TR diss
2389

on
CONVOLUTIONAL PROCESSES
and
DISPERSIVE GROUNDWATER FLOW

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. Ir. K.F. Wakker
in het openbaar te verdedigen ten overstaan van een commissie
door het College van Dekanen aangewezen
op maandag 13 juni 1994 te 13.30 uur

door

CORNELIS MAAS

civiel-ingenieur

geboren te ’s Gravenhage



Dit proefschrift is goedgekeurd door de promotoren:
Prof. dr. ir. A. Verruijt, Technische Universiteit Delft
Prof. dr. ir. O.D.L. Strack, University of Minnesota



Aan mijn vrouw Adrie
en onze kinderen
Maricke en Peer



Acknowledgements

The idea for this study originated from a project ordered by the water company
WZHO. It turned out to blend well with an idea of Prof. Strack of the Univer-
sity of Minnesota. The realization has been made possible through a joint effort
of Kiwa Consulting and Research, Nieuwegein, The Netherlands, and the Uni-
versity of Minnesota, Minneapolis. At Kiwa the study was part of the research
project Geohydrological Aspects of the Working Group on Well Head Protection,
directed by Kees van Beek. Funding was provided by the Netherlands’ Water-
works Association VEWIN. A vital part of this study was carried out at the
University of Minnesota, as a contribution to a project funded by the Legislative
Commission on Minnesota Resources (LCMR). On their request I gladly cite the
following:

Funding for this project was approved by the Minnesota Legislature as rec-
ommended by the Legislative Commission on Minnesota Resources from the
Minnesota Future Resources Fund.

1 am grateful to both institutions, who made it possible to study half a
year with Otto Strack and his group in Minneapolis. Their many stimulating
discussions have left their marks on this thesis. Besides Otto my thanks are due
to Mark Bakker, Mark Fairbrother, and Dave Steward, who all took an active
part in the project. I am especially indebted to Jogesh Panda who did most of the
hard work of the experiments reported in Chapter 4, sometimes at the expense
of his night rest. Andrine Strack did a fabulous job typing the manuscript using
the program TEX and the macro package ApS-TEX. She also made me and my
family feel comfortable in our temporary residence.

I am much indebted to Prof. A. Verruijt of the Delft University of Technol-
ogy, who guided me in my efforts to turn the original report on the LCMR-project
into a PhD. thesis.

I cannot end these acknowledgements without expressing my true thanks to
André Jansen who substituted for me so unselfishly at Kiwa during my lengthy
absence.

1 finally thank the staff of Kiwa Consulting and Research, who through their
policy encourage their research employees to broaden their scope by international
contacts. I trust that this report gives proof that such contacts are not only
istructive on the part of the employee, but very productive indeed.



Contents

TABLE OF CONTENTS

1 Purpose 1

1.1 Introduction 1
1.2 Aim of the LCMR-project 4
1.3 Scope of the thesis 5

2 On the shape of breakthrough profiles 7

2.1 Aim of the chapter 7

2.2 Simple example of a convolutional limit 7

2.3 Relation to the Central Limit Theorem 11

2.4 Moments of impulse response functions 13

2.5 Symmetrical and skew convolutional limits 14
2.6 Other ways to describe breakthrough profiles 21
2.7 The bank groundwater plant in retrospect 28
2.8 Appendix 28

3 Application to 1-Dimensional Contaminant Transport 55

3.1 Aim of the chapter 55

3.2 A note on the history of dispersion research 55

3.3 Moments and cumulants 57

3.4 Flux-averaged versus volume-averaged concentrations 58

3.5 The classical Convection Dispersion Equation 60

3.6 Varlous approximate solutions to the CDE 64

3.7 Strack’s dispersion equation 74

3.8 Strack’s dispersion equation, inclusive of decay and sorption 79
3.9 Non-uniform flow 87

3.10 Appendix 89

4 Simulated Column Experiments 97

4.1 Aim of the chapter 97

4.2 Experimental apparatus 99

4.3 Experiments conducted 102

4.4 Results: breakthrough curves 105
4.5 Discussion of results 108

4.6 Conclusion and final remarks 116
4.7 Appendix 120



Contents

Summary 141
Samenvatting 145

References 149



1.1 Introduction 1

CHAPTER 1: PURPOSE

1.1 Introduction

In 1987 the author was commissioned to lead an investigation into the environ-
mental effects of a proposed plant for the recovery of bank groundwater, in behalf
of a water company in the western part of the Netherlands. The task included
the hydrological design of a well field (Maas, [1988]). A suitable site was found
along a branch of the river Rhine (Figure 1.1).

Figure 1.1 Topographic map showing the layout of a well
the recovery of bank groundwater.
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By its definition bank groundwater is infiltrated surface water. It has some
qualitative aspects in common with natural groundwater and many with the river
where it originates from. Quality fluctuations of the river water can be retraced
in the recovered groundwater, in a dampened and retaided way. The amount
of dampening and retardation can be influenced to a certain degree by a proper
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arrangement of the well field. The prospects of bank groundwater recovery are
relatively favorable along the lower course of the Rhine. The low-lying polders
cause the river to infiltrate its water permanently. In contrast to the upper
course it is possible to capture bank groundwater at quite a distance from the
river bank, thus creating a large underground mixing reservoir to dampen quality
fluctuations.

As some real and some potential sources of groundwater contamination were
traced near the selected site, it was decided to confine the capture zone to the
area between the wells and the river bank. It can be shown that such is possible
by placing wells of equal strengths in a semi elliptical array (Figure 1.2), tuning
the discharge to the original rate of river water infiltration.

4

Figure 1.2 Sem: elliptical array of wells in uniform flow.

The lengths of the ellipse’s axes can be chosen arbitrarily, although the
choice influences the total amount of groundwater that can be withdrawn. Thus
one has some freedom to influence the mixing properties of the well field. An-
other degree of freedom lies in the spacing of the wells along the ellipse. The
mixing properties of a well field can be characterized by its impulse response.
This can be thought of as a function of time, describing the development of the
concentration of some inert and conservative contaminant in the groundwater re-
covered, following an event of instantaneous pollution of the river. Equivalently,
the impulse response function can be interpreted as the frequency distribution of
the detention times of the water particles recovered. Typically, the impulse re-
sponse function shows no negative values. As a rule, some particles reach the well
field soon and some reach the well field never, while the bulk concentrates around
some mean detention time, causing the impulse response function to show a peak
there. The impulse response function of the projected well field was calculated
approximately. To that end it was recognized that the infiltrating river water
is to pass through a number of “subsystems”, whose impulse response functions
could be calculated by means of analytical (as opposed to numerical) methods.
The first subsystem is the part of the aquifer between the river bottom and the
river bank. As the river is relatively shallow, particles that infiltrate near the
middle of the river need a longer time to reach the river bank than particles
infiltrating near the shore. The second subsystem distinguished is the part of
the aquifer between the bank and the wells. Wells closer to the river are, of
course, reached sooner than wells at a greater distance. Additional spreading of
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detention times is known to be caused by macroscopic dispersion, which occurs
all the way between the river bottom and the wells. This mechanism was treated
as a separate subsystem, which can be defended by the argument that dispersion
is a very complicated process, which defies an exact quantification anyhow. The
fourth and last subsystem is the immediate vicinity of the individual wells. Flow
around the wells causes spreading of detention times, its effect being dependent
on the well spacing and on the amount of water pumped. The four resulting
impulse response functions are schematically pictured in Figure 1.3.

N RO R R R

Figure 1.3 Impulse response functions of the four subsystems.

Each box shows the typical character of the impulse response function of
the corresponding subsystem. The two functions amenable to adjustment are
the second and the fourth ones. As their characters are quite antipodal, we
expected to have good control of the impulse response function of the composite
system. We aimed at designing the well field such that the dominating quality
fluctuations of the river water would be dampened optimally. Using Duhamel’s
principle, it can be shown that the impulse response function of the composite
system can be derived from those of the subsystems by convolution:

o(t) = / / / / 01(T2 = 71) - 02(7s — 72) - O3(7a — 73) - 0a(t — 74)dradradroydry (1.1)

(More on convolution will be said in the following chapter). The resulting func-
tion O(t) is depicted in Figure 1.4 for a particular choice of the design parameters.
The river water was supposed to be contaminated by a radio-active substance.
The function ©(t) is shown for various rates of decay.

O(t) turns out to show a distinct maximum. Although it has an infinitely
long tail, its shape is more or less symmetrical. The function reminds us of the
Gaussian distribution. The surprising part is that we were not able to alter this
Gaussian-like character, no matter how we changed the free parameters. We
could change the height of the peak, and move its location, but the basic shape
remained unaffected. It occurred to us that the convolutional process was to be
held responsible for this result. Some experimental calculations revealed that
if we added some more systems to the four pictured in Figure 1.3, the result
looked even more like a Gaussian distribution, no matter how fancy the impulse
response functions of the subsystems were chosen. Each system added, however,
appeared to increase the variance of the resulting Gaussian-like shape, at the
same time shifting its maximum to the right. By analogy to the Central Limit
Theorem of statistics we suspected that only the means and variances of the
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Figure 1.4 Impulse response function of the well field.

impulse response functions of the subsystems contributed to the final result, the
other characteristics being somehow neutralized by each other. Thus, in order to
calculate the impulse response of a composite system, it might not be necessary
to know the impulse response of the constituent subsystems exactly and it would
probably suffice to use only crude models for them, as long as they yield the mean
and the variance.

The project budget at the time not being tailored to such investigations,
the idea was shelved to be elaborated at a better occasion.

1.2 Aim of the LCMR-project

That occasion presented itself in 1990, when the author had the opportunity
to take part in a research project at the University of Minnesota, sponsored
by the Legislative Commission on Minnesota Resources (LCMR). The broader
aim of this project is the “implementation of spatial and seasonal variability of
chemical transport in Minnesota groundwater.” The part of the project relevant
to this report is to “investigate the effect of soil irregularities on the spreading
of contaminants, develop a mathematical formulation, and implement this in
the computer program MLAEM?” (cited from the MFRC Work Program 1989).
Program manager is Prof. O.D.L. Strack of the University of Minnesota, who
developed the computer program referred to. MLAEM is a groundwater model
based on Analytical Elements, as opposed to the usual numerical methods of
computation, of which Finite Elements are probably most frequently used. (The
basic principles of the analytical element method are given in Strack [1989)].) As
to contaminant transport the program is presently apt to calculate flow lines in
piecewise homogeneous media. The spreading of contaminants by dispersion due
to soil irregularities has not yet been taken into account.
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Much work has been done on dispersion in the past two decades. Theoretical
developments are now almost completely in the domain of stochastic geohydrol-
ogy, which is becoming a discipline in its own right (Dagan [1989]). In spite
of apparent progress the fundamentals are still subject to discussion (Sposito et
al. [1986]). From the deterministic point of view, applied mathematicians have
devoted much effort to the development of effective numerical schemes to solve
the “classical” dispersion-convection equation, which by its nature is an unruly
task. The problems encountered are in the field of numerical mathematics rather
than physics. The analytical element method, being essentially non-numerical,
does not benefit from progress in this field.

As dispersion in porous media is a vast field of research, bounds had to
be set as to the aim of the LCMR-project. Implementation in MLAEM being
the final goal it was decided to focus on analytical methods for one-dimensional
dispersive transport in non-uniform flow. The neglect of transverse dispersion
(in this stage) is defendable by the fact that recent field studies invariably reveal
transverse dispersion to be small as compared to longitudinal dispersion. Only
“ideal contaminants” are considered, i.e., it is supposed that the contaminating
particles do not interfere with the groundwater flow process. The irregularities
of the medium are assumed to be non-systematic. We will refer to them as
heterogeneities.

1.3 Scope of the report

Transport through irregular (i.e. heterogeneous) porous media shows some sim-
ilarities to the process sketched in Section 1.1. Following a stream line, one can
think of the porous medium as a chain of subsystems, that have to be passed by
the groundwater particles. On the basis of our former experience we expected
that not all of the peculiarities of the subsystems would contribute to the final
spreading of a contaminant. Consequently it might not be necessary to know the
detailed structure of the subsystems. We conjectured that it would be possible
to characterize the final spreading by two or three parameters. This idea has
been elaborated in Chapter 2, in a very general setting. The theory is applied
to one-dimensional contaminant transport in Chapter 3.

A simultaneous, but quite different track has been trod by Strack [1992], who
proposed an entirely new differential equation to describe dispersive transport
through porous media. His work is part of the project but it is not covered by
this report. Only the results are quoted here and solutions to Strack’s equation
are given for the uniform flow case. The two approaches meet in Chapter 4,
where they are confronted with a series of simulated column experiments.
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CHAPTER 2: ON THE SHAPE OF
BREAKTHROUGH PROFILES

2.1 Aim of the chapter

In this chapter we will go more deeply into the conjecture formulated in the
foregoing sections. Our hypothesis is that signals of finite duration, transmitted
through a series of linear systems, eventually assume a simple shape that can be
characterized appropriately by just a few parameters. Tentatively, we call this
shape skew Gaussian, the meaning of which should be intuitively clear from the
discussion in the preceding chapter. As the theory develops, a more accurate
description will evolve. Although the setting of this chapter is more or less
abstract, we will emphasize the applicational aspects and rely on an intuitive
approach rather than going into mathematical details.

2.2 Simple example of a convolutional limit

Cw® C.(t)
6,® 6,0 X

Figure 2.1 A series of systems transferring a signal.

Consider a series of systems that convert an input signal into an output
signal (Figure 2.1). Here the word signal means an observable and measurable
phenomenon, which changes its magnitude in the course of time, and which
has the property that it propagates. Examples are waves of sound, plumes of
contaminant and the likes. The medium, or part of it, through which the signal
propagates we call a system. Usually a signal changes its shape while passing
through a system, so that one might say the system transforms the signal. The
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system is linear if the transformation L is linear in a mathematical sense:

L(acin) = aL(cin) 2.1)
for any scalar o and

L(ciy + cfn) = Llcin) + L(ch) (2.2)

where ¢! is any input signal. For a single linear system, Figure 2.2, the relation
between input signal and output signal can be expressed by a convolution integral

+4oo
L{cin(t)} = / cin(T)0(t — 7)dT = cour(?t) (2.3)

-0

where (1) is a function that is completely determined by physical characteristics
of the system. The mathematical meaning of 8(¢) can best be understood by
sending an impulse signal (Dirac’s delta) through the system. It then follows
from (2.3) that

+o00
cous(t) = / §(r)0(t — )dr = 6(2) (2.4)
~00

which means that in case of an impulsive input signal the output signal reveals
the shape of 6(t). 6(t) is, therefore, called the impulse response function of the
linear system.

0 Cou®
2

Figure 2.2 A single linear system.

Figure 2.3 clarifies the computational meaning of the convolution integral
(2.3). cin(t) and 6(2) are depicted as two arbitrary functions of time. ¢;,(2) is
drawn in the usual way, as a function of the integration variable 7, while 6(7)
is shown as a mirror image. The origin of §(7) is shifted over a distance ¢, and
the overlapping parts of ¢iy and 6§ are indicated by shading. On the overlapping
interval, ¢jn and € are multiplied to yield the lower picture of Figure 2.3. The
area .4 then equals the convolution product of ¢;, and 8, at time ¢.

When a signal is transmitted through a series of linear systems, as in Figure
2.1, the relation between input signal and output signal can obviously be given
by a repeated convolution integral:

+o0o  pto0 +o0
cont)= [ [ [ () 010 )
-02(T3—T2)...9n(t— Tn)dTldTg...dTn (25)
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Figure 2.3 Computational meaning of the convolution product.

In order to gain some feeling for the way a repeated convolution product effects an
input signal, consider a simple example, where the signal is an impulse (Dirac’s
delta) and the systems all have the same impulse response function, which is
chosen to be the block function of unit area, shown in Figure 2.4. After the
first system has been passed, the signal shows the shape of the impulse response
function itself. The second system changes the signal into a triangle, whose area
is still unity, and whose base is twice the base of the impulse response function.
This result is easily grasped intuitively, if one realizes the computational meaning
of the convolution product, depicted in Figure 2.3. After three systems, the
signal has got three branches of second order polynomials, and it already shows
resemblances to a Gauss-curve. One may notice that

a) each convolution causes the mean of the signal to shift an equal amount to
the right.

b) each convolution causes the spreading of the signal to increase. Although
it cannot be inferred accurately from the pictures in Figure 2.4, it is easily
shown that the variance, too, increases with an equal amount after each
convolution, such that after n convolutions the variance equals n times the
variance of the original impulse response function.

¢) outside a certain t-interval, the signal is identically zero, so the “front” of
the signal propagates at finite velocity.

Notions a) and b) remind us of the Central Limit Theorem of statistics, to which
we will turn later (Section 2.3).

In order to see that repeated convolution by a block-shaped function may in-
deed yield a Gauss-curve as the number of convolutions approaches infinity, con-
sider the complex Fourier transform of (2.5). It is well-known that this integral
transform changes a convolution of functions into the product of the transformed
functions

Eout(w) = Ein(“')) ) gl(w) : 52(‘”) <o aﬂ(w) (26)
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imPulse response

t

¥ convolution

t
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2™
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t

Figure 2.4 Repeated convolution of an impulse signal by a series
of systems having a block-shaped impulse response func-
tion of unit area.

where

400 )
EOUt(w) :/ cout(t)ezwtdi (2.7)
and likewise for the other functions in (2.6).
The block-shape function of Figure 2.4 is given by
o(t) = 5 0<t<2a
{ )=0 t<0andt>2a (28)

where 2a is the width of the block. Using (2.7) its Fourier transform is found to

be ) in(wa)
- . sin(wa
/] _ _ _piwaZ N/

(w) 2ae wa

(2.9)

Moreover, Cin(w) = 1 because ¢;,(t) was supposed to be Dirac’s delta. It now
follows from (2.6) that

foun(is) = e ( sin(wa) )" (2.10)

wa

and we are to investigate the behavior of ¢,ui{(w) as n — oo. To that end, we
expand the term (%%ﬂ)” in a Taylor series, which turns out to give
1

1- L(Enat?) 4 1 (Ena??)’ 14 0(3)] - . (2.1
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This series approaches the Taylor series of exp(— gna®w?) if n approaches infinity,

SO . n
(Ln(w“)) ~emET (o) (2.12)
wa

and it thus follows from (2.10) that

: _1,,2,,2
inwa _ —gnatw

Cout(w) ~ € (n — o0) (2.13)

The output signal €.,(¢) can now be recovered from this expression by Fourier
inversion. The result is

cont(t) ~ —— e (1= o) (2.14)

Iro?

where

ol = %na2 (2.15)
which is Gauss’ function indeed. Its mean value is = na and its variance equals
%naz, which one might have spotted already from Figure 2.4.

2.3 Relation to the Central Limit Theorem

We already mentioned a resemblance to the Central Limit Theorem, which reads
as follows:

Let z; ({ = 1,2,...,n) be a sequence of independent identically distributed
random variables, each having finite mean p and finite variance o2. Let s, be
given by

n
Sn= & (2.16)
=1

Then in the limit, as n approaches infinity, the distribution of s, approaches a
normal (i.e. Gaussian) distribution with mean nu and variance no?.

In fact, transferring a signal is mathematically equivalent to adding up n
random variables. In order to appreciate this, consider two random variables z;

and z, and introduce the transformation

W =T+ T2

(2.17)
Z2 =12y
which, when solved inversely for z; and x5, gives
II=w-—2
! 2 (2.18)

g =Ty
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By means of the inverse transformation (2.18) the joint probability element
f(xl,xz)d$1£2 ::f(xl)f(xg)d£1d$2 (2.19)

(f(z1) and f(zx2) being the probability density functions of £, and z3) transforms
into the joint probability element f(w,zs)dzsdw:

f(w,zs)dzodw = fr(w — z3) fo(2)| T |dzadw (2.20)

where |J| is the Jacobian of the inverse transformation (2.18):

631 8x1
_|w Bz, | _ |1 -1]_
1= 0m dml=l 1= (221
Jw 6x2

Integrating out the variable z2 in (2.20) yields the probability density function
of the sum w = #; 4+ z2, namely

f(w) = /_ . fi(w — 22) fa(z2)dz2 (2.22)

(The above was taken from [Springer, 1979], p 47). It is thus seen that adding
up two random variables involves finding the convolution of their probability
density functions, just like finding the impulse response of two linear systems
involves finding the convolution of their respective impulse responses.

Likewise, determining the impulse response function of n linear systems
is mathematically equivalent to determining the probability density function of
the sum of n random variables. Therefore, the limit theorems of statistics apply
to contaminant transport, provided that the impulse response functions satisfy
certain conditions set to probability density functions. We will see that this is
not quite the case, and we will have to extend the mentioned limit theorems
slightly to serve our purpose.

There exists a more general version of the Central Limit Theorem, which
states that under fairly general conditions, the Gaussian limit will also be ap-
proached if the random variables have differing probability density functions.
The conditions referred to are due to Lindeberg (e.g. Von Mises, 1964, p 294).
Being purely mathematical, Lindeberg’s conditions are not easily put in words.
For practical use one may say that the sum of any finite number of standard devi-
ations of the individual density functions must be small as compared to the sum
of all standard deviations. This is obviously the case for identically distributed
random variables of finite mean and variance. According to Von Mises, it is also
true if the individual density functions differ from zero only on a finite interval.
We take the opportunity to point out that not any series of linear systems, dis-
cernible in the theory of groundwater flow, satisfies Lindeberg’s conditions. A
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counter example is the propagation of a disturbance of the groundwater poten-
tial through a semi-infinite porous medium. The medium can be thought of as
a series of linear systems and the disturbance of the potential can be considered
as a signal to be transmitted. Such a signal will never attain a Gaussian shape,
As a matter of fact, the impulse response function in question can be shown to
be of infinite variance.

In an earlier stage of this project, when we were not yet fully aware of an
analogy with random variables, we proved the convergence to the Gaussian limit
in a heuristic way. Although elegant and rigorous proofs of the Central Limit
Theorem can be found in several standard texts (i.e. Cramér, 1970), we add our
own ad hoc derivation as an appendix to this chapter, because it is slightly more
general in certain respects (admitting, for instance, impulse response functions
of non-unit areas), while, on the other hand, it is more tailored to suit our
physical application. The extension to impulse response functions of non-unit
areas is necessary, because contaminants in groundwater are frequently subject
to physical or chemical decay. An example was already given in Figure 1.4.
Conversely, matter (or other properties of a contaminant) may be produced
somehow during the transport process. Examples are degradation products and
reaction heat. We will discuss the consequences after we have introduced some
statistical terms.

2.4 Moments of impulse response functions

In view of things to come, we interrupt our discourse to introduce the notion
of moments of a function. Moments, like distributions, are widely used in the
area of statistics. According to Shohat and Tamarking (1943), these concepts
originated earlier in the field of mechanics. There, the word distribution refers to
loads distributed on structural parts. Important work on the theory of moments
was done towards the end of the nineteenth century by Stieltjes, who reportedly
used mechanical concepts of mass, stability, etc., on many occasions, in solving
analytical problems.
The r** moment M, of an impulse response function 6(t) is defined by

_ [IZre(ndt

R (229

r

The denominator equals the area under the impulse response function. The
first moment M) corresponds to the “center of gravity” of 6(t), which can be
identified intuitively with the mean travel time of the transferred signal. We will
adopt the symbol p1 for M, as is common in statistics. Higher order moments
are usually “centralized” with respect to p, according to the formula

IS et - pydt
T

(2.24)
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Employing the binomial expansion, it follows easily that
¢ r [ r c
M, =M, + (I)Mr—lﬂ‘}‘ (2)Mr—2/12 + -

r . r=2 r Y r—1 r
(T i (T Jinet e )

c
(Notice that the second last term vanishes, as M; = 0). In particular,

My = My + 2 (2.26)

Ms= M3+ 3Map+ 3 (2.27)
[ [ (4

My=My+4Map+6Mop® + p* (2.28)

[
The second centralized moment M3 equals the variance of 8(t), to be indicated
by the symbol 6%. o is the standard deviation of 6(t). Other characteristics of
0(t), are its skewness:

1 ]\cla
and its ezcess: .
2 M4
¥y= i 3 (2.30)

(Abramowitz and Stegun [1964], p 928).

2.5 Symmetrical and skew convolutional limits

Now that we are equipped with the necessary jargon, we can resume our dis-
cussion of convolutional limits. If we consider a series of linear systems whose
individual impulse response functions satisfy the Lindeberg conditions, then we
know now that

1 (t—p)?
Cout(t) ~ Toros oXP {——202— (n — o0) (2.31)
where

p= m (2:32)

and

o?=) o} (2.33)

Here, p; and o7 are the mean and the variance, respectively, of the ith gystem in
the series. Now, suppose that the individual systems are non-conservative. Then
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their impulse response functions have non-unit areas. They can be normalized,
however, according to

Bi(t) = gjg) (2.34)

where A; is the area of #;(¢) given by

A= /+°° g;(t)dt (2.35)

-

The normalized impulse response functions do satisfy the conditions set to prob-
ability density functions of random variables. As summing of random variables
was seen to be mathematically equivalent to convolving impulse response func-
tions, it follows that the limit theorems of statistics apply to contaminant trans-
port, provided that the limits are multiplied by the product of the constants A;.
Thus, we arrive at the following extension of (2.31):

cout(t) ~

exp {—(t‘—“)?l} (n — o) (2.36)

202

A
Vono?
where

n
A= H A; (2.37)
=1

It is important to notice that, in case of identical subsystems,

B=np; (2.38)
o? = no? (2.39)
A=(A;)" = exp{nin 4;} (2.40)

for any i. Identical subsystems can be associated with identical sections of a
straight stream tube in a homogeneous porous medium. We then get

pue (2.41)
o’z (2.42)
Ind:=z (2.43)

where z is the distance traveled by a contaminant, measured from the spot of its
instantaneous release. Notice that the non-conservative case exhibits exponential
decay or growth.

For future reference we mention that the step response of a series of systems
of the above indicated type has the limit

courlt) ~ LAerfe {_to"_f;‘} (n — o) (2.44)
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In contaminant transport, the step response corresponds to the breakthrough
curve.

Although it is interesting to know whether or not a propagating signal will
approach the Gaussian curve asymptotically, practical experience with ground-
water contaminants indicates that, on a field scale, plumes are often considerably
skewed. The Gaussian limit, if it exists, has apparently not been reached yet, be-
cause the number of systems passed was still too small. One may hope, however,
that skew plumes can also be characterized by a limited number of parame-
ters. Put in other words: one may hope for a skew limit, that is reached before
the Gaussian limit appears. That such a limit does indeed exist, is shown in
the appendix to this chapter. The expression derived there turns out to be an
asymptotic expansion that goes by the name of Edgeworth (Cramér, 1970, p 86).
Stated in our terms, this expansion reads

()~ 7=
Cout Gy .

11 548 12 4d* 111 \*d° (t — p)?
'[1_{57" F}JF{W" A\ ) @E TP T e

(n — o0) (2.45)

where g1, 6% and A (which is not typical of Edgeworth’s expansion) are defined
by (2.32), (2.33) and (2.37), respectively. Moreover,

1 1
yo? = Z'yw? (2.46)

2 2
Yol = Z'y;af (2.47)
The derivatives occurring between the braces of (2.45) are to be interpreted

as operators acting on the exponential function. Notice that '1ya3 and %0'4 are
proportional to the number of systems passed by the signal. Especially, when
the systems are interpreted as identical sections along a straight stream tube,
we have

‘1703 T (2.48)

and )
Yotz (2.49)

The addition of a third derivative to the Gaussian function causes the impulse
response to become skew, as illustrated by Figure 2.5. The terms containing
the fourth and sixth derivatives tend to sharpen the peak and to produce longer
tails.
It is of some interest to point out how the terms containing the derivatives
behave as n increases. Introducing the variable
t—p
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Figure 2.5 Effect of 3¢ derivative in (2.45) on the output signal.

we find from (2.45) that

A 1 2 1
coulT) ~ s [L 4+ {67 H5(T)} + {55V Ha(T) + (1) He(T)} + ... ).
T2
.€Xp (— —2—) (n — o0) (2.51)
where H,,(T) is the nt" order Hermite polynomial, defined by
A e (=1)"H (T)eT*/2 (2.52)
dTn n '

(Cramér, 1970, p 87). In particular,

Ho(T) =1
H(T)=T
Hy(T)=T2-1
H3(T)=T3-3T

HyT)=T*-6T%+3
Hs(T) =T — 1073 + 15T
He(T) =T — 15T* + 457% — 15 (2.53)

We infer from (2.33), (2.46) and (2.47) that 'ly 2 4/n and %' :: 1/n. Therefore, in
(2.51), the term containing 'ly fades at rate 1/4/n and the term containing ?y and
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('ly)2 fades at rate 1/n. Higher order terms of Edgeworth’s expansion fade ever
faster as n increases.

There exists an alternative expansion to Edgeworth’s by the name of Gram-
Charlier (Cramér, 1970, p 87), which, in our terms, reads

2

A {1 + %HS(T) + %H4(T) +... } exp (— %) (2.54)

courlt) = =5

(The factor A is not characteristic of Gram-Charlier’s series either). The coeffi-
cients c; are defined by

c; = %_[_Z H,‘(T)Cout(T)dT (255)

The formal correctness of (2.54) is easily established by use of the orthogonality
properties of the Hermite polynomials:

oQ
\/—12:/ Hi(T)H;j(T)e~T'12dT =i ifi=j
T J—c0
L e , (2.56)
\/_2—_7;/ H(T)H;(Te T2dT =0 ifi#j
-0

The two expansions have been shown by Cramér to be rearrangements of one
another. Only Edgeworth’s series has proper asymptotic properties: the persis-
tence of terms, as n — oo, is in the order of appearance in (2.45).

The formulation of Gram and Charlier suggests that any function can be
expressed in the form (2.54). Alas, the convergence properties of (2.54) are
rather poor and the practical value of Gram-Charlier’s expansion is, in this
respect, limited (Von Mises, 1964, p 137). By way of illustration, Figure 2.6 gives
approximations of the block-function by Gram-Charlier’s series, using 10, 100,
and 1000 terms. Although, in this example, convergence is slow, the solution
tends to approach the proper limit. We have also experimented with (2.54)
to model dispersive transport according to the classical differential equation of
dispersion (which is to be introduced in the next chapter). There, we found the
solution to diverge after a certain number of terms were included, the number

being smaller the closer we came to the source of pollution.

Figure 2.6 The block-function, approached by Gram-Charlier’s se-
ries, using 10, 100, and 1000 terms.
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As to the coeflicients c3 and ¢4 of (2.54), it follows from (2.55) and (2.56)

that c3 = 'ly and ¢4 = %', so the beginning of Gram-Charlier’s series reads

2

cout(T) = \/—A__{1 + LyHs(T) + YHA(T) + .. } exp (_ TT) (2.57)

2ol

which is to be compared with (2.51). For later use we mention that the step
responses (breakthrough curves) corresponding to (2.51) and (2.57) are

cout(T) ~ A erfc( - %)
A

“E[{ Elx"lyHZ(T)} + {EIZ%HB(T) + ?12‘(}/)2H5(T)} + ] exp (T?z)
(n — o) (2.58)

and

cout(T) = 1A erfc(%) - %{ é—‘lsz(T) + ;—4%H3(T) 4+ }exp (_ %2)
(2.59)

respectively.

Both Edgeworth’s and Gram-Charlier’s series are used in statistics to de-
scribe non-Gaussian frequency distributions. For that purpose the series are
truncated after the first few terms, because higher order terms are increasingly
difficult to obtain accurately from measuring data, which are always subject to
some scattering. An example of the use of Edgeworth’s series in the field of hy-
drology is Chatwin (1980), who fitted longitudinal dispersion data that showed
a definite non-Gaussian behavior. The Gram-Charlier expansion was recently
used by Van Mazijk et al. (1989) to model pollution of the Rhine river.

Using (2.53) and the orthogonality property (2.56), it can be verified that
truncation of Edgeworth’s expansion and Gram-Charlier’s series at the dots in
(2.51) and (2.54), respectively, does not influence the mean u, the standard de-

viation o, the skewness %/ nor the excess _:)z/ of cout(T). The functions represented
by the truncated series, however, are no longer unconditionally unimodal. They
may even become negative on some intervals of 7. Barton and Dennis (1952)

investigated the conditions on 'ly and 2/, under which positive definiteness and uni-
modality are secured. We have extended their analysis a little, because positive
definiteness seems to be too strict a condition for practical purposes: slightly
negative values at the tip or at the toe of an impulse response function may
be acceptable, considering that the series are approximations anyway (Chatwin,
1980). Our results are shown in Figure 2.7 for the Gram-Charlier series, and in
Figure 2.8 for Edgeworth’s expansion.

Let us first consider Figure 2.7. Generally speaking, the graph of cou (7)) ,
calculated by means of the truncated series of Gram-Charlier, may show negative
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Figure 2.7 Combinations of'ly and %' for which the second deriva-
tive of the truncated series of Gram-Charlier vanishes.
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Figure 2.8 Combinations of%' and -27 for which the second deriva-
tive of the truncated series of Edgeworth vanishes.

parts and dips. We have depicted in Figure 2.7 those combinations of %/ and gy for
which the graph of ¢ou:(T') has at least one point of inflexion with zero gradient.

Crossing one of the curves of Figure 2.7, by varying 'Iy and -27 continuously, there
appears or disappears a dip in the corresponding graph of ¢,y (7). It turns out

that there are no dips in the negative parts of cou(T") if the image of ('17, ?y)
falls within the smaller heart-shaped region of Figure 2.7. Hence, in that case,
¢out{T') can have no negative parts at all and must be positive definite there.
If the image of ('17, %) falls within the bigger heart-shaped region, then cou(T)
turns out to have no dips in its positive parts. Consequently, cou(7) is positive

definite and unimodal if ('ly, ';2/) lies within the intersection of the two hearts.
The interpretation of Figure 2.8, which goes for the truncated Edgeworth’s ex-
pansion, is fully similar. It appears that the region of unimodality and positive
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definiteness is very limited indeed. Chatwin (1980), being somewhat less strict,
- . 2
recommends to stay within the region where both 'ly and ¥y are at most one. It

is our experience that ?y may vary up to four, before the use of Edgeworth’s
expansion or Gram-Charlier’s series for the purpose of data fitting becomes re-

ally questionable. Unfortunately, values of 'ly and ?y encountered in contaminant

transport are frequently found to be much higher. As }y and -2)' decrease with the
distance travelled, the expressions (2.58) and (2.59) become eventually useful
to describe breakthrough curves at some distance from a spill. As such, they
are an improvement, indeed, of the Gaussian limit (2.36). As will be seen in
the next chapter, it is possible, in many problems of contaminant transport, to

express }y and '2y as functions of the distance of transportation. In such cases,
the distance from the source of contamination at which Edgeworth’s expansion
or Gram-Charlier’s series start to be applicable, can be determined beforehand.

Using Gram-Charlier or Edgeworth in this fashion guarantees correctness
of the first four moments. There is no guarantee that higher order moments are
not far off. It would be more satisfactory, therefore, to have a criterion that tells
us when (that is: at what distance from a source of pollution) the contribution
of higher order moments becomes negligible. We leave this question for future
research.

2.6 Other ways to describe breakthrough profiles

The rather frustrating breakdown of the skew convolutional limits of Section
2.5 at shorter distances from the source urges us to look for alternative ways to
describe dispersive transport of groundwater. Two of them are discussed in the
current section.

What we did (or, rather, attempted to do) in the last section was, essen-
tially: to describe an impulse response function approximately in terms of its
first moments. The motivating idea is that we sometimes know the moments
of an impulse response, while the impulse response itself is unknown or hard to
calculate. The “problem of moments” is a classical one, put forward by such
famous mathematicians as Chebyshev, Markov, and Stieltjes, and elaborated by
many others. A concise historical review can be found in the introduction to
Shohat and Tamarkin (1943). The problem of moments is concerned with the
conditions under which a sequence of real quantities My, M;, M,, ... deter-
mines a distribution. The results can be used to approximate a breakthrough
curve by a staircase function. (This is equivalent, of course, to approximating
an impulse response function by a series of pulses). Von Mises (1964) gives a
very clear account of the appealing procedure, of which we highlight some of the
particulars.

Assume that the first 2m moments My through Ms,,_; of an impulse re-
sponse function ¢(t) are given. We want to find the m-pulse distribution that has
precisely these moments. The abcissa of the pulses are a1, as,... ,a,» and their
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magnitudes are A;, A, ..., Ap. This problem can be shown to have a unique
solution, that is: the a; and A; are single valued and the A; are non-negative.
The following equations hold:

m
M = /t"c(t)dt = EafA; k=0,1,...,2m—1 (2.60)
i=1

which set suffices to solve for the a; and A;. Although (2.60) has a highly non-
linear appearance, Von Mises presents a nice maneuver that changes the problem
into a linear alternative. The equations of (2.60) are multiplied by some constants
and combined to give

/ P(t)e(t)dt = fj P(a:)A; (2.61)
i=1

Here, P(t) is any polynomial in t, whose order is not higher than (2m — 1). If
we introduce the polynomial of order m,

m-1
wit)=({t—a)(t—ay)...(t—ay) =t"+ E c;t? (2.62)

we can use for P(%) any of the expressions
w(t), tw(t), tw(t),..., t™ lw(t) (2.63)

Since each of these expressions vanishes if one of the a; is introduced for t, it
is seen that with these choices for P(t), the right-hand term of (2.61) vanishes.
Consequently, the left-hand term must vanish also. This means that, with j =
0,1,... ,m—1

m=1
0= / Huw(t)e(t)dt = / {tm+7 4 Z it i) e(t)dt

m—1
= Mpmyj + Z C,‘M,'_H' (264)
1=0
In matrix form:

Mo M1 e Mm—l Cp Mm

M, M, My, 1 M1

: . : =-~1. (2.65)

Mp oy My .. Mym_ad Lepmoy Mmooy

The square matrix is of the Toeplitz-type, for which very efficient numerical
routines are readily available (Press et al.,, 1992). The relations between the
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c; and the a; follow from (2.62). Once the a; have been found, the A; can be
computed from the first m equations of (2.60), which in matrix form read

1 1 1 A, M,
ajy ao .. Ay A2 _ M2 (2 66)
aP™t et L el LA, M

Here we meet with a Vandermonde matrix, which can also be handled very effi-
ciently (Press et al., 1992). The whole procedure is now neatly presented by just
two matrix equations of special types. Although Von Mises’s method converges
theoretically to the true breakthrough curve, we will see in the next chapter that
(in our applications) numerical problems start to occur from the twentieth mo-
ment or so, the reason being that higher order moments can assume large values
indeed. Figure 2.9 gives an example of a breakthrough curve, approximated by a
staircase function, using twenty-two moments. Twenty-two moments yield eleven
steps. Not all of them differ significantly from zero, so that the approximation
looks rather crude.

1.0 5 "

0.5

003 1000 2000 3000

Figure 2.9 A breakthrough curve approzimated by a staircase func-
tion.

Figure 2.9 shows that the true breakthrough curve cuts all of the steps and
rises of the staircase. This is not a coincidence: Von Mises proves this to be a rule.
In fact, the steps and rises are cut almost in the middle, such that the middle
points give a fair impression of the breakthrough curve. This is illustrated by
Figure 2.10. As the staircase function converges to the true breakthrough curve,
this must also be true for the middle points.

Unlike the series of Gram-Charlier and Edgeworth, Von Mises’ method
shows no tendency to degenerate near the source, but the number of midpoints
that can be evaluated there without numerical problems, tends to be small.

We now take quite another point of view, noticing one more time that
any convolutional process can, in a way, be regarded as a model of dispersive



24 Breakthrough profiles Chapter 2

0.5 4

0.0

1000 2000 3000

Figure 2.10 The same breakthrough curve as in Figure 2.9, approz-
imated by the midpoints of the steps and rises.
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Figure 2.11 The mizing reservoirs model.

groundwater transport, thanks to the existence of the Gaussian limit. Neverthe-
less, models that show at least some analogy, however crude, to the mechanism
of groundwater transport, are likely to do a better job than models that don’t.
They may produce the correct breakthrough curve before the Gaussian limit is
reached. In other words: some of the moments of order three and up may as-
sume the correct values before their effect on the shape of the breakthrough curve
becomes negligible. A very simple model of this kind is the mixing reservoirs
model (Figure 2.11), that has the mixing of particles in common with dispersion
of groundwater. It is supposed that all particles entering a reservoir are instan-
taneously and completely mixed therein, which can be achieved by constant and
thorough stirring of the reservoir contents. The impulse response of a single
mixing reservoir is well known to be

0(t) = ae™** (t>0) (2.67)

where a is a reservoir characteristic. The response of the n*! reservoir is found
by n-fold convolution of 6(t):

antn—l —at
0,(t) = me (t>0) (2.68)
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Regarded as a function of ¢, (2.68) is a distribution function, known as the
gamma-distribution (Von Mises, 1964, p 248). 6,(¢) is also a distribution func-
tion if considered as a function of n, known as Poisson’s distribution (Von Mises,
[1964] p 138). #,(t) approaches a Gauss-curve of ¢ if n approaches infinity. ¢,(¢)
approaches a Gauss-curve of n if ¢ approaches infinity. Although, in the model
of Figure 2.11, n is a discrete number, it is possible to interpolate smoothly be-
tween any two integer values, if (n — 1)! is generalized to I'(n) (Abramowitz and
Stegun, 1964, p 255):

antn-—l

gn(t) = me

T (t>0) (2.69)
We intend to use (2.69) not so much as a model of dispersion, as well as an
approximative function to describe dispersive groundwater transport, just as we
did with the truncated series of Edgeworth and Gram-Charlier, in Section 2.5.
As such, the degrees of freedom of (2.69) are very scarce: two parameters, a and
n, allow only for the matching of the mean and the standard deviation. Yet we
are especially interested in matching the skewness. A third degree of freedom
can be introduced by allowing for a shift along the {-axis:

a™(t = b1 g—a(t=b)

On(t) = T(m)

(t>b) (2.70)
(This function is understood to be zero if ¢ < ). In the shape (2.70) 6,(¢) is
known as the Pearson type III distribution. It is not mentioned as such in Von
Mises (1964), but the reader can be referred to almost any textbook on statistics,
for instance Haan (1986), p 119. Its characteristics are

p= g +b (2.71)
o= [Ti (2.72)
a
1 2
and inversely:
2
Yo
4
n=-—- (2.75)
(7)?
20
v

The breakthrough curve corresponding to Pearson-III is the so called incomplete
gamma function (Abramowitz and Stegun, 1964, p 260), shifted along the time



26 Breakthrough profiles Chapter 2

axis (¢ — t — b). Figure 2.12 gives an impression of the general behavior of the
implete gamma function for increasing values of n. We will see in the next chapter
that Pearson type III is a most useful function to model dispersive groundwater
flow, if the first three moments are given. In anticipation of the next chapter
we note that the mixing process according to this model is non-Fickian. The
“dispersive” flux in any point depends on the upstream concentration gradient,
whereas the dispersive flux according to Fick’s law would be proportional to
the central gradient. In addition there is no upstream transport, as there is in
Fickian dispersion.

1.0 1
0.5
0.0 T 1 T
) 1000 2000 3000 4000 5000

Figure 2.12 General behavior of breakthrough curves derived from
the Pearson type I1I distribution. Horizontal azis: time.
Vertical azis: dimensionless concentration.

The gamma distribution (not Pearson type III) has been proposed earlier
by Jury (Jury and Roth, 1990) as a model of dispersion, along with the log-
normal distribution. Jury speaks of Travel Time Probability Density Functions
instead of impulse responses. He regards the Travel Time PDF as an integral
soil property, to be measured in the field.

This place seems to be as good as any to make some additional remarks on
concentrations and contaminant breakthrough. We have not given a definition,
but concentration is intuitively understood to be an amount of particles per unit
of volume. The exact place of the particles within the volume does not occur
in this definition. In flow through heterogeneous media the exact place of the
particles does matter. For instance, if all particles are located in an immobile
zone, a groundwater sample would show zero concentration. The situation is less
evident, and the more confusing , if the groundwater velocity varies from place
to place. It is important, therefore, to distinguish between wvolume-averaged
and fluz-averaged concentrations. (The ratio of the two might be useful as a
parameter to characterize a degree of mixing. Mixing can be said to be complete
if the volume averaged concentration equals the flux averaged concentration, i.e.
if their ratio is one). Our illumination of the convolution-concept by means of
Figure 2.1 may have raised the suggestion that, for the principle to apply, mixing
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must be complete at the points where a signal is transferred from one system to
the next. This is not necessarily the case, as the following example shows.
Suppose that an originally straight front of some intruding contaminant is
split up into two parts after travelling a distance I. (Figure 2.13). One part,
having width p, travels on at velocity v,, and the other part, having width gq,
travels on at velocity v;. Suppose that the process repeats itself every time an-
other distance / has been covered, thus producing ever thinner fingers. Although
highly stylized, this is not at all unlike the way actual fronts progress through
heterogeneous media. For comparison Figure 2.14 shows the deformation of a
moving front in a heterogeneous medium that we will examine in more detail in

[

‘ Figure 2.13 Breaking up of a front according to the binomial pro-
cess.

[ ==

Figure 2.14 Breaking up of a front in the heterogeneous medium to
be introduced in Chapter 4. (Courtesy J. C. Panda,
Univ. of Minn.)

The breakthrough curve at a distance nl from the origin is a staircase func-
tion, whose steps are given by the binomial distribution:

| ¢ = (DP"’jqi (4 =0,n) (2.77)

(Von Mises, 1964, p 168). The breakthrough time of the j*" step is given by

N
tj=(n-j—+j— (2.78)
P q
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As (2.77) is a distribution function the convolution principle applies and the
Central Limit Theorem guarantees convergence to the Gaussian limit, although
complete mixing is achieved only asymptotically.

2.7 The bank groundwater plant in retrospect

Although we did not yet refer to the bank groundwater plant, all conclusions
drawn in this chapter apply to bank groundwater as well. Unlike equal sections
along a straight stream tube, the subsystems depicted in Figure 1.3 were seen to
be quite dissimilar. The Central Limit Theorem in its general form pertains to
series of systems with different impulse responses, though, and the Gaussian-like
response of the composite system, that we described in the introduction to this
thesis, turns out to be in no way coincidental. It is not necessary, therefore,
to model the subsystems in much detail, in order to obtain a good idea of the
impulse response of the plant as a whole. Crude models, that yield mean travel
times and variances and, possibly, skewnesses of subsystems are sufficient. Even
if they would not yield a complete picture of the breakthrough curve, they give
exact information on its first three moments.

There is nothing in the proof of the Central Limit Theorem that requires
the subsystems to be physically alike. If the water company would be interested
in the risks of norm violation at a consumer’s tap, following a hazardous spill
in the catchment area of the river, the chain of subsystems could be extended
straightforwardly to include, say, leakage from a nuclear power plant, overland
flow, dispersive transport by the river, flow through the purification plant and
transport through the distribution network. The longer the chain, the more
likely the response is to become fully Gaussian and the less sense there is in
modeling the subsystems in great detail.

2.8 Appendix

2.8.1 Introduction

This appendix can be omitted at first reading of the thesis. It contains a
heuristic proof that, under certain conditions, a series of linear systems with im-
pulse response functions of different shapes must produce an impulse response
function that tends to assume the Gaussian shape. We end up with an expres-
sion that applies already in an earlier stage, when the Gaussian limit has not yet
been reached. (As a matter of fact, this expression turns out to be Edgeworth’s
expansion, as already presented in Section 2.5). In the course of the derivation,
certain conditions are imposed on the shapes of the admissible impulse response
functions. They are summarized and discussed from a point of view of contami-
nant transport. In addition, we also consider parallel series of linear systems. In
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01(w) | Bow) | oo 0n(w)
00 | B(0) [ .(0)
ﬁég (0) -1—!675(0) """"" 70100
i) | 80 | e 00

Table 2.1 Terms of the Taylor series of 8, (w)

order to enhance the presentation of this somewhat long-winded section, we use
the Halmos symbol g to mark the end of a logical unit, such as a conclusion of
an argument or a remark.

2.8.2 Conditions under which a series of linear systems produce a Gaussian
impulse response
Our starting point is (2.5), which upon Fourier transformation gave (2.6).
(Notice that it is implicitly assumed that the impulse response functions are
Fourier transformable indeed). Without loss of generality one may assume that
cin(t) is Dirac’s delta, s0 in(w) = 1 and (2.6) assumes the simplified form

Cout(w) = 01(w) - Ba(w) ... O, (w) (A1)

The functions in the right-hand side of this equation are expanded in their Taylor
series. (The Taylor series of 8;(w) reads

_ — W = w2 _
:(w) = B:(0) + $500) + S5:07(0) + ...

so the following approach is confined to impulse response functions whose Fourier
transforms show no singularities at w = 0. This is another assumption to be
kept in mind).

Multiplication of n Taylor series yields a new power series of w, the first
terms of which are easily found:

To = 61(0) - 82(0) ... 0,(0) (A.2)

Ty = 5{81(0)02(0) ... 0a(0)
+{01(0)85(0) . .. 8,(0)

+{61(0)82(0) ... 6,,(0)} (A3)
The following terms, however, become increasingly complex. Therefore, we take
recourse to a shorthand notation. The functions in the right-hand side of (A.1)

are lined up in the diagram of Table 2.1, along with the terms of their Taylor
series. A shorthand version of this table is shown in Table 2.9.
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él 2 én

1 0 0 0
w/1! 1 1 1
W2 2 2
Wil | o roo..- r

Table 2.2 Shorthand version of table 2.1

Any term occurring in the power series of the product 8,-9,...8, can now
be represented by a numerical string, which is formed by picking numbers from
Table 2.2, going from left to right. For example, the string {103 ... ] stands for

[103...]= %ég(m - 8,(0) - 1;’-—?9“;{’(0)..‘ (A.4)

As there are n functions in the right-hand side of (A.1), all strings in Table 2.2
contain n digits. A little thought makes clear that, when the digits of a string
add up to r, then the string contributes to the coefficient of w". For instance
[10300 ...0] contributes to the coefficient of w!*3 = w*. In more detail, the
contribution of this string contains a factor

w3

37

—

2l E

and one needs to keep track of the denominators in this expression, too. J

As we intend to group the strings of Table 2.2 according to powers of w, it
is natural to ask: which strings contribute to the coefficient of, say, w3? And,
moreover, how many such strings are there? It is clear that the number 3 can
be partitioned in different ways:

3=141+1
=142
=241
=3

In fact, there exist 23~! partitions. The strings belonging to the first partition
contain three ones and {(n — 3) zeros. Their contributions share a common factor
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(w/1)3. According to the definition of binomial coefficients, there are (

3) such
strings. They look like

[111000...], [110100...], [110010...], etc.

The strings belonging to the second partition contain one 1 and one 2, and
(n — 2) zeros. Here, the number 1 should always stay to the left of the number
2. Their contributions share a common factor (w/1!-w?/2!) and there are ()
such strings. They look like

(120000 ...}, 102000 ...], [100200...), etc.

The strings belonging to the third partition are similar; only the numbers 1 and
2 change places. The last partition, finally, yields strings that contain only one 3
and (n — 1) zeros. Their contributions share a common factor (w3/3!) and their
number is (Y) ]

The above is easily generalized: if one considers w”, then there exist 271
partitions. The number of digits differing from zero range from 1 to ». If a
partition contains k such digits, 1 < k < r, then there belong (:) strings to
that particular partition, where n is the number of functions ;.

To become less abstract, the product of the Taylor series of n functions
has been worked out in Table 2.3. The resulting n-digit strings are grouped
according to powers of w. The table has been truncated after w*. It can easily
be extended to higher powers of w, but the current table is believed to give a
good idea of what the coefficient of an arbitrary power of w will look like. J

As centralized moments are useful characteristics of an impulse response
function, we decide to proceed our analysis in terms of centralized impulse re-
sponse functions. This is conveniently accomplished in the Fourier domain, as

+m . . +w . . —_
/ 8(t — p)eitdt = eton / B(t)ei dt = e H ()

-0 — oo

and thus .
O(w) = e~ “Fh(w) (A.5)

c
where 6(w) is the Fourier transform of the centralized impulse response function.
Hence, it follows that (A.1) can be written as

Cout(@) = €% 0 4 6 () - G>(w) ... 8. (w) (A.6)

c
By centralization, the first derivatives of 8;(w), evaluated at w = 0, become zero.
Now table 2.3, if applied to centralized functions, cleans up considerably: all
strings containing at least one digit 1 become zero. The reduced table is shown
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power # of # of ines look lik common
of w | partitions | strings strings look like factors
0 - (n) [0000 - 1
0
1 27 =1 (’1') [1000 - -]{0100 - -] etc %
2
2 | 270 =1 ('1') [2000 - J{0200 - ] ete =
2
n W
(2) [1100 - 1010 - ] etc (ﬁ
3
3| =4 (’D [3000 - ][0300 - ] etc =
n w2 w
(2) [2100 - -)[2010 - ] etc =
2
n w W
(2> [1200 - -J[1020 - -] etc oo
3
n w
(3) [1110 - -)[1101 - ] ete (ﬂ
4
4 21 =8 (T) [4000 - -][0400 - ] etc ‘Z.T
n w3 w
(2) (3100 - -][3010 - -] etc I
n wz 2
(2) [2200 - [2020 - ] etc (§>
3
n W w
(2> [1300 - -][1030 - ] etc 2
n wz w 2
(3> [2110 - -][2101 - -] etc 5-(F)
n w w2 w
(3) [1210- {1201 - Jete | oy
2 2
n w &)
(3> (1120 - -][1102 - ] etc (F) -
4
(n) [1111 - ][11101] ete (%)

N

Table 2.3 FElaboration of the product of n Taylor series (truncated

as Table 2.4. For future purposes, this table has been extended up to the eighth

after w*)
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power of w. |

It is seen from the column “# of strings” that some partitions contribute
more to a particular power of w than others do. As a matter of fact,

n
Q) _
( r—1 )
which shows that a group of (:) strings will contain infinitely more strings than

a group of (:1) strings, as n — oco. In Table 2.4 the groups of strings have been
lined up in order of increasing magnitude, for each power of w. It becomes clear
that, for even powers of w, strings containing only second derivatives outnumber

(A7)

n
r

all the others if n — oco. Their number is (g), where r is the power of w.

0Odd powers of w become dominated in number by strings that contain second
derivatives and just one third derivative. Their number is ( éx_ ) ]

In order to be more specific, let us attach an order of magnitude to each
group of strings. It has already been assumed that all Taylor series involved
converge. Then each of them must have a largest coefficient. From these n
coefficients we pick again the largest one, which has magnitude A, say. Now we
are able to indicate upperbounds for the groups of strings in Table 2.4. This has
been worked out in Table 2.5.

One may notice that

ni(n) <1 (48)

the right-hand value being approached if n — co. Accounting for this, Table 2.5
has been reworked in terms of powers of wy/n rather than w. (see Table 2.6).

It appears from the last column of Table 2.5 that terms involving odd powers
of w+/n tend to disappear if n increases. So, if the product of n Taylor series is
expressed as a power series of wy/n, the result tends to become a function that is
symmetric about the origin. This interesting conclusion is not definite, though,
because we did not indicate lower bounds of the coefficient of w”. One can still
think of series of linear systems that will never yield a symmetrical output signal.
This is the case, for instance, if none of the impulse response functions has non-
zero even centralized moments. We purposely exclude such cases by requiring the
impulse response functions to be non-negative, which guarantees the existence
of positive even centralized moments of any order. Under this restriction we
may rightly conclude that the product tends to become a symmetrical function.
(Our restriction is justified in view of the application that we have in mind, i.e.,
transport of contaminants through porous media. Negative impulse response
functions would imply the existence of negative concentrations, which seems to
be a physical impossibility). §
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power # of # of ) . common
of w partitions | strings strings look like factors
0 - (") [0000 - ] ]
0
2
2 1 (7;) [2000 - )[0200 - -] etc %
3
3 1 (") [3000 - J[0300 - Jetc | <
1 3!
4
4 2 (’;) [4000- 0400 - Jete | &
n wz 2
(2> [2200 - -][2020 - -] etc (5)
5
5 3 (") [5000 - -)[0500 - -] etc v
1 5
n w3 wZ
(2) [3200- {3020 - Jete | <ror
. 2 203 w? w?
9 [2300 - -][2030 - ] etc o
6
6 5 (Y) [6000 - J[0600 - Jete | -
n w4 w2
(2) 4200 {4020 - Jete | o7
n w? Wt
(2) [2400 - ](2040 - Jete | Zror
n w3 2
(2) [3300 - -]{3030 - -] etc (¥)
n wz 3
(3) [2220 - -][2202 - -] etc (?)
7
7 8 (") [7000 - :][0700 - -] etc w
1 =
™) | [5200- 15020 - Jetc | L
n w? Wb
(2) [2500 - ]{2050 - -] etc ST
n 4 4 w? w3
9 (4300 J[4030 - Jetc | Zrar
n L¢)3 w4
(2) (3400 - -][3040 - ] etc T
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n w3 w2 2
3) | 1322003202 Jete | ?>
n w? w3 wZ
3 [2320 - -][2302 - ] etc ST 3T
n w? 2w3
5) | [2230- (2203 ] ete =) 5
3
8 13 '; [8000 - -)[0800 - -] etc %
™) | [6200 - (6020 - ] et wd w?
2 PR e 61 2!
n w2 w6
o) | [2600- 2060 ] et o
™) | 5300 - ][5030 - ] et w? w?
2 RTER e 51 31
n w3 w5
9 [3500 - -][3050 - -] etc TE
4\ 2
[4400 - )[4040 - -] etc (%)
n w3 2 2

w

/\/\/—\/—\/\A/\@/—\/—\/—\/—\/—-\/—\/—\/—\
N N N N e e N S e S S S S e, e

(3320 - -][3302 - -] etc (-— %
w3.

n

") | 2330 ][2303 - Jetc | ( “’—3> :

3 2r \ 3!

") 1 [4220 - ][4202 - ] ete “’—4( ﬁ) i

3 ar\ 2
2,.,4, 2

g [2420 - ][2402 - ] etc %%‘”—l

") | [2240 - J[2204 - ] etc (‘—”i K

3 o) 4

2\ 4
Z [2222 - ][22202/] etc (“2#‘)

Table 2.4 Elaboration of the product of n Taylor series of functions

with zero first derivative (truncated after w*)

There is another interesting feature to be noticed from Table 2.6. It appears
that some groups of strings disappear faster than others, as n increases. This
finding will be of use later in this appendix. J
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power
ofw

upperbound for the coefficient of w”

)

n
1

4]

(
(3
(3
()
(3
(1)
(3

A

1
n
1

n
) [A] + 4

8 (';)lAl + 5(’2’) [A]? + 6(’;) 1A + (2) |AJ*

Table 2.5 Upper bounds for the coefficients of w™ (r =0,2,3,...).
A is the term of largest magnitude from any of the

>
+
N
/‘\/‘\@/‘\
>
[

¢
Taylor series of 0;(w)

Going back from Table 2.6 to Table 2.4 we find that the non-vanishing
terms in the power series of w+/n derive from the last groups of strings of the
even powers of w. These groups are entirely composed of zeros and twos. We
recall that the zeros stand for the areas of the impulse response functions 6;(¢),

<

which were 1 by assumption. The twos stand for the second derivatives of 8;(w)
evaluated at w = 0. Therefore, the non-vanishing coefficient of (w\/2)?" (r =
1,2,...) is given by

(él-l-)r * {sum of all possible products of r second derivatives 67(0)}g (A.9)

We will now outline the proof of a useful theorem (Section 2.8.6): If z;
(i = 1,n) are n numbers, then

DR r
lim &1 Lt +20)" g (A.10)
=00 7’.212,'2?]' -
r factors
0,],--mk=1,n

i#id 2k
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OI;CZ:V\(;% upper bound for the coefficient of (wy/n)" nlingo
0 1 1
2 | |4 4]
3 —;_;w 0
| 1AL+ glap AP
5| ol 2'\/_|A|2 0
6 | S+ AP 4 SlAP AP
T | Al 7 4fIAI2 + Rl 0
8 | Al s lAP + |4 4 Al Sl

Table 2.6 Upper bounds for the coefficients of (w/n)" (r =0,2,3,...)

for any fixed integer ».
Elaboration of the numerator yields n! products of r factors. There are

O(n) products of the form  z] (=
t

2 UL 9.7—17"1:/:]

O(n?) products of the form rl'r2'x’ z; ( rLt 1= 1 )
|

3 T gmigr Lhk=1ni#tj#£k
O(n”) products of the form Tiralral zilz ey ( vyt et p
O(n") products of the form rlz;z;...zp ( 6k )

_\,._/ i 7’—‘ J k

r factors

The denominator of the fraction in the left-hand side of (A.10) equals the sum
of the last mentioned products. As this group of products outnumbers all the

others, as n — 00, by at least one order it follows that the limit expressed by
(A.10) equals 1 indeed. g
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We are now able to replace (A.9) by

(%)r . % - ( sum of all second derivatives 87(0))" (A.11)

(This step implies the introduction of an error whose relative magnitude tends
to zero if n — c0).j

Intermezzo:

There exists a direct relation between the moments of 8(t), defined by (2.23),
and the derivatives that occur in the Taylor series of #(w). In order to see this,
write (2.23) in the form

limey—o [T%° t76(t)eiwtdt
M, = — 0 [ oo U0()e (A.12)
lim,, ¢ f__ (t)eiwtdt

Integrating by parts it is found that

8()(0)
6(0)

M, = (=i) (A.13)

where 8(")(0) indicates the r*h derivative of #(w), evaluated at w = 0. g

On basis of (A.13), with (0) = 1, the second derivatives §/(0) equal minus
the second centralized moments of 8;(t), which by definition of variance equal
—02. So (A.11) can in turn be replaced by

(;,)r : :—!{ > (o)} y (A.14)
1

Using this expression and (A.6) we finally arrive at the Taylor series expan-
sion of Eoyi(w):

n n
o) e T4 (1= o 3o + %@wz 3 o2)?
) 1

Fw o} + w?d o)t —...} (n—o0)
3'(2 7 o Z (A.15)

Cout (W) ~ ¥ M 3T (o) (A.16)

Upon Fourier inversion it follows that

\/51;; exp {-(t 2‘0’;) } (n — o0) (A1)

cout(t) ~
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which is a Gaussian curve indeed, with

mean yu = Z i (A.18)
1

and
n

variance 0% = Zo? (A.19)
1

So the mean of the Gaussian limit is just the sum of the means of the impulse re-
sponses of the systems passed, and the variance is just the sum of their variances.

Tracing back our steps, it is seen that the following assumptions have been
made as to the individual systems:

1) they be mathematically linear, in order that the superposition principle
hold,

2) their impulse responses have unit area,

3) the impulse responses be Fourier transformable,

4) all derivatives of their Fourier transforms exist at w = 0,

5) the impulse response functions be positive or zero everywhere.

The first assumption is essential as the convolution principle constitutes the core
of the proof of existence of a Gaussian limit.

Assumption 2 is a mere convenience. As will be seen in Section 2.8.4 the
condition can be relaxed, in order to yield limits for systems with decay, ampli-
fication and internal sources or sinks. These limits are Gaussian, too.

Assumption 3 holds whenever the area of the impulse response function is
finite. This adds no new restrictions to those imposed by assumption 2.

Assumptions 4 and 5 seem to be the most intriguing ones. They are probably
necessary to obtain the Gaussian limit. The convolutional principle may still
apply, however, if the conditions set by these assumptions are not met. One
may expect the existence of simple limits for such systems, too, although they
are unlikely to be Gaussian. As an example, consider the transfer of changes
in groundwater potential through a heterogeneous porous medium. In the one-
dimensional case such a medium can be represented by a series of systems having
different gechydrological properties. The Fourier transformed impulse response
of a particular system out of the series might be given by

fi(w) = Ae=oVi0w 4 (1 = 4)erViow (A.20)

where z is a measure of distance while A; and «; are characteristics of the
system. The convolution principle applies, and the impulse response has unit
area, but #;(w) has no derivative of any order at w = 0. Consequently, there
exists no Taylor series expansion and the method used in this chapter fails.
It is nevertheless expected on physical grounds that a limit exist as n — oo,
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although it will not be a Gaussian limit. Even more challenging is a series
where “Gaussian” and “non-Gaussian” systems alternate. Being of interest to
the theory of flow through heterogeneous media, these problems can probably
be tackled by Laurent series instead of Taylor series. We will not pursue them
any further, however, as they are beyond the scope of this thesis.

2.8.3 Skew-Gaussian convolutional limits

As stated in the preceding section, plumes of contaminants often show def-
inite tails, even at distances of hundreds of meters from their sources. In this
section we will search for limits that show a skewed shape. Use will be made of
an extension of theorem (A.10) (Section 2.8.6):

n+y+-+y)er+z2+ - +z,) !

lim =1 A2l
n—oo oYLy ... Tk ( )
S———
r factors
4.4, k=ln
i#i# -k

As we already noticed from Table 2.6, some of the vanishing groups of strings
disappear faster than others, as a signal travels through a series of linear systems.
The ones to persist longest fade at rate 1/4/n, and they appear to be present
in the coeflicients of odd powers of wy/n only. Going back to table 2.4 it is
found that these strings are made up of one three and a varying number of twos
and zeros. Their contributions to €oui(w) share a common factor (‘;—f)r‘l‘;—?
r=1,2,3,...). Moreover, there are r partitions producing strings of one three
and a varying number of twos and zeros. In view of (A.21) these contributions

can be replaced by

(5) Ao oy (A2

as n — oo. (This step, once again, implies the introduction of an, error whose
relative magnitude tends to zero as n — 00.) By virtue of (A.13) and (2.29) one

c <
has 07(0) = —oZ and 87’ = —i'lyia?, so (A.22) gives

n n

(%) _ O;,v - 11)1(2 ~iyod) (Y —o?) (A.23)

1
which upon summation over r yields

Zw exp ( —iw Xn: o?) (A.24)
1

Decentralization of this expression adds a multiplicative factor exp(iw 3 7 ;)
(see [A.6]). Fourier inversion finally gives

R S (ST
—— i0; ==\ —F——=r - -_——— A.25
3! 21:7 dt3 { /on Eﬂl -a'? exp 221 o,iz ( )
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This is the contribution of the terms that fade at rate 1//n, which has to be
added to the Gaussian limit (A.17) in order to obtain a limit that is reached in
an earlier phase of the transport process, before the Gaussian develops:

Cout(t) ~ \7%{1 - 11%03511} exp{ - %‘Qf} (n—o0)| (A.26)

This limit has the same mean and variance as (A.17). Moreover, it has skewness

11 N

Y= =3 Z Yio? (A.27)
1

Still earlier limiting shapes may be obtained in a similar fashion. For instance,
addition of the terms that fade at rate 1/n (see Table 2.6) gives (Section 2.8.7):

1 11 5d® 12 4d* 1,11 g52d°
Coull) ~ o=\ 1= g0 g + o g+ 5 (57e”) gm0

e - @‘—“)"’} (1 — c0) (A.28)

202

which has excess n
2 ]. 2 4
7= ; 7i0; (4.29)

The newly added terms tend to broaden the peak and to shorten the tails of the

output signal. The series (A.28) can be extended further by induction (subsection
2.8.8).

2.8.4 Convolutional limits for parallel series of systems

Up to this subsection the transferred signal was essentially a scalar function
of time. A possible physical interpretation of this assumption is that two consec-
utive systems are interconnected at a single point through which all the material
carrying the signal has to pass. Although many systems of practical importance
exhibit this feature, the case of dispersive groundwater flow seems to be more
complicated. Two consecutive sections along a stream tube are usually inter-
connected at several points and the signal transferred between them may differ
from one point to another. Moreover, the output signal at a particular point of
exit may be related to input signals at more than one point of entrance. Such
cases induce us to consider a signal as a vector whose elements are functions of
time.

In order to add dimensionality to our discourse, we now consider parallel
series of linear systems that allow for transverse interaction (Figure 2.15). The

output signals Cout depend on all input signals éin, and the transformation is
effected by all impulse responses in between. In order to guide our thoughts,
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examine the coupled system shown in Figure 2.16. For this simple arrangement

the relation between input signals and output signals is given by

{ bous(t) = [ in(t = 7)011(T)dr + [ &in(t — 7)012(7)dr
%out(t) = féin(i — 7)1 (7)dr + fgin(t — 7)822(1)dT

which upon Fourier transformation gives

{ bout(@) = Ein(w) - 1 (@) + En(w) - Fra(w)

Pout(@) = En(®) - 021 () + Fin(w) - Foa(w)

or, in matrix notation
1 - - 1
[cout] _ [9_11 4212] [Cin]
2 T |Gy 0 2
Cout n 22 Cin

Cout = -AEin

or

(A.30)

(A.31)

(A.32)

(A.33)

Here, ¢, and Cout are vectors, while A is a 2 x 2 matrix. We will call this the
transfer matriz of the system. This concept is easily extended to a system of m
coupled subsystems. Notice that the matrix A then becomes three-diagonal.

Figure 2.16 Twe parallel systems.
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We are now to find an expression for the output signal in case n such coupled
systems are placed in series.

In a first approach, suppose all n coupled systems have the same transfer
matrix A. Then the Fourier transformed output signal is given by

Cout = ACin (A.34)
The vector ¢, can be represented by a linear sum of eigenvectors of A:
Cn=ei1+er+...em (A.35)

By definition of eigenvalue,
Ae; = Xe; (A.36)

where A; is any eigenvalue of 4 and e; is the corresponding eigenvector. So
Cout = ATe1 +Aea + -+ Alen (A.37)

Without loss of generality one may assume that }; is the dominant eigenvalue
of A. Now write (A.37) in the form

Aovn Amn
out = ,\;‘{el + (f) es ... (T) em} (A.38)
then it follows that
Goue ~ Aer (n— ) (A.39)

This is a classical result of linear algebra, due to Von Mises, which in the present
context has some interesting consequences:

* It says that any input signal vector (having finite moments) is eventually
converted into the dominant eigenvector of A. So only the strength of the
output signal depends on the input signal; not the ratio between its elements.
As X1 is composed of a finite number of Fourier transformed impulse re-
sponses, it follows that A; has the properties formulated at the end of Sec-
tion 2.8.8. If A; has the desired properties, then the Fourier inverse of AT
will show the limit derived in the foregoing sections, as n — oco.

That conclusion, however, applies equally to the other X;. Referring to
(A.37) we conclude that the output signal consists (eventually) of a series of
Gauss-curves. The Gauss-curves associated with the non-dominant eigen-
value decay rapidly, as compared to the one associated with the dominani
etgenvalue.

We hasten to emphasize that a decayed Gauss-curve may have a non-zero
area. Applied to contaminant transport, this means that the remaining
Gauss-curve (the one associated with the dominant eigenvalue) does not
necessarily carry all of the contaminant. The rest forms a very long tail of
near-zero concentration.
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Notice that the elements of ¢y are not necessarily identical. This is because the
elements of e; will not be identical in general (see [A.39]). Each element of e;
adds its own characteristics to those of A?. As n — oo, however, their individual
contributions will be negligible, so the elements of coyt(t) will eventually approach
the same shape.

A more complicated case arises if the transfer matrices are not identical.
Let us call them A, Ag,..., A,. If there is repetition, such that A; = Ax4i =
Asiri... (i = 1,k — 1, k being some integer) then one may define a matrix
B=A; - Ay... A;_1, and the preceding analysis applies with respect to B.

We will now regard the case of a non-repetitive series of transferring parallel
systems. Equation (A.30) can be written in matrix form as

. 1
Cout(t) _ g (7‘)0 (T) cin(t - 7')
[%M(t)] -/ [elkr)e:im] [E-m(t_ T)] a (A.40)

cous(t) = / O(r)en(t — 7)dr (A.41)

The extension to m parallel systems is obvious. Analogous to (2.5) the action of
a series of n parallel systems can be described by a multiple convolution integral

or

Cout{t) = // . -/@1(7'2 —711)O2(r3 ~ 72)...On(t — T)cin(m1 )dmidrs .. .dT,
(A.42)
where the ©; are now matrices while ¢i, and coyy are vectors. By assumption,
the elements of the matrices ©; are non-negative. Non-negative matrices possess
peculiar properties, for instance the product matrix

was found to have linearly dependent rows and linearly dependent columns, such
that all eigenvalues of P are zero, except for one. (An exceptional case occurs
if the ©; are all unit matrices, which corresponds physically to parallel series of
systems without transverse interaction). This limiting behavior is usually appar-
ent already after a few matrix multiplications, as is illustrated by the following
arbitrary numerical example:

1 2 3 3 1 56 5 1 4 1 3 2 9 2 8
3 21 2 2 4113 8 2|12 4 3|7 5 3=
4 3 2 1 3 3 1 56 1 6 1 1 6 1 7

25,666 10,050 20,122
926,462 10,278 20,798 (A.44)
39,494 15,360 31,028
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As can be seen, the rows of the product matrix are (almost) non-integral mul-
tiples of each other and so are the columns. Such a matrix P can be written
as

P=l)exe ! (A.45)

where X is the non-zero eigenvalue and e is the corresponding eigenvector. By
e~! we mean the inverse of e, such that the inner product

ele=1 (A.46)

The cross in (A.45) denotes the matrix product of e and e~!. Now suppose that
one has r matrices P; that have the same properties as P in (A.45). Then their
product can be written as

Pi Py . .Pr=X1-da.. A (er xeT ) (eg xe3) .. (e, xeZY)  (A.47)

Returning to equation (A.42), it is always possible to write the product O -
O3 -...0, as the product of r matrices P; (»r < n) that have property (A.45) if
n — 00:

Cout(t) = // . /Pl - Pz . .PrCindTldTg .. .dTn (A48)

or, using (A.47)

Cout(t) = // : ~/)\1-A2 o Ar(erxer M) eaxest) (e x e ednidr, . . dTy,

(A.49)

Cout(t) = ///)\1 -/\2.../\,(61"1 '62)(62_1 '63)...(6:1 'Cin)eldTldTg ...dTn

(A.50)
Notice that the product A - As... A(eT! -e2)(e5 -e3)... (€7 - eiy) is a product
of scalar functions. It follows, therefore, that the elements of coyut(t) are given by
a multiple convolution product of scalar functions. By virtue of the preceding
sections their limits will be skew-Gaussian as n and r tend to infinity while n > r.
Although the elements of e; will not be equal in general, their contributions to
the convolution products become negligible as n — co. So all elements of coy:(t)
will eventually obtain the same shape.
Two additional conclusions can be drawn:
The index 1 in (A.50) refers to the last series of parallel systems that have
been passed by the signal. As the signal travels on, the vector e; will be
replaced by a new vector, possibly with completely different elements. This
means that the limiting shape of ¢qyt(t) will, in general not be approached
in a smooth manner.
Rearrangement of the order of the matrices P; in (A.48) has no influence on
the shape of cou(t) because the matrices P; commute by virtue of (A.45).

*
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Rearrangement of the matrices ©; in (A.42), however, may influence the
shape of cout(?). Carried to porous media, this means that rearrangement
of groups of inhomogeneities may not influence the shape of a plume, while
rearrangement of individual inhomogeneities may.

To conclude this subsection we note that we considered only finite vectors.

2.8.5 Conclusion and final remarks

We were able to explain why a signal of finite duration, which passes through
a series of linear systems, tends to attain a skew-Gaussian shape. Our demon-
stration applies only to systems that obey the conditions listed in Section 2.8.2.
The subsystems considered for the bank groundwater plant mentioned in Chap-
ter 1 apparently are in this class. One of the imposed conditions can easily be
relaxed: it is not strictly necessary that the impulse response functions have
unit area. If their areas are unequal to one, the systems show gain or loss: be-
sides altering the shape of a signal they amplify or dampen it. Especially the
last phenomenon occurs frequently in groundwater flow, due to interactions of
contaminants with the soil matrix or because of their natural decay. The occur-
rence of gain or loss changes the analysis of Section 2.8.2 just slightly. The only

necessary intervention is to divide the functions 6 i(w) 1 in (A.6) by 6 ;(0) and to

multiply (A.18) by []i, 0 :(0) to make up for it, where t9 :(0) is the area of the
impulse response of the it z h system. The same goes for the skew limits of Section

2.8.3.

The parameters p, 02, %10'3 and 'zya“ are all proportional to n, the number of
systems passed. If the systems are identical then n is proportional to the distance
between an observation point and the point where the signal is generated. (One
might think of contaminant transport along a stream tube in a uniform flow
field). Calling this distance z we get

gz (A.51)
sV (A.52)
1/ (A.53)
w1/x (A.54)

Qv Q= Q

¢
The multiplicative factor [}~ , #;(0) behaves differently. This factor can be writ-

ten as
n

[]6:(0) = el 08 (A.55)

i=1

which for identical systems gives

[16:(0) =efim4 (A.56)

i=1
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where A is the area of the impulse response function and [ is the length of
a single system. So in case of gain or loss a signal is amplified (A > 1) or
dampened (A4 < 1) exponentially. Using (A.51) through (A.54) and (A.56) the
skew-Gaussian limits can be expressed as functions of # and ¢. The remaining
parameters have to be regarded as medium constants.

In general, the parameters u, o2, *1/03 and ’2704 of the convolutional limit
are just the sum of the corresponding parameters of the component systems:
# =y pi, etc. The area of the impulse response of the composite system equals
the product of the areas of the impulse responses of the component systems. In
the conservative case, without amplification or decay, this area is one.

The conditions listed in Section 2.8.2, to which the component systems are
subjected, are merely mathematical. The individual systems may, therefore, be
of completely different physical composure. In fact, there is even no restriction
that requires the system to be physical. ..

2.8.6 Derivation of (A.10)
We want to show that

(@1itzat---42za)

him 1 A 57
n—oo  rliy ;.. .zp ( )
r factors
3,4y k=1,n
i#jt £k

for a fixed integer r. Here, ¢; (i = 1,n) are arbitrary numbers and i, j, k, r, n
are integers. According to Abramowitz and Stegun (1964), p 823, one has
r! zlzy? ...zl

1 2 n (A.58)
summed over ry +ro+ - 41, =7

r—-
(@1 424+ 2n) T rilrgll L ry!

The number of products in the right-hand side of (A.58) depends obviously on n
and 7. We can distinguish between different groups of products, having different
dimensions:

. there are n products of the form 1!z} (i = 1,n).

. there are n(n—1) products of the form 2!z~ x; (1,7 = 1,n;i # j) if r—1 #1
and there are ('2‘) such products if r — 1 = 1. In both cases the dimension
of this group has order n2.

- it follows likewise that the dimension of the group of products involving
three different z; has order n3, etc.

. the group of products of the form 7! zixj ... ¢ has dimension (Tr’), which is

S —
r factors
8,3, k=1,n
i#iE Ak
of the order n”.
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This last group exceeds all others in magnitude by at least one order, if n — oo.
After summing its members the group can be identified with the denominator of
(A.57). It follows that the limit expressed by (A.57) must equal 1 indeed. §

As it is known from analysis that
lim f(n)- lim g(n) = lim f(n)g(n) (A.59)
n—o00 =+ 00 n—oo
theorem (A.57) can be extended to give

Jim (p+y+-+ya) (z1i+ 22+ +xn)'2
n—oo rl‘rz‘zyiy., yk Zx zt

ry factors ry factors
v]v 7k3t| Su=1ln
i Ak
sEE--F#v

=1 (A.60)

Notice that the denominator has dimension (r"l) (;’2), which is of the order n™+72,
In a similar way as we proved (A.57) it can be shown that

rulral 3 viys - Uk Za:m
\—w—’

ry factors r, factors
1,4y k,8,t,.,u=Ln
s v
lim 0 =1 (A.61)
n—oco (1) + 7'2) Z YilYyj .- YrZTsly ... Ty
W__/»‘,_/

r) fac];ors ro factors
3,0, k8,1, ,u=1n

i1 EhEsF 1 Hv

The denominator of (A.61) has dimension (ﬁ:rg) which is also of the order
n™+72 Tt can be shown that the difference between the denominators of (A.57)
and (A.61) is of the order n™*™~1. Using (A.59) once again it follows from
(A.60) and (A.61) that

i Watyzd )@ A zat )
n=+00 (7‘1 +1’2)'Z YilYj - - - YrTsTt .. . Ty
e
ry factors ro factors

i)ji‘“:k,s,t,“.,uzl,n
iR FhAsEtE A

=1 (A.62)

which we used in Section 2.8.3 to derive the skew-Gaussian limit (A.26).

2.8.7 Dertvation of (A.28)

In order to derive the skew-Gaussian limit (A.28) we notice that the next
groups of terms to be taken into account are composed of strings containing one
four and a varying number of twos and zeros, together with those containing two
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threes and a varying number of zeros (compare tables 2.6 and 2.4). These are
the groups of terms that fade at rate % Put in other words: their dimensions
are of order 7™, When we derived the limits (A.17) and (A.26) we used (A.57)
to replace ) z;z; ... xx by ;1,-(:01 +zo+--++xy,)", thereby introducing an error
of order r”~1. As this error itself has the same order of magnitude as the groups
of terms that we want to include now, it is not allowed to exploit (A.57) once
again. We will now derive a more accurate expression to replace > z;z;... 2

by. §
Using (A.58) we have

(:c1+:l:2+""l'xn)r:"!zxi“’j"'xk"'
N

r factors
3,0, k=1,n
#3# #k
2| E z? Z'J .z +0(n"" %) (A.63)
r—1 factors
3,0, k=1n
iEj# £k
SO
Zx Zj. = —(-’81 +aa4 ot za) —
r factors
3,0,.-,k=1n
i#iA 2k
1 -
gz.z?xj...xk +0(n""?) (A.64)
: N —rt’
r—1 factors
5,4, k=1ln
i#jE 2k

For the present purpose the right-hand side is accurate enough to replace the
expression y_ z;z; ...2x. The shape of the second term is not very convenient,
though. Using the same argument one gets

Zz?xj,..m =& 2)|($2+173+ +z,) 2

r— 1factors
3,5, ,k=1,n
i#i# £k
2

et et 4w

+

2
(.’L‘l +xo+---+ xn_l)r—Q + O(nr-Q)

+
- ) (A.65)
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or
1
d zizs ;= pgy(alt et @) (o 4z b 2) T 4 O
r— lfactors
Ijv Sk=1,n
i#i# AR

(A.66)
(The step from (A.65) to (A.66) introduces an additional error of the order n"~2,
which does not change the order of the total error). Substitution of (A.66) in
(A.64) gives finally:

1 r
E ZiT;.. . Tp = 1—',-(1:1 +$2+“‘+$n) —
N’ !
r factors
1,5,-..k=1,n

i#i# Pk

1
50— 9)1 (2 +al+-+2) e+t +z,) 2+ 0(nT?) (A6T)

The first term in the right-hand side has already been taken into account in the
limits (A.17) and (A.26). Only the effect of the second term has to be included
in the sequel. |

We now proceed to the derivation of (A.28). The strings containing one

four and a variable number of zeros share a common factor ( “%)hl“;—: (r =
1,2,3,...), as can be seen from table 2.4. Moreover, there are r partitions
producing strings of one four and a varying number of zeros. Using (A.62) in
the form (A.21) we find that the contribution of these strings to coy(w) is

wg r—1 4 n o -
r(:z!) ZT:,(ZH'”(O))(Z%’(O)) (A.68)

which can be replaced by

(‘;—?)r_l Ao (Z(’y,+3)cr )(Z )H (A.69)

Here, use is made of (A.13), (2.24), and (2.26). Summing over r gives
4

(X Gt ) e (- 72 72) (A70)

1

Decentralization adds a multiplicative factor exp(iw ) 7 pi), see (A.6). Fourier
inversion then yields

i (zl:(‘)'z + 3)04)dt4 {T\/—IZ:T—E;:CXP{ (t ;zz::l Ih) }} (A71)
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The strings containing two threes and a varying number of twos and zeros share
r—2 2

a common factor(%) (%,3—) (r=2,3,4,...), see table 2.4. Moreover, there

are (}) partitions producing such strings. Using (A.62) in the form

(y14+ye+ - +yn) 2z +z2+ - +2,)" 2

lim =1 AT2
T+ 00 r!Zy,-yj:ck...xl ( )
S —
r factors
3,5,k,...,l=1,n
itk

it is found that the contributions of these strings to éout(w) is

(&) @) 5 (Eho) (Sio) ww

which can be replaced by

1 w2 r—2 ws 2 1 n 1 4 2 n , re2
21\ 2! 31) (r—2) ; ~inio} ) ( D —of) (A.74)
1
where we made use of (A.13), (2.24), and (2.25). Summing over r gives
—iw3 1, n , 2
2; Z'Yz exp | — -2'—!0.1 Zai (A.75)
1

Decentralization once again adds a factor exp(iw Y 1 p;) and Fourier inversion
yields

91 (3r 27‘ t) a6 {\/7—1—2_";:7;?“3@ {"('t;g—n—?:?z}} (A.76)

At last we consider the contribution of the second term in the right-hand side of
(A.67) to €out(w). Tracing back the steps that led to (A.17) this contribution is
found to be given by

w2\’ 1 LN (<S¢ 2
- (?) 2!(r — 2)! (; () ) (21:6 ) (A7)

(r =2,3,4,...), which can be replaced by

SE) NG ()T o
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where use is made of (A.13) and (2.24). Summing over r gives

(@) E)wlia)  wm

Decentralization and Fourier inversion yields

- E) ot Y

In summary, the contribution to €ou(t), consisting of (A.71), (A.76), and (A.80),

reads
{4!(27' ’)dt‘* 2!(3!27‘ )dte}

1 ( _Zl i)’
Nyl (A8

This has to be added to the skew-Gaussian limit in order to obtain a still earlier
limit:

1 1— 11 5d* + 1z ,d*
Norr ETRAAP TR TR

%(?’1'103)2:%} exp{—g%} (n — o) (A.82)

_ 2 __vn_2 1 1vwl o3 2 _1vwn2 4
where p =327 i, 0 =310}, v= 51 7i0] and ¥ = 55 327 Yiol

Cout (t) ~

2.8.8 Eztension of convolutional limit (A.28) by induction

It may be clear by now that we can refine the skew convolutional limit ever
further by successively including the terms that decay at rate 1/n/n, 1/n?, etc.
The amount of algebra however, although being elementary, becomes soon pro-
hibitive. On the other hand, the process is purely mechanical. One may expect,
therefore, that new terms can be deducted from former terms by induction. Lin-
ing up the terms of various order that we have obtained already, we get Table
2.7.
The term of order two is zero as a result of centralization. We remember from
subsection 2.8.3 that the third order term was made up of all strings of Table
2.4 containing one three and a varying number of twos and zeros. They give rise

1
to the term — 15,1 ;:3 in the skew convolutional limit (Table 2.7). Likewise, the
term of fourth order was made up of all strings containing one four and a varying
number of twos and zeros, together with all strings containing two threes and
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order rate of
appearance of term
of term | growth/decay
1 n 1
2 vn 0
; x 10° &
Vn 3! dt3
4 1 ‘an‘ld‘*_l_l ‘lya?’ 2£
n 4! dtd 0 21\ 3! dté

Table 2.7 First four terms of the skew convolutional limit

a varying number of twos and zeros (subsection 2.8.7). They yield the terms

2 1
3’%4—% and 2 7;—,3 dﬁ:z, resp. (Table 2.7). The fifth order term must be made

up of all strings in Table 2.4 that contain one five along with a varying number
of twos and zeros, one four and one three along with a varying number of twos
and zeros, and three threes along with a varying number of twos and zeros. By
analogy with the terms of orders three and four we expect the fifth order term
in the skew convolutional limit to become

%a’s &5 %/(73 '2yo'4 d’ 1 '1)'03 340 (A.83)
5! dt5 3t 4 4t 31\ 3! dt® '

Proceeding this way, the sixth term will be

@t A
1 22 1 4
1 ,},0.3 70.4 le 1 70,3 d12
+§(§T> arao ta\sr) am (4.84)
and so on. To cut the reasoning short, we have the following rule of induction,
which requires no consulting of tables:

To construct the nth order term,
1) form all products

“;as £ 1 12/04 2 g8 'lyas *?'04 d®
6! dts 20\ 4!

}'Wi-x-z ,-%j+2 ',;,o.k+2 4

G+2)! G+2)!  (k+2)!des

such that i+ j+ -+-+ k = n — 2. It is not required that ¢ # j # --- # k.
The order s of the derivativeis s = (i +2)+ (7 +2) + -+ + (k + 2).
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2) if %‘—’5; occurs r times, then multiply the product by -rl—,
3) the sign in front of the product is plus if s is even, else minus.
4) sum all products to find the n** order term of the convolutional limit. B
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CHAPTER 3: APPLICATION TO 1-DIMENSIONAL
CONTAMINANT TRANSPORT

3.1 Aim of the chapter

The breakthrough formulas, presented in the previous chapter, will presently
be applied to transport through porous media. Qur prime interest is in one-
dimensional transport under conditions of steady flow. Most of the problems to
be considered allow for exact analytical solutions, although the expressions may
become quite complicated at times. It is our aim to replace them by a simpler,
uniform (albeit approximative) approach, that has a wider range of application
and is easy to implement in existing computer programs.

3.2 A note on the history of dispersion research

This thesis considers only longitudinal dispersive transport, i.e. we neglect dis-
persion in directions perpendicular to the main direction of flow. As almost
every self-respecting groundwater model seems to deal with a three-dimensional
formulation of the problem, we feel a need to justify our choice and we will do
so by historical arguments.

The development of the theory of dispersion has always been hampered by
scarcity of field data. The reason is plain to see: groundwater flows very slowly
under natural conditions, displacing itself only one to several meters a year. It
was never easy to realize costly long lasting field experiments on a practical
scale, especially in a time when the need of a clean and healthy environment
had not yet attracted political action. Early dispersion research struggled with
a lack of funds. Experiments focussed on simple column models in laboratory
environments, filled with homogeneous sand. Their test setups derived imme-
diately from chemical reactors. As a matter of fact a good deal of the theory
of dispersive flow in porous media has its origin in the field of chemistry, where
it received comsiderable attention in the period following World War II. Bear
(in De Wiest, 1969) presented the state of the art in the field of groundwa-
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ter flow at the end of the nineteen sixties. It appears from his account that
the notion of ‘macro dispersion’ had not yet evolved. ‘Hydrodynamical’ disper-
sion was attributed to velocity differences on a pore scale or even within pores.
The conceptual models at the time speculated on mixing effects in increasingly
complex arrays of capillary tubes, leading to the notion of dispersion as a fully
three dimensional process, requiring a tensorial formulation. Realizing that it
would never become possible to know the exact three-dimensional structure of a
pore channel system, researchers introduced statistical approaches to the prob-
lem. Theories bloomed, in contrast to experimental evidence, which remained
confined to the laboratory. It was generally agreed that the coefficient of dis-
persion was proportional to the velocity, the constant of proportionality (ar for
dispersion in the direction of flow and a7 for transverse dispersion) having the
order of the grain size. It lasted until about 1970 before the first field evidence
showed up that, in order to match theoretical to real breakthrough curves, the
proportionality constant had to be chosen several to many orders of magnitude
bigger than that. It was conjectured that macroscopic heterogeneities of real
aquifers were the cause. They, too, were likely to never lend themselves to be
exactly known, opening up a whole new field of research to statisticians. The
stochastic approach to groundwater flow became a discipline in its own right. If
ever science showed a tendency to prosper in the absence of measuring data, it
is in the field of dispersive groundwater transport. While stochastians scaled up
their theories, numerical modelers scaled up the dispersion tensor, putting con-
siderable effort in 3-D formulations that would keep numerical dispersion within
acceptable bounds. Both stochasticians and modelers remained vague, however,
as to the magnitudes of the elements of the dispersion tensor, keeping practi-
cal hydrologists in suspense. Many field observations on dispersion have been
reported, but their reliability must be questioned in most cases (Gelhar et al.,
1985; Gelhar et al., 1992). It became a popular practice to choose the transverse
dispersivities one third of the longitudinal value. Only recently began the results
of well controlled experiments on a scale of practical interest to penetrate the lit-
erature, notably in the journal Water Resources Research. The best known and
best controlled full scale test sites are those at Borden Air Force Base, Ontario
(Mackay et al., 1986; Freyberg, 1986; Sudicky, 1986; Rajaram and Gelhar, 1991)
and on Cape Cod, Massachusetts (LeBlanc et al., 1991; Garabedian et al., 1991).
Another test of interest is being conducted at Jutland, Denmark (Jensen et al.,
1993). (The references are not exhaustive and research at these sites is still going
on). Although the hydrological conditions at the various sites are quite different,
the tests are very conclusive as to the importance of longitudinal dispersion rela-
tive to transverse dispersion. In all cases it was found that transverse dispersion
in the vertical direction has only the order of molecular diffusion, corresponding
with a proportionality constant ap of ca .001 m. This finding emerged earlier
from a quite different test setup by Molz and Widdowson (1988). The longitu-
dinal proportionality constant ay was 100 (Borden), 500 (Cape Cod) and 900
(Jutland) times as big. Transverse dispersion measured in the horizontal plane
was 10 times (Borden), 10 times (Cape Cod) and 2 times (Jutland) as big as
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the vertical transverse dispersion. This kind of dispersion is difficult to assess,
as the width of a plume of contaminant may contract and expand depending on
local heterogeneities and non-steady flow conditions. It may be meaningful, in
this respect, the the Danish test site is very homogeneous as compared to the
other two, allowing for a more accurate estimate.

In conclusion, there is evidence that for engineering practice dispersion is
at most a two-dimensional phenomenon. A one-dimensional (i.e. longitudinal)
approach can be expected to suffice in many cases of practical interest.

3.3 Moments and cumulants

All methods to be discussed in this chapter require knowledge of the central
moments (or alternative characteristics) of breakthrough curves, up to some
order, given a differential equation. They can be obtained in many ways, most
of which become quite laborious if more than the first few moments are needed.
We will learn in this chapter that three or four moments suffice for our purpose,
but we will be able to draw that conclusion only after considering moments of
any order.

One method of obtaining them seems to be particularly geared to dispersion-
like problems. This method will be applied in the subsequent sections, the
present section being preparative.

A definition of moments was given by equation (2.24). An equivalent alter-
native was stated in Appendix 2.8, equations (A.12) and (A.13), where moments
were related to the coefficients of the Taylor series of the Fourier-transformed
function in question. Let that function be ¢(t) and let us assume that it describes
the concentration of a conservative (i.e. non decaying) contaminant, following
an event of instantaneous pollution. Denoting its Fourier transform by &(iw},
the Taylor series reads

e(iw) =1+ %6’(0) + %“?—26"(0) + - (3.1)

where accents denote differentiation with respect to iw. The n' moment corre-
sponds to the coefficient of (iw)™/n! in this series:

For reasons explained in any textbook on mathematical statistics (e.g. Stuart
and Ord, 1987), moments are not always the most convenient candidates to
characterize - in our case - plumes of contaminant. Cumulants offer an attractive
alternative. They are defined similar to moments, the difference being that the
Taylor series is taken of In{¢(iw)} rather than &(iw). This leads us to the formal
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relation

> (fw)™ = (fw)”

exp (ZK" — ) = EM" = (3.3)
n=1 n=0

where K, is the n'® cumulant. Notice that K, is absent, because In1 = 0. The

set of equations (3.3) is triangular and can be solved explicitly for M, to yield
the recursive relation

M, "\ i M,_; K;
L = B 3.4
n! ;n(n—-i)! i! (34)
or, inversely
Ko M, i M, K;
n_>rn - — 5
n! n! Z n(n—1i)! (35)

i=1

These expressions are convenient for programming, if one needs to calculate mo-
ments from cumulants and vice versa. Unlike moments, there exist no such things
as central cumulants: cumulants are invariant under centralization, except for
K, which vanishes then. Thus, central moments are calculated from cumulants
by

4

M, i M K
IR It reri: (3.6)

1=

. . . . - 1
We met in Section 2.4 with still other characteristics, the skewness 4 and the

excess '2y These are simply scaled cumulants, defined by

I{n+2

V= G 3.7

The use of cumulants will be demonstrated while discussing the classical model
of dispersive groundwater flow, the Convection Dispersion Equation (CDE).

3.4 Flux-averaged versus volume-averaged concentrations

Until now we refrained from giving an exact definition of concentration, and
there really was no need to go beyond intuition. At this point, however, we can
no longer sidestep the issue.

Two types of concentration appear in the literature, namely flux-averaged
concentration ¢p and volume-averaged (or “resident”) concentration cg (Kreft
and Zuber, 1978). The difference between the two was not recognized from the
onset and constituted a source of confusion among early researchers in this field.
The importance of the topic surmounts the academic level and the outcome has
a bearing on practical questions concerning the design of test setups to assess
soil parameters through tracer experiments.
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Let us consider a stream tube in a porous medium, with cross sectional area
S. Suppose that part of the fluid particles that cross S(z) at a judicious point
zo along the longitudinal z-axis is tagged. (We will refer to the tagged particles
as “solute”). The fluz-averaged concentration is then defined by

= i (3.8)

where v; is the velocity component perpendicular to S of the i*® fluid particle.
The operator n; is a tagger, having value one if the i*® particle is tagged, and
zero otherwise. The summation is taken over all N particles that pass S per unit
of time. Alternatively, (3.8) can be written as

_ S nvi/N _
E‘U,’/N

where v is the mean velocity (perpendicular to S) of all fluid particles. Changing
from velocity v to flux q we get

2 navs (3.9)

cp N

1
v

0
ger = Nznivi (3.10)

The product gcr is the total solute fluz, being the tagged part of q. 6 is the
porosity of the porous matrix. Form a practical point of view, ¢y might be
the concentration of some contaminant in a groundwater sample taken from a
monitoring well.

In contrast to (3.8) the volume-averaged or resident concentration is defined

g = 3 niv _ lZniv
v v N
This concentration can be interpreted as the relative number of tagged particles

ni/N that would have crossed S per unit of time, if all fluid particles had the
mean velocity v. Changing to flux again:

by

(3.11)

0
ch = N.Zniv (312)

The product gcp is called convective solute fluz. From a practical point of view,
cr might be the concentration of some contaminant in the groundwater extracted
from a soil sample that was taken without disturbing its water content.

In general, the total solute fluz differs in magnitude from the convective
solute fluz. The difference is termed dispersive solute fluz. By analogy to Fick’s
law of diffusion, this type of flux is supposed to be proportional to the spatial
gradient of cgp, such that

Ocr

qCF = qCR — OD—B:L'— (3.13)
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where D is the longitudinal dispersion constant. Relation (3.13) seems to have
been introduced by Danckwerts (1953). The analogy to Fick’s law lacks any
physical ground and has been questioned ever since. Fortunately, the asymptotic
behavior of the model is correct: it produces Gaussian breakthrough curves at
large distances from a source of contamination, and we saw in Chapter 2 that
this is a necessary requirement if one is to model convolutional groundwater
transport. But then again, numerous alternative models could do the same.
Still the Fickian model is almost exclusively used, which must be attributed to
its mathematical charms.
Adding to (3.13) the mass balance relation

ower _ yen
8 ~ Ot

(3.14)

it is easily found that
2

Ocr_,%r_0Onr (3.15)

Ox? Oz ot
which is the (one-dimensional version of the) classical Convection Dispersion
Equation (CDE). Elementary rearrangement of terms shows that cr equally sat-
isfies the CDE. Both types of concentration are therefore equally fit to describe
dispersive groundwater flow. It is clear from (3.13), however, that they can-
not at the same time obey the same boundary conditions. Consequently, if a
given problem is solved in terms of cg, the resulting solution will differ from the
equivalent solution in terms of cp. (Parker and van Genuchten, 1987). We will
illustrate this for a few cases, whose solution we need anyway.

3.5 The classical Convection Dispersion Equation

The dimensionless form of the CDE (3.15) is

2
e _te_te a0
where .
X= ) (3.17)
and
T= %—t (3.18)

It is common use, in one-dimensional flow, to set

D=agv (3.19)
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where «f is supposed to be a constant, independent of velocity. This would
change {3.17) and (3.18) into

xz

X =— (3.20)
ar
vi

T= a—L- (3.21)

ay, is called ‘longitudinal dispersivity’. The first problem to tackle is an infinite
medium (say a column) which at 7' = 0 contains a solute at concentration 1 in
the negative half X < 0 and pure water in the positive half X > 0. To complete
the mathematical statement of the problem, we add ¢ = % at T =0, X =0
(Kreft and Zuber, 1978). Clearly, the boundary condition at X = 0 is in terms
of volume-averaged concentration cg and the solution of this problem (which is

well known [Crank, 1957]) must also be in cg:

CR = %erfc(i\;TT) (3.22)

This is fine for undisturbed soil samples. For groundwater samples we need cp,
which can be obtained from (3.22) by means of (3.13). The dimensionless form
of (3.13) is

cp=cp— LR (3.23)

0X
We derive from (3.22) and (3.23)

(3.24)

_ _ T2
cp=%erfc(X T (X—Q—}

1

o) e - O
Figure 3.1 gives a comparison of the two solutions. The graphs show a slight
shift in time, which may be of importance if samples are taken close to the source
(think of column experiments in a laboratory setting). It can also be seen that
there is some upstream dispersion, notably in the beginning. As this cannot
happen in actual porous media, because - apart from some Brownian motion -
fluid particles move only downstream, solutions (3.22) and (3.24) are not ideal
for modelling dispersive groundwater transport.

In order to prevent backflow at the source, it is common practice to set
cp = 1at X =0, for all values of time T. (This does not improve the model,
of course. It only conceals one of its shortcomings). We now have a problem in
terms of ¢y, whose well known solution reads

X-T
cF = %erfc<?ﬁ> + %cf%rfc(%) (3.25)

(Rifai et al., 1956). Relation (3.23) is not so convenient to obtain cg from cp.
However, conservation of mass ensures that

t o]
q/ cpdt = 6/ crdz’ (3.26)
1] T
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Figure 3.1 Volume-averaged (drawn) versus fluz-averaged {dotted)
concentrations in an tnfinite column. Dimensionless
time = 2, 4,8, 16, 32. Horizontal azis: dimensionless
distance. Vertical azis: dimenstonless concentration.

(In words, this relation states that all mass flowed past & can be found between
X and oo). Reworked and put in dimensionless variables:

cr=—~ | ZEar 3.97
R y 0X (3.27)

(Kreft and Zuber, 1978). It follows now from (3.25) that

L o (X=T\ 1 x (X+T
CR = gerfc E\/——rf’— —-2'6 erfc _Q\TT_ .

.(1+X+T)+\/-§exp{—(—X—ZTTX} (3.28)

(Danckwerts, 1953). These two solutions are compared in Figure 3.2. There
appears a remarkable jump in cg at X = 0, which is easy to understand mathe-
matically (see [3.23]) but harder to grasp physically. This point was discussed at
some length by Parker and Van Genuchten (1984, 1985, 1986), Dagan and Bresler
(1985), and Kreft and Zuber (1986), without reaching a convincing conclusion,
except for the statement that the model does not apply close to the source. In
spite of that, (3.25) is most commonly used to interpret tracer experiments. As
Parker and Van Genuchten stress, it has at least the property that it preserves
mass. We will therefore concentrate on (3.25), when we look for approximate
solutions to the CDE in the next section.

The CDE can be easily extended to take first order decay into account.
Equation (3.15) then changes into

¢ dc  OBe
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Figure 3.2 Volume-averaged (drawn) versus fluz-averaged (dotted)
concentrations in a semi-infinite column. Dimension-
less time = 2, 4, 8, 16, 32. Horizontal azis: dimension-
less distance. Vertical azis: dimensionless concentra-
tion.

(Lapidus and Amundson, 1952) where X is the characteristic decay constant of
the solute. Changing to dimensionless variables (3.20) and (3.21) and making
the substitution

=ce't (3.30)
with \
= °‘—ﬁ— (3.31)

the CDE reappears:
d%c* 9 Oc
8X2 06X oT
It makes no physical sense to look for a solution of (3.31) analogous to the infinite
column (3.22), as that would require infinite concentrations at X — —oo. The

analogue of the semi-infinite column (3.25) is physically possible (Bear, 1969),
and reads:

(3.32)

1 - X - T Y X + T
Cp = %ezx(l ﬁ)erfc<2—\/§—) + %C’X(Hp)erfc(z_\/;—) (3-33)

where
§= T da ) (3.34)

The literature on dispersive flow is extremely rich and there exist numerous
extensions of the CDE to account for more complicated forms of decay, various
kinds of sorption, stagnant zones, etc. It is not our aim to give an overview,
though, and the above suffices for the purpose of this work (although we will
briefly touch upon the subject of sorption in the section on Strack’s dispersion
equation).
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3.6 Various approximate solutions to the CDE

3.6.1 Moments and cumulants of the CDE

In order to apply the approximate methods of Chapter 2, we need either
the central moments or the cumulants of ¢(X,T), and we want to obtain them
not from an existing solution, but from the differential equation (3.16) (because,
in more complicated cases, solutions may not always be at hand). Taking the
Fourier-transform of (3.16) we find that

d¢ de .
Fﬁ bl ETY— = —Wwc (335)
which has the general solution
¢= Appexp {1X £ 1XV1 - 4iw} (3.36)

A; and A, are unknown constants, that can be solved from the requirement that
the solution be mass preserving. The amount of mass carried by (3.36) is given
by &w = 0). (Notice that &w = 0) is equal to the zero'® moment My, according
to [3.2]). Setting this amount equal to unity, it follows that

1= A exp{iX + 1 X} (3.37)
which is satisfied only if Ay =0 and A3 = 1. Thus
c=exp{iX - %X\/i—-—_M} (3.38)
To obtain cumulants, we take the logarithm of (3.38):
Iné=3X - 1Xv1—4iw (3.39)

and consider the Taylor series of In¢. Noting that

a 1a> 13a® 135a*
v1+a=1+%ﬁ—§§§+'2?‘3—!——271—!'+“' (3.40)

we find
Iné = X(iw) + lXi?"MfI(2i— 3) (3.41)
: n=2 n! =2 .

By definition, the cumulants are the coefficients of (iw)™/n! in this expression
(see Section 3.3), thus

Ki=X (3.42)

Kn=2""'XTJ(2i-3) n=234,... (3.43)

=2
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from which the central moments are obtained by means of (3.6). The skewness

'ly and excess '2;/ are also easily pulled from (3.43), cf. (3.7). For future reference
we mention that

p=X (3.44)
c=v2X (3.45)
y=18/X (3.46)
3 =30/X (3.47)

(It is to be noted that these expressions are dimensionless, hence p and o are in
dimensionless time (3.21). Their dimension-bearing counterparts are, therefore,

u=2a/vand ¢ = /2arz/v, resp. This remark does not apply to 'ly and %, who
remain dimensionless. Their counterparts read /18ar/z and 30ar/z, resp.)
It is a nice feature of curmulants that they are proportional to X, the distance
travelled by the plume. This suggests that they can be calculated moving along
a stream line, just like the mean travel time is calculated in conventional piston
flow models.

Notice that the above method of calculating moments via cumulants works
so well, because of the exponential form of (3.38), which is characteristic of
dispersion-like problems.

3.6.2 Fdgeworth and Gram-Charlier

When we discussed the series of Edgeworth and Gram-Charlier in Section
2.5, we noticed already that they do not converge unconditionally. Unfortu-
nately, divergence occurs when applied to dispersive groundwater flow. This is
illustrated for Gram-Charlier’s series by Figure 3.3. Drawn lines are obtained by
(2.59), taking 1 to 5 terms into account. The dotted lines are calculated from
(3.25). In case of one term the breakthrough curve is the error-function, which
is the Gaussian limit. Inclusion of the second term, that contains the skewness

~1y, gives an improvement over the Gaussian, but addition of the excess '2y marks
the onset of divergence.

Edgeworth’s expansion behaves more fashionable, but does not converge
either (Figure 3.4). Its better performance is due to the fact that Edgeworth
grouped his terms in order of decreasing importance, making his approach prefer-
able for our purpose.

Divergence does not render the method useless. After all, the series are
asymptotically correct, which means that X can always be chosen large enough
so that convergence is obtained. On the other hand, the approach breaks down
at shorter distances from the source, when the plume is still very skew. This
is shown by Figure 3.5, which gives the asymptotic behavior of both series,
truncated after three terms. The figure confirms the superiority of Edgeworth’s
expansion.
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Figure 3.3 Convergence and subsequent divergence of Gram-Char-
lier’s series, applied to the Convection Dispersion equa-
tion. Horizontal axis: dimensionless time (vt/ar).
Vertical azis: dimensionless concentration. The dis-
tance from the origin is chosen such as to make the

skewness 'ly =15

In Section 2.5 we took some pain to indicate conditions under which the
truncated series of Edgeworth and Gram-Charlier produce positive definite and
unimodal responses (see Figures 2.7 and 2.8). These conditions are clearly vio-
lated by the examples in Figures 3.3 and 3.4, because the breakthrough curves
labelled “3 terms” have negative parts. In fact, it follows from (3.46) and (3.47)

that
2 1
= 30 (3.48)

which is a parabola in the ('17, %)-pla.ne. This curve touches the smaller heart-
shaped region of Figure 2.7 only in the origin 'ly = %/ = 0. Consequently, the
impulse response will never become fully non-negative, unless X — oo. The
situation is only slightly better for Edgeworth’s expansion, Figure 2.8. Never-

theless, Figure 3.5 suggests that Edgeworth’s approach is useful if 'ly < 1. In case
of the CDE this occurs at dimensionless distances (z/ar) bigger than 16.

The literature seems to be not unanimous as to a criterion for convergence
of Edgeworth’s expansion. Kendall (Stuart and Ord, 1987) refers to old work by
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Figure 3.4 Convergence and subsequent divergence of Edgeworth’s
expansion, applied to the Convection Dispersion Equa-
tion. Horizontal azis: dimensionless time (vifar).
Vertical azis: dimensionless conceniration. The dis-
tance from the origin is chosen such as to make the

skewness %/ =1.5.

Cramér and Galbrun, dating back to 1925 and earlier, to state that the integral

/_  1e(T)) exp {(—T;X—X)z} d(T - X) (3.49)

o0

must exist, in order for ¢(7') to have a converging expansion. On the other hand,
there is a somewhat younger book by Von Mises (1931), that requires the integral

/;Z A7) exp { (r—xy },d(T -X) (3.50)

T-X 4X
to be finite. The latter criterion is clearly stricter than the former. Be that
as it may, both conditions indicate that the tail of ¢(X,T) must decay at rate
exp(—T?/4X), whereas the actual rate of decay is only exp(—T/4), as can be
inferred from (3.25).
The oscillations of Edgeworth’s expansion can to some extent be moved away
from the region of interest by choosing a proper weighing function to multiply
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EDGEWORTH (3 TERMS)
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GRAM~CHARLIER (3 TERMS)

T T T
30 40 50

Figure 3.5 Asymptotic convergence of Gram-Charlier’s series (first
three terms) and Edgeworth’s expansion (first three
terms) to an ezact solution of the Convection Disper-
sion equation. Horizontal azis: dimensionless time
(vt/ar). Vertical azis: dimensionless concentration.
Dimensionless distances from the origin: 2, 4, 8, 16, 32.

The corresponding values of the skewness'ly are 3, 2.12,
1.5, 1.06 and .75.

¢(X,T) by. Figure 3.6 shows Edgeworth’s expansion applied to c¢(X,T) * T2,
times a proper constant to make the zero*® moment equal one. (The result of
the expansion was divided, of course, by the same weighing function to produce
the figure). The oscillations are actually quite heavy but they occur outside the
interval that we are interested in. They were polished away to obtain Figure 3.6.
There may exist better weighing functions, but the choice is seriously limited
by the practical requirement that they may not complicate the calculation of
cumulants. All things considered, this procedure seems to work, but the polishing
step is far from elegant and we feel not secure that the result will be sufficiently
foolproof to be incorporated in a complex groundwater model.
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Figure 3.6 Edgeworth’s expansion using a weighing function. Os-
cillations before breakthrough are not shown. All spec-
ifications conform Figure 3.5.

3.6.3 Von Mises

For sake of brevity we indicate the staircase function approach, described in
Section 2.6, by the name of Von Mises, although we are not sure whether or not he
was the originator. Figure 3.7 presents exact solutions to the CDE according to
(3.25), approached by the midpoints of the steps and rises of staircase functions,
using the moments of Subsection 3.6.1. Each two extra dots in a breakthrough
curve require evaluation of two more moments, which is an easy task in itself.
However, the numerical accuracy of the matrix manipulations that come with the
method becomes problematic when the number of moments exceeds twenty or so.
Special programming techniques may raise this bound, but the set of points to
approximate the exact breakthrough curves by will nevertheless remain sparse.
All the same, they give a fair idea of the shape of the curves.

1.0 1

0.5 ~
4 VON MISES
Q.0 T

T T T T
0 10 20 30 40 50

Figure 3.7 Von Mises’ approzimation of breakthrough curves ap-
plied to the CDE. Drawn lines are ezact. All specifica-
tions conform Figure 3.5.
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3.6.4 Pearson I

The mixing reservoirs model, leading to the Pearson type III distribution
function, was also presented in Section 2.6. Applied to solute transport, Pearson
I characterizes an impulse response whose corresponding breakthrough curve is
the incomplete gamma function (Abramowitz and Stegun, 1964, p 260), shifted
along the time axis. Press et al. (1989) discuss efficient algorithms, includ-
ing a FORTRAN function-routine. Pearson III contains just three parameters,
equations (2.74) to (2.76), that can be related to the CDE through (3.44) to
(3.46). The performance of the shifted incomplete gamma function is shown in
Figure 3.8. The approximation appears to be slightly off at the beginning of
breakthrough.

1.0 4

0.5
SHIFTED GAMMA
0.0 Y

T T T T
(] 10 20 30 40 50

1

1

Figure 3.8 Ezact solutions to the CDE approzimated by the shifted
incomplete gamma function. All specifications conform
Figure 3.5.

On the other hand, the results are very robust and show no tendency to
degenerate. Their evaluation, moreover, is highly efficient, considering that only
three moments of the CDE are needed. Physically speaking, this variation on
the mixing reservoirs model is apparently closely related to the diffusive model
underlying the CDE. A marked difference is the theoretical breakthrough time

of the first solute particle, which is zero for the CDE and u — 25/ }y for Pearson
III. There are also marked differences in the shape of the breakthrough curves
very close to the source (x < ar) where Pearson III has a steep front (Figure
3.9). From a practical point of view this need not be alarming, because at short
distances the CDE is a poor model itself. The deficiency at the front appears to

be mitigated if the skewness %/ is somewhat reduced. In Figure 3.10 we multiplied
'Iy by 0.8. The improvement goes at the expense of the former perfect fit later
on, but the whole evokes a well balanced impression.

We stress that, in this application, we did not introduce the mixing reservoirs
model as a model of dispersive groundwater flow. Rather did we use the resulting
Incomplete gamma function as an approximate solution to the CDE, which is
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Figure 3.9 Difference between CDE and Pearson III close to the
source (x =0.5¢y, ).
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Figure 3.10 Same as Figure 3.8, with a slightly reduced skewness.

therefore the actual model, from which the parameters of the incomplete garmma
function derive.

3.6.5 Decay

The decaying case (3.29) is interesting by the fact that its zero'h order
moment declines during transport of the plume. We saw in Section 2.5 that this
does not preclude the existence of a Gaussian limit. Moments and cumulants
must be scaled by My, however, and the resulting approzimative solution has to
be multiplied by My. We illustrate the procedure briefly.

The Fourier transform of (3.29) reads

d%c dé

—_ = —jwe+ A*¢ .
X7 " IX twe + A*e (3.51)

where X and T are dimensionless. The parameter A* (being dimensionless either)
is given by (3.31). The solution of the semi-infinite case, analogous to Subsection
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36.1,is
er(X,iw) = e3X o= 3XV/1-4(iw=X*) (3.52)

if we choose ¢r(0,0) = 1 (because that corresponds to the boundary condition
at X = 0 of the non-decaying analogue). By definition

My = ép(X,0) = e3X(1-8) (3.53)
where § has the same meaning as in the exact solution (3.33) of this problem:
B=V1+4x (3.54)

The scaled version of (3.52) reads

er(X,iw) = X4 X\/F—diw (3.55)
M,

from which we obtain the following expression for the cumulants

K, = 5 (3.56)
21:—1 N

Kn=X o [I2i-3) (3.57)
=2

(compare [3.42] and [3.43]). From this we derive the following dimensionless

forms of p, o, *1y, and ‘2;'

p= % (3.58)
o= % % (3.59)
i=\5x (3.60)
3= [—g’% (3.61)

(compare [3.44] to [3.47] and notice the remark following these equations). It is
interesting to notice that the mean occurs earlier than in the non-decaying case,
a phenomenon that we already experienced with the bank groundwater plant in
Chapter 1 (see Figure 1.4).

Figure 3.11 shows approximations to the exact solution (3.33), by Edge-
worth’s expansion, Von Mises’ method, and the incomplete gamma function,
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Figure 3.11 Various approrimations to the CDE with decay term.

In this ezample B =1.1. All specifications conform Fig-
ure 3.5.

resp. We need not comment on this figure, because the characteristics of the
various methods are not different from what we found in the non-decaying case.
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3.7 Strack’s dispersion equation

The CDE predicts the presence of contaminated particles at any distance from
the source, right at the instant of contamination. Strack (1992) considers this a
major objection. In order to overcome the problem he proposed to add a kind
of inertia term to Fick’s law of diffusion, changing it from

dc
94 = _D(?_a: (3-62)
to
_ de 094
ga = -Dé—:c- - ’Bﬁ (3.63)

where ¢4 1s the dispersive solute flux. As before, D is the longitudinal dispersion
constant, which equals apv in one-dimensional flow (compare [3.19]. 3 is a new
constant (not to be mixed up with the S-coefficient that we used to characterize
decay in previous sections)! This parameter controls the propagation velocity of
the solute front. (Strack’s derivations are actually fully three-dimensional, al-
lowing for curvilinear stream lines. We confine ourselves to a simplified account
of Strackian dispersion along a straight stream line). Notice that addition of the
new term in (3.63) makes it possible to have a finite flux ¢4, even if the gradient
dc/8z becomes infinite. Like Fick’s law, the new term is merely phenomenolog-
ical; there are no underlying thermodynamical concepts.

From the discussion in Section 3.4 we infer that the concentration in (3.63)
is volume-averaged:

_ _nOcr 04
94 =—-D 5z P 5 (3.64)
Similar to (3.13) we obtain the following expression for the total solute flux:
_ _ Jcgr 044
qcr = qcr+0¢a = gcp — D= ~ 08— (3.65)

where ¢ is the fluid flux and @ is the effective porosity. The concentration in
the left-hand term of (3.65) is flux-averaged. The mass balance is unaltered by
Strack’s assumption:

Oqcp _ ,0Ocr
— S =0 (3.66)
Elimination of ¢ and g4 from (3.64) through (3.66) shows that
0%cr Ocr  Ocr 8%cr 8%cr
ez " "Br Bt +p Jdz0t +8 ot? (3.67)

and likewise for cp. Changing to dimensionless variables X = z/ay and T =
vtfayr:

2 2 2
d%c 8c 8c A( &%c 8c> (3.68)

axz ax o7 “\axar T a7z
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for both cr and ¢p, where

)\zﬁ—v

ar

(3.69)

The next chapter presents experimental evidence that 3 :: 1/v, so that A is
a constant, not depending on velocity. Equation (3.68) turns into the CDE if
A = 0. On the other hand, when A becomes infinitely large, (3.68) turns into

oo, o
8XoT 0T?

which describes piston flow. It is thus seen that Strack’s model balances neatly
between the two classical models of contaminant transport.

=0 (3.70)

Solutions in terms of ¢p can be recast in terms of ¢cg by the mass balance
relation
BCF

tR = — —dT’ 3.71

R o 0X (3.71)
which is nothing but a restatement of (3.66). Notice that (3.71) is identical
to (3.27). In the CDE-case we had also an easy relation (3.23) to transform
solutions in terms of ¢p nto solutions in terms of ¢p. The equivalent expression
is somewhat less convenient in the present case:

Ocr Jcp  Ocgr
P+ Gy = et AGE = 5%
This relation follows from (3.64) and (3.65).

(3.72)

A standard classification technique shows easily that Strack’s dispersion
equation (3.68) is of the hyperbolic type. Hyperbolic differential equations allow
for a transformation of the independent variables to so called characteristics,
along which the equation itself assumes a particularly simple form. This is the
basis for a numerical solution scheme, which has been extensively explored as
part of the LCMR-project. The results are reported elsewhere (Fairbrother,
1992). In this thesis we employ the Laplace-transform technique, to solve two
simple problems that can be regarded as extensions of the problems discussed in
Section 3.5 for the CDE.

The first problem is that of an infinite column, which at 77 = 0 contains
a solute at concentration 1 in the negative half X < 0 and pure water in the
positive half X > 0. The concentration is set equal to .5 at 7=0, X = 0. It
is shown in Appendix 3.10.1 that this problem yields the following solution in
terms of cg:

a) if T < X then

~a10{\/ (12 - bE}
L{Vr —p2}dr (3.73)

A
X, T) =
XD = S T

1 —b
+ se

b
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b) if T'> X then

CR(X,T) = 5——A——E_GI0{\/ a? — b2}

AA+4)

N %b[ \/%I‘{M}dT (3.74)
where
0= Xﬁ% (3.75)
= \/_)X(_(,\;-—EZ) (3.76)
- %)—Aﬁ (3.77)

This solution applies only on intervals of time where the lower bound b of the
integral does not exceed the upper bound ¢. The concentration is either zero
(in the downstream part of the column) or one (in the upstream part) if this
condition is not met. The concentration jumps at dimensionless time

Ty = LX{V/A(O+4) -2} (3.78)

if X >0, and at

=-1xX{V2O+ 49 +1} (3.79)

where the subscripts f and t stand for front and tail, respectively. The char-
acteristic behavior of the solution is better inferred from concentration profiles
(er vs X) than from breakthrough curves. Figure 3.12 gives a few examples.
One may notice that the fronts and the tails are not symmetrically located with
respect to the mean.

Equations (3.73) and (3.74) are the counterparts of solution (3.22) of the
CDE (compare Figure 3.1). Expressions for flux-averaged concentrations cp
analogous to (3.24) can be found straight forwardly. We will not present them
here, because they are rather inconvenient and the infinite model is not so useful
as a model of dispersive solute transport, because it shows backflow at the source.
We will focus on the semi-infinite column instead.

Appendix 3.10.2 presents a solution of Strack’s differential equation (3.68)
for cr, in case of a semi-infinite column which has originally zero concentration.
At T = 0 the value of cg is suddenly raised to 1 and kept constant ever after.
The expression reads

Il{\/ 2 q2}dr (3.80)

cr(X,T) = 3%~ 4 ge3X /
\/____
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Figure 3.12 Some concentration profiles in an infinite column ac-
cording to Strack’s dispersion equation, for A =0.5.
The profiles correspond to T = 0., 0.5, 1., 2., 4 and
8. Horizontal azis: dimensionless distance. Vertical
azis: dimensionless concentration.

where
a= %(A +2) (3.81)
b= — (3.82)
Yo '
2T+ A X

The solution applies when b < ¢, ¢ being zero if this condition is not met. There
occurs a concentration jump at dimensionless time

Ty = 3X{V/A(X +4) - A} (3.84)

which propagates at dimensionless velocity

vy =1(/1+£+1) (3.85)

Notice that T} is exactly the same as in the case of the infinite column. The
tail is forced, however, to remain at X = 0. Figure 3.13 gives a number of
concentration profiles for the same value of A and the same times as in Figure
3.12. In addition, Figure 3.14 shows some typical breakthrough curves (cp vs
T), compared with solutions of the CDE. This figure gives a fair impression of
how A affects breakthrough behavior.

It is shown in Appendix 3.10.3 that the cumulants of Strack’s dispersion
equation, semi-infinite column case, are

Ki=X (3.86)
Kn=1Xx4, (3.87)
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Figure 3.13 Some concentration profiles in a semi-infinite column
according to Strack’s dispersion equation. All specifi-
cations conform Figure 3.12.
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Figure 3.14 Some breakthrough curves in a semi-infinite column ac-
cording to Strack’s dispersion equation for A =1. Dot-
ted lines are solutions to the CDE. All specifications
conform Figure 3.5.

where

ﬁ__l_i Anci X+ (0 +9))
n! ~ 2n — (n - i)! 7! (3.88)
Ag=1

The 'zy that are needed to apply Edgeworth’s method of approximation can be
obtained from the cumulants by means of (3.7). Since we saw that it makes no
sense to use more than 3 terms, we can explicitly state that the dimensionless



3.8 Strack’s equation with decay and sorplion 79

forms of u, o, 'ly, and '2)' are

p=X (3.89)
c=v2X (3.90)
1 3(A42)

¥y = “Ax (3.91)
% _ 6(/\2 + 4X + 5) (3.92)

X

These expressions turn into (3.44) to (3.47) if A = 0, as they should do. Von
Mises’ method requires central moments of various orders, which can be calcu-
lated by (3.6). The parameters of Pearson III, applied to Strack’s differential
equation, are found through (2.74) to (2.76):

2

T 3A+6

. 8X

"= Bryoe
342
T 3)+6

a

(3.93)

(3.95)

Edgeworth’s approximation, Von Mises’ approach and the shifted incomplete
gamma function (the latter labeled 'Pearson III') are shown by Figure 3.15.
The superiority of the shifted incomplete gamma function shows once more. In
fact, the approximation looks not worse than Figure 3.8, although the curves
are much skewer. Edgeworth’s approximation is clearly inferior and starts to
become useful only at X = 64. Von Mises’ approach is not too bad, but it fails
to reflect the typical steep front behavior of Strack’s breakthrough curves, close
to the source.

3.8 Strack’s dispersion equation, inclusive of decay and sorption

Strack Strack [1994], Strack and Fairbrother [1994]) extended his equation to
include first order decay and linear rate dependent sorption. We treat the 1-
D case in this section, before passing on to the more general case. The basic
equations, from which Strack’s differential equation derives, are

1) Mass balance of sorbing phase:

Oes
—;t— = K1CR — KoCs — VCs (3.96)

2) Mass balance of sorbing 4+ moving phases:

_Ogep _ 06(61{+03)
or ot

+v(cgr+c,) (3.97)
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Figure 3.15 Various approzimations to Strack’s dispersion equation
for X =1. Dotied lines are exact. All specification con-
form Figure 3.5, except for the skewnesses, which are
4.5, 3.18, 1.59 and 1.13, respectively.

3) Dispersion equations:

qcr = qcp + 044 (3.98)
_ aCR 3qd
qga=-D 52 g 5t (3.99)

The concentration ¢, of the sorbing phase must be understood to be the ratio
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of sorbed mass to pore volume, just like cg is the ratio of solved mass to pore
volume. The parameter v, occurring in (3.96) and (3.97) is the decay constant
of the contaminant. For instance, if k7 and k; were zero, then the solution of
(3.96) would be

cs(t) = es(0)e™" (3.100)

which describes first order decay. The parameters k1 and 2 in (3.96) govern
the sorption rate and the equilibrium distribution of the contaminant between
solute and sorbent. This formulation is sufficiently general to allow for various
physical interpretations. In case of sorption to grains, for instance, the usual
notation of (3.96) reads

0s = Kk(Kgc — 5) — vs (3.101)
ot

where s is the quantity of mass sorbed on the grains and x4 is the distribution
coefficient, or partition coefficient, of the Freundlich isotherm (Domenico and
Schwartz [1990], p 441; Freeze and Cherry [1979], p 403). In this case, ¢, would

have to be defined by

¢, = gs (3.102)

where p is the mass density of the grains and § is the porosity of the porous
medium. The parameter & in (3.101) determines the exchange rate of contami-
nant between sorbent and solute. Consequently, we would get

KL= g—rmd (3.103)
Ko = K (3.104)

On a quite different scale, one might distinguish immobile zones within a hetero-
geneous porous medium, that are apt to penetration by contaminants through a
diffusion-like process (Coates and Smith [1964], Herr et al. [1988]). In that case
s will be the concentration (mass/porosity) in the immobile phase, and

s (3.105)

where 6;,,, and 8,, are the porosities of the immobile and mobile zones, respec-
tively. Equation (3.96) would then read

Os
i k(c—s) —vs (3.106)
and thus,
gim
K1 = 8 K (3107)

Ky =K (3.108)
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It is not difficult to think of more complicated models than (3.96), many of
which would not obstruct the procedure to be outlined below, but we feel that
the present formulation serves our purpose sufficiently well.

Equation (3.97) is a mere extension of (3.14), which we need not comment
on. The dispersion equations (3.98) and (3.99), finally, are only reformulations
of (3.62) and (3.63).

From (3.96) through (3.99) we obtain

o, O B B O _
“02' ”amat‘ﬁaﬁ‘”ax‘at“

+ (k1 + v)e (3.109)

and

dc,
ot

Elimination of ¢, gives a single differential equation in e:

= K1¢ — (kg + Ve, (3.110)

3¢ &3c 3¢ d%c . 0%
ST ﬂv8x6t2 - ﬂ6t3 +rzarvgy — v+ B s
* 3(} * 66
(14 80+ k) T o 2 (s + (L) 4
~v(k1 +£K3)c=10 (3.111)
where
Ky = Ke+V (3.112)

This equation holds for both the volume-averaged concentration (¢ = cg) and the
flux-averaged concentration (¢ = cr). We have not attempted to solve (3.111)
exactly, but it may be observed that a special case occurs if k3 = 1/8. Equation
(8.111) changes then into:

% ¢ 8%  Bc de
ngﬁﬁﬁvm—ﬁ‘a?—vg——{ﬁ(ﬂl*-ll)-kl}a—t—(ﬁl‘il-}-l)llc =0 (3113)

(Check: £ [3.113] +«3 [3.113] = [3.111] if k3 = 1/8).

For a semi-infinite column which has originally zero concentration, while at
t = 0 the concentration at z = 0 is suddenly raised to 1 and kept constant there
ever after, we find the following solution:

Il{\/ —a~}d‘r (3.114)

cer(X,T) = e3X~ab 4 403

=
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where
3 A+24
T VO F2A)Z MM+ DB + 1) (3.115)
X
= %m\/(/\+2A)2—/\(/\+4)(4B+1) (3.116)
¢= é%\j(j:ﬁf\f/\whm)? MA+ 4B +1) (3.117)
while
a2 2 (3.118)
ar
A=Brk14+v)+1 (3.119)
B = =2(Br; +1) (3.120)

X is dimensionless distance (z/ar) and T is dimensionless time (vt/ar). This
solution applies when a < b, the concentration ¢( X, T) being zero if this condition
1s not met. There occurs a concentration jump at dimensionless time

Ty = 1X{VAD +4) - A} (3.121)

which propagates at dimensionless velocity

vy=1(/14+ 2+1) (3.122)

Notice that (3.114) is literally the same as (3.80): only the meanings of the
parameters a, b, and ¢ differ. (For this reason there is no documentation of
(3.114) in the appendix). The propagation velocity of the front appears not at
all to be affected by sorption or decay (compare [3.122] with [3.85]).

We intend to use (3.114) to check an approximation by the Pearson III
approach, but we will calculate the parameters of Pearson III for the more gen-
eral case (3.111). As Pearson III has just three parameters we need only the
first three central moments of ¢(X,T), and we don’t have to bother too much
about recursion formulae. We avail ourselves of the opportunity to outline an
alternative method to calculate central moments.

For convenience we rewrite (3.111) as

&3¢ 83¢ 8%¢ 8%¢ 9%c 8%¢ de de
Agrsi * Poaaz + O+ Doy * Poumi + F o TGOyt +1e=0
(3.123)
where
A=arv B=-pv C:_ﬁ
D=«jarv FE=-—v(l+ 8«3) F=—{14+8w+r +r3}

G=-vky H=-A{(ki+&3)(1+v8)+v} I=-v(k+«k})

Ky = Ko+ v
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We derive from the definition of moments that

] t"edt = MgM, (3.124)
0o de —nMoMy_1 (n > 1)
/ t" -6—{dt = -—Mo (n = 1)
—oo 0 (n<1) (3.125)
52, n(n— DMoM,_o (n>2)
/ inaa-dt = —-2M, (n=2)
~o0 0 (n < 2) (3.126)
) &3¢ —n(n - 1)(1’1 - Q)M()Mn_s (n > 3)
/ t" th = -—32M0 (Tl = 3)
-~ O 0 (n <3) (3.127)

where ¢ = c(t) is the impulse response according to (1.123). Integration of
(3.123) with respect to t gives

d*M, dM
D—— + G+ IMy =0 (3.128)
yielding
My=e™ (3.129)
where

— —_ 2 -
G-ve 4Dl _ 1 (1 - \/1 4 dor(m 4 5)y +'€2)V) (3.130)

2D 2ap, VK3

Notice that My = 1 if » = 0 (no decay) as expected. Sorption enhances decay, if
measured against . This is also obvious, because sorption increases the mean
travel time, as we will see next. The second step is to multiply all terms of
(3.123) by t and integrate, to find

d’M, d2 M M, dM, dMy M,
-4 dz? +D dz? —Ed:t +G dr

— HMy+ IMoM; =0 (3.131)

We know from convolution theory (Chapter 2) that in homogeneous media M; ::
z, so d?M;/dz? = 0. Using this and equation (3.128) and (3.129), equation
(8.131) simplifies to

dM
(27D+G)—dz—1= AV +Evy+ H (3.132)

and thus
_AY+Ey+H

M, = .
! 29D+ G (3.133)
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or
_apvy? —v(1 4+ Be3)y = {(k + £5) (A +vB) + v}
B 20 LUKy — VKD

(3.134)

This is a quite complicated expression, considering that the parameter v is itself
already intricate. If there were no decay, we would just obtain

X
p=trmld (3.135)

Ko v

which shows that, indeed, sorption increases the mean travel time.
The third step, which involves multiplication of (3.123) by ¢* and integra-
tion, leads in a similar fashion to

c —2D(M})? + (4Ay + 2E)M{ — 2By - 2F
Mz = X

3.1
29D+ G (3.136)

where accents denote differentiation with respect to . Use has been made of
the relation

My = My + M? (3.137)

(see [2.26]) and of the fact that 2M 2/dz? = 0 in a homogeneous medium. It
follows that

0'2:

“2equry(M{)? + {4arvy — 20(1 + Br3)}M] — 2fvy + 2{1 + B(v + k1 + K1)}
20Ky — VKY (3.138)

If there were no decay, then (3.138) would simplify to

2 K1+ K\ vkl
2 __ —
ot = {GL ( . ) <+ P }:1: (3.139)

It is apparent that sorption increases the variance of the breakthrough curve.
Sorption causes dispersion, even if o = 0.
Proceeding to the third moment, we find in a completely analogous way

that

. 6 Al M} + (M)?] - 6BMj + 6C — 6DIM4M{ + 3EM}
29D+ G

(3.140)

or

[ [ [
1 3 _ 6arv[yMY, + (M])?) + 6BvM{ — 68 — 6apvri My M{ — 3v(1 + Br3) M) .
Y= 20 VKYY — VK

(3.141)
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We made use of the fact that d2]\c/.f3/d:c2 =0, and of relation (2.27):

Ms = Ms+3MaM, + M3 (3.142)
Without decay, (3.141) would just yield

,1703 6(1+ /8"32){0%("‘«1 + k)2 + vml}
v2K3

(3.143)

So sorption contributes also to the skewness of the breakthrough profile. We
recall that the three parameters of the Pearson III distribution are

o= = (3.144)
o
4
(7)
2
b=p— = (3.146)
Y

(see [2.74], [2.75] and [2.76]). They can now be evaluated since u, o, and -ly follow
[ C

immediately from M;, M5 and M.
One may notice that the numerical evaluation of (3.130) becomes impossible
if D = 0. In that case we find from (3.128) and (3.129) that

7:—é (D=0, G#0) (3.147)

[
Likewise, evaluation of M, ]lclz and M3 becomes impossible if 29D+ G = 0. It
follows from the physical nature of the constants involved that this would imply
D =0 and G = 0 (provided that the velocity v is non-zero). G = 0 implies also
that 7 = 0, and equation (3.123) simplifies to
0% % % dc i,

A5—2-+Ba 3t+05t2+Ea +Fa

which leads us ultimately to

C+ He=0 (3.148)

—E—VE? —-4AH
Y= 54 (D=0,G=0) (3.149)
_ yB+F _ _
1= —2A7+ Ex (D=0,G=0) (3.150)
c ~2A(M{)? +2BM] - 2C _ .
My = YA T E (D=0,G=0) (3.151)

c 3BMY— 6AMLM]
M3 =
2Av+ F

(D=0,G=0) (3.152)
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Finally, evaluation of (3.149) would be obstructed by (A=0), in which case it
can be shown that

y=—— (D=0,G=0,A=0) (3.153)

E being greater than or equal to one, there are no further numerical obstacles,

except for our finding that M 2 and M 3 may become minus zero under exceptional
conditions, due to numerical round off. This hinders evaluation of the parameters
of Pearson III. This pitfall is easily avoided, of course, by setting a lower bound
to these quantities, equal to the smallest positive number.

We have tested this approach against (3.114) for many different combina-
tions of v, oz, B, k1, and v, always finding good to excellent performance as long
as ¢ > bay. Figure 3.16 gives a typical example. Having no exact solution of
(3.113) at hand, there is as yet no confirmation of the accuracy of this approach
for the general case where «% # 1/8.

0.5 o

SHIFTED GAMMA

0.0

0 200 400 600 800

Figure 3.16 Breakthrough curves by the Pearson III approach, check-
ed against equation (3.114). Vertical azis: dimension-

less concentration; Horizontal azis: time in days. Break-
through distances shown are x =2, 4, 8,16 and 32 m.

Other parameter values: v =0.1 m/d, arp =1 m, =1

d, k1=1d71, v =0.0025d", ky=1d".

3.9 Non-uniform flow

It can be shown that equation (3.111) remains unaltered if z is chosen along a
(presumably) curvilinear stream line in a non-uniform flow field. The method
outlined in the preceding section remains basically unaltered, too, but the second
derivatives of the various moments vanish no longer. The expressions found for
the various moments are not accurate, if applied to non-uniform flow. We expect
them not to be far off, however, because the second derivatives fluctuate about
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zero (going along an alternately converging and diverging flow path) while the
moments themselves increase more or less steadily. As an example we evaluated
several breakthrough curves along the curvilinear stream line shown in Figure
3.17. This line almost hits a stagnation point, which is about the worst thing
to happen to our method. Figure 3.18 displays approximative breakthrough
curves against “exact” solutions, evaluated by the method of characteristics
(Fairbrother, 1992). The curves are calculated at equidistant points along the
stream line. The non-uniformity of the flow field shows clearly from the uneven
spacing in time of the curves, as the point of stagnation is being passed.

Figure 3.17 Non-uniform flow field. (Courtesy M.D. Fairbrother,
Univ. of Minn.)

Exact solutions of My through M3 are still possible in the non-linear case,
but the expressions become prohibitively involved and they contain integrals of
the inverse of the velocity, which have to be evaluated numerically anyway. As
the travel time of a particle is already computed numerically in most groundwater
models, we recommend to do the same with the various moments. The equations
to be integrated are

d®M, dM,
D—&;‘z—-Fdo?-i-IMo =0 (3.153)
dle " / .
D— 5 T (2M{D + G) =AMy + EMy+ H (3.154)
&M dM
D—=" +(2DM;+G)—2=

= (4AM}, +2E)M] — 2D(M!)? — 2BM5 ~2F (3.155)
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Figure 3.18 Some breakthrough curves along a curvilinear stream
line, approzimated by (3.133), (3.136), and (3.140)
(solid), versus exact curves (dotted). (Courtesy M.D.
Fairbrother, Univ. of Minn.)

e c
&M, M
dz? dz
= GAIM{MY + (M1)?] — 6BM] +6C — 6DM,M] + 3EM,  (3.156)

D
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+(2M{D +G)

Accents and double accents denote differentiation with respect to z. (We adopted
this notation to distinguish moments, whose values are known from the previ-
ous equations, from the particular moment to be solved). The parameters A
through I were given along with equation (3.123). Notice that A through I,
C excepted, depend on v, which is a function of £ when the flow field is non-
uniform. All parameters, except E and F, may be absent, depending on the
physical application.

There exist various numerical schemes to integrate second order ordinary
differential equations. Most of them rewrite the equation as a system of two
first order equations, which is solved by a Runge-Kutta method or any of its
alternatives. The reader is referred to Press et al. (1992) for a concise overview

1 and sample routines.

3.10 Appendix

3.10.1 Derivation of (3.73) and (3.74)
The differential equation to be solved is

d%cp  Bcp _ Ocr + /\( 8%cr 520}2)

ax2 90X ~ aT axoT T o1 (B.1)
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under the boundary conditions

cr(—00,T) =1 (B.2)
cr(+00,T) =0 (B.3)

and the initial conditions

er(X,00=1 (X <0)

3 (X=0

0 (X>0) (B.4)
Jde
7 (%,0)=0

It is convenient to make the shift (X,7T) — (u,T) where
u=X-T (B.5)
which changes the differential equation into

6263 _ 663 A ( 6263 62(3}2)

5z — o1 T M\ Guwar T o (B.6)

The boundary and initial conditions stay formally unaltered, except for the fact
that X has to be replaced by u in (B.4). Laplace transformation of the system
gives

d’cg dcgp _
m+/\sﬁ—s(1+)\s)cn_ 0 (B.7)
1
ER(—OO,S) = ; (BS)
¢r(+00,5) =0 (B.9)

which can be solved to give

er(u, ) = Ae~ Tulrs+V/A%%+45(1420)} if u>0 (B.10)
and

ER(U,S) - Be—%u{AJ—Q/A233+43(1+/\3)} + £ if u<o (B.ll)
$

The concentrations and their gradients of both branches should match at u = 0,
yielding

1
A=1A + — B.12
222+ as(1+ ds) 2 (B.12)

1 1
B = %)\ — (B.13)

V%52 + 4s(1 £ hs) 2
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Set
4
= — B.14
TA0ED (B.14)
b=10 (B.15)
c= %ux/)\()\-{-él) (B.16)
then
A 1 1 1
¢rlu,s) = . 4 — e—;uks . 6—c1/(s+a)(s+b)
a(u,9) {2\//\(/\+4) V(s +a)(s+b) 28}
u>0 (B.17)
and
_ A 1 1 —Luds cm
(44 s = . —— e 2 .e
Rt <) {2\/)\(/\+ 4) /(s +a)(s+b) 25}
u<0 (B.18)

of which expressions we are to find the inverse Laplace transforms. We note that

L1 {e—%m} = §(T — L1au) (B.19)
and
L? {%e’ %““} = H(T - $)u) (B.20)

where 6 is Dirac’s delta function and H is Heaviside’s step function. It follows
from tables (Oberhettinger and Badii, 1973, formula [5.138]) that

-1 1 e—cV/GF+a)(s+8) | _
- {\/(s+a)(s+b) }

em 30T p Llg VT2 — ¢} - H(T —¢) (B.21)
2

from which we find through differentiation with respect to (—¢) that

71 {e—cwl(s+a)(s+b)} — e Lla+d)c (S(T— C)

5T e - )T BT ) (B2

The inverse transforms of (B.17) and (B.18) can now be found by convolution:
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if u > 0, then

el 7) = —=— "o g (1o a).
2\/A(/\+4) 0 2

T
H(r—¢)-8(T — 7 — Au)dr + & / e~ ¥t §(r _ o) H(T -7 — Fu)dr

1 T a-b)c —L(a r
+3/ ;'_(r% et (- VP = e}

H(r—c¢) - H(T — 7 — Lxu)dr

(B.23)
and likewise if ¥ < 0. Evaluation of these integrals gives:
if u > 0 then
A 1
) = — e T(6HIT [ S L — b)\/T2 — ¢2
er(w,T) = st o {3a-)VTP ~ <}
+Ledlatd)e 4 1 e ﬁjb)—ce'é(““)r T {l(a b0V —c2rdr
2 ), w2 Tz
if T>c+ du, else cp(u,T) =0 (B.24)
This can be rewritten as:
if T'< X then
A
X,Tz_—e—a.[ o — 32
cr(X,T) /\(/\ +4 0 {v B }
+ie P 4 2,@/ ___ﬂz A {\/72 ﬁz}dr
if T > Ty, else cr(X,T)=0 (B.25)
with
2T
X-T
= | B.27
4 AA+4) ( )
T2+ X -2X
Ty = X {20 +4) - A} (B.29)

where T} is the arrival time of the contaminant front at X. As T} is positive
or zero, it follows from (B.29) that the front can never occur to the left (i.e. to
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the negative side) of the origin X = 0. Along similar lines we find for the other
branch of the solution:

if T'> X then
en(X,7) = —A—e=. 1, { V/Ia?— 1}
2¢/A(A+4)
¥ -7
—leb_Lf £l /rz_pg
+1 -~ se z/ﬁ ’—TZ—BQII{ T ﬂ}dr
if T < Ty, else cr(X,T) =1 (B.30)
with

T, =—3X {VAB+ 9 +2} (B.31)

where T is the arrival time of the tail. It follows from (B.31) that the tail can
only occur to the negative side of the origin X = 0, i.e. the tail moves always
against the direction of flow.

3.10.2 Derivation of {3.114)
The differential equation to be solved is

O%cr Ocp Ocp 8%cr  B%cp
ax2 oz~ or T (6XOT t 572 ) (B.32)
subject to the boundary conditions
er(0,7) =1 (B.33)
cr(00, T) =0 (B.34)
and the initial conditions
er(X,0)=1 (X=0)
er(X,0)=0 (X >0) (B.35)
BCF _
6_T(X’ 0)=0

The solution proceeds along exactly the same lines, except for the fact that there
is no need to make the substitution v = X — T". The result reads

1 Y
er(X,T) = eFX=7 4 pei= /
p

——i\/;_—r?'Il\/TQ—ﬂQ T

T > 1y, else cp(X,T)=0 (B.36)
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where
a=1A+2) (B.37)
f= (B.38)
VA + ) '
2T + A X
kst (B.39)
Ty = 1X{V2A+4) - A} (B.40)

3.10.3 Cumulanis of Strack’s dispersion equation
The Fourier transform of (B.32) reads

dep _ der
dxX? dX

. . dc _
= zwcF+A(zwﬁ——w2cF) (B.41)
Under the boundary conditions of Section 3.10.2 we find that

er(X,w) = exp{31 X(1 - iw)} -exp [ - 1 X/(1 = Xiw){1 — (A + 4)iw}] (B.42)

and thus

Inep(X,w) = 1 X(1 —iwd) — 1XV1 = diw- /1 - (A + 4)iw (B.43)

In order to determine the Taylor series of /1 — Aiw-/1 — (X + 4)iw, notice that

In{v1—diw- /1= (A + 4)iw} = L1 In(1 — Xiw) + L In{1 - (A + 4)iw} (B.45)
The logarithmic terms in the right-hand side of (B.45) are easily expanded:
In(1 ~ diw) = =Xiw — 1A%(iw)? — LA%(iw)® - - (B.46)
and
In{l - (A+4)iw} = ~(A+4iw — 3(A + 4)%(iw)? — LA+ 4)3(iw)® — -+ (B.47)

from which we derive that

In{v1 = Xw - /1-(A+4iw} ==L [{A+ (A +9}iw+ L{A? + (X + 4)?}(iw)?
+3{P+ O+ 93w + -]

=13 %{)\” + O 4) "} (iw)” (B.48)
n=1

or inversely,

oo

—LXVT=Aiw /1= 0+ iw = —LXe™ 3 1aia a6 (g 49
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and thus
Inep(X,w) = LX(1 = Miw) — Lxe™ 3 205 DTHO40T60™ (g 50)
Set
exp [ %Z % +(0+4) }(zw)"] Z A, (“") (B.51)
or B
o0 o0 .
_ (iw)"
exp{z_: —(zw)”} = ;AHT (B.52)
with
By=0 (B.53)
B, 1 n
= _%{,\ +(A+4)"} (n>0) (B.54)
then
Apn =i An_i B;
71_!:.2561—_2')"? (n > 0) (B.55)
Ag=1 (B.56)
so that

Inep(X, w) = %X(l - Aw) - %—X{l -(A+ 2)z'w} — %X Z Jz—?(iw)n (B.57)
n=2

or
Inép(X,w) = X(iw) — 1 X f;; %(z’w)" (B.58)

The cumulants are, by definition, the coefficients of (iw)"”/n!, hence
Ki=X (B.59)
Kn=1XA, (B.60)

where

n' ~ 2n Z (n - z)‘ e (;\' ) (B.61)
Ap=1 (B.62)

Note If only the first few cumulants are needed it is much easier to use a symbolic
algebra program. The program DERIVE gives

—1XVT=Jdiw- /1~ (A + 4w =1— (A + 2iw — 2(iw)? - 2(X + 2)(iw)?
—2(A% +4X 4 5)(3w)* — 2(A% + 6A% + 5) + 14)(iw)® (B.63)
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and thus
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Inép(X,w) = Xiw + X(iw)? + X(A + 2)(iw)® + X (A% + 4) + 5)(iw)*?

+X(A3 4 622 45X + 14)(3w)®

from which we can immediately conclude that

By definition we have

Ki=X

Ky =2'X

K3 =31(A4+2)X

Ki= 402 +4X+5)X

Ks =5/(A3 4+ 622 + 50 4+ 14)X

Kijo

7= —T—
(Kq)2*H!

so that we finally arrive at
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CHAPTER 4: SIMULATED COLUMN
EXPERIMENTS

4.1 Aim of the chapter

The heterogeneous structure of geological deposits displays itself at various scales,
much like the layering we discussed in Section 3.6. It is common practice to dis-
tinguish between microscopic, macroscopic and megascopic features, although on
this point the nomenclature may differ from one author to the other. For geo-
hydrological purposes the micro scale is unanimously associated with the grain
size, but there seem to exist no universal structural phenomena to fix the other
scales. Various authors speak heuristically of regional or field (plot) scale and
formation or (full) aquifer scale, the meaning of which has to be deducted from
the context. Some authors seem to couple the concept of scales with the de-
velopment of Fickian breakthrough curves (Giiven and Molz, 1988). Instead of
looking for physical features to associate the various scales with, we hold the
opinion that it is fruitful to define scales with respect to the sizes of our models.
After all, scaling has much to do with our perception of reality and little with
reality itself. We propose to associate the mega scale with the size of a model
area, no matter how big or how small it is chosen. Megascopic features, then,
are all features distinguished individually within the model. To the groundwater
modeler such features pose no special problems. At the other end of the scale it
is only practical to take the grain size (or rather the pore size) as the measure of
the micro scale, because features occurring on this scale are already accounted for
by Darcy’s law and the basic equations of groundwater flow and transport. They
pose no modeling problems either. The term macro we reserve for all features in
between micro and mega. Those are the features, larger than the pore scale, that
are definitely there but just too small and too many to be modeled individually.
Their actual sizes may range from pebbles to aquifers, depending on the size of
the model area. An established technique to cope with such features is to regard
their averaged action over a certain area, thereby replacing their heterogeneous
characters by imaginary continuous ones. They then reappear as constituent
constants in the differential equations to be solved by our models. Although it
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is natural to attempt an upscaling of familiar equations that proved to work on
the micro scale, it is realistic to expect new terms to emerge, that may change
the mathematical statement of the problem. For instance, lumping the action of
a drainage network in a two-dimensional steady groundwater model changes the
governing differential equation from Laplacian to Poissonian.

It is generally agreed that the classical convection-dispersion equation, in-
troduced to the field of groundwater flow by Scheidegger [1954], gives a fair
description of dispersive groundwater transport on the micro scale. Its one-
dimensional version, applied to homogeneous media, reads

d?%c Jc 8¢

V522 " "9z T Bt (4.1)
where ar[L] is the longitudinal dispersivity, v is velocity and ¢ is concentra-
tion. z is measured along a straight stream line (Section 3.15). The convection-
dispersion equation is based on Fick’s law of diffusion. As we discussed in Sec-
tion 3.2, equation (4.1) appears to perform less satisfactory on the macro-scale.
This phenomenon was recognized first about 1970 and it has received consid-
erable attention ever since. Already heterogeneous laboratory columns are less
well modeled by the convection-dispersion equation. The interpretation of field
tracer tests by means of (4.1) required the magnitude of oy to be raised sev-
eral to many orders with respect to laboratory values (Fried, 1975, Anderson,
1979). This observation induced the term “macro-dispersion”. Besides, early
breakthrough curves did not correspond to solutions of (4.1). Various investiga-
tors (e.g. Sposito et al., 1986), though not all (e.g. Giltham et al., 1984), hold
the believe that (4.1) would still apply eventually. The transition period, when
breakthrough has not yet converged to a solution of (4.1), is referred to as the pre-
Fickian or pre-asymptotic stage. On the basis of what has been demonstrated
in Chapter 2 we tend to share this believe, although we have not shown the
Gaussian (or Fickian) limit to exist for composite systems that are unbounded
in the direction transverse to the main flow. We also expect certain media to
be able to equip the Gaussian with a long tail of low conductivity, withholding
a part of the contaminating material. Gupta and Bhattacharya [1986] assert
that the velocity field must exhibit a somewhat repetitive structure in space for
the Gaussian approximation to be possible. We do not see the necessity of a
repetition in the direction of the main flow, but the requirement may be strict
in the transverse direction (Matheron and De Marsily, 1980). There seems to be
a quite general perception that an asymptotic Fickian approximation may take
such a long time to achieve that it would be of little interest in making predic-
tions (e.g. Smith and Schwartz, 1980). Giiven et al. {1984] worked out some
examples which suggest that the transition time may correspond to travel dis-
tances on the order of 5-100 km. Nevertheless, Gupta and Bhattacharya [1986],
referring to the Borden test site (Devary and Simmons, 1984), think there is
no empirical evidence against the applicability of Fickian approximations over
time scales or distances of practical interest. Several investigators reported a
dependence of the magnitude of oy on the scale of the test (e.g. Domenico
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and Robins, 1984, Giiven et al., 1984, Sposito et al., 1986), which phenomenon
prompted the introduction of the term “plume scale”. Although it has puzzled
many a hydrologist it is probably not so surprising after all. The riddle is closely
related to Mandelbrot’s classical question “How long is the coastline of Great
Britain?” (Mandelbrot, 1967) and has been explained elegantly by Wheatcraft
and Tyler [1988] in terms of fractal geometry. Their view seems to be supported
by the outcomes of a study by Neuman [1990], who indicates that ar, obtained
by numerical model calibration, is typically two orders of magnitude smaller
than the model area. (We must emphasize at this point that Neuman takes a
somewhat different view). On the other hand, there is a recent paper by Gel-
har et al. (1992), who scrutinized 59 different field tests reported earlier in the
literature. They found that the trend of systematic increase is much less clear
when the reliability of the data is considered. They also found that improved
interpretations most often lead to smaller coefficients of longitudinal dispersion.

In the present chapter we are interested in the transition zone, where (4.1)
does not (yet?) apply. Strack proposed to replace the intricate dispersive trans-
port process generated by macroscopic heterogeneities by

d%c de dec % %c
OtL’U%Z——’U—*— —‘+ﬁ’v‘m+ﬁﬁ (42)

dz Ot
where z is the distance travelled along a straight stream line in a hypothetical
homogeneous medium that replaces the heterogeneous one (Section 3.7). The
parameter ar[L] is a coefficient of longitudinal dispersion, v is velocity and ¢ is
concentration. A[T] is a new parameter whose order of magnitude was unknown
when we started the experiments to be reported in this chapter. 8 controls the
velocity of the quickest fluid particles. The derivation of (4.2), although being an
integral part of the LCMR-project, has been reported elsewhere (Strack, 1992).
Solutions of Strack’s equation differ from solutions of the convection-dispersion
equation only in the transition zone, when the Fickian limit has not been reached
yet (Section 3.7). Strack’s equation can therefore be seen as an attempt to better
model the pre-Fickian stage.

Remark: the formulation of (4.2) differs from that in Strack [1992] with respect
to the parameter 3. Rather than B3, Strack [1992] regards Bv as a parameter,
which will be shown to be recommendable in this chapter. However, (4.2) was
the working version at the onset of our investigations.

4.2 Experimental apparatus

The experimental apparatus we used is a computer simulation of the familiar lab-
oratory column. The advantages over a physical column are: easy manipulation,
the absence of scaling problems, and the possibility to carry out many tests, as
a run with a simulated column is incomparably quicker than a physical column



100 Stmulated Column Experiments Chapter 4

run. The simulated flow pattern is two-dimensional. This drawback is believed
to be acceptable, as field evidence has recently shown up that dispersion may be
negligible in the vertical direction. Molz and Widdowson [1988], Garabedian et
al. {1991], Rajaram and Gelhar [1991], and Jensen et al. (1993) all reported ver-
tical dispersion to have the order of molecular diffusion (Section 3.2). As a result
contaminant plumes are usually very thin and show considerable dispersion in
the horizontal directions only. From a theoretical point of view one might also
conjecture that a simulated medium reflects only our conception of the physical
medium. The results that will be obtained may show artifacts that we are not
aware of. Given the time schedule set for this project the disadvantages were
taken for granted.

In choosing a computational technique for the simulation model it is of
special importance to make sure that no numerical dispersion is introduced, as
this phenomenon is hard to distinguish from the dispersive action of the medium
proper. The analytical element method developed by Strack [1989] meets this
condition. Added to the fact that expertise on this method was readily available,
there was sufficient reason to opt for this technique. Only one type of analytical
element was used, namely the circular inhomogeneity, whose action we will briefly
explain.

Let a circle in the complex z-plane (z = z + iy) be given by

lz—2z|=R (4.3)

This circle has its center at 2 = zp and its radius is R. For sake of generality a
dimensionless complex variable Z = X + iY is defined by

zZ— 2

Z = 44
; (14)
The circle now has its center in the origin, and its radius is unity.
A complex potential function Q(Z2) is introduced:
Q=3 az7 (2121 (45)
j=1
and
Q=) a2z +A (1Z]<1) (4.6)

j=1

where A is a real constant and the a; are complex constants, while a; is the
complex conjugate of a;. This function is able to create a jump across the circle:
Let Z = €% be an arbitrary point on the circle, then it follows from (4.5) and
(4.6) that the magnitude of the jump is

A= —Z [ajeijo + 6je_"j9] —A (4.7
i=1

or
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A=-2 Z [R(aj;) cos(j8) — S(a;) sin(j8)] — A (4.8)
j=1

which is a real expression. A jump in the real part of { can be associated with
a jump in hydraulic conductivity across the circle. As (4.8) contains 2n + 1
parameters it is possible to meet jump conditions in 2n + 1 points along the
circle. (We refer to Strack [1987] and [1989] for details).

The simulated column existed of a large number of such circular inhomo-
geneities with different radii and conductivities, superimposed on an infinite
plane with uniform flow. A rectangular part thereof with its large axis in the
direction of the uniform flow component, was considered to be the experimental
apparatus (Figure 4.1).

Figure 4.1 Part of the simulated column

Circular heterogeneities are arranged in such a way that a prescribed packing
density was obtained. The following packing procedure was used:

- a circle was chosen at random from a set of three circles with different radii,

- the center of the circle was positioned randomly within the bounds of the
column,

- its distance to neighboring circles was checked: the sum of the two radii,
times a tolerance factor (greater than 1) had to be smaller than the distance
between the two centers. If not, the circle is dismissed and a new guess made.

- the procedure continued until the area covered by circles approximated a
prescribed part of the total area of the column (the ratio is called “packing
density”).

The conductivities of the circles were chosen randomly out of a log normal dis-
tribution with mean equal to the “background material” and variable standard
deviation. The choice of a log normal distribution is supported by investigations
of Freeze [1975], Hoeksema and Kitanides [1985), and Dagan [1986]. Recently, log
normality was also demonstrated by Bronders and De Smedt [1991] for eleven
Belgian formations, of which they analyzed 654 pump and piezometer tests.
From a modeling point of view the log normal distribution has the advantage
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of producing strictly positive conductivity values. Theoretically, the effective
conductivity of a heterogeneous medium is expected to lie somewhere between
the arithmetic mean and the harmonic mean of the conductivity values. Gut-
jahr et al. [1978] showed that the effective conductivity of a two-dimensional
heterogeneous medium with a log normal conductivity distribution equals the
geometric mean of that distribution. For our model this phenomenon offers an
additional advantage: the band containing the circles might otherwise attract
stream lines from the surrounding homogeneous medium, or diverge them. As
opposed to physical laboratory columns the simulated column has no imperme-
able walls. Flow patterns were traced by an improved Euler method (Strack,
1989) and a random step was added in order to account for transverse micro
dispersion (Kinzelbach, 1988):

z(t+dt) =2(t) + vy di — N 2aTvdt1;—"’ (4.9)

y(t +dt) = y(t) + vydt + N 2aTvdt% (4.10)

v=4/vZ+v] (4.11)

Here a7 is the coefficient of transverse micro dispersion and N is a random num-
ber with mean zero and standard deviation one. Longitudinal micro dispersion
was not taken into account, as its effect is negligible as compared to the disper-
sive effect of the circles. We also did not account for terms deriving from the
spatial variation of the micro dispersion tensor. (These two measures were only
taken after a comparison of runs made with and without these terms).

The number of “control points” on the circular boundaries, where the jump
conditions are set, was three per circle unless the conductivity was less than one
third of the background material. In that case we used seven control points. In
terms of (4.5) and (4.6) this means that the circles were usually modeled by a
first order function (j = 1) and occasionally by a third order one (j = 3). A
typical realization of a heterogeneous column included some 260 circles and the
number of equations to be solved amounted to circa 1000. The solution method
used is LDU decomposition with column pivoting. For each run 1000 particles
were released at the upstream end of the column, randomly distributed over the
column width. Their detention times were registered at ten equidistant cross
sections, including the downstream end of the column. A typical run on a 486
PC with 33 MHz clock speed took 8 hours.

where

4.3 Experiments conducted

The two main topics to be studied by means of simulated column experiments
were
1) the performance of the dispersion equation proposed by Strack, especially
in the pre-Fickian stage,
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2) the usefulness of Pearson III (or rather its integral, the incomplete gamma
function shifted along the time-axis) to describe breakthrough curves.
It was only natural, in the process, that we also made observations on how the
parameters of the equations are affected by the heterogeneous structure of the
medium. This issue was not addressed in-depth, however.

The experimental column had a number of characteristics that could be
varied in magnitude:

- - the conductivity of the “background material”,

- magnitude and direction of the component of uniform flow,

- the sizes of the circles and their packing density,

- the log normal distribution from which the conductivities of the circles are

picked,

- the magnitude of the transverse micro dispersion,

- the dimensions of the column.
Moreover, as the heterogeneous structure of the column was generated by a
chance process, different realizations might yield columns with different disper-
sive properties.

We varied various parameters with respect to a reference set, as shown
in Table 4.1. The table displays all parameter values chosen for the reference
set. For the other runs it is only indicated which parameters deviated from the
reference values.

The reference set was selected with a regional groundwater model in mind.

The conductivity chosen (25 m/d, Darcyan velocity a2 0.6 m/d) corresponds to
a T-value of 1000 m?/d for an aquifer of 40 m thickness. The component of
uniform flow (.2 m/d) then corresponds to a mean gradient of head of 2.4:1000,
which is in the range of common values for regional groundwater flow. The re-
sults to be obtained are amenable to scaling, of course. We do not have much
field evidence available as to the sizes of the heterogeneities and their packing
density, but in order to test the theories they should not be small on one hand,
and they should be many on the other hand. The geometric mean of the log
normal distribution from which their conductivities were picked equals the con-
ductivity of the background material and its standard deviation is 28.75 m/d,
again without reference to field data. The transverse micro-dispersivity reported
from laboratory column tests with homogeneous porous media is in the order of
the grain size. More general, one might expect this coefficient to have the order
of some representative heterogeneity. As it is not likely that heterogeneities with
the dimensions of the circles are themselves completely homogeneous we chose a
value of .1 m for the transverse dispersivity. The colurmm length was chosen to
be 15 km, partly because this corresponds to the order of lengths one may be
interested in in regional groundwater problems, and partly to keep calculation
time within reasonable bounds.
Test run# 1 is merely a repetition of the reference run. This run was decided
to be necessary becaunse the random walk involves a random step, so the results
itself are essentially random. Test run # 1 was to point out if 1000 particles
gave a good impression of the mean results.
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Test runs # 2 through # 6 were conducted because it was seen in Chapter 3
that various differential equations lead to the skew Gaussian limit. At the same
time it was found that different equations yield different expressions for the stan-
dard deviation and the skewness of the impulse response functions. Especially
the velocity enters in different ways in the expressions derived. In testing the
equation proposed by Strack it was paramount that runs be made for various
velocities.

Test run # 7 had twice the column length of the reference run, in order to study
the development of the Gaussian limit in more detail.

Test run # 8 was included to get a feeling for the influence of transverse micro
dispersion on the coefficient of longitudinal macro dispersion.

In test run # 9 we reversed the direction of flow, because the theory in Section
2.8 predicts that the macro dispersive properties of a heterogeneous medium may
be dependent on the direction of flow. For instance in numerical example (A.44)
reversing the direction of flow corresponds to reversing the order of the matrix
multiplication. One still gets a product matrix with linearly dependent columns
and ditto rows, but the ratios between the columns and between the rows are
different.

Test runs # 10 through # 13 are all runs with columns that have the same char-
acteristics as the reference column. They are just different realizations of the
randomly constructed heterogeneous medium. On the basis of the theory in Sec-
tion 2.5 we expected them to yield breakthrough curves with different standard
deviations and skewnesses.

Test runs # 14 through # 18 are repetitions of # 10 through # 13, with an
augmented standard deviation of the log normal distribution from which the
conductivities of the circles were picked.

4.4 Results: breakthrough curves

Figure 4.2a presents the breakthrough curves obtained by the reference run, at
z =3,6,9, 12 and 15 kilometers, respectively. Only 26 particles are depicted,
out of the 1000 particles that were released, in order to prevent the plot from
getting cluttered. The first and the last particles to arrive at a given cross-section
are always included in the plotted curves. The vertical axis can be interpreted
as relative concentration. The horizontal axis shows detention times, scaled by

vt
1000

(4.12)

where v is the magnitude of the uniform flow component (in m/d) and ¢t is time
(in days). This way of scaling causes the means of the breakthrough curves to
arrive (theoretically) at a scaled time equal to the distance traveled, expressed
in kilometers. It helps us to identify the curves and makes the results of all runs
readily comparable.
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Figure 4.2 Resulls of the reference run. a: Observed breakthrough
curves (horizontal scale shows time [days] v [m/d]

x10-3); b: Behavior of My (drawn), I\Clz (dashed) and

ch/[3 (dotted) as functions of distance (horizontal scale
shows distance [km]; vertical scaling is arbitrary); c:
Breakthrough curves matched by the shifled incomplete
gamma function, using individual values of parameters
a, n, and b; d: Same as c), using mean values of a, n,
and b.

Means were calculated at ten equidistant cross-sections, according to

1
M =~ St (4.13)
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where the t; are the travel times of the individual particles, and n = 1000. The
drawn line in Figure 4.2b shows that the mean travel time is a linear function
of z indeed. The horizontal axis in this plot represents the distance traveled
in kilometers. The vertical axis has been scaled such as to obtain a theoretical
mean value of 1 in the middle of the simulated column, (only reason for this
choice being graphical convenience). The second central moment, or variance,
of each breakthrough curve should also be proportional to z. This turns out to

C
be true only in a very rough sense, witness the dashed line in Figure 4.2b. M,
was calculated by

My = o 34— M) (4.14)

Likewise, the third central moment (being a measure of skewness) is expected to
be a linear function of z. The dotted line in Figure 4.2b shows that the skewness

C
takes the theory even less serious than the variance does. M3 was calculated
using

Ma= mZ(tl - M)? (4.15)

Figure 4.2c shows the breakthrough curves, matched by the shifted incomplete
gamma function, which is the integral with respect to time of the Pearson-111
distribution (Section 2.6). The three parameters a, n, and & of this function,
given by (2.74) through (2.76), can be recast in the form

a= 2{42 (4.16)
M;
¥ 3
n =4 M2 (4.17)
(M3)?
YRY)
b:M1—2(—Mc—2)— (4.18)
M3

Each breakthrough curve of Figure 4.2c was matched individually, that is: in-
(4 (4
dividual values of My, M5 and M3, derived from a single curve were used to
evaluate the incomplete gamma function. The results turn out to be quite satis-
factory, from a curve-matching point of view. Physically speaking, however, we
(4
would prefer the values of M;/z, M,/z, and M3/z to be invariant from curve
to curve. (In other words, we would like to find that parameters like v, oz, and
B in [4.2] are constants, not depending on z). Figure 4.2d shows, therefore, cal-

[ [
culated breakthrough curves based on mean values of M;/x, Ms/z, and M3/z.
The result is less convincing, though not at all disappointing, considering the

wild behavior of ACJZ/a: and J\cls/x, shown in Figure 4.2b.
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We had the intention to depict also exact breakthrough curves according
to Strack’s dispersion equation (4.2), given by (3.80) but they appeared to be
optically indistinguishable from the shifted incomplete gamma-function.

A complete overview of the results of all runs specified in Table 4.1 is in-
cluded in Appendix 4.7.

4.5 Discussion of results

Run #1 was a mere repetition of the reference run. Differences in outcome can
only be attributed to the two random steps involved in the simulations. They
shonld tend to zero if the number of traced particles would increase indefinitely.
It is not statistically justified to draw a conclusion with some reliability from
only two samples. However, the results of run # 1 (Appendix 4.7) resemble
those of the reference run close enough as to feel confident that 1000 particles
sufficed.

Tests # 2 to 6 were run to investigate how the coefficient of longitudinal
dispersion ay and Strack’s B-coefficient behave as a function of velocity. Our
method of scaling allows us to compare the results already on the face. As it
appears, the outcomes of the various runs are basically identical. The slight
differences are likely to stem from the random processes discussed above. The
coeflicient of longitudinal dispersion ¢y relates to the second central moment
<
M, by
200 2

02

M, = (4.19)

for both classical and Strackian dispersion. (This follows from [3.20], [3.21],
c
[3.45], and [3.90]). Strack’s B-coefficient relates to M3 according to

ar Bz

2
LT 46— (4.20)

v3
(which follows from [3.20], [3.21], [3.69], and [3.91]). Figure 4.3 shows the mean
values of ar, obtained from runs # 1 to 6, plotted versus velocity. They appear
to be essentially constant, their numerical values for this particular medium
being circa 20 m.

Figure 4.4a shows the mean values of 3, obtained from the same six runs.
The graph suggests that @ might be inversely proportional to v, hence v would
be constant. Figure 4.4b proves this to be the case indeed. We conclude that
Bv is to be regarded as a medium property, rather than 3 iself. Like o, the
product Bv has dimension {L]. Its numerical value for this medium amounts to
circa 200 m.

c
Mi;=12

[
It can be inferred from the behavior of M, versus z, Figure 4.2b, that
oy, fluctuates as the plume progresses. The reason for this behavior is easily
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Figure 4.4 a: fp versus velocity. Horizontal azis: velocity (m/d).
Vertical azis: B (d). b: B+v versus velocity. Horizontal
aris: velocity (m/d). Vertical azis: B*v (m).

detected: the originally sharp front is broken up in fingers, moving at different
speeds, (Figure 2.14). Their growth is governed by the random nature of the

heterogeneities and one may expect fluctuations of M5, as long as there is no
complete mixing. Mixing was far from complete in all tests conducted, even at
the ends of the columns. Figure 4.5 shows a cross-profile of the concentration at
the end of the reference column. Similar profiles were recorded for all sections
sampled during the tests.

It is generally assumed that the fluctuations of a7 would disappear if the
distance travelled becomes large, as compared to the sizes of the heterogeneities.

Run # 7 was conducted to confirm this expectation. The column-length
during this run was 30 km (instead of 15). The behavior of ay is shown in
Figure 4.6a; Figure 4.6b shows that of Sv. There appears to be a tendency of oy,
to settle down to a constant value. The same cannot be said of 3, which even
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Figure 4.5 Cross-sectional profile at the end of the reference col-
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tively Bv (m).

assumes a slightly negative value at z = 30 km.

The cross-sectional profile taken at the end of the column (not shown) was
still very irregular. We conclude that the Fickian stage had not been reached,
even after 30 km.

Run # 8 was carried out with a smaller coeflicient a7 of transverse disper-
sion (.001 m instead of .1 m). This caused the breakthrough curves to become
considerably less smooth than those of the reference run (Figure 4.7). The fluc-
tuations of the second and third moments did not increase, however. On the
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other hand, the mean value of oy was found to be amply 10% bigger than those
of the previous runs, which difference is probably significant. This shows us
at the same time that the medium at hand differs fundamentally from layered
media, for which « is inversely proportional to ar (Marle et al., 1967).
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Figure 4.7 Breakthrough curves and moments of Run # 8 (ar =0.001
m instead of 0.1 m).

Run #9 was the reference run with reversal of the direction of flow. Not un-
like our expectation we found the results to be quite different from the reference
run (Figure 4.8). The mean value of fv was 30 m (against 200 m).

This run can, in fact, be considered as another statistical realization of the
reference column, with the same set of circles and conductivities. More such
realizations are runs # 10 through 13. We refer to Appendix 4.7 for a complete
overview of the results. Figure 4.9 combines the breakthrough curves of these
runs, including run #9 and the reference run. It must be concluded that the
parameter set mentioned in Table 4.1 does not yield a unique breakthrough curve
and, for that matter, no unique values of @y and 8 can be derived from them.
The graph of Figure 4.9 suggests that the variations in breakthrough, although
being significant, are restricted to certain bounds. Such bounds (if they exist)
must be related to the statistics of the medium. They could probably have been
derived in advance, but that subject has been no part of our research.

Runs # 14 through 18 are five different realizations of a medium constructed
from the same set of circles as used for the previous runs, but with an increased
contrast in conductivities. The results of run # 14 are presented in Figure
4.10. We refer once more to Appendix 4.7 for an impression of the remaining
outcomes. The most remarkable feature of these runs is a pronounced tailing
effect. Although the tails carry only a small portion of the particles, they obstruct
our method of curve-matching by moments. It was found empirically that a
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RUN # 8

T
18

Breakthrough curves and moments of run # 9 (reversal

Figure 4.8
of flow).

1.0 o
0.0 | = ome | oo T - r
0 3 9 12 15 18
Figure 4.9 Effect of rearranging the heterogeneiiies. (The figure
shows the breakthrough curves of the reference run and

runs # 9 through 13).

satisfactory match could still be obtained if the number of points, from which
the moments are calculated, was reduced. The results shown were obtained by
using only three points per breakthrough curve, which is the absolute minimum.
Figure 4.11 displays the breakthrough curves of all five runs (ie. # 14
through 18). The tailing effect is sometimes explained by postulating the pres-
ence of stagnant zones (Herr et al. [1989], Van Genuchten and Wierenga {1976]).
As there are no stagnant zones in our simulated columns, the parallel systems
model presented in Appendix 2.8 (Figure 2.15) might be more realistic. This
model leads to a separation of the plume into a number of distinct sub-plumes,
each of them behaving as if it traveled through a single layer. The dominant
eigenvalue of the system generates the main body of the composite breakthrough
curve. This part has the highest velocity of propagation and shows the least dis-
persion. As compared to this main component, the other components disperse
rapidly, although the amount of mass contained by them is constant. The result
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Figure 4.10 Results of run #14, which is a variation on the refer-
ence run (Figure 4.2) with increased contrast of con-
ductivities.

is a pronounced smearing of the tail of the composite breakthrough curve.

We now turn to the arrival time of the first particle of a front of contami-
nation. Strack’s dispersion equation yields the following prediction:

t; = %%{\//\(A+4)—,\} (4.21)

where

_ B
A= (4.22)
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('This follows from [3.20], [3.21)], [3.69] and {3.78]). Put in terms of moments:
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Figure 4.11 Same as Figure 4.9, with increased conirast of conduc-
tivities.

(4.23)

t; = M VA0 +4) - A}

(4.24)

A= 3 ¢
(M)*

The shifted incomplete gamma function gives also an estimate of the arrival
time of the first particle, which is simply the parameter b (4.18). Figure 4.12 isa

plot of calculated arrival times versus measured arrival times, evaluated for the
reference run. This example is typical: we found good to excellent agreement

4 C
for all 18 runs. It is to be noted that the values of My, M5 and M3 chosen to
evaluate t; and b were the overall values, used to produce Figure 4.2d. Moments

derived from individual breakthrough curves gave also fair results, but there
were exceptions where t5 could not be evaluated because A assumed a negative

value. The parameter b could still be evaluated, in these exceptional cases, but
the results were poor. The reason, of course, is the wild behavior of the third

c
central moment M3. The arrival time of the first particle, on the other hand,
[4
behaves very consistent. We propose, therefore, to drop M3 as an observable
[
and to replace it by t;. Setting b in (4.18) equal to ¢; and eliminating M3 from

(4.16) and (4.18) we find

M;—t
a=—+—1 (4.25)
My
M, —t;)?
- (M-t L /) (4.26)
M,
b:tf (4.27)

These estimates are far less prone to idiosyncrasies of the medium than the set
(4.16) to (4.18). We reinterpreted many of the runs by means of (4.25) to (4.27).
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0 T T 1
4] 5 10 15

Figure 4.12 Measured versus calculated arrival times of the front at
3, 6, 9, 12, and 15 km (reference run). + = Strack,
0= incomplete gamma function. Horizontal azis: mea-
sured. Vertical azis: calculated.

The results were always almost identical to the former outcomes. The present
method is to be preferred, because of its absolute robustness.

Since we saw that the medium properties a; and 2 are far from stable
(Figure 4.6) the question arose as to what extent it would still be possible to
predict the future development of a plume from observations of early break-
through curves. Equations (4.25) to (4.27) give a partial clue. The first moment
My and the first arrival time ¢; behave very regular. The main uncertainty

[

stems, therefore, from variations of M, as a function of z. The deviations from
the ideally straight line show no clear tendency to dampen, as can be seen from
the b-graphs of all test runs (Appendix 4.7). They show no tendency to grow ei-
ther, hence their amplitude of fluctuation is probably characteristic of a medium.
Useful extrapolation of breakthrough curves seems to become only possible when

the fluctuations of ]\cl 2 have become small as compared with its proper value.
(This is another way of stating that ay should have stabilized to a constant
value). The criterion does not seem to have been met by anyone of the test
runs. Our conclusion seems to be supported by our finding that the reference
run and runs # 9 to 13 (whose columns were all constructed from the same set
of heterogeneities) produced quite different mean values of ar: 25, 26, 53, 48,

c
and 26 m, respectively. There may be a way of deriving the fluctuations of M,
in advance from the statistics of the medium. Again, this subject has been no
part of the research project.

We finally addressed the issue of how the classical dispersion equation (CDE)
would have performed. As Strack’s equation and the CDE are known to behave
asymptotically identical, we concentrated on the first half (0 - 7.5 km) of the test
columns. Figure 4.13a displays the breakthrough curves of the reference run at
AL, 2L, 3L, 4L, and .5L, respectively, matched by the CDE. Each theoretical
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curve was evaluated using the individual value of oy obtained from the observed
breakthrough curve. Figure 4.13b shows the same for Strack’s equation. It is
apparent that Strack’s equation is better suited to accommodate the shape of
the observed breakthrough curves. A comparable difference between the two is
observed if the mean value of a is used, instead of individual values (Figure
4.13c and d). (Strack’s curves were matched by means of [4.25] to [4.27] rather
than [4.16] to [4.18)).

4.6 Conclusion and final remarks

Eighteen simulated column experiments were conducted, to investigate the per-
formance of Strack’s dispersion equation, with special reference to the pre-
Fickian stage, and to test the usefulness of the shifted incomplete gamma func-
tion (= integral with respect to time of Pearson’s type III distribution) in de-
scribing breakthrough curves in heterogeneous porous media. As a by-product
we also did a number of observations on the behavior of breakthrough curves
under various changes of the porous medium.

The Fickian stage, where breakthrough profiles are completely defined by
the velocity v and a constant coefficient of longitudinal dispersivity ar, was

reached in none of the tests. The variances ]lcl 9 of the breakthrough curves,

when pictured as functions of distance traveled by the plume, appeared to fluc-

tuate about a possibly straight line through the origin. (A straight line would

correspond to a constant value of oz). The amplitudes of fluctuation did seem

neither to increase nor decrease with the distance traveled. They are probably

characteristic of a medium. The only reason for a to settle down to a constant
[

value is that the magnitude of the fluctuations of M5 becomes eventually small

with respect to the magnitude of AC/I o itself. Knowledge of the amplitude would
improve our description of breakthrough curves in the pre-Fickian stage. There
may be a relation with the statistics of the medium (which has been no subject
of this research). Cross-sectional profiles of the concentration, taken at the end
of the columns, showed large fluctuations (Figure 4.5), giving another indication
that the Fickian stage was not reached.

The phenomenon of varying «p corresponds to field observations. It was
found earlier by similar model experiments (Smith and Schwartz, 1980, Tompson
and Gelhar, 1990) and predicted theoretically by Dagan [1989], p 319), using
stochastic methods. Unlike Dagan’s prediction we found that oy approached its
limiting value in a non-monotonical manner. This seems to be explainable: as
long as no complete mixing is achieved on the micro-scale there is an ongoing
reformation of the fingering front. One could even imagine an apparent de-
mixing, when quicker fingers slow down to be surpassed by others.

Rearrangement of the heterogeneities in our columns had a distinct effect
on the shape of the breakthrough curves. This phenomenon was also observed
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Figure 4.13 Performance of Strack’s equation as compared with the
CDE. a: Breakthrough curves matched individually by
the CDE; b: As a, using Strack’s equation; c: Break-
through curves matched by the CDE, using the mean
value of ar; d: As ¢, using Strack’s equation.

by Smith and Schwartz (1980). Our first impression was that characteristics like
ar and S depend on the direction of flow (because the particular arrangement
of the heterogeneities, encountered by a plume, will depend on the direction of
its path). However, the breakthrough curves of different columns, constructed
from the same set of heterogeneities, appeared to form bundles of limited width
(Figures 4.9 and 4.11). Their widths did not seem to increase or decrease with
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the distance from the origin, suggesting that they are related to the fluctuations

[
of Ms. It is to be expected, therefore, that our presumed dependence of oz and
B on the direction of flow will play a role only in the pre-Fickian zone, when

the variations of Ac/[ o are still large with respect to ﬂc/fg itself. We take this as
a warning that it is precarious to extrapolate breakthrough curves before the
Fickian stage has been reached. It is probable that the observed bandwidths of
the breakthrough bundles would have been smaller, had we imposed a spatial
autocorrelation structure on the conductivities of the heterogeneities. (A strong
autocorrelation structure is not likely to occur in practice, though, on a scale of
several kilometers. Bronders and De Smet [1991] investigated eleven geological
formations in the central part of Belgium. Seven of them showed no spatial
correlation at all, while the remaining four showed only a regional trend).

An increase in contrast of the conductivities of the heterogeneities appeared
to cause a distinct tailing of the breakthrough curves. Tailing, to the extent
observed, is not incorporated in the Classical Dispersion Equation, nor in Strack’s
model. The model depicted by Figure 2.15 may be helpful in explaining this
effect (as well as the other phenomena mentioned above). Tailing may also be
responsible for the fact that it was impossible, in the well-controlled field-scale
dispersion tests mentioned in Section 3.2, to trace all of the injected mass.

Decreasing the coefficient of transverse dispersion appeared to affect the
smoothness of the breakthrough profiles (Figure 4.7). A decrease of ar of two
orders of magnitude increased oy with only 20%. This shows that our medium
is essentially different from perfectly layered media, where o, is expected to be
inversely proportional to a7p.

Strack’s equation accommodates the measured breakthrough curves in the
pre-Fickian zone better than the CDE does. The differences are especially ob-
servable at the beginning of breakthrough (Figure 4.13). Strack’s model was
found to predict the breakthrough time ¢; of the front with high accuracy in most
cases (Figure 4.12). The breakthrough time (as calculated by Strack’s model)
is governed by the f-coefficient in Strack’s equation. This coefficient appeared
to be inversely proportional to the velocity v (Figure 4.4). The product fv is
independent of the velocity and is, therefore, to be preferred as a medium char-
acteristic. (This recommendation has already been followed in Strack [1992]).
Calculation of 2 from an observed breakthrough curve requires evaluation of the
third moment of that curve (equation [4.20]). The third moment was found to
fluctuate strongly with the distance traveled, however. Alternatively, 8 can be
evaluated from the arrival time of the front (equation [4.21] and [4.22]), which
is a very consistent observable. We strongly recommend the latter method.

Breakthrough curves evaluated by the incomplete gamma function, shifted
in time, were found to be optically indistinguishable from Strack’s breakthrough
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curves. Differences might have shown closer to the source, where we had no
observations. The incomplete gamma function is believed to be of good use
in modeling contaminant transport by groundwater. (The reader may wish to
consult Chapter 3 for more information on this subject). Formulas were given
that relate the three parameters a, b, and n of the incomplete gamma function

to the first moment M, the second central moment ]\CJ 2, and the arrival time of
the front of the breakthrough curve (equations [4.25], {4.26], and [4.27]).

The technique of curve-matching by means of moments proved to be useful.
However, long tails were found to obstruct the method. Good matches were still
found in such cases if the tails were ignored. (An alternative fitting procedure
employed by us, but not reported, was the Marquardt-Levenberg method of non-
linear least squares. The results were good whenever convergence was reached,
which was only in a minority of cases).
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4.7 Appendix

This appendix presents the main results of the simulated column tests. All tests
were conducted and interpreted by Jogesh C. Panda, graduate student at the
Department of Civil and Mineral Engineering of the University of Minnesota,
who also did most of the programming for the experimental apparatus described
in Section 4.2. The specifications of all runs are given in Table 4.1. Each page of
this appendix gives the results of one test. The layout of the pages is identical:

The first graph shows observed breakthrough curves at .2, .4, .6, .8, and
1. L, where L is the column length. The horizontal (time-) axis gives time
(days)*velocity (m/d)*1073. The resulting figures along this axis are in kilo-
meters. They correspond roughly to the distances from the origin where the
breakthrough curves are observed. The vertical axis can be interpreted as di-
mensionless concentration.

The second graph shows the evaluation of the fist moment or mean (drawn),
the second central moment or variance (dashed), and the third central moment
(dotted) of the breakthrough curves. The horizontal axis is in kilometers. The
vertical axis is arbitrary. The three characteristics shown would be linear func-
tions of distance if the medium were homogeneous. They are also expected to
become linear in heterogeneous media, once the Fickian stage has been reached.

The third graph shows how the shifted incomplete gamma function (= inte-
gral with respect to time of Pearson’s type III distribution) fits the measuring
data. The theoretical curves are matched to the measured breakthrough curves
by equating their individual first three moments, given by the second graph.
Breakthrough curves according to Strack’s dispersion equation appeared to be
optically indistinguishable from the incomplete gamma function.

The fourth graph shows how the theory would match the measuring data if
the first moment and the second and third central moments are supposed to be
linear functions of distance. (In other words: if the coefficient of longitudinal
dispersion oy and Strack’s f-coefficient are supposed to be constants). The
values of af and 3, used to produce these breakthrough curves, were the means
of the values obtained from the observed breakthrough curves.
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SUMMARY

While designing a bank groundwater recovery plant it was found that a tem-
porary contamination of the river water would appear in the bank groundwater
recovered as a Gaussian-like function of time, no matter how the well field was
arranged. An analysis of the flow pattern showed that the contaminated water
had to pass through a series of distinct flow systems. The relation between the
in-going and the out-gding signal of a single system could be given in the form
of a convolution integral. It was conjectured that the convolutional process was
to be held responsible for the Gaussian-like shape of the output. In Chapter 2 of
this thesis this was found to be true under fairly general conditions: whenever a
signal of finite duration has to pass through a long series of linear systems, whose
impulse responses fulfill certain conditions, then that signal will ultimately be
transformed into the skew-Gaussian shape given by equation (2.45). The con-
volutional process turned out to be mathematically analogous to addition of
random variables, and our result could be linked to the Central Limit Theorem
of mathematical statistics. Equation (2.45) is known, in that field of science,
as Edgeworth’s asymptotic expansion of a random variable. The skew-Gaussian
shape of the output signal is characterized by a limited number of parameters,
only two of whom (its mean or first moment and its variance or second central
moment) appear to increase in magnitude during the transport process. The
other ones disappear gradually, as the signal moves along. The one to persist
longest is the skewness, which is related to the third central moment of the sig-
nal. These three moments suffice in many cases to describe an out-going signal
mathematically. It will often be possible to estimate their orders of magnitude
without having to model the flow processes in all of the sub-systems in great
detail.

This finding is likely to have various applications in the drinking water in-
dustry, for example to predict water quality at a consumer’s tap, when a source of
water gets contaminated. It might also assist in the design of artificial infiltration
plants. The only application elaborated in this thesis is contaminant transport
by groundwater. The leading idea is that a heterogeneous porous medium (the
subsoil) can be regarded as a series of systems transmitting a signal. Such a se-
ries is likely to produce a skew-Gaussian output signal, after a certain transition
length (the ‘Pre-Fickian’ stage). In view of our application we also analyzed a
system of parallel series with transverse interaction, which turned out to produce
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Gaussian-like signals with very long tails.

The mathematical description (2.45) of the output signal turned out to be-
come unstable if a signal is to be described at short distances from its source.
Two alternative ways to describe a convolutional signal were selected, one pre-
sumably being due to Von Mises and the other one deriving from the theory of
ideal mixing reservoirs, the latter leading us to Pearson’s type III distribution.

It was demonstrated in Chapter 3 how the theory applies to solve various
equations of dispersive groundwater flow approximately. We confined ourselves
to longitudinal transport. This choice was justified by the outcomes of recent
field experiments on dispersive groundwater flow. Only step responses {or break-
through curves) had to be studied, as the response to any other input signal can
be derived from them by superposition. Our method consisted in matching the
first moments of our approximate output signal to the first moments of the exact
solution. It was shown how such moments could be derived from a given linear
differential equation, even if no exact solution were available. Edgeworth’s ex-
pansion (truncated after three terms) was found to become useful as an approxi-
mate solution only at a certain distance from the source. Von Mises’ method gave
good results at any distance, but his approximation is valid at discrete points
and requires the evaluation of many moments. Pearson’s type III distribution,
or rather its integral with respect to time (being the incomplete gamma function
shifted along the time axis), was found to be superior. In all cases considered
was this function able to describe the output signal well at distances greater
than at most five times the length of the longitudinal dispersion coefficient of.
The most complete transport equation investigated accounted for Strackian dis-
persion, first order decay and non-instantaneous sorption. Expressions for the
first three moments were presented. They are simple functions of the distance
traveled by a plume of contaminant and can immediately be incorporated in
Analytical Element models. Simpler cases can be derived from them by setting
appropriate parameters equal to zero.

Chapter 4 reports experiments conducted with a heterogeneous soil column,
simulated by the Analytical Element Method. Our aim was to test the perfor-
mance of the dispersion equation proposed by Strack (1992) and to investigate
if the shifted incomplete gamma function would be adequate to describe actual
breakthrough profiles. We were especially interested in the pre-Fickian zone,
where the classical dispersion equation does not yet apply. The experimental
apparatus was a rectangular cutout of a simulated porous medium, consisting of
circular heterogeneities imbedded in a homogeneous background. A uniform flow
component was imposed in the longitudinal direction of the cutout. The circles
were chosen at random from a predefined set of three different radii. Their con-
ductivities were assigned at random from a predescribed lognormal distribution
and they were placed randomly in the homogeneous background material, until
a prescribed packing density had been reached. One thousand particles were
released instantaneously at the upstream boundary of the cutout. Their travel
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times were observed at ten equidistant cross sections. Eighteen test runs were
conducted, involving various velocities and various stochastic realizations of the
heterogeneous medium.

It was confirmed that the Fickian stage was reached in none of the exper-
iments. Breakthrough curves according to Strack’s dispersion equation turned
out to match the observed breakthrough curves well to excellent in the vast
majority of cases. They appeared to perform better than breakthrough curves
following from the classical dispersion equation. However, the values of the co-
efficient of longitudinal dispersion oz associated with them fluctuated strongly
from one curve to the other. It seems to be impossible, therefore, to predict
future breakthrough curves by extrapolation of observed curves that are still in
the pre-Fickian stage.

Besides af there is a second parameter involved in the Strackian model of
dispersion, tentatively termed Strack’s B-coefficient. This coefficient is closely
connected to the arrival time of the first contaminated particle. First arrival
times following from Strack’s theory were found to match measured first arrival
times with high accuracy in most cases. Strack’s model is far superior, in this
respect, to the classical dispersion equation, which is not able to predict first
arrival times at all. The B-coefficient turned out to be inversely proportional to
the velocity associated with the component of uniform flow. It was suggested
that Bv, rather than 8, is to be regarded as a medium constant, v being velocity.
(This suggestion has been taken up by Strack [1992]. Consequently his 3 differs
from ours). The B-coefficient can be calculated from the first three moments of
an observed breakthrough curve. It was recommended, however, not to use the
third moment for this purpose, but rather the arrival time of the first particle,
which is a more consistent observable.

The incomplete gamma function, shifted in time, was found to yield break-
through curves that were optically indistinguishable from Strack’s breakthrough
curves. The shift in time appeared to match the arrival time of the first particle
In most cases with high accuracy. Our tests supported our previous conclusion
that this function will be of use in Analytical Element models of contaminant
transport.
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SAMENVATTING

Convolutieprocessen en dispersief
transport van grondwater

Tijdens het ontwerpen van een winplaats voor oevergrondwater bleek dat een
tijdelijke verontreiniging in het rivierwater steeds als een soort Gauss-kromme in
het gewonnen water tot uiting kwam, hoe het puttenveld ook gearrangeerd werd.
Een analyse van het stromingspatroon toonde aan dat het verontreinigde rivier-
water een reeks afzonderlijk te onderscheiden stromingssystemen moest passeren.
De relatie tussen het “ingangssignaal” en het “uitgangssignaal” van een enkel sys-
teem is in de vorm van een convolutie-integraal te schrijven. We veronderstelden
dat het convolutieproces verantwoordelijk was voor de Gauss-achtige vorm van
het uiteindelijke uitgangssignaal. In hoofdstuk 2 van dit proefschrift is aange-
toond dat dit inderdaad waar is, onder tamelijk algemene omstandigheden: als
een eindig signaal een lange reeks lineaire systemen moet passeren, waarvan de
“Impulsresponsies” aan zekere voorwaarden voldoen, dan zal het uiteindelijk de
vorm van een scheve Gausskromme (vergelijking [2.45]) aannemen. Het bleek
ons dat het convolutieproces wiskundig analoog is aan het optellen van kansvari-
abelen, en ons resultaat kon in verband gebracht worden met de Centrale Limiet-
stelling uit de wiskundige statistiek. Vergelijking (2.45) is in die tak van weten-
schap bekend als Edgeworth’s asymptotische ontwikkeling van een kansvariabele.
De Gauss-achtige vorm van het uitgangssignaal wordt gekarakteriseerd door een
beperkt aantal parameters, waarvan er slechts twee (het gemiddelde of eerste
moment en de variantie of tweede centrale moment van het signaal) in grootte
blijken toe te nemen tijdens het transport proces. De anderen verdwijnen gelei-
delijk, terwijl het signaal zich verplaatst. De parameter die het langst blijft
bestaan is de scheefheid (skewness), die gerelateerd is aan het derde centrale
moment van het signaal. Deze drie momenten zijn in veel gevallen toereikend
om een uitgangssignaal wiskundig te beschrijven. Het zal vaak mogelijk zijn
om hun orde van grootte te schatten, zonder dat alle deelsystemen in detail
gemodelleerd hoeven te worden.

We verwachten dat deze bevinding verschillende toepassingen kan hebben
in de drinkwaterindustrie, bijvoorbeeld om de waterkwaliteit aan de kraan te
voorspellen, als een drinkwaterbron verontreinigd raakt. Hij kan ook behulpzaam
zijn bij het ontwerpen van kunstmatige infiltratiesystemen. De enige toepassing
die in dit proefschrift nader is uitgewerkt is het transport van verontreinigingen
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via het grondwater. De leidende gedachte daarbij is dat een poreus medium
(de ondergrond) beschouwd kan worden als een reeks systemen die een signaal
doorgeven. Na een zekere instellingsafstand (de “pre-Fickiaanse” zone) zal zo’n
reeks waarschijnlijk een Gaussvormig uitgangssignaal produceren. Met het oog
op onze toepassing hebben we ook parallelle reeksen van systemen met onderlinge
uitwisseling geanalyseerd, hetgeen Gauss-achtige signalen met zeer lange staarten
bleek op te leveren.

De wiskundige beschrijving (2.45) van het uitgangssignaal bleek onstabiel
te worden als hij te dicht bij de bron van verontreiniging wordt toegepast.
We hebben twee alternatieve methoden geselecteerd om “convolutiesignalen” te
beschrijven; één ervan is waarschijnlijk toe te schrijven aan Von Mises, terwijl de
ander afgeleid is uit de theorie van de ideale mengreservoirs. Het laatste leidde
tot de verdeling van Pearson, type IIL

In hoofdstuk 3 is getoond hoe de theorie benut kan worden om verschillende
vergelijkingen voor dispersief grondwatertransport benaderend op te lossen. We
hebben ons daarbij beperkt tot longitudinaal transport. Deze keuze is te recht-
vaardigen door de uitkomsten van recente veldonderzoekingen van dispersieve
grondwaterstroming. We behoefden alleen stapresponsies (of doorbraakkrom-
men) te bestuderen, omdat de respons op elk ander ingangssignaal hieruit door
superpostie afgeleid kan worden. Onze methode bestond uit het met elkaar in
overeenstemming brengen van de eerste momenten van de exacte oplossing en
die van de benaderende beschrijving van het uitgangssignaal (“matching of mo-
ments”). Er is gedemonstreerd hoe die momenten altijd uit een gegeven (lineaire)
differentiaalvergelijking afgeleid kunnen worden, zelfs als er geen exacte oploss-
ing beschikbaar is. De ontwikkeling van Edgeworth (afgebroken na drie termen)
bleek pas bruikbaar te worden op enige afstand van de bron van verontreiniging.
De methode van Von Mises gaf goede resultaten op elke afstand, maar de be-
nadering levert slechts een aantal discrete punten van de doorbraakkromme op en
vereist het berekenen van een groot aantal momenten. De verdeling van Pearson,
type 111, of liever de integraal daarvan met betrekking tot de tijd (hetgeen de
onvolledige gammafunctie oplevert, verschoven langs de tijd-as) bleek superieur
te zijn. In alle beschouwde gevallen beschreef deze functie het uitgangssignaal
goed op afstanden groter dan hoogstens vijf keer de coéfficient van longitudinale
dispersie ay. De meest volledige transportvergelijking die we onderzochten hield
rekening met dispersie volgens Strack, afbraak van de eerste orde en geleidelijke
sorptie. Er werden uitdrukkingen afgeleid voor de eerste drie momenten van deze
vergelijking. Het zijn eenvoudige functies van de afgelegde weg, die direct in een
analytisch elementenmodel zijn in te bouwen. Eenvoudiger gevallen kunnen uit
deze uitdrukkingen afgeleid worden door parameters die daarvoor in aanmerking
komen nul te stellen.

In hoofdstuk 4 wordt verslag gedaan van experimenten met heterogene
grondkolommen, die met de analytische elementenmethode gesimuleerd wer-
den. We hadden als doel de prestaties te toetsen van de dispersievergelijking
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van Strack (1992), en te onderzoeken of de verschoven onvolledige gammafunc-
tie geschikt is om echte doorbraakkrommen te beschrijven. We waren in het
bijzonder geinteresseerd in de pre-Fickiaanse zone, waarin de klassieke disper-
sievergelijking nog niet opgaat. Het proefapparaat was een rechthoekige uit-
snede uit een gesimuleerd poreus medium, dat cirkelvormige heterogeniteiten
bevatte die ingebed lagen in een homogene achtergrond. In de lengterichting van
de uitsnede werd een uniforme stromingscomponent opgelegd. De cirkels wer-
den in een willekeurige volgorde gekozen uit een voorgeschreven verzameling van
cirkels met drie verschillende stralen. Ze kregen doorlatendheden toegewezen die
willekeurig gekozen werden uit een voorgeschreven lognormale verdeling, waarna
ze willekeurig geplaatst werden in het homogene achtergrondmateriaal, totdat
een voorgeschreven pakkingsdichtheid bereikt was. Duizend deeltjes werden
plotseling losgelaten aan de bovenstroomse grens van de uitsnede. Hun door-
komsttijden werden waargenomen in tien dwarsdoorsneden op gelijke onderlinge
afstanden. Er werden achtien tests uitgevoerd met verschillende stroomsnelhe-
den en verschillende stochastische realisaties van het heterogene medium.

We konden bevestigen dat de Fickiaanse fase in geen van de experimenten
bereikt werd. Het bleek dat doorbraakkrommen volgens de dispersievergelijking
van Strack in de overgrote meerderheid van de gevallen goed tot zeer goed met de
waargenomen krommen overeenstemden. Strack’s krommen bleken beter te vol-
doen dan krommen die met de klassieke dispersievergelijking berekend werden.
De waarden van de longitudinale dispersiecoéfficiént a7, bleek echter van kromme
tot kromme sterk te fluctueren. Het lijkt daardoor onmogelijk om toekomstige
doorbraakkrommen te voorspellen uit waargenomen krommen die zich nog in de
pre-Fickiaanse fase bevinden.

Behalve ar bevat Strack’s model een tweede parameter, die we zolang
Strack’s F-coéfficiént noemen. Deze coéfficiént houdt nauw verband met de
aankomsttijd van het eerste verontreinigde deeltje. De eerste aankomsttijden vol-
gens de theorie van Strack bleken in de meeste gevallen met grote nauwkeurigheid
overeen te stemmen met de gemeten eerste aankomsttijden. In dit opzicht is het
model van Strack verre superieur aan het klassieke dispersiemodel, dat immers
in het geheel geen eerste aankomsttijden oplevert. De B-coéfficiént bleek omge-
keerd evenredig te zijn met de snelheid die met de uniforme stromingscomponent
geassocieerd is. We doen daarom de suggestie om niet 8 maar fv als medium-
constante op te vatten, waarin v de stroomsnelheid is. (Deze suggestie is al
overgenomen in Strack [1992]. Bijgevolg verschilt zijn 3 van de onze). De 8-
coéfficiént kan berekend worden uit de eerste drie momenten van een gemeten
doorbraakkromme. We bevelen echter aan om voor dat doel niet het derde mo-
ment te gebruiken, maar de aankomsttijd van het eerste deeltje, wat een veel
beter waarneembare variabele is.

De onvolledige gammafunctie, verschoven langs de tijd-as, bleek doorbraak-
krommen op te leveren die met het oog niet te onderscheiden waren van de
doorbraakkrommen volgens Strack. De verschuiving langs de tijd-as bleek in de
meeste gevallen met hoge nauwkeurigheid overeen te stemmen met de aankomst-
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tijd van het eerste deeltje. De experimenten ondersteunen onze eerdere verwach-
ting dat deze functie bruikbaar zal zijn in analytische elementenmodellen van de
verspreiding van verontreinigingen door het grondwater.
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Het getlj van grondwater nabij ondiepe kusten en getijderivieren kan voor-
ijlen op het getij in het open water. C. Maas en W.J. de Lange, J. Hydrol.,
92(1987) 43-67.

De stijghoogte van grondwater in diepe waarnemingsbuizen reageert meestal
sneller op neerslag dan de stijghoogte in ondiepe buizen.

Bestaande modellen voor regionale grondwaterstroming (zoals MODFLOW)
negeren ten onrechte het mechanisme dat dit verschijnsel veroorzaakt. Niet-
temin is het eenvoudig in rekening te brengen.

De hoeveelheid doorspoelwater, die nodig is om de verzilting te bestrijden
van aanvoerstelsels van zoet water op de Zeeuwse en Zuid-Hollandse eilan-
den, kan sterk beperkt worden door langs de kust een rij artesische bronnen
te slaan. C. Maas, Proc. 9" Salt Water Intrusion Meeting, Delft 1986, 43-
60.

Van het grondwater dat opgepompt wordt uit een homogeen freatisch pakket
is de helft jonger (in jaren) dan 1 & 3 keer de pakketdikte (in meters). De
factor 1 geldt als er geen sloten aanwezig zijn; de factor 3 geldt als er veel
sloten aanwezig zijn.

Bij het formuleren en oplossen van stromingsproblemen in gelaagde me-
dia kan het gebruik van matrixfuncties heel economisch zijn. C. Maas, J.
Hydrol., 88 (1986) 43-67.

Regionale stijghoogteproblemen waarbij het zoutgehalte van het grondwater
van plaats tot plaats verschilt kunnen opgelost worden met modellen die
voor zoet grondwater ontwikkeld zijn. C. Maas, Natuurwet. Tijdschr. 70
(1988) 143-154.

Het is voor berekeningen in kustaquifers vaak zinvol om een overgang van
zoet naar zout grondwater als een scherp grensvlak op te vatten. Het staps-
gewijs benaderen van zo'n overgang door meerdere scherpe grensvlakken
lijkt daarop een verbetering te zijn, maar leidt tot verrassingen.



VIII De grens tussen inzijgings- en kwelgebied op de flank van een heuvelrug van
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homogeen zand, geprojecteerd op een horizontaal vlak, vormt wiskundig
gezien een vrije rand, waarvan de positie In principe te vinden is met de
hodograafmethode. C. Maas, Water Resour. Res., [28] 2, 1992, 365-371.

Verschillende grondwaterbeheerders hanteren ten onrechte het begrip diepe
kwel om de ecohydrologische waarde van vochtige natuurgebieden in te
schatten. Een maatstaaf die daarvoor wél bruikbaar is, is het oppervlak
aan kwelhellingen, waar grondwater aan het maaiveld uittreedt. A.J. M.
Jansen en C. Maas, Proc. Symp. Eng. Hydrol., ASCE, 1993, 150-155.

De ecologische interpretatie van grondwaterstandsduurlijnen is nodeloos on-
doorzichtig, doordat er geen scheiding gemaakt wordt tussen gebiedseigen-
schappen en meteorologie.

Doorgaans wordt men van het schrijven van een proefschrift niet veel wijzer.
NRC-Handelsblad 21-10-1993.



