AVHRR-derived surface temperature
can be applied as input into a spatially distributed crop growth model. Never-
theless, in hindsight it was gradually realised that the use of AVHRR derived
temperature in an operational crop growth monitoring system is probably not
a viable choice. First of all, its use poses a couple of operational difficulties
such as incomplete time-series due to persistent cloud cover, necessary correc-
tions for differences between air and surface temperature, systematic effects
caused by orbital drift and the processing capacity and data volumes involved.

Secondly, it is unlikely that uncertainty in temperature is an important
component in a distributed crop growth model, although the work described in
chapter 2 is not conclusive on this aspect. The main reason is that temperature
is measured at many locations and it can be interpolated fairly well because
it has a long spatial correlation length and known relationships with altitude.
Moreover, numerical weather prediction (NWP) models nowadays can provide
accurate estimates of near-surface air temperature and have the advantage
that long and consistent time-series are available.

Despite the negative outlook of the applicability of the work carried out
in chapter 2, it was an important iteration step in updating the research ap-
proach. As a result, in chapter 3 the effect of uncertainty in radiation and
precipitation on the crop growth model output was explored. In this chapter,
the results obtained with the operational CGMS (which derives input from
weather stations) is compared with results obtained from CGMS by using
highly accurate precipitation and radiation inputs derived from ELDAS. The
first conclusion that could be drawn from this work is that uncertainty in radi-
ation and precipitation inputs do have a considerable influence on the simula-
tion results at the level of individual 50× 50 km grids but that the influence
gradually decreases when results are spatially aggregated to provincial and
national level.

The second conclusion is related to the influence of sub-grid variability of
precipitation and radiation. It was demonstrated that the spatially distributed
simulation results at 10×10 km scale almost linearly with the results at 50×50
km using averaged rainfall and radiation. This means that the precipitation
and radiation forcings can be averaged over the 50 × 50 grid box and used
as input in the crop growth model without running into aggregation problems
related to non-linearity. This is a particularly import finding in relation to
the use of the scatterometer derived SWI, because the scatterometer measure-
ments will also average over the footprint of the sensor.

Finally, it was concluded that uncertainty in the precipitation and radiation
fields in CGMS had limited influence on the crop yield forecasts at national
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level for France and Germany, indicating that the CGMS forecasts at this level
of aggregation are fairly robust.

The results presented in chapter 3 prove that the uncertainty in radiation
and precipitation forcings is an important aspect which needs to be taken into
account when interpreting results of CGMS simulations, particularly for indi-
vidual 50× 50 grid boxes or lower administrative regions. However, chapter
3 did not provide a handle on how to operationally quantify and visualise this
uncertainty due to input forcings. This aspect is treated in chapter 4 where
a method was developed and applied to create ensembles of precipitation in-
puts.

The priority for precipitation instead of radiation was made in analogy
with results from the land surface modelling community where precipitation
forcing is generally acknowledged to be the key variable (section 4.1, page
53). Moreover, the effect of uncertainty in precipitation forcings was found to
be dominant over radiation forcings (table 3.3 on page 43 and table 3.4 on
page 46). Finally, from an operational aspect it can be expected that radiation
inputs in CGMS can be readily improved by using output from NWP models
(Meetschen et al., 2004), while this it is unclear whether NWP derived precip-
itation estimates are an improvement over the estimates currently derived by
CGMS.

In chapter 4 a method is presented to create ensembles of equiprobable
realisations of precipitation fields at a temporal and spatial scale which is con-
sistent with the requirements for crop model applications that target large area
crop yield prediction. First of all, it is argued based on theoretical and practical
grounds that the current spatial and temporal resolution of CGMS is sufficient
for large area crop yield prediction. Secondly, an approach is developed where
the CGMS precipitation input field is treated as a first guess of the underlying
true precipitation field (assumed to be the ELDAS precipitation dataset). The
error model was built by calculating the residuals between the CGMS precipi-
tation fields and the ELDAS precipitation fields for specific intervals of CGMS
precipitation and by converting the resulting distributions to standard normal-
ity. A second, independent model took care of generating precipitation events
in case CGMS predicted zero precipitation. Realisations of the error model
were generated by adding back transformed simulated residuals to the CGMS
precipitation data and the characteristics were compared with the reference
precipitation fields.

The main conclusion that can be drawn is that the precipitation realisations
that were generated have favourable characteristics for regional crop growth
modelling given that the deviations from the target characteristics (shifting of
100th percentile, failure to reproduce prolonged dry spells) are of minor im-
portance for this particular application. Nevertheless, improvements in the en-
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semble generator might be achieved by calibrating the system for different sea-
sons and regions separately. For example, the failure to reproduce prolonged
dry spells in Spain is a clear indication that the probability of precipitation
when CGMS predicts no precipitation is overestimated for South-Spain. This
could be improved if calibrations were carried out per climatic zone and/or
season (Metzger et al., 2005).

An important characteristic of the approach is that the ensemble generator
was calibrated on the mean ELDAS precipitation per grid cell. Besides correct-
ing any biases in the CGMS precipitation, the ensemble generator therefore
also takes care of the translation from CGMS precipitation to grid cell mean
precipitation which should be reflected in the ensemble mean. In chapter 3 it
was shown that the output of WOFOST scales linearly when averaging precip-
itation and radiation inputs. Therefore, the ensemble mean should present an
unbiased estimate of the average rainfall per CGMS grid cell.

The impact of the precipitation realisations on the crop yield forecast was
demonstrated for a NUTS1 region in France and caused a total spread in the
yield forecast of around 0.65 ton/ha. Moreover, density plots of the yield
forecast ensemble showed that the shape of the yield forecast ensemble was
non-Gaussian and propagated in a non-linear way through the growing sea-
son. This last aspect indicates that the uncertainty on the yield forecast is
a result of complex non-linear processes and thus cannot be captured easily
through other methods such as for example through the uncertainty on the
forecasting regression model.

Finally, in chapter 5 the WOFOST crop growth model was cast into a prob-
abilistic framework and coupled to an ensemble Kalman filter for sequential
assimilation of satellite observations. This system was applied for four coun-
tries in Europe (Germany, France, Spain and Italy) over the period 1992–2000
and coarse resolution satellite microwave sensor derived soil moisture esti-
mates were assimilated for correcting errors in the water balance of the model
during the crop simulation caused by uncertainty in rainfall or model initial-
isation. The ultimate goal of this work was to demonstrate that assimilation
of remote sensing derived soil moisture observations leads to improved re-
lationships between model output and crop yield statistics for administrative
regions at different administrative levels. Additionally, the innovations of the
ensemble Kalman filter can provide some diagnostics that can help to trace
deficiencies in the model and/or observations.

The most important conclusion that can be drawn from this work is that the
assimilation of soil moisture estimates (SWI) clearly improved the relationship
with crop yield statistics for winter-wheat for the majority of regions (66%)
where a relationship could be established (i.e. better then the trend only). For
grain maize the improvement is less evident because improved relationships
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could only be found for 56% of the regions. At national level, the results
of the regression only improved for Spain, but not for Germany, France and
Italy. Although the results at national level are somewhat disappointing, it
is encouraging that the results do improve for Spain where crop production
is most affected by water limitations and thus the potential for improvement
using SWI is greatest.

A clear limitation of the current analysis is that only the ensemble average
was used, thereby excluding important information about uncertainty in the
crop yield forecast which was shown to be important for some regions (section
4.4.4). For operational application of probabilistic crop yield forecasting this
is highly undesirable, because an important part of the information provided
is not utilised and communicated. However, an important bottleneck in using
such ensemble information is that the current generation of tools for analysing
CGMS output and making crop yield forecasts, is lacking the ability to process,
analyse and visualise ensemble based data.

With regard to the performance of the ensemble Kalman filter, it can be
concluded that the assumptions underlying the EnKF are not entirely fulfilled,
given that the normalised innovations are not Gaussian and that the resulting
spatial and temporal patterns show a clear correlation structure. The excessive
spread in the distribution of normalised innovations indicates that the sum of
the variances on observations and forecasts is underestimated. It was argued
that the errors on both the model and the observations are underestimated.

With regard to the observed soil moisture, better modelling and validation
of the SWI product may lead to a better understanding and estimates of the er-
ror on the SWI. Moreover, it is expected that the accuracy of the SWI derived
from the scatterometer onboard METOP will be considerable better due to
METOP’s improved revisit pattern compared to ERS1/2 (Pellarin et al., 2006).
With regard to the modelled soil moisture, additional sources of uncertainty
have to be included in the WOFOST simulations. For this purpose, the proba-
bilistic weather inputs could be extended to include radiation and temperature
as these variables will influence the evapotranspiration and plant growth rates
and consequently add additional variability to the soil moisture state. Ad-
ditionally, a Gaussian noise term could be added to the model states during
simulation in order to take into account unknown errors or deficiencies in the
model structure itself.

6.3 Reflection

The innovative aspect of the presented approach is the use of the probabilistic
approaches and data assimilation for crop growth models and their applica-
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tion at regional scale. Within this approach the ensemble is the centrepiece in
two ways: first of all it supports the crop growth modelling system enabling a
probabilistic approach and data assimilation. Secondly, it plays an important
role in the generation of the final product through statistical post-processing,
visualisation and finally in the decision making process. Although this last
aspect was only marginally treated within this thesis, the potential applica-
tions that come within reach through such an approach are beyond what is
commonly available in crop yield forecasting systems.

In section 1.4 three operational constraints were identified: algorithms
should be applicable at regional scale, satellite data continuity should be war-
ranted and local ancillary data should not be used. The first operational con-
straint mainly applies to chapters 4 and 5 where algorithms were developed
and applied that involve some calibration. One example is the use of the EL-
DAS precipitation dataset in order to calibrate the error distributions in the
model. Although ELDAS is not available for regions outside Europe, other
methods exist to calibrate such tools and derive the error distributions (see
section 4.1). A second example is the ‘calibration’ of the normalized innova-
tions through the appropriate error structure in the observations and simula-
tions. However, this calibration can be carried by making an educated guess
about the appropriate error structure and rerunning the simulations until the
normalized innovations approximate a Gaussian distribution.

The second operational constraint was addressed in section 1.3 (page 6)
where it was concluded that the operational polar-orbiting and geostationary
satellite missions provide the best warranties for satellite data continuity. Nev-
ertheless, the majority of instruments onboard these satellites is not tailored
for crop monitoring purposes. For example, the spatial resolution of the optical
instruments is too low to monitor canopy development for specific crop types.
Requirements for a crop monitoring mission would be to obtain frequent (i.e.
2–3 days revisit interval) optical observations with a spatial resolution that
matches the scale of the landscape (50 m) over large areas (continents). This
cannot be accomplished with a single polar-orbiting satellite and therefore a
constellation of satellites will be necessary. However, the funding required
for such a continued mission and the corresponding ground segment for near
realtime data delivery will be enormous.

Finally, the third operational constraint was addressed by only using land
cover products which are available over the entire study domain or even glob-
ally (e.g. Global Land Cover 2000 (Bartholomé and Belward, 2005)). How-
ever, these land cover products were not designed for crop related applica-
tions because the nomenclature (no specific crop types) and update frequency
(three monthly at best) are not appropriate. In the ideal situation, the satel-
lite constellation envisaged in the previous paragraph can be used to obtain
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within-season maps of specific crop types. However, given the unfeasibility of
such a system, an intermediate solution could be to create vegetation continu-
ous fields (Hansen et al., 2003) for specific crop types based on MODIS 250m
or MERIS 300m data.

Given that the operational constraints have been met, it can be concluded
that the developed approach can potentially be implemented within the Euro-
pean MARS system. From a practical point of view, some software develop-
ment will be necessary in order to improve the computational efficiency of the
existing code and to include additional steps (such as ensemble generation)
in the existing processing chain. The experience with the current system has
shown that, in terms of processing requirements, the limiting factor is not the
running of the coupled WOFOST–ensemble Kalman filter, but it is the database
I/O related to retrieving the meteorological ensemble forcings (e.g. the table
storing 15 years of ensemble meteorological forcings contains nearly 1.3 · 109

records).
Database retrieval is necessary because ensemble generation is too com-

putationally intensive to carry out on-the-fly, so precomputed ensembles were
used. Although this is currently constraining the processing speed of the ap-
plication it was already concluded in section 4.5 that large gains in ensem-
ble generation speed could be obtained relatively easy. Moreover, the whole
CGMS processing chain is well suited for distributing over multiple processing
nodes in a grid or a cluster, particularly if the central database is clustered as
well (Dorigo et al., 2006). Additional to adaptations for processing require-
ments, many tools for visualisation and data analyses will need to be adapted
as well, in order to benefit from the additional information that the ensemble
can provide. Meanwhile, the ensemble average could be used as a temporary
solution.

Besides the implementation in the European MARS system, the method-
ology has the potential to provide improved crop yield indicators for crop
yield forecasting in many areas with major agricultural production of rain-
fed crops. These areas are, for example, the North China plain, Russia and
Ukraine, Central Asia, the Great Plains of North America, Australia and parts
of South America.

Another application field would be the implementation of the developed
approach within the framework of the Global Information and Early Warn-
ing System on Food Security (GIEWS) from the Food and Agriculture Or-
ganisation (FAO). From a practical point of view, the tools and data sources
are available to operate such a system as is demonstrated by the Joint Re-
search Centre’s Global Water Satisfaction Index (Nieuwenhuis et al., 2006)
and the Crop Explorer operated by the United States Department of Agricul-
tural (USDA, 2007). Within such systems, the assimilation of SWI could be an
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important tool to compensate for the uncertainty in rainfall, particularly for
data scarce areas of the globe such as Africa (Thorne et al., 2001).

However, from a thematic point of view it is doubtful whether a fairly tech-
nological innovation alone, as the one presented in this thesis, can make a true
advancement in crop and food security monitoring for GIEWS. Currently there
are 33 countries listed in GIEWS (situation 30 May 2007) where food security
is an issue (FAO, 2007). Out of these 33 countries, there are only five where
food security problems are mainly related to weather events (drought, flood-
ing, cold, heat). In the other cases, economic problems, household income,
civil strife, refugees or armed conflicts are the main origin of food insecurity.
An agrometeorologic system based on weather as the explaining factor in crop
yield, will thus only be useful for food security monitoring in a minority of
cases.

This conclusion is aggravated by the fact that crop yield forecasting usually
takes place by carrying out a statistical analysis between model output and
historic time-series of reported crop yield. This approach assumes a stable
economic situation which is often not the case in areas with food security
problems. In such situations, the statistical analysis becomes the weakest link
in the crop yield forecasting chain and it is therefore likely that improved crop
yield indicators (as provided by the approach in this thesis) will not improve
forecast skill. This situation can only be improved when forecasting models
are developed that include spatially distributed socio-economic data to explain
the anthropogenic influences on regional crop yield and production and their
impact on food security.

6.4 Priorities and further research

The following priorities were identified for further development of CGMS:

• Testing and further developing the ensemble Kalman filter approach,
leading to improved simulation of drought stress and crop yield predic-
tion;

• Improving estimates of within-season sowing date and sowing date vari-
ability, leading to improved simulation of crop phenological develop-
ment and crop yield prediction;

• Testing the applicability of numerical weather prediction model derived
weather variables in CGMS, leading to global application of CGMS;



6.4 Priorities and further research 133

• Communicating and analysing ensemble-based indicators and crop yield
forecasts, leading to improved understanding and use of probabilistic
CGMS results with crop analysts and decision makers.

Testing, further developing and implementing the ensemble Kalman filter
approach

The results presented in this thesis demonstrate that further research is needed
on the ensemble Kalman filter because the model and observation errors were
systematically underestimated. Moreover, the presented approach needs fur-
ther testing for other crops and other areas in order to verify the results that
were obtained so far and to gain confidence in their general applicability. Fi-
nally, software developments are necessary to gain computational efficiency
and implement the experimental code in an operational framework.

Improving estimates of within-season sowing date and sowing date vari-
ability

In section 1.1 the lack of information about the within-season sowing dates
and sowing date variability within a CGMS grid box, was already identified as
one of the key uncertainties related to the regional application of WOFOST.
Two approaches are envisaged for obtaining within-season sowing dates. In
the short term it should be investigated if statistical relationships can be found
between vegetation phenological products (not crop specific) derived from
AVHRR/VGT/MODIS and phenological observations for specific crops. Such
relationships might exists for regions with clearly dominant crops and can be
used to update the CGMS crop calendar. Moreover, the ensemble approach is
an excellent tool to represent the uncertainty in the retrieved sowing date.

In the longer term, it should be investigated if vegetation continuous fields
can be derived for specific crops. For example, based on MODIS 250m and
MERIS 300m observations. These vegetation continuous fields can then be
used to select pixels with a high percentage of a single crop type. Next, for
these pixels a time-series of satellite observations can be derived that describe
the canopy development during the vegetative phase. The CGMS sowing date
can then be optimised in order to match the observed canopy development.
Variability in sowing dates can then be estimated by comparing the retrieved
sowing date for clusters of pixels. A drawback of this second approach is
that it relies on observations from satellite missions that do not warrant data
continuity.
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Testing the applicability of numerical weather prediction model derived
meteorological variables in CGMS

A bottleneck in the implementation of CGMS for other areas is the neces-
sity to have meteorological observations from weather stations in order to
derive interpolated meteorological fields. However, long and consistent time-
series are already available globally from numerical weather prediction models
that could potentially be used to implement CGMS for areas where access to
ground meteorological information is difficult.

However, currently it is unclear how limitations in accuracy of NWP-
derived meteorological variables influence the crop simulation model output
and the yield forecast. Therefore, a sensitivity analyses is necessary for areas
where both sources of meteorological variable are available to determine the
sensivitity and the influence on the crop yield forecasting performance.

Communicating and analysing ensemble-based indicators and crop yield
forecasts

The use of ensemble-based indicators and crop yield forecasts provides addi-
tional information to crop analysts and decision makers, but also adds com-
plexity to the products that CGMS provides. Therefore, research is necessary
on the cognitive aspects of CGMS ensemble-based results so that the informa-
tion can be conveyed efficiently and succinctly to the respective users. Given
the experience with ensemble based modelling that exists in the meteorolog-
ical community, a review is necessary to determine if similar approaches can
be used for CGMS results as well.
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Extended summary

Information on the outlook of yield and production of crops over large regions
is essential for government services dealing with import and export of food
crops, for agencies with a role in food relief, for international organisations
with a mandate in monitoring the world food production and trade, as well as
for commodity traders. In Europe, such information is provided by the MARS
(Monitoring Agriculture with Remote Sensing) Crop Yield Forecasting System
operated by the Joint Research Centre. Since 1994, this system provides ob-
jective crop yield forecasts early in the season for all European Union member
states. In recent years, the system has been extended to cover other areas of
interest such as the Horn of Africa and Central Asia as well as a dedicated
system with global coverage.

An important component in the MARS Crop Yield Forecasting System is
the so-called Crop Growth Monitoring System (CGMS) which employs a crop
growth model to determine the influence of soil, weather and management on
crop yield. For this purpose, soil, management and weather data are gathered
over Europe on a 50×50 km grid and the WOFOST crop growth model (WOrld
FOod STudies) is applied to each grid to simulate the growth of specific crops.
The simulation results per crop type are stored in a database and spatially
aggregated to provinces and countries to be used as predictors for crop yield.

Although CGMS is being applied succesfully within the framework of the
MARS crop yield forecasting system, there are large uncertainties related to
applying crop growth models over such large areas. Examples of these un-
certainties are the generally unknown within-season sowing dates, the un-
certainty in the effect of drought due to limited weather station density and
poorly known soil parameters, the lack of information about irrigation and
the weighting of individual simulation results to administrative regions. This
thesis focuses on developing and testing methods for quantifying and reduc-
ing uncertainty on the crop model simulations that are used for crop yield
forecasting. The ultimate goal is to improve the accuracy and timeliness of
regional crop yield forecasts.

The basis for quantifying uncertainty is to use an ensemble of models
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where the variability in the outcome of the individual models within the en-
semble is an indication of the uncertainty in the final crop yield forecast. Re-
ducing uncertainty is attempted by combining crop model simulations with
satellite-derived information through an ensemble Kalman filter (EnKF).

A key aspect in this approach is that the uncertainty of the different compo-
nents of the system can be estimated properly. It was argued on both theoret-
ical and practical grounds that the interpolated meteorological forcings which
are driving the crop growth model are the main uncertainty in the system.
The main argument for the dominant effect of uncertainty in weather is that
crop yield forecasting systems do not predict crop yield directly, but merely
aim to capture the year-to-year pattern of crop response to weather variability.
In such a system, the influence of relatively stable factors like soil and man-
agement is secondary to factors that generate the year-to-year variability in
simulated crop yield (mainly variability in weather).

Based on the results from chapters 2 and 3 it was indeed demonstrated
that the uncertainty in the interpolated meteorological forcings is important.
In particular uncertainty in the temporal and spatial distribution of precipi-
tation has a strong effect on the results of the crop growth model because it
determines the amount of moisture in the soil that is available for the plant.
Uncertainty in precipitation was found to be particularly important in areas
which are marginal for crop growth. This dominant role of precipitation is
in agreement with results from hydrological land surface models where pre-
cipitation is generally acknowledged to be the key variable. Additionally, it
was demonstrated that when local (50× 50 km) crop simulation results are
aggregated to large areas, the effect of uncertainty in precipitation strongly
diminishes and its influence on the yield forecast for Germany and France was
found to be small.

In chapter 4 a method was developed to operationally quantify and visu-
alise uncertainty due to precipitation forcings. This methods works by creat-
ing ensembles of equiprobable realisations of precipitation inputs which can
be used as input in the crop simulation model in order to obtain an ensemble
of crop simulation results. The variability in the ensemble of crop simulations
results is a measure for the influence of uncertainty in precipitation.

The conclusions from this work were that the statistical properties of the
precipitation field were reproduced reasonably well in the realisations that
the method produces. Moreover, the deviations from the target statistics that
were found are of minor importance for crop simulation models. Finally, it
was demonstrated that the uncertainty in input precipitation fields and the
resulting variability in crop model simulation results considerably influence
the yield forecast for a region in South-France.

In chapter 5 the WOFOST model was coupled to an ensemble Kalman filter
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which enabled assimilating satellite observations of soil moisture. The goal of
this procedure is reducing the uncertainty in the WOFOST simulated soil mois-
ture as a result of uncertainty in precipitation. This approach was tested for
Spain, France, Germany and Italy for winter-wheat and grain maize. For these
regions and crops, the WOFOST model was applied and root-zone soil mois-
ture estimates based upon the satellite-derived Soil Water Index (SWI) over
the period 1992–2000 were assimilated into the WOFOST model. Validation
was carried out by checking if 1) the approach lowered the error on a lin-
ear regression model between crop simulation model output and EUROSTAT
crop yield statistics for administrative regions, and 2) the regression model
performed better then a model based on a trend only. Additionally, the inno-
vations of the ensemble Kalman filter provided diagnostics that were used to
trace deficiencies in the model.

With regard to the relationship with EUROSTAT crop yield statistics, our re-
sults demonstrate that the assimilation of SWI has lowered the error with crop
yield statistics for winter-wheat for the majority of regions (66%) where a rela-
tionship could be established (i.e. better then the trend only). For grain maize
the improvement was less evident because improved relationships could only
be found for 56% of the regions. At national level, the results of the regression
only improved for Spain, but not for Germany, France and Italy. Although the
results at national level were somewhat disappointing, it is encouraging that
the results did improve for Spain where crop production is most affected by
water limitations and thus the potential for improvement using SWI is great-
est.

With regard to the innovations of the ensemble Kalman filter, the results
demonstrated that the assumptions underlying the EnKF were not entirely ful-
filled, given that the normalised innovations were not Gaussian and that the
resulting spatial and temporal patterns showed clear correlation structures.
This indicates that the innovations made to the model water balance were
not the result of pure random noise, but included systematic deviations in the
model dynamics and/or a poorly known error structure in the satellite-derived
soil moisture estimates. Based on the excessive spread in the distribution of
normalised innovations, it was concluded that errors on both model simula-
tions and satellite observations were underestimated. This demonstrates that
additional sources of error need to be included in the simulations and obser-
vations.

Finally, in chapter 6 it was concluded that the developed approach is op-
erationally feasible because the algorithms are applicable at continental scale,
the satellite data applied will be available at least until 2018 and the method
does not rely on site-specific data. Therefore, the approach presented in this
thesis could be applied within the European MARS system and has the po-
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tential to provide improved crop yield indicators for crop yield forecasting in
many areas with major agricultural production of rainfed crops. On the other
hand, its application for food security monitoring was deemed useful only
when combined with a more advanced analyses which should include spa-
tially distributed socio-economic data to explain the anthropogenic influences
on regional crop yield and production and their impact on food security.



Samenvatting

Vroegtijdige informatie over de opbrengst en productie van landbouwgewas-
sen voor regio’s en landen is essentieel voor het functioneren van een groot
aantal organisaties en diensten. Voorbeelden hiervan zijn overheidsdiensten
die import en export van landbouwproducten reguleren, organisaties die in
voedselhulp voorzien, internationale organisaties die de globale voedselpro-
ductie en handel monitoren, maar ook voor handelaren in agrarische produc-
ten. In Europa wordt, ten behoeve van het EU beleid, dergelijke informatie
verzameld en verstrekt door het MARS oogstvoorspellingssysteem dat door
het Joint Research Centre wordt beheerd. Sinds 1994 voorziet dit systeem de
Europese Commissie van vroegtijdige oogstvoorspellingen van een aantal be-
langrijke gewassen voor alle Europese lidstaten en aangrenzende regio’s. In de
afgelopen jaren is het systeem uitgebreid naar andere, voor de EU belangrijke,
regio’s zoals de Hoorn van Afrika en Centraal Azië.

Een belangrijk onderdeel van het MARS oogstvoorspellingssysteem is het
zogenaamde CGMS (Crop Growth Monitoring System). CGMS gebruikt een
gewasgroeimodel om het effect van bodem, weer en teeltmaatregelen op de
groei van het gewas te bepalen. Hiervoor worden relevante gegevens verza-
meld over Europa, waarna ze worden geïnterpoleerd en opgeslagen in een grid
structuur met een grid grootte van 50× 50 km. Het WOFOST (WOrld FOod
STudies) gewasgroeimodel wordt vervolgens toegepast voor ieder 50×50 km
grid om de groei van een aantal belangrijke gewassen te simuleren. De si-
mulatie resultaten worden ruimtelijk geaggregeerd naar provincies en landen
en gebruikt als indicatoren in een statistisch model dat de uiteindelijke oogst
voorspelt.

Hoewel CGMS een zeer succesvol onderdeel is van het MARS oogstvoor-
spellingssysteem zijn er toch grote onzekerheden met betrekking tot het toe-
passen van gewasgroeimodellen over dergelijke grote gebieden. Voorbeelden
van deze onzekerheden zijn het gebrek aan kennis over de actuele zaaidatum
van gewassen, onzekerheid in het effect van droogte door de beperkte dicht-
heid van weerstations en beperkte kennis van de bodemfysische eigenschap-
pen, gebrek aan inzicht over het toepassen van irigatie, en onzekerheden in
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de aggregatie van individuele simulatieresultaten naar regio’s en landen. Het
werk dat in dit proefschrift wordt beschreven is er op gericht methoden te ont-
wikkelen en te testen om het effect van deze onzekerheden te kwantificeren
en waar mogelijk te verkleinen. Het ultieme doel is om de nauwkeurigheid
van de oogstvoorspellingen die met behulp van CGMS worden gemaakt te
verbeteren.

Om de onzekerheid in de uitkomsten van CGMS te kwantificeren is er voor
gekozen om gebruik te maken van een ensemble van gewasgroei simulaties.
Bij een dergelijke aanpak wordt er niet één simulatie uitgevoerd, maar wordt
er een groot aantal simulaties uitgevoerd waarbij de variabiliteit in de uitkom-
sten een maat is voor de onzekerheid in het systeem en de uiteindelijke oogst-
voorspelling. Om de onzekerheid in de uitkomsten van CGMS te verkleinen is
gebruik gemaakt van satellietwaarnemingen van het bodemvocht die het ge-
simuleerde bodemvochtgehalte bij kunnen sturen. Hiervoor is een Ensemble
Kalman filter gebruikt en deze techniek wordt ‘data-assimilatie’ genoemd.

Een belangrijk aspect bij deze aanpak is dat de onzekerheid in de verschil-
lende onderdelen (weer, modelparameters, bodem, teeltmaatregelen) goed
kan worden geparameteriseerd. In dit proefschrift wordt op praktische en
theoretische gronden beargumenteerd dat de onzekerheid in het weer de be-
palende factor is voor onzekerheid in de WOFOST simulaties. Dit komt omdat
de weersgegevens afkomstig zijn van een beperkt aantal weerstations over Eu-
ropa en met deze reeks is het niet mogelijk om de daadwerkelijke ruimtelijke
en temporele variabiliteit in het weer (neerslag, straling en temperatuur) te
beschrijven. Daarnaast is het zo dat oogstvoorspellingssystemen de opbrengst
van gewassen niet direct voorspellen, maar er op gericht zijn om variabiliteit
in opbrengst tussen jaren goed te voorspellen. In een dergelijk systeem zijn
statische factoren zoals bodem en teeltmaatregelen minder belangrijk dan een
dynamische factor zoals het weer die uiteindelijk de variabiliteit in opbrengst
tussen jaren genereert.

Op basis van de resultaten in hoofdstukken 2 & 3 kon inderdaad worden
gedemonstreerd dat de onzekerheid in het geïnterpoleerde weer belangrijk is.
Met name de onzekerheid in de temporele en ruimtelijke variabiliteit van de
neerslag heeft een grote invloed op de simulatieresultaten van het WOFOST
gewasgroeimodel en vooral in gebieden die marginaal geschikt zijn voor land-
bouw. Naarmate de simulatieresultaten voor individuele 50× 50 grid cellen
verder werden geaggregeerd naar grotere gebieden dan werd de invloed van
de onzekerheid in neerslag echter snel kleiner. Op het niveau van landen als
Frankrijk en Duitsland kon worden aangetoond dat de invloed van de onze-
kerheid in neerslag op de voorspelling voor maïs uiteindelijk klein was.

In hoofdstuk 4 wordt een methode beschreven om de onzekerheid in neer-
slag op een operationele manier te kunnen kwantificeren en visualiseren. Het
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idee achter deze methode is om niet één ‘versie’ van de dagelijkse neerslag
gegevens te gebruiken in WOFOST, maar om een ensemble aan versies (re-
alisaties) te gebruiken waarbij iedere versie (realisatie) anders is, maar wel
even plausibel binnen de grenzen van de onzekerheid die er is. Het ensemble
aan neerslagrealisaties kan vervolgens worden gebruikt om een ensemble van
WOFOST simulaties te genereren. De variabiliteit in de uitkomsten van de
WOFOST simulaties is dan een maat voor de invloed van de onzekerheid in
de neerslag.

Uit de resultaten van hoofdstuk 4 kan worden geconcludeerd dat de ont-
wikkelde methode voor het genereren van neerslagrealisaties voldoet. De sta-
tistische eigenschappen van de waargenomen neerslagverdeling worden vrij
goed gereproduceerd door de realisaties van de neerslag en de afwijkingen
die zijn geconstateerd hebben weinig invloed op de resultaten van het WO-
FOST gewasgroeimodel. Het gebruik van deze neerslagrealisaties is uitein-
delijk gedemonstreerd voor een provincie in Zuid-Frankrijk waar kon worden
aangetoond dat de onzekerheid in neerslag een aanzienlijke invloed had op
de oogstvoorspelling voor deze regio.

In hoofdstuk 5 is het WOFOST model gekoppeld met een Ensemble Kalman
filter om assimilatie van door satellieten waargenomen bodemvocht mogelijk
te maken. Het doel van deze aanpak is om de simulatie van het bodemvocht te
verbeteren, waardoor ook de uiteindelijke oogstvoorspelling kan worden ver-
beterd. Deze aanpak is uitgevoerd voor Spanje, Italië, Frankrijk en Duitsland
voor winter-tarwe en maïs. Voor deze regio’s en gewassen is het WOFOST
model toegepast en zijn bodemvocht schattingen geassimileerd die zijn afge-
leid van satellietwaarnemingen over de periode 1992-2000. De resultaten zijn
gevalideerd door te bepalen of de methode met assimilatie van bodemvocht
resulteerde in betere regressiemodellen tussen WOFOST simulatieresultaten
en EUROSTAT opbrengst statistieken, dan de klassieke methode zonder data-
assimilatie.

De validatie met de EUROSTAT statistieken toonde aan dat de nieuwe me-
thode met data-assimilatie voor winter-tarwe in 66% van de regio’s leidde
tot betere regressiemodellen dan de klassieke methode. Voor maïs waren de
resultaten iets minder positief omdat slechts voor 56% van de regio’s een ver-
betering kon worden vastgesteld. Op nationaal niveau verbeterden de regres-
siemodellen alleen voor Spanje en niet voor de overige landen. Hoewel dit
resultaat enigszins teleurstelt, is het bemoedigend dat verbetering kon worden
vastgesteld voor Spanje waar het effect van droogte doorgaans het grootst is
en waar dus het potentieel voor verbetering d.m.v. data-assimilatie het grootst
is.

In het laatste hoofdstuk wordt geconcludeerd dat de methoden die in dit
proefschrift ontwikkeld en getest zijn operationeel kunnen worden toegepast
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omdat ze voldoen aan een aantal operationele randvoorwaarden, zoals gega-
randeerde data beschikbaarheid van satellieten en schaalbaarheid in tijd en
ruimte. De ontwikkelde aanpak kan dus operationeel worden geïmplemen-
teerd in het Europese MARS oogstvoorspellingssysteem, maar kan in principe
globaal worden toegepast in gebieden met niet-geïrrigeerde landbouw. Ver-
der wordt geconcludeerd dat de ontwikkelde methoden minder bruikbaar zijn
voor toepassingen op het gebied van monitoring van hongersnoden.
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