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abstract

In this thesis an extension of the analytic element method to transient regional flow is pre-
sented. The elements are solutions to the heat equation in two spatial dimensions with a sink
term.

Strack(1988) developed the analytic element method for the computer modeling of steady
regional groundwater flow. The method is based on the superposition of solutions to the governing
differential equation.

Most of the transient elements that are derived in this thesis, are based on the solution for an
instantaneous point sink or point doublet (Carslaw and Jaeger, 1986). The elements are transient
point-, line- and area-sinks and line-doublets. Some are new solutions to the heat equation in an
infinite domain.

The elements based on the instantaneous well have no influence at infinity. The consequence
of this is that a model containing these elements has to fulfill strict conditions, in order to converge
to a final steady state in the entire area modeled. Two functions are presented that make it possible
to waive these conditions. These are given the names of transient far-field functions in this thesis.

In modeling a practical situation, the behavior of the model without the transient far-field
functions will be correct in the area of interest, only if all aquifer features are included that have
a significant influence on the flow in the area of interest.

Some of the elements have been incorporated in a computer program. Results obtained with
the program compared well with exact solutions. An application of the computer program to an
example of regional groundwater flow is presented at the end of this thesis.
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1. introduction

The subject area of this thesis is modeling transient regional groundwater flow. The goal
of the modeling can be for instance to predict levels of groundwater in a future situation or to
examine the spreading of contaminants with the water.

The following simplifying assumptions have been made:

e Darcy’s law is valid and the hydraulic conductivity is isotropic

e the properties of the groundwater are constant

e the properties of the aquifer are constant

e the base of the aquifer is horizontal

o the flow is shallow

e the storage and release of water is linear, occurs instantaneously and is fully reversible

e the variations of the saturated thickness in unconfined flow are small compared to the saturated
thickness itself.

The analytic element method will be used. Strack(1988) developed the analytic element
method for the modeling of steady regional groundwater flow. The method is based on the
superposition of solutions to the differential equation. Exact solutions to a variety of boundary
value problems have been used for a long time in simple cases, for example the flow to a well in an
infinite aquifer. There are various functions available in the literature for the transient response
of the water table to a single well that can be used to evaluate pumping tests.

Superposition is used to make it possible to model more complex groundwater systems effi-
ciently. The functions that are superimposed are solutions to the governing differential equation
with a behavior that is suitable to represent an aquifer feature. They are called analytic elements.
They have coeflicients that are a priori unknown. The unknown coefficients are determined such
that the boundary conditions are met exactly at selected points. Once the coeflicients have been
determined, the level and the velocities of the groundwater are known as a function of position.

In this thesis an extension of the analytic element method is presented to transient regional
flow. Most of the time dependent elements are based on the solution for an instantaneous sink
(Carslaw and Jaeger, 1986).

Some of the transient elements are available in the literature (Carslaw and Jaeger, 1986,
Theis, 1935, Glover, 1974 and Litkouhi and Beck, 1982). Others are new solutions to the heat

equation in an infinite domain either without or with a sink-term.

The work on which this thesis is based has been motivated by a project funded by the
Legislative Commission on Minnesota Resources of the state of Minnesota. The objective was to
be able to model seasonal variations in groundwater flow and the transition from one steady state
to a new one. By including seasonal variations into a model, more detailed information about
contaminant spreading can be obtained than is possible with a steady state model of an average
situation. The transition to a new situation has to be modeled with a transient program to be
able to tell how long it will take until the groundwater has adjusted to the new situation.

The setup of this thesis is as follows. In chapter 2 the terms are defined that are used in the
mathematical description of transient groundwater flow and the governing equations are given.
The analytic element method for steady regional groundwater flow is described in chapter 3, with
a description of the important idea of the ”far-field” in a model. The transient elements are
presented in chapter 4. In chapter 5 the behavior of elements based on the instantaneous sink is
examined for large values of the time. Two functions are given which make it possible to use these
elements in any model for large values of the time. In chapter 6 it is explained how the derived
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elements can be used in a model. The model was incorporated in two computer programs. In one
program the head is constant initially, while an initial steady state simulated with a computer
model for steady flow can be used in the other program. The model was validated in chapter 7 for
some cases, for which exact solutions are available using the former program. The latter program
was used to model a more realistic situation in chapter 8. In chapter 9 some concluding remarks
are given.

Six appendices are included: in appendices A through D functions that recur in several
elements are discussed, together with limits and derivatives of those functions. In appendix E the
derivation is given of a line-sink of arbitrary degree, which is presented in chapter 4. Appendix F
contains a list of symbols.
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2. definitions and equations

In this chapter a two dimensional mathematical description of time dependent groundwater
flow is presented. The description has been taken from Strack(1988) and Bear and Verruijt(1987),
and can be found in more detail in these references.

Groundwater flows in geologic formations that are called aquifers. In regional groundwater
flow their horizontal extent usually is much larger than their thickness, so that the flow is shallow.
There are two kinds of aquifers, confined and unconfined aquifers. A confined aquifer is fully
saturated with water. The water in an unconfined aquifer has a free surface. Water can evaporate
into the air or leave the aquifer through the base or the top. The water leaving the aquifer is
called the extraction.

A cartesian coordinate system is used. The = and y axes are horizontal. The vertical coor-
dinate z is zero at the base of the aquifer and positive above it.

The driving force for flow is the gradient of the piezometric head. The piezometric head ¢ is
defined as
p(@,y,2)

rg
where p is the pressure, p the density of the water and g the acceleration of gravity.

The flux of the fluid is referred to as the magnitude of the specific discharge vector g;. The
index refers to the direction of the flow. The specific discharge is equal to the amount of water
that passes through a plane normal to the direction per unit area per unit time. Darcy’s law
relates the specific discharge to the hydraulic gradient

¢ =p(r,y,2) = +z (2.1)

4 = =Ko~ jzx,y,z (22)

The proportionality constant k is called the hydraulic conductivity.
The components of the seepage velocity of the water v; are equal to

Vj = = -7 =T,Y,= (23)

where v is the porosity, the ratio between the volume of the pores and the total volume of a block
of porous material.

The Dupuit-Forchheimer assumption is valid for shallow flow. The assumption states that
the head does not vary in vertical direction

¢ = e(z,y) (2.4)

The horizontal components of the specific discharge then also are independent of the vertical
coordinate, as can be seen {rom (2.2)

9 =qi(z,y) Jj==zy (2.5)

The discharge vector (); is defined as the vertically integrated specific discharge

QjZ/deZ
h

= hy; j=x,y (2.6)
where h is the saturated thickness of the aquifer. It is equal to

{ H confined
h =

¢ unconfined

(2.7)
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where H is the thickness of the confined aquifer.
A continuity condition can be stated in terms of the discharge vector Q);

—Qm 09y +E+5390

Ox Oy ot (2:8)

where F is the extraction of the aquifer and S is the storativity. The storativity of the aquifer
has different values for confined and for unconfined flow. (Bear and Verruijt, 1987, equation 4.1.1,
4.1.2,4.1.3).

In the mathematical description it is convenient to use a discharge potential ® as main
dependent variable. The definition of a discharge potential is such that its gradient is equal to
minus the discharge vector

0 )
a@ =—Q; j=x,y (2.9)

The relations between the discharge potential and the piezometric head are different for confined
and for unconfined flow, since the saturated thickness in (2.6) is different in each case.
If the discharge potential for confined flow is given by

1
® =FkHyp — §kH2 ¢>H (2.10)

then the equation (2.9) and the continuity condition (2.8) can be combined into the differential
equation

H? H? 1 0
—<I> —®=F — D >H 2.11
572" " B2 mEwt vz (211)
which can be written as
PP o ptl oom (2.12)
822 " By? a ot v = ‘

when an aquifer diffusivity « (compare Carslaw and Jaeger, 1986) is defined as

o= % ¢>H (2.13)

The relation between the discharge potential and the piezometric head for unconfined flow is
L,
D= §kg0 p< H (2.14)

A linearization is carried out by setting

¢e=h+e (2.15)
where the variations in the saturated thickness ¢ are assumed to be much smaller than the average
value h -

e<<h (2.16)
s that oe 01 o o i
L = Zlskg?] = ko2t = k(h +¢) 22 ~ kh L 2.1
pr = arlzhe ] = ke =k =e) e = kg (2.17)

Combination of the equations (2.9), (2.8) and (2.17) gives the partial differential equation

2 2
o+ L a-pr 20

922 oy2 o (2.18)
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which can also be written in the form (2.12), if the aquifer diffusivity for unconfined flow is set
equal to

kh
a="2 o<H (2.19)
S
Thus the partial differential equation (2.12)
0? o2 10
@@ + 8_y2¢ =F+ EE(I) (2.20)

describes both confined and unconfined flow. However, the relations between the discharge po-
tential ® and the piezometric head and the expressions for the aquifer diffusivity « are different
in each case ( for confined flow (2.10) and (2.13) and for unconfined flow (2.14) and (2.19) respec-
tively).

The differential equation is a parabolic partial differential equation. If the sink term is equal
to zero it reduces to the heat equation (Weinberger, 1965).

0? o2 10
— b+ —P=—— 2.21
O * Oy? a ot (221)

If the flow is steady, the partial differential equations (2.20) and (2.21) can be reduced to
respectively Poisson’s equation

o2 o2

where the extraction F does not vary with time, and Laplace’s equation

o2 0?
py d+ By ®=0 (2.23)

The partial differential operator in the latter four partial differential equations is linear, so
that the superposition principle can be used, provided that only one value of the diffusivity « is
used. The principle can be applied to two solutions of one equation or to solutions of different
equations.

Let ®; and @3 be two solutions of the heat equation with a sink-term (2.20). Then the sum
@y + P9 also is a solution of the differential equation (2.20) with the same value of the aquifer
diffusivity «. If the extraction of @1 is equal to Fy and @5 gives E5 then the sum ®; + ®5 gives
an extraction that is equal to By + Fo.

In general the total potential which is a solution of (2.20) can be divided into two parts, ®
steady
and @ . The first part is transient. It fulfills the heat equation with a transient sink term. ®

will be used for the potentials of the transient elements, which are derived in this thesis. The
steady
second part, @ , fulfills Poisson’s equation.

Similarly the potential can be split into a part without extraction and a part with extraction.
Therefore, the steady potential is the sum of solutions of Poisson’s equation (2.22) and of Laplace’s
equation (2.23). The transient potential is the sum of solutions to the heat equation (2.21) and
the heat equation with a transient sink term (2.20).



chapter 3. analytic element method for steady flow 10

3. analytic element method
for steady flow

In this chapter an overview is given of modeling steady regional groundwater flow using the
analytic element method. The method is covered in detail in Strack(1988); only the principles will
be given here, along with a brief overview of some elements. The steady analytic element method
is discussed here for two reasons. The initial state of a transient problem is assumed to be steady
in this thesis, and steady elements are limiting cases for corresponding transient elements at large
values of time.

The analytic element method is based on the superposition of analytic functions. Each
function represents a particular feature of the aquifer. These functions are referred to as analytic
elements; there exist analytic elements for modeling such features as uniform flow, wells, creeks,
rivers and inhomogeneities in the aquifer properties.

Each function is selected such that it is suitable to simulate the effect of the aquifer feature in
question. At least one degree of freedom is associated with each element. The degrees of freedom
are represented as parameters in the analytic element.

Steady analytic elements are solutions to either Laplace’s equation (2.23) or Poisson’s equa-
tion (2.22). The domain is the entire plane except isolated points, line-segments or internal
regions. Boundary conditions at an element are specific for the particular element. Depending on
the type of element, there are different conditions at infinity that are satisfied.

elements

All analytic elements that are presented here are taken from Strack(1988). In this reference
a complex potential is used in many cases. The complex potential is a complex function of the
complex location x -+iy. The discharge potential is equal to the real part of the complex potential

O = R{Qz +1iy)} (3.1)

uniform evapotranspiration.

The potential for uniform evapotranspiration gives a constant extraction E; throughout the
entire plane. It can also be referred to as evapotranspiration of order one. The equipotentials are
ellipses (see figure 3.1).

figure 3.1. Equipotentials for evapotranspiration of order one.

uniform flow.
The discharge due to uniform flow has the same magnitude and the same direction at every
point of the plane. The flow is one dimensional (see figure 3.2).
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A

figure 3.2. FEquipotentials for uniform flow.

constant.
The constant has one value in the entire plane.

well.
A well removes an amount () of water per time from the aquifer. The boundary condition at
the element is given by

}% =2mrQr = Q (3.2)

where 7 is a radial coordinate centered at the well and () is the discharge of the well.
The complex potential for a steady well is equal to

steady Q
=—1
w 2m a

x+iy)
R

(3.3)

where the subscript » stands for well and R is a length. The length R is the radius of the circle
around the well where the value of the discharge potential for the well is equal to zero. The
discharge potential is equal to

steady 2 2
2 Q@ Ty

=1 A
B = L2l (3.9
The discharge in z-direction
steady Q T
e = —— ——— 3.5
w 2 12 + 92 (3:5)
and the discharge in y-direction
steady Q Y
F 0
and the discharge in the radial direction r
steady Q 1
gr = (3.7)

The potential (3.4) is unbounded at infinity. The discharges (3.5) through (3.7) vanish at
infinity but the total flow does not approach zero
lim 27rQ, = —Q (3.8)
rT—r00
doublet.
A doublet is obtained by taking the limit of two wells with opposite discharges approaching

each other while the distance times discharge remains constant. A pattern of equipotentials is
given in figure 3.3
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The orientation of the doublet is indicated by an arrow in the figure. This is the direction
from which the well with positive strength approached the well of negative strength. It also is the
direction in which the water approaches the dipole on one side and flows away on the other side.

A doublet does not have a net discharge, since the two wells have equal, but opposite dis-
charges.. The potential is equal to zero at infinity.

figure 3.3. Fquipotentials for a doublet

line-elements.
A local coordinate system &, 7 is used for line-elements (see figure 3.4). The element lies on
the £ axis, so that the 7 axis is normal to the element. The end-points of the element are (£1,0)

and (£2,0).

7/ 7

(5,0)
(E.,OJ

figure 3.4. Local coordinates for line-elements.

Strack(1988) expresses the potentials for line-elements in terms of a a complex variable Z =
X +1Y (see figure 3.5). The relation between Z and the local coordinates £,7 is given by

: +
:g_‘_ln_é%l

§2;§1
&2 _ & )
R R

VA

where R is a length.
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L o=X+lY

> X
(—t,0) (t,0)

figure 3.5. Line-element in complex variable Z

line-sink.

A line-sink removes a discharge ¢ from the aquifer along the element. This means that there
is a jump in the normal discharge across the element with a magnitude o. The boundary condition
along the element is

lmQ, ~lmQ, = -0 &<E<& (3.10)

The behavior at infinity of the potential (3.13) is just like that of the potential for a well (3.4).

steady steady
(Va2 +1y? — o) (3.11)

Is w 1Q=0clg2—6&1]

A line-sink can be obtained by integrating a well along a line-segment. If the jump in the
normal discharge o is constant along the element, the line-sink is said to be of order one. The
complex potential is equal to

steady B 52 _ 51

52 51

—(Z-1)In(Z — 1) +In(2=2L) — 7]

ol g {6~ & i) (ST ”7> - <g — i)ty
- %} (3.12)
where the subscript & stands for line-sink and the complex variable Z is given in (3.9).
The discharge potential is given by
Stei’dy =ol- ﬁ{(ﬁ ey 5]2%)22 ) (- ey m(EZSS T 5]1%)22 /i)
+ 5= {arctan( : A &) —arctan(; 1752 )}
- 522;&} (3.13)

The discharge parallel to the element is the discharge in &-direction

R e R o) .10
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The discharge in 7-direction of a first order line-sink

(3.15)

= —{arctan — arctan

steady o £-6& -6,
27 n

line-doublet.

A line-doublet is a line-segment along which the potential is discontinuous. The jump in the
potential is equal to the strength of the line-doublet A.

The boundary condition along the element is

hﬁ)lfb — 11m<I> A &1 <€éE<& (3.16)
n

At infinity the potential (3.19) is regular and equal to zero just like the potential of the doublet

lim &=0 (3.17)
VEE+n?—oo

The potential for a line-doublet can be obtained by integrating a the potential for a doublet
doublet along aline-segment. The orientation of the doublet is normal to line along which is
integrated. The jump in the potential across the element varies linearly along a line-doublet of
order one. It is denoted by the strength A.+&X;, where the subscripts ¢ and 7 indicate the constant
and linear part, respectively. The complex potential is equal to

steﬁdy Ae + N Z(&2— 51!+§1+§2 71 A

b 27 In (Z+1)+2 -(&2—&1) (3.18)

where the subscript & stands for line-doublet and the complex variable Z is given in (3.9).
The discharge potential is equal to

stead . .
= ()5 {arctaﬁ 7752 - arctan%}}
+Al[%{ln((€_%{#) - m%#)}} (3.19)
which gives a discharge in the &-direction
Y= Ol e - T
R s e e
- %{arctan(g y =) — arctan; y =) (3.20)

where the range of the arctangents is from —m to m. The discharge in the n-direction is equal to

steady L g c-g
A R e el
772 1 1
R S vy il oy e
1 (£ — &) +n? (E—&)2+7?
N I
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area-sink.

An area-sink removes water from the aquifer inside the element. The extraction is constant
for an area sink of order one. The potential approaches the potential for a well of the same
discharge far away. Equipotentials for an area-sink are shown in figure 3.6.

figure 3.6. Fquipotentials for an area-sink

modeling

A brief description of modeling a flow problem with steady analytic elements will be given.
Modeling with the steady analytic element method is discussed extentively in Strack(1988) and
Strack(1986). Boundary conditions are applied at selected points (called control points) of the
boundaries of the aquifer features: these conditions give rise to one equation per control point.
There is one more parameter in the solution. It does not correspond to an aquifer feature. This
the constant, and the associated equation is the reference condition: a given value of the head (the
reference head) at a specified location (the reference point). The total number of control points
is equal to the total number of parameters in the solution; the system of equations is solved for
the unknown parameters.

Once all parameters are determined, an approximate analytic solution to the problem is
known. The solution is approximate because the boundary conditions are not met at every point
of the boundary but only at the selected control points. Although approximate, this solution is
truly analytic: Piezometric heads can be computed at any point in the aquifer without the need
for interpolation, and velocities can be obtained by analytic differentiation. The latter property
is of particular advantage in problems of contaminant transport as numerical dispersion is of no
concern.

In modeling a regional flow problem with the Analytic Element Method the aquifer features
in the area of interest are represented in great detail by analytic elements. Around the area of
interest the near-field is chosen. The term near-field is used for the area in which individual aquifer
features are represented explicitly by analytic elements. The representation of the aquifer features
in the near-field becomes gradually coarser as the distance to the area of interest increases. The
farther away, the less do details influence the groundwater in the area of interest.

The necessary size of the near-field is determined interactively. An estimate is made of the
size and elements are entered inside the near-field. The size of the near-field is then increased in
steps until the effect of the additional elements on the area of interest becomes negligible (Strack,
1986).

The area outside the near-field is called the far-field. The far-field functions are the constant,
uniform flow and uniform extraction and the discharge at infinity. If the near-field is not extended
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far enough, then it becomes important to choose the proper far-field. The far-field then has to
represent the important aquifer features that have been left out.

So a complete model of a flow problem consists of a near-field with the area of interest in its
center, where the aquifer features are modeled explicitly by elements, and a far-field, where the
aquifer features are implicitly represented by the far-field functions. The far-field is not important
for the modeling of the area of interest if the near-field is sufficiently large.

The model only gives reliable information in the area of interest. Away from the area of
interest the results of the model become less realistic with increasing distance to the area of
interest.

The flow in the far-field does not have physical significance. For instance, the potential
becomes unbounded far away if the total discharge in the near-field is not equal to zero. Physically
it is not correct for an infinite aquifer that the potential becomes infinite. It is an artifact due to
the fact that not the entire aquifer with all its boundaries and features is being modeled.

far-field

Next more will be said about the far-field. In the following the far-field is limited to the
constant and the discharge at infinity; uniform flow and uniform extraction are excluded.

The far-field will be examined using a steady potential consisting of a constant and n wells.
The wells are located at the points (1, yx) and have a discharge ;. The constant is determined
by the reference potential ®¢ at the reference point (zg,%0). The potential at the point (z,y) is

equal to
n

steady Qk 7"2
P =0 = In(-L .22
0+Z47T n(R%) (3 )
k=1
where 7, is the distance from well k to the point (z,y)
e = V(@ —w)? + (y — n)? (3.23)

and the length Ry, in the potential for a steady well (3.4) is set equal to the distance between the
well and the reference point

Ry = v/(z0 — )2 + (Yo — yi)? (3.24)

The constant in the potential for the far-field is only of interest if the sum of the discharges of
the elements is equal to zero, otherwise the potential is unbounded. It is advantageous to define
the potentials for the elements in such a way that the limit for y/z2 + 32 — oo of the sum of the
elements is equal to zero, if the sum of the discharges is equal to zero. In that case the constant is
equal to the value of the potential at infinity. In a transient model the potential at the reference
point may change, but with the transient elements that will be derived in chapter 4, the value at
infinity does not change (it will be shown there that the potentials for those transient elements
vanish in the limit for \/22 + 3% — c0).

Potentials with the desired property are obtained, if the lengths R in the potentials for the
wells are normalized with respect to a length L. The potential (3.22) can be written as

steady

=C + Xn: Qe ln(i) (3.25)
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where the constant in the potential, C, is equal to
_ —~Qx, RZ
C=a)— ;; o n(75) (3.26)

This part of the potential is independent of x,y so that the discharge vector is fully described by
the sum of the normalized potentials of the wells.

The far-field corresponding to the potential (3.25) is equal to, using /22 +y> =r

steady B ZZ:I Qk r2
d =C+ T ln(ﬁ)
Q. 7’

where @ is equal to the sum of the discharges in the near-field.

Q=) Q« (3.28)
k=1

and the constant is indeed equal to the potential at infinity if the sum of the discharges is equal
to zero.

In figure 3.7 equipotentials are given for a case with eight wells. The locations of the wells
are indicated by arrows with the discharges. The origin for the polar coordinates r, 6 is indicated
by a cross.

«£,4)

.

= @.- 2)0 -
figure 3.7. Fquipotentials for a case with eight wells

In figure 3.8 the same potential is plotted against the radial coordinate 7 for different values
of the angular coordinate 6. The value of C + % In(r?/L?) is marked in the graph by a dotted
line. It can be seen that the curves for the potential for every 6 converge to this line.
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figure 3.8. Potential as function of the radius v for several values of the angle 0

If the length L is chosen to be equal to a value much larger than the distances of the wells
to the origin the potential at 7 = L can be apprioximated by (3.27), so that the potential at the
circle of radius L is approximately equal to C

@ _, ~C (3.29)
and the radial discharge is close to (3.27)
Q- e S
T or 4 N [277Ir=L
~_ % (3.30)

This way the far-field could be visualized as a circular boundary of the problem where the potential
and normal derivative are equal to (3.29) and (3.30) respectively (see figure 3.9).

figure 3.9. Visualization of far-field as imaginary boundary

The values at the circle can be seen as the representation in the model of the influence of
the aquifer features that are not included in the form of elements Those left out aquifer features
control the level far away and provide recharge to the near-field.

This outer boundary is completely different from the boundary that is put on the outside of
for instance a boundary element model, where an explicit boundary condition is specified on the
outer boundary. In an analytic element model the values on the circle are not specified but follow
implicitly from the boundary conditions that each represent an aquifer feature, plus the reference.
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In the above the far-field has been discussed using a potential with no elements but wells.
The discussion can be extended easily to other cases. The equivalent of (3.22) for a potential that
contains the potentials for a constant, wells, line-sinks and area-sinks can be written as

=0+ @ (3.31)

steady
where %) is the potential of element number k in which the value of the length Ry is chosen

steady
such that the potential %) is equal to zero at the reference point (zo,%0). If the potentials of

all elements are normalized with respect to the length L, then the equivalent of (3.26) is

steady n steady

=Cc+> { ® [ o} (3.32)

Since the behavior at infinity of elements discussed here is equal to that of a well with the same
total discharge (see (3.11) for instance) the far-field of (3.32) is equal to

steady

=C+lim > {2 (g}

:C—O—Z{ﬁln(i—i)}

=C + % ln(z—Z) (r — o0) (3.33)

which can be written as

steady Q $2 + y2 5 5
@ _C+EIH(T) (Va2 +y? — o0) (3.34)

where @ is equal to the sum of the discharges

Q=) % (3.35)

" total
=1

This is the same expression as was found for the far-field in the case with only wells. So that the
above discussion for the far-field for that case can indeed be translated to more general cases.
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4. transient analytic elements

Functions associated with transient analytic elements are derived in this chapter. These
elements are the transient versions of the steady elements presented in chapter 3. Their behavior
is similar and the same names will be used. The term order will be used in the same way also. The
order of an elements refers to the variation in space of the strength of the element (Strack,1988).
The term degree is introduced to indicate the way the strength changes as a function of time: a
strength of degree zero is constant in time, degree one linear, degree two quadratic and so on.

The strengths will be equal to zero before the starting time £y of the elements. The potentials
that will be derived for the elements apply to values of the time larger than the starting time
t > tg. The potential before the starting time is equal to zero

@, =0 (4.1)
which will be assumed in the following, and not mentioned with the expression for every potential.

The transient elements are solutions to either the heat equation (2.21), or the heat equation
with a sink term (2.20). The domain is the entire plane minus an isolated point, or an isolated line-
segment, or a region. These are the internal boundaries of the elements. The boundary conditions
are specific for the particular element. The condition far away in space and the condition for large
values of the time are more general. These will be referred to as the condition at infinity and the
final condition respectively. The condition at infinity is that the influence of the element vanishes
at infinity; the potential has to remain zero there

lim ®=0 (4.2)
VP 00

The starting time of the elements ty, will be set equal to zero in the derivation of the transient
elements. Therefor, the initial condition for all solutions is that the potential is equal to zero at
time zero

lim® =10 (4.3)
t—0

A final condition is only applied to those solutions for which the boundary values remain
bounded. The functions with a constant strength in time should converge to their steady coun-
terparts for large values of the time. Two different final conditions will be used. These will be
referred to as the strong and the weak final condition. The strong final condition requires that
the transient potential approaches the potential of the corresponding steady element

steady

lim®= & (4.4)

t—o0
The strong condition is the condition that applies to any transient state for which the boundary
conditions do not change any more after a certain time. The condition has to be applied to the
sum of the potentials of the elements used to represent that transient state, but not necessarrily
to the individual elements. For some elements the final condition is weakened to the condition
that the discharges of the transient element converge to discharges of the corresponding steady

element
steady

limy s o0 Q:z: = Q:z:

(4.5)

. steady
lims o0 Qy = Qy

If a function fulfills the strong final condition, it also fulfills the weak condition. However, if a
function satisfies the weak final condition, the limit of the potential for large values of time is
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equal to the steady potential plus a function of the time. The function of time might even become
infinite in the limit for ¢t — co.

In the following, the conditions are checked for each element, after its potential and discharges
have been derived. It has been checked that the potentials fulfill the differential equation, but
these checks are not included here. The fulfillment of the differential equation is checked by
straight forward differentiation.
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4.1 evapotranspiration functions

The potential for evapotranspiration is given in the category of functions that do not have
singularities inside the plane. The potential {ulfills the differential equation (2.20)

o2 H? 10
@@ -+ 8_y2¢ =K+ EE(I) (46)

A function, whose second spatial derivatives are equal to zero is chosen for the potential of
evapotranspiration ®
€
o2 o2
92T = g2 =0 (47)
where the subscript e indicates evapotranspiration. The extraction of the potential (4.7) is equal
to

B=-=—0 (4.8)

Extraction that is constant in space is referred to as evapotranspiration of order one, which is
consistent with Strack(1988). The order is two for an extraction that varies linearly in space. The
degree of the strength indicates the way it changes in time.

An example of evapotranspiration of order 1 and degree n is

E=FEt" (4.9)
so that the potential is given by
B = —f— (4.10)
e nmn + 1

This potential fulfills the differential equation and the initial condition. The potential is not equal
to zero at infinity, so that the condition at infinity is not satisfied. The final condition only is
applicable in case that the extraction remains bounded; i.e. for n = 0. The potential for n =0
does not reach a limiting value for t — 0o so that the strong final condition (4.4) is not satisfied.
The weak final condition (4.5) is not satisfied either since the discharges corresponding to (4.10)
are identically equal to zero for all times while the discharges for steady evapotranspiration of
order one are not equal to zero as can be seen from the fact that a pattern of equipotentials exists
(see figure 3.1).
Evapotranspiration of order 2 corresponds to linear extraction

E=(FEx+ Eyt" (4.11)

e x,n y,m

and has a potential
@

®=—(Fx+ Ey) t (4.12)

en yn ' n+1
This potential also fulfills the differential equation (4.6) and the initial condition but not the
condition at infinity. The final condition only is applicable in case that the extraction remains
bounded; i.e. for n = 0. However, the final condition is not satisfied for n = 0.

4.1.1 application of evapotranspiration.

The potentials for evapotranspiration will be used to construct the potential for area-sinks
(later in this chapter) and a far-field function (in chapter 5). They will not be used by themselves
to model changing extraction out of the aquifer since they do not fulfill the conditions at infinity.



chapter 4. transient elements 23

4.2 two elementary solutions

Carslaw and Jaeger (1986) give two elementary solutions of the heat equation (2.21) in an
infinite domain: the instantaneous well (equation 10.3(1)) and the instantaneous doublet (equation
10.8(4)). The adjective instantaneous means that the strength is a Dirac ¢ function (see e.g. Wylie
and Barrett, 1982, page 456) in time. The corresponding element with a continuous strength is
obtained by integrating the instantaneous solution with respect to the time.

The potentials of the instantaneous well and doublet are indicated by <I> and <I> and they have

strengths Q and s respectively. The subscript : indicates an 1nstantaneous quantlty The location

has coordlnates (3(:0, yo) and the instantaneous strength occurs at time ty. The potentials ® and
w

P are
id

N TR (4.13)

w A (t — to)
3 ) (et (y—vg)?
© = ra i L — o) cost - (y— g sinO}e T (4.14)
where 6 is the orientation of the doublet with respect to the positive = axis.

The following elements are derived from these two elementary solutions.
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4.3 well

The potential for an instantaneous well is given on the previous page (4.13). Continuous wells
are obtained by integrating an instantaneous well in time. The procedure is given by Carslaw
and Jaeger(1986). The potential for wells with various strengths are available in the literature
(see e.g. Carslaw and Jaeger, 1986, Jacob and Lohman, 1952, Abu-Zied and Scott, 1963, and
Hantush, 1964).

4.3.1 well of degree zero.

The solution for a well of constant discharge after time zero, which is called a well of degree
zero, is given by Carslaw and Jaeger (1986). It was first introduced into the field of groundwater
flow by Theis (1935), who adapted it {rom the field of heat flow from a paper written by Carslaw.

The potential is equal to the sum of the potentials of instantaneous wells (4.13), whose
discharges are equal to Qd7 and occur at time intervals dr. In the limit for dr — co the potential

0

can be written as the following integral (Carslaw and Jaeger, 1986)

Q

t 0  (z—20)%+(y—w0)?
o = / —— 2 ¢ tt-n dr (4.15)
w0 fy  Aw(t—T)
so that
Q 2 2
- + (Y — %)
o — b, (=% 4.16
w0 A7 i dad ) ( )
where F; is the exponential integral which is defined as (Abramowitz and Stegun, 1972)
>0 efu
By (z) = / “— (4.17)
The discharges in  and y direction for the well with a constant strength are given by
Q 2 2
0 T — o _ M)j(ﬂﬂ_
= —7— ot 4.18
4 2m (2 — 20)* + (Y — 1) (115
Q 2 2
0 Y — Yo _ (z—xg) H(y—wyg)
=—— e Tat 4.19
AT w0+ - (119)
where (B.5) and (B.6) have been used. The radial discharge is found by means of (B.4)
Q
— _Lei LT (420)
%T 2rr

where 7 is the radial coordinate, centered at the location of the well (zo,vo).

4.3.2 checking well of degree zero.

Now that the potential (4.16) and the discharges (4.18), (4.19) and (4.20) of a well of degree
zero have been derived, it is checked that the element indeed fullills the applicable conditions (the
check that the potential fulfills the differential equation is not included here, but is straightforward
using the equations in appendix B).
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4.3.2.1 initial condition. The exponential integral in equation (4.16) vanishes in the limit for
the time approaching zero (B.14) so that the potential fulfills the initial condition of a zero value.

Q 2 N2
i & — lim[—LEl((x 20)° + (¥ — Wo) ) =0
t—>0wd  t—0 4T 4at

(4.21)

4.3.2.2 boundary condition. The boundary condition for a well states that the total amount of
water that is removed from the aquifer is equal to the discharge of the well. Using the expression
for the radial discharge (4.20) it can be seen that the boundary condition (3.2) is satisfied

}% —QWT%T :}% —27r7“[—8—¢}

w0
Q
1 -
=lim —271'7“[—&—67&]
r—0 Tr
=Q (4.22)
0

The condition at infinity (4.2) is also satisfied (see (B.13))

lim =0 (4.23)
Va2+y2 oo W

And there is no flow from infinity (compare (3.8)):

2
lim 27rQ, = lim —Qe™ 37
=00 w0 =00 0

=0 (4.24)
where (4.20) is used.

4.3.2.3 final condition. The weak final condition (4.5) is satisfied. The discharge in x direction
(4.18) approaches the steady z-component in (3.5) for t — oo

Q

0 Tr— X9 _ (z—=20)%+(y—wg)?
Tat

tg?o% a2 (x—xo)2+(y—y0)26

Q

o 0 r — X9
2m (2 — 20)? + (¥ — wo)?
steady
= G (4.25)

and the discharge in y-direction (4.19) approaches the discharge in y-direction of the steady well
(3.6)

. . 0 — % (2?4 (y-yg)?
lim Qy = lim —— J— Y e Zat

__0 Y— Y
21 (2 — w0)? + (Y — ¥o)?
steady
= @y (4.26)
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The potential (4.16) of the transient well does not approach the potential of a steady well (3.4),
so that the strong final condition (4.4) is not satisfied. The limit for the time approaching infinity
of the potential can be found using (B.15)

Q 2 2
o 8 (e —w0)? + (Y —w)
tlggo 1% o tlggo s B ( 4ot )

_ L[ln( (.’L‘ - xO)z + (y - y0)2) _ 1n(4at

ir R? )
Q
steady Aot

where R is a length that was introduced in chapter 3. Thus the difference between the potential
of a transient well and the potential of a steady well does not become zero for large values of time.
In fact the potential for a constant transient well does not become steady. This is due to the fact
that the value of the potential at infinity is kept at zero, which is a condition that makes a steady
final state impossible.

4.3.3 application of well of degree zero.
The potential (4.16) is the potential for a well of degree zero, which start pumping at time
zero. To obtain the potential for a well starting at time t = £y, a translation in time is carried out

(4.28)

Now it is possible to make a well that is active for a limited time. The potential for a the well,
which starts to pump a discharge () at time £; and stops at time t2, is equal to the potential for a
well of discharge () starting at t; plus the potential for a well starting at t2 with a discharge —Q

Q

o=-"FE,

(=0 (= w)?) -9 (=0 (=)

do(t — ty) S ar ! do(t — ty)

0[5, ( (z —20)* + (y —w0)*

0 (m_x0)2+(y_y0)2)]
47 4ot —ty)

)~ Bl 4ot — ty)

(4.29)

The discharge of the second well cancels the discharge of the first well, so that the apparent
discharge is equal to zero after time 5.

4.3.4 well of degree one.

The potential for a transient well of degree one is obtained by integrating the instantaneous
well (4.13) with a strength that increases linearly in time. The potential for this well has not been
found in the literature. The procedure is similar to that for the well of degree zero (4.16) that
has been derived earlier in this chapter (see also Carslaw and Jaeger, 1986)

/t ?T _ (eme)?+(y—yo)?
@ — —_—— ¢ da(t—T) d/r
wl  fo  Am(t—7T)
B _% 14 (z —20)* + (y — o)* B ((x —w0)* +(y — y0)2) e,
 Arm 4ot ! 4ot
Qi 2 2 2 2
1 e =m0 + (W —yo)® (@ —20)* + (Y — )
T drw B 4ot ) — Ea( 4ot )} (4.30)
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where Fs is defined as (Abramowitz and Stegun, 1972)

Eo(z) = e — 2B (x)
d
£E2 (x) = —Eq(z) (4.31)
The discharge components for a well of degree one are equal to minus the components of the
gradient of the potential

Qt 22 _u)2 2 2
Qu= g a:2 T 267( WPrumw)? @ xOEl((x xo)° + (¥ — vo) 0 (432)
wl 21~ (x — 20)? + (¥ — yo) 4ot 4ot
Qt 2 2 2 2
1 Y — Yo v Y — Yoo (@ —20)? + (Y —w0)
—_1 ot - E 4.33
u}Q1y 27r{(x—xo)2+(y—yo)2€ ' 4ot il dot )b (33
where (4.31), (B.5) and (B.6) have been used. Application of (B.4) gives the radial component of
the discharge
Qt 2
1,1 2 T T
U}er T T © o 4atE1(4at)} (4:34)

4.3.5 checking well of degree one.
Next the well of degree 1 is checked to determine whether the potential (4.30) and the
discharges (4.32), (4.33) and (4.34) indeed fulfill the applicable conditions.

4,3.5.1 initial condition. The exponential integral goes to zero for very small values of the time
(see equation (B.14). The exponential function in the potential (4.30) also vanishes. The initial
condition that the potential is equal to zero at time zero thus is satisfied.

4.3.5.2 boundary condition. The boundary condition at the well (3.2) requires that the total
radial discharge (4.34) into the element is equal to the discharge of the well Q1.
1

2 2

. . 7& T r
iy 2w @ = Jng Qte = = QI ()
=Qt (4.35)
1

where equation (B.8) has been used to equate the term with the exponential integral to zero.
The boundary condition at infinity requires that the potential (4.30) goes to zero

im  ® =0 (4.36)
£/ 24y —o0 wl
which is verified by (B.13) and (D.4).

4.3.6 application of well of degree one.

Wells of degree one can be used for the modeling of a well with a gradually changing discharge.
The discharge then is continuous as opposed to the discontinuous discharge that would be the
result of using wells of degree zero to model a transient well.

For instance a well can be made which has a discharge that grows linearly to its final value
(see figure 4.1)

=R

Q(t —t1) 2 2 2 2
1 (x —x0)* + (¥ — vo) (x —x0)* + (y — W)
==l 4ot — ty) )~ Bal da(t — ty) )
—Q(t — 12) 2 2 2 2
1 (x —x0)° + (¥ — ¥0) (x —0)* + (¥ — W)
i ea— 4ot — ty) ) = Faf 4ot — ty)

(4.37)
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4.4 line-sink

A line-sink is a sink with its discharge distributed along a line-segment. The distributed
discharge ¢ is constant along a line-sink of order one. The discharge of a line-sink of degree n
varies in time as a polynomial of order 7 in terms of (t — %), where o is the time the line-sink
starts to discharge. The starting time is set equal to zero for the continuous elements in the
following derivation. The procedure is the same as has been followed for the wells: the continuous
elements are obtained from an instantaneous solution by means of integration.

The potentials for line-sinks are expressed in terms of the same local coordinates &, as were

1 2
used in chapter 3 (see figure 3.4). The end-points of the element are (£,0) and (£,0).

4.4.1 instantaneous line-sink.
The potential for an instantaneous line-sink is obtained from the potential of an instantaneous
well, analog to the construction of a steady line-sink {rom a steady well (Strack, 1988). The line-

1

segment from (£,0) to (£,0) is divided into intervals du with an instantaneous well in the center

(see figure 4.2). The strength of the instantaneous wells is equal to odu and the discharge occurs
K3

1, FQGL ;

(§.0)

at time tg.

eﬁ"’

({,0)

figure 4.2. Derivation of instantaneous line-sink

The potential of an instantaneous line-sink of order one is equal to the sum of the potentials
of the instantaneous wells (4.13), all of the, same strength, in the limit for du — 0. The resulting
integral is

€ e
g 2 _ —u 2
P=——=t T [ e et du
ik A (t — to) ¢
, 2 1
o 1 — 1 —
e Fat—to) {erfc( § 5) — erfe( £-¢

BV )}
i dy/T\T— 1o ot —to) 2 alt —to) 2 (4.38)

where £ is the time the instantaneous the line-sink discharges and erfc the complementary error-
function, which is defined as (Abramowitz and Stegun, 1972)

erfcx = %/x e du (4.39)

Litkouhi and Beck give a function for an instantaneous semi-infinite line-source (Litkouhi and
Beck (1982), equation (6)), which is closely related to (4.36). These authors use the function to
derive a semi-infinite line-source of degree zero, which is the only function, that can be used for
a line-sink in an infinite plane, that I have found in the literature.

Equation (4.38) will be used to derive the potential for a line-sink of arbitrary degree n.
The potential for a line-sink of degree n will be given as a recursion formula. Subsequently, the
potentials for line-sinks of degrees zero and one will be given explicitly.
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4.4.2 line-sink of order zero and arbitrary degree.
A potential for a line-sink of degree n is equal to the sum of instantaneous line-sinks (4.38).
FEach instantaneous line-sink has a strength o = o7"d7, where 7 is the time at which the element
K3 n

discharges and d7 the time-interval in which one element discharges (see figure 4.3).

D|n.~<‘.-8 FUNCTIONS OF INSTANTANEOUS LINE-SINKS

. ot dt
o2 o 9
J. f + + ' > T
STt

figure 4.3. derivation of continuous line-sink

If the limit is taken for dr — 0 then the potential can be written as the following integral

o [ or"\/a R = ; £ ¢ d 4.40
Lsn_/o _me {er c(m)—er C(m)} T ( )

wherein the lower bound of the integral is equal to zero, because the discharge of the continuous
line-sink is starting at time zero.

The evaluation of the integral is given completely in appendix E. The integration involves a
change of variables and repeated integration by parts. The change of variables is (E.4)

2
U= N
4ot — 1)
2
7
t—r=——
T o
2
dr = d 4.41
T 203 ( )

k k
In order to keep track of the repeated integrations by parts the symbols I1 and I3 are introduced
J

to denote two recurring integrals. The result, (E.20), is written in terms of these symbols also

oy/a k=n 2k
& =G 7m DD G AL (442)

k
The term Iy is given recursively. The term for £ = 0 is equal to (E.17)

2 1
O [l ., , £—& [Tal ¢—¢ [Ial
I, = %e a7 {erlc( ; 77i2)—erfc(T 77%)}
2 2 1 1
L -6 (= +n" &-¢ (-9 +7
_\/_E{ ; By~ ; By(S— )}
2 1
D A e ; $) ~ erfe(u® ; $\}du (4.43)
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the recursion formula is given by (E.10)

2 1
K 1 4ot _n2 E—¢ Jdat E—¢ Jdat
I, = 2k+1 o= 157 forf — erf —
= g e a5 [ a5 [y
2 1
12 g-gh g-c
M Ty e Chal £
_9 k}1 y
+m 1 >0 (4.44)

k.j
where I (j =1,2) is another recursively defined term. It is equal to (E.19) for k=0

(€ —E2 17

) =12 (4.45)

0 1
52 = §E1(

The recursive relation is given by (F.14)

k 1 4ot 7(&—5)% 2
PES _(_g)ke A
i 2]€ n

J
L(E—&%2+n? k21 :
—— T =1,2 k>0 4.46
7 2 Iy j (4.46)
Two special cases of the general degree line-sink will be worked out after this solution has
been checked: a line-sink with a constant strength after time zero (degree zero) and a line-sink
with a linearly increasing strength (degree one).

4.4.3 checking line-sink of arbitrary degree.

The above potential derived for a line-sink of order one and degree n, was checked against the
initial condition and the boundary condition. The details of the checking can be found in appendix
E. The results are only summarized below. The final condition does not apply to elements which
have a degree higher than zero. The check of the final condition for a line-sink with a degree zero
is given after the special case of the line-sink of degree zero has been presented.

4.4.3.1 inijtial condition. The initial condition is that the potential (4.42) is equal to zero
everywhere when the time is equal to zero. It is shown in appendix E that the initial condition is
satisfied (see (E.29))
lim® =0 (4.47)
t—01sn
4.4.3.2 boundary condition. The boundary condition along a line-sink requires that the ele-
ment removes an amount of water from the aquifer per unit length that is equal to the strength
0. The boundary condition for a line-sink of degree n with strength o = gt" can be stated as

the condition that the component of the discharge normal to the element has a jump equal to the
strength

1 2
lnlfol Qn — 17;1% Qn = —gt §<E<¢ (4.48)

which implies that the derivative with respect to 7 of the potential (4.42) is discontinuous across

the element ] R L
im0 572 = 29t f<e<E (4.49)

, <é< .

llmnTO %SL = —§gt
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The derivative of the potential (4.42) with respect to 7 is equal to

k
o 4 o k=n (= D)RTLnR g2
® S 2Ly
onkn 2\/7_'[' = (4@) 2 on

(4.50)

The terms for k # 0 do not contributes to this partial derivative for 7 = 0 (see (E.56)). The term
for k =0 gives (E.57)

limyo 2 @ = bot"
4.51
lim, o 2 ® = —Lot» (4:51)
10 Bn e, 27,

which conforms to the boundary condition (4.49). Thus the potential for the line-sink of arbitrary
degree n (4.42) fulfills the boundary condition at the element.

The condition at infinity requires that the potential is equal to zero at infinity

lim & =0 (4.52)
NGawa

It is shown in appendix E that the condition at infinity is {ulfilled (see (E.69) and (E.59)).

4.4.4 application of line-sinks of order one and degree n.
The general form of the strength for a line-sink of degree n is

o=ot"+ o t" ' +..+ot+ao (4.53)
n 1 1 0

n—

Thus the general potential for a line-sink of degree n is equal to the sum of n + 1 line-sinks with
degrees ranging from 0 to n

o
1]

n

A S
I

0 @ (4.54)

o
Il

This line-sink can be used to approximate a straight boundary segment at which the potential
is known at all times. Let ¢ = 0 be the time that the transient flow starts, so that the transient
discharge of the segment is equal to zero before time zero. To determine the n + 1 coefficients

S
of the strength of the line-sink, g, n + 1 times t are selected. At each time the potential at the

center of the line-sink is set equal to the known potential at that time Py

n

o (EmD)=(00.8) Dy, s=1,2,..nn+1 (4.55)

which gives rise to a system of n+1 equations from which the n—+1 unknowns ¢ can be determined.
Once the coefficients a have been determined the potential is known which approximates the
specified potential at the boundary. It meets the specified values exactly at the center of the

S
line-sink at the selected times ¢.
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4.4.5 line-sink of order one and degree zero.

The potential for a line-sink with a constant strength g follows from (4.42) and (4.43) with

the degree n equal to zero

\/a74at ercg_2 @ —erc5 % dat
& =gl ayme ek T — el 772)}
VP =€ (=8 E-¢& (£=9)
* A7 { n ( dad )= n Ex( dad )}
 ferfe(ut %) — erfe(u® %)} du] (4.56)

A function closely related to this solution (4.56) has been derived by Litkouhi and Beck (1982)
(equation (13)). They solved the problem of a semi-infinite body subjected to a constant heat
flux over one half the surface, while the other half of the surface is insulated. The solution for the
problem of a semi-infinite body subjected to a constant heat flux over an infinite strip can easily
be obtained by superposition, as they have pointed out in the same paper. The solution can be
imaged with respect to the surface to get the solution for an infinite body with an internal infinite
strip source. The three dimensional solution can be reduced to a two dimensional one, since it is
independent of the coordinate parallel to the strip. The resulting formula in two dimensions is a

line-source in an infinite plane. The result is equivalent to the above potential for a line-sink (see
figure 4.4).
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figure 4.4. Solution of Litkouhi and Beck(1982)

The discharge components of the line-sink with constant strength in directions parallel and
normal to the element are found by taking the partial derivatives with respect to & and 7. For
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the discharge component parallel to the line-sink the equations (A.5), (B.5), and (C.2) are used

3¢ aew
2
g 2 2
_ (=8 +mn
Rl e Ty

(4.57)

The expression for the discharge component normal to the line-sink is obtained using the equations

(A.8), (B.6), and (C.3)

Q:a

B0 oo
2 1

e*uz{erfc(u%) — erfe(t=5)} du (4.58)

g [e%e}
0
__2\/?//1%

4.4.6 checking solution for line-sink of degree zero.

It has been shown for the general case of a line-sink of arbitrary degree that the solution
fulfills the initial conditions and the boundary conditions.

The solution for the line-sink with constant strength will be checked with another condition
at infinity and the final condition. The latter was not checked for the line-sink of arbitrary degree
since only applies to elements of degree zero. The former is the condition that the potential
approaches the potential for a well of the same strength away from the line-sink. It was not
checked for the line-sink of arbitrary degree since no wells of arbitrary degree were derived.

4.4.6.1 boundary condition. The condition at infinity for a line-sink (3.11) requires that far
away from the line-sink the potential (4.56) approaches the potential of a well of degree zero (4.16)

that removes the same amount of water from the aquifer. This is checked below using £ and A&
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as shorthand for §ﬁ and (£ — &) respectively
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where the definition of the derivative has been used

d o g e @3

11m
dx Az—0 Ax

(4.60)

4.4.6.2 final condition. The strong final condition (4.4) that the potential of the line-sink of
degree zero (4.56) has to approach the potential of a steady line-sink (3.13) is not satisfied. The
limit for the time approaching infinity of the potential of the transient line-sink is derived below

with equations (C.14), (B.15) and (A.24)

1
. . _ 4at — 4ot
Jim @ = i gl e e fente( S5 o) —erte(S 5 /S50y
1
(-8 +7 Lo =9+
Lie- =Ly o gy, S22y,
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2 1
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R? R?
— (€~ &) In(F5) — ) + (€~ O (n( ) )}
n 1
+ 5—=—={arctan(——) — arctan(—)}]
ATV e-& £-¢
0 2
1 (= &2+ (s
e omEET I (g (E2ET
— (e~ O )
+ —{arctan( 1 5) — arctan( )
e—¢ e-¢
o N
steady toéal o
=18 - () — ) (1.6

The weak final condition (4.5) is satisfied. The formula for the discharge component parallel
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to a transient line-sink (4.57) approaches the steady one (3.14) as can be seen by using (B.15)

2
¢ (E—E2 g (€ — &2 1o

Jim Qe = Jlim — 2 (B (S———) — B ()}
2 1
g €_£2+ 2 5_52_._ 2
::—-i%{—ln(( ‘%2 )+t ‘%2 i
4 4
() — 7= () + 7}
2

1
g €_£2+ 2 5_52_._ 2
e R )
steady

= (4.62)
s

The limit for the discharge normal to the line-sink (4.58) is also equal to its steady counterpart
(3.15) as can be seen from equation (A.24)

lim Q, = — ii{arctan(L) — arctan( ] )}
Sl BRI £
ol
=— %{arctan( ] 2) — arctan( ] 1)}
§—=¢ §—¢
steady
= @y (4.63)
I

4.4.7 application of line-sinks of degree zero.
The expressions (4.56), (4.57) and (4.58) are given in terms of the local coordinates £ and 7.
These have to be related to the global coordinates = and y in order to use these expressions for a

. . . . . 11 2 2
line-sink at an arbitrary location. If the end-points of a line-sink are (z,%) and (,y), the local
coordiates can be set equal to

12 12
gz(x—x x)c089+(y—y+y)sin9 (4.64)
T+ Y+
n=—(z— ysind + (y — 2%y cos 0 (4.65)
where 6 is equal to the orientation of the element
2 1
0= arctan(g Zi) (4.66)
r—

The transformation given by equations (4.64) and (4.65) maps the element on the &-axis with its
center at the origin in the &, 7 plane, so that the 7 coordinates of the end-points are equal to zero,
and the & coordinates

f=—t= G -dr G- (1.67)

where \/(% — 31(:)2 + (33 — 314)2 is equal to the length of the element.

Line-sinks can be used to model creeks and other aquifer features that can be represented
by line-segments along which the head is known. The strengths are a priori unknown. They are
obtained using the condition that the head at center of the line-segment is equal to the specified
value. The method of solving is covered in chapter 6.
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4.4.8 line-sink of degree one.
The potential for a line-sink with linear strength o(t) = (ljt starting at time zero is given by

(4.42) with n = 1

2 2
1 2 (E-&*+n* 7P (=& +7n*
1?1 o q[ﬂ(g — 1 12a - 6a + 4ot )
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2 1
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3\/_ 772 772
— (6 - e T (g - ey (1.68)

The discharge in the direction parallel to a line-sink with a linear strength in time is equal to

_ (€ - 5) (€ - 5)
1915 o 1[ 47r ( 4o +t)E ( 4ot )
1
(E-8*+7n (5—5)2+772
e S—p H B (S— )}
+ %{e* (e—ift+n2 e (&—ift+n2 }] (4.69)

where the equations (A.5), (B.5), (C.2), and (D.2) have been used. The discharge in the direction
normal to the line-sink is given by

Qy =gl - «55)(§—9——ﬂ—@—éméiﬁﬁifn

1 dat dat
N ¢ -¢
_ m{g—a +t} = et {erfc(uT) — erfe(u )} du
2 1
t _n §=¢§ |4t §=¢
+7 \/%e e ferte(*— 7%) —erle(*= S (4.70)

where the equations (A.8), (B.6), (C.3), and (D.3) have been used.

4.4.9 checking line-sink of degree one.

It has been shown for the general case of a line-sink of arbitrary degree that the solution
fulfills the differential equation, the initial conditions and the boundary conditions. An extra
boundary condition is checked below

4.4.9.1 boundary condition. The condition at infinity for a line-sink (3.11) requires that far
away from the line-sink the potential (4.68) should approach the potential of a well (4.30) that
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removes the same amount of water from the aquifer. This is checked below using (4.60) with the

m 2 1
center of the line-sink indicated by & = (£ — &)/2 and the length by A&
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4.5 line-doublet

40

To obtain the potential for a line-doublet, a point-doublet is integrated along a line-segment
(Strack, 1988). The orientation of the point doublet is normal to the line-segment (see figure 4.5).

§ 7 Mb)du %

A AV
\/. sl \
) “

(%,O

T

figure 4.5. line-doublet.

4.5.1 instantaneous line-doublet.

The potential for an instantaneous line-doublet of order zero can be calculated from instan-
taneous doublets (4.14) like the instantaneous line-sink (4.38) was derived from the instantaneous

1 2
well (4.13). The instantaneous doublets are distributed along the line-segment from (£,0) to (£,0)
at distances du and they have a strength s = Adu and orientation § = 7. The the subscript @

stands for line-doublet and i for an instantaneous quantity, while ¢ indicates that the strength
is constant with respect to the coordinate along the element £. The intregral resulting from the

limit for du — 0 is

2

<I> ¢ A _lemey? p
— B o a(t—tg U
i Jg 8malt — to)277
2
A 2 £ £—u 2
= %ne*ﬁm/ o e du
8ra(t — to) ¢

Recalling the definition of the error-function (4.39), the potential becomes

2 1
® )\%67 2ali=10) {erfc( L §- 5) — erle( L £-¢
i ic8/ma(t —1ty)? a(t —to) 2 a(t —to)

figure 4.6. strength of linear doublet

(4.72)

(4.73)

An instantaneous line-doublet of order one is derived from instantaneous doublets with a
strength s; = )zu du where (u,0) is the location of the doublet, in the (£,7) coordinate system.
7
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The subscript ¢ indicates that the strength is linear with respect to the coordinate along the
element, £ (see figure 4.6). The potential is equal to

oo [ A% e
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Addition of (4.75) to (4.73) gives the following potential for the general form of an instantaneous
line-doublet of order one

2 1
O =(A+&N) iU 3 eim{erfc(&) - erfc(&)}
i e il 8 /m/alt —t)? 2/t — to) 2 /at —to)
[ B = It IR
AT ¢ } (4.76)

4.5.2 line-doublet of order one and degree zero.

The potential for a line-doublet of degree zero is obtained from the potentials of a series of
instantaneous line-double same strength ()(\) +& l)(\))dT, which becomes in the limit for dr — 0
C!

l047r(t _ 7_) {67 a(t-7)  — g da(t—r) ] ir
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The constant terms are taken outside the integral signs and the change of variables (4.41) is
performed

_ n 4ou® . s ,ié&!;z
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The first integral is the function (A.l), which is discussed in appendix A. The second integral can
be written as

2 1
1 (=2 4n? 2 (g% o 2
_712_5{6 2t e E }du:£2|k:0—£2|k:0 (4.79)

0
where (E.11) has been used. Substituting the expression (4.45) for I the potential for the line-
J

doublet becomes

el o S SR S
A - =y (480

The discharges of a line-doublet of order one (linear in space) and degree zero (constant in
time) are obtained by taking partial derivatives of the potential (4.80). The equations (A.5) and
(B.5) are used to derive the £&-component of the discharge vector
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The discharge in 7-direction is obtained using (A.8) and (B.6)
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4.5.3 checking line-doublet of order one and degree zero.

The line-doublet of order one and degree zero, for which the potential (4.80) and the expres-
sions for the discharge (4.81) and (4.82) have just been derived, will be checked now.

4.5.3.1 initial condition. It can be seen from (A.23) and (B.14) that the initial condition is
fulfilled that the potential is equal to zero at time zero.

4.5.3.2 boundary condition. It follows from (A.17) that the boundary condition of a jump in
potential across the element equal to the strength )(\)—0— 51)(\) is satisfied

nl0d0 M0 d0 e

:(:)(\)+£l>6 1 <E< & (4.83)

. . 1 1
lim ® —lim ® = ()(\)+£l)(\))ﬁﬁ_ (C)(\)—O—ﬁl)(\))m(—\/a

The values of the potential (4.80) and the components (4.81) and (4.82) of the discharge
vector are equal to zero at infinity as follows from the limits (A.22) and (B.13), so that the
doublet does not have an influence at infinity and the condition at infinity is satisfied.

4.5.3.3 final condition. The strong {inal condition (4.4) is satisfied that the potential of a line-
doublet of order one and degree zero approaches the discharge of a steady first order line-doublet.
The limit for the time going to infinity of the potential (4.80) can be evaluated using (A.24) and
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(B.15)
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which is given in equation (3.19).

4.5.4 line-doublet of order and degree one.
The potential for a line-doublet with a strength, which varies linearly in time is obtained by
the same procedure as the one of degree zero. Now the instantaneous line-doublets have different

strengths, increasing linearly with the time 7 at which the instantaneous doublet occurs. The
strengths are equal to ()i + ﬁl)i)T dr
C
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The first two integrals in this are the same as the integrals in (4.77) in the derivation of the
line-doublet of degree zero. The third and fourth integral are evaluated using again the change of
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variables (4.41). The third integral becomes
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0
where (E.6) has been used. Equation (4.43) is an expression for Iy, which can be substituted into

(4.86).
The change of variables (4.41) changes the last integral of (4.85) into
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1
where (E.11) has been used. Using (4.46) and (4.45), Is can be written as
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Thus the potential for the line-doublet of order and degree one (4.85) can be written as
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The component in £ direction of the discharge of the line-doublet of order and degree one is
equal to
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where the equations (A.5), (B.5), (C.2), and (D.2) are used. The component in 7 direction of the
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discharge of the line-doublet of order and degree one is equal to
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where the equations (A.8), (B.6), (C.3), and (D.3) are used.

4.5.5 checking line-doublet of order one and degree one.
The line-doublet of order one and degree one, (4.89), (4.90), and (4.91) will be checked.

4.5.5.1 initial condition. The potential (4.89) is zero at time zero, as follows from the limits
(A.23), (B.14), (C.10) and (D.5).

4.5.5.2 boundary condition. The boundary condition that the jump in the potential at the
line-doublet is equal to the strength is fulfilled as can be seen from the coeflicient of the integral
in (4.89).

The value of the potential (4.89) is equal to zero at infinity as follows from the limits (A.22)
and (B.13), so that the doublet does not have an influence at infinity and the condition at infinity
is satisfied.

4.5.6 application of line-doublets.
Line-doublets can be used to create to area-sinks, which will be explained later in this chapter.
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4.6 area-sink

The potential for a transient area-sink is obtained in the same way as the way applied by
Strack(1988) to obtain a general expression for the potential for a steady state area-sink. In this
approach, the potential is split into two parts (Strack, 1988). A function is chosen for the first
part that gives the extraction of the area-sink and no extraction outside the element. It fulfills
the differential equation with extraction (2.20). The second part is then constructed such that
it removes all the discontinuities that the first function may have. It satisfies the differential
equation without extraction (2.21).

The boundary of the area-sink is taken as a polygon. The potential is written as

1 2
=0+ (4.92)

1
where the index as stands for area-sink. The potential ® is chosen to be equal to zero outside the
area-sink and equal to a potential that gives extraction of the required degree and order inside

1 0 outside
®=9% iuside (4.93)
E
which gives the extraction
1 0 outside
E=F= o (4.94)
as € inside

1
where € is the strength of the area-sink. The potential ® and the normal component of its gradient

are discontinuous across the boundary of the area-sink, which is a polygon.
2
The potential ® is the sum of the potentials for line-doublets and line-sinks along the sides

of the polygon. The strengths of the line-doublets are chosen such that the jump in the potential
1
® is canceled. The strengths the line-sinks are determined such that the discontinuity in the

1
normal component of the gradient of ® is eleminated. Thus the line-doublets are used to create
a continuous potential and the line-sinks to let the normal discharge be continuous across the

2
boundary of the area sink. The potential ® may thus be written as follows for an area-sink with
a boundary polygon that consists of n sides

;| L+ P (4.95)

1
A=—A®P 5" o=—AQ,

1 1
where (), is the normal component of the discharge associated with the potential ®. It is taken
positive in outward normal direction.

4.6.1 area-sink of order one and degree zero.
Strack (personal communication) suggested to use a function that is linear in time for the
first part of the potential for an area-sink of order one and degree zero. The function is chosen as

1 0 outside
b =

—gat inside

(4.96)

This function is equal to the potential for uniform evaporation of degree zero (4.10) inside the
area-sink, where the extraction is equal to & the strength of the area-sink. And the the extraction
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due to (4.96) is equal to zero outside the area-sink, as it should be (see equation (4.94)). The
jump across the boundary is constant in space and increases linearly in time. The jump can be
eliminated by line-doublets, placed at the sides of the boundary polygon. The strengths of the
line-doublets has to be constant along the element and linearly increasing in time, so that the

2
potential ® (4.95) is equal to the potential (4.89), for a line-doublet of order zero and degree one,
along each side of the polygon

2 1
R T TR LG =&
=0 (gl - @)Em%> —(&- @)Ed%)}
=1
! 2 1
+— L }/ —u? {erfc(u S ;Jgj) —erfc(ugjn;jgj)}du

2vat

Vil e ~&; ercﬁj;%j dot
- Pl St S8 [ ar S Ry

where &; and 7); are the local coordinates parallel and normal to side j. They are chosen such
that 7; is positive inside the area-sink. The nodes at the ends of side j have local coordinates

1 2
(£4,0) and (&;,0) as is shown in figure 4.7.

figure 4.7. local coordinates at side j of an area-sink

The complete potential of an area-sink with constant strength bounded by a polygon of n

sides then becomes )

) outside
d = 9 (4.98)
a0 —gat+<I> inside

2
where the potential @ is given by (4.97). components of the discharge vector are obtained by

1
taking the The partial derivatives with respect to  and y of the potential ® are equal to zero,
so that it does not contribute to the discharge vector. Thus components of the discharge for the
area-sink of order one are equal to the components of the discharge for the line-doublets that

2
make up ¢
n J J )
Qom = Z[ng cos 0; — @, sin 0;] (4.99)
Qy= Z[ng sin0; + Q,, cos 0;] (4.100)
as0

Jj=1
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where the components of the discharge for side j are determined from (4.90) and (4.91)

] (ej—fj)2+n§ (ej—elj>2+n§
J T]t e dat e = dat
Qe, = ga[ﬁ{ > - n }
&G =& +m  (&G—-&)?2+n
2 1
Loy GG (6= &)+
ST B 4ot ) — B dat ) (4.101)
j : (6j—9)% 402
émzw_g__g;i_yifTJ
T 2.2
(& — &)+ Uh
1 lj 2 2
B 13 1_ ¢ . (&j—fa)t +n2
(& — &) +n7
2
1 2 (&G =8+
~ % (& — 5j)E1(T)
1
Lo (&G = &)+
—(& - 5j)E1(#)}

2 1
Vi & —& [at & —& [Aat
o e B )

2 1
ST SR k1) NNV S k1)
Qﬁa/Q"it e~ {erfe(u w ) — erfc(u y )} dul (4.102)

4.6.2 checking area-sink of order one and degree zero.

4.6.2.1 continuity. The function for the area-sink was constructed in such a way that both the
potential and the discharge are continuous across the boundary of the area-sink so that the change
from one differential equation to an other does not cause discontinuities in the potential (and the
head) and the discharge vector.

4,6.2.2 initial condition. The potential is zero at time zero for all parts, so that the sum is
equal to zero, too.

4.6.2.3 boundary condition. The element has been constructed in such a way that the potential
and the normal discharge are continuous. All parts of the potential fulfill the condition at infinity
(4.2), so that the sum also is equal to zero at infinity.

4.6.2.4 final condition. It has only been verified numerically that the components of the dis-
charge vector for a transient area-sink with four sides approach the components of the discharge
vector for a steady area-sink of order one. Moreover it was verified numerically that for the
potentials the following relation is valid

total
steady

lim @ = @ + [~ In(4at) + 1] (4.103)

t—o0 as0

4.6.3 application of area-sink of order one and degree zero.
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Transient area-sinks can be used to model the seasonally varying net precipitation or evap-
otranspiration that is added to or removed from the groundwater. Further applications are the
leakage through the bottoms of lakes and rivers or from one aquifer into an other and artificially
induced infiltration from drainage fields or irrigation. The potential of an area-sink will be used
in chapter 5 to construct a far-field function.

4.6.4 area-sink of order two and degree zero.
For area-sinks of order two the infiltration inside varies linearly with x and y. The first part
of the potential is chosen to be equal to

1 outside

0
®= { —(ecx+ cy+e)at inside (4.104)
Ox Oy 0

However, in this case not only the potential jumps across the edges but also the normal component

1
of the discharge. The components in x and y direction corresponding to the potential ® are

1 o 1

Qi = _6_3(:@ = cat (4.105)
and ) 51

Qy= —6—y¢ = Oeyozt (4.106)

Now % has to contain line-sinks of order zero and degree one to cancel the jump in the normal
discharge. The discontinuity in the component of the discharge normal to side j is found from
the discharge components (4.105) and (4.106) and the orientation 6; of the side. The strength of
the line-sink at that side has the same magnitude and opposite sign

1 1
— (Qusint; — Qy cosb;)
=— (06 sinf; — £ cos 0;)at = ot (4.107)
T Yy 1

The potential (4.68) is used to get the potential for the line-sink at side j

2
121)1” =9 [47r(€ 5JH%+§—”—H}EI(%)
1
1 & —&)° + 2 £ — &2+ n?
-l - @){(1;#%% +t}&(%)
1
i e forf. @ 5J p
2\/— + }/;\/at {er C( 77] ) er ( nj )} "
1
?\)/\/__{% + ke 4‘“{6‘1”f0(5 ngj\/ 772) erfC(—gj;@\/%)}
t 2 (Ergﬁzﬂf- 1 (ej—éj)2+n2.
BT ) L (VR ) L ) (4.108)

where the strength o; is given by (4.107). Line-doublets of order one and degree one are needed
to cancel the the jump in potential. The global coordinates along side j are given by

1 1 2
T=a (&G -ty G <& < (4.109)
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1 1 X 1 2
y=y;+ (& —§&)sinb;  § <& < (4.110)
The strength of the line-doublet along side j is obtained from the jump in the potential (4.104)

Aj :(Oax + &Y + g)at

={ ¢ (& + (& — £5) cos ;) + Oey(zl/j (& —&;)sind,) + Jat

:[{Oa(glz:j —éjcosﬁj)—b—oey(gbj —%jsinﬁ )+6)}at] —b—ﬁj[(e cosf; + eysm@ Joi |

1 2
=tA; +&ith §<E<E (4.111)

The potential (4.89) is used to get the potential for the line-doublet at side j

1
(& — &)+
4ot
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+ 4—; e~ dat —e T et} (4.112)

where the strengths )ij and l)ij can be obtained from (4.111)

2
The potential ® is equal to the sum of the potentials for the line-sinks (4.108) and the
line-doublets (4.112)

%:Z[¢j+ @ ;] (4.113)

And the total potential for an area-sink of order one and degree one with a boundary polygon of
n sides is given by the sum of (4.104) and (4.113)

> i [;I)lj + @j} outside
b = 4.114
asl (ex—b— ey—b—e)at—b—ZJ 1[151 —O—Og)lj} inside ( )

4.6.5 checking area-sink of order two and degree zero.

4.6.5.1 continuity. The function for the area-sink was constructed in such a way that both the
potential and the discharge are continuous across the boundary of the area-sink so that the change
from one differential equation to an other does not cause physical discontinuities.
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4,6.5.2 initial condition. The potential is zero at time zero for all parts, so that the sum is
equal to zero too.

4.6.5.3 boundary condition. The element has been constructed in such a way that the potential
and the normal discharge are continuous. All parts of the potential fulfill the boundary condition
at infinity so that the sum also has zero discharges at infinity.

4.6.6 area-sinks of degree higher than zero.
It is possible to create an area-sink of order one and degree one in the same fashion. For the
first part of the potential the following function is chosen in stead of (4.96)

P =

1 0 outside
(4.115)

2 . .
—6% inside
1

The the line-doublets of order zero and degree one in (4.97) are replaced by line-doublets of order
zero and degree two with strength Ao = i%tz' For higher degrees one needs a higher power of ¢

in (4.115) and higher degree line-doublets. However the line-doublets of degree higher than one
were not derived, what needs to be done before these area-sinks can be used.
In a similar way area-sinks of degree higher than one can be derived from (4.104) and (4.113).
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5. final steady state and
far-field functions

If the conditions, that are imposed on transient groundwater flow, stop changing in time,
then the flow will gradually vary less in time and will converge to steady state. This steady state
will be referred to in this thesis as the final steady state. It is called final to distinguish this steady
state from the steady state used as the initial condition for the transient flow problem. The name
initial will be used for the latter steady state.

In many problems of transient flow there is no final steady state, for example if seasonal
changes in regional groundwater flow are modeled. However, there are cases in which the final
steady state is important, like the transition from an existing situation to a planned future sit-
uation. The construction of a canal can have a major impact on the regional groundwater flow
(e.g. the Tennessee-Tombighee Waterway in which the water level is much lower than the original
groundwater table). In such cases, one is not only interested in the groundwater flow in the future
situation, but also in the time it takes before this new situation has established itself.

Besides the practical importance of proper convergence to a final steady state, there is a
theoretical need for it. If a method can not model proper physical behavior, then the reliability
and usefulness of the method are limited for practical modeling.

The convergence to a final steady state corresponds to the strong final condition that was
introduced in chapter 4, equation (4.4).

If the potential for a transient element fulfills the strong final condition by itself then that
potential converges to the potential for the corresponding steady element. The concern for the
final steady state stems from the fact that not all transient elements, that were derived in chapter
4, fulfill the strong final condition. It was replaced by a weaker condition (4.5) for the well, line-
sink and area-sink. Under the weak condition the potential for a transient element converges to
the potential for the corresponding steady element plus a function of the time.

When the weak final condition was allowed for individual elements in stead of the strong
condition, it was mentioned that the sum of the elements in a model should still fulfill the strong
final condition (4.4).

Therefore a potential will be examined which is equal to the sum of potentials for transient
elements. Using (4.27), (4.61), (4.84) and (4.103), the potential for a single element at large values
of the time can be written as

total
o="8"|, , + ; —wE) 4q] (o) (5.1)
i3 B=L T 4g 2’ 7 ’

where j is the number of the element. The potential of the steady element is normalized with
respect to the length L (see chapter 3). The limit for ¢ — oo of the sum of m potentials of
transient elements is equal to

total
™ steady Aot
JH{}O (I) Z{ (I) |R L e _ln(ﬁ)Jﬂﬂ}
Zm toéal
steady j=1 Qa
—Z oo+ — () 9] (t— ) (5.2)
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Application of the strong final condition tells that the sum of the transient potentials has to be
equal to the sum of the corresponding steady potentials so that the sum of the discharges has to
be equal to zero

™ total
> Q =0 (5.3)
=1 7
and equation (5.2) becomes
. m T steady
Jim, ?: > ? s (5.4)
j=1 j=1

Comparison of this result with (3.32) shows that (5.4) corresponds to a constant C that is equal
to zero. Using (3.35) also, it is possible to say that the sum of the potentials of transient elements
either converges to a steady potential with C =0 and Q@ =0

ling?: ® o (5.5)

or it increases logarithmically with time for ¢ — oo (compare (5.2)).

A transient model consists of the potential for transient elements super imposed on the
potential for the initial steady state. In an application it is very hard to meet the condition (5.3)
that the sum of the discharges of the transient elements is equal to zero. The discharges of the
elements are not all known beforehand in modeling of regional groundwater flow. Usually the
strengths for a large fraction of the of elements have to be determined from the condition that
the head has a specified value at the element.

example.

Lo

Y
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“
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figure 5.1. Well and infiltration canal

The simple case of a well near an infiltration canal is used as an example (see figure 5.1)
throughout this chapter. The aquifer is confined, with thickness H, hydraulic conductivity
k, and diffusivity «. Initially the head is constant and there is no flow. The well (4.16) starts
pumping a constant discharge () at time ¢ = (. The infiltration canal is represented as a
line-segment with a distributed discharge, which is constant along the segment, and piecewise
constant in time. This is modeled by line-sinks of order one and degree zero (4.56) at the
line-segment with different starting times. The strengths o of the line-sinks are calculated
from the condition that the head at the center of the line-segment is equal to the initial head
at all times.

The total strength along the line-segment is plotted versus the time on a logarithmic
scale in figure 5.2. The total strength does not converge to a constant. The model does not
give a final steady state.
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figure 5.2. Discharge of canal as function of time

There is no degree of freedom that can be used to satisfy the condition (5.3) that the sum
of the discharges of the transient elements becomes constant for large values of the time. Each
element in the potential represents an aquifer feature, and the degrees of freedom are determined
by the specific conditions associated with the aquifer features, which the elements are representing.
Therefor the potential may not converge to a steady state in the entire model. This is not
necessarily a problem. The purpose of the model is to get information about the area of interest.
If the flow in the area of interest converges properly to the final steady state then the model serves
its purpose.

As with the analytic element method for steady flow (see chapter 3), a transient analytic
element model consists of an area of interest, a near-field and a far-field. The area of interest was
modeled minutely, the elements became gradually coarser in the near-field until the far-field was
reached that does not contain any elements at all. The near-field was extended in steps until the
influence of the elements added in the last step on the area of interest was negligible. That also
meant that all the aquifer features had been included that had a significant influence on the area
of interest.

If a transient model is set up in the same way, so that all aquifer features, that are important
for the flow in the area of interest, are modeled explicitly by elements in the near-field, then the
flow in the area of interest converges to steady flow. The model outside of the area of interest
gradually lacks more controlling aquifer features as the distance to the area of interest increases;
the model will gradually deviate more from the physical reality.

example.

To illustrate this, the case of a well and an infiltration canal is used again. With only the
well and the canal the model did not even converge to a steady state in the area of interest
(see figure 5.2). Control on the flow in the area of interest is added in the form of two sections
of nearby rivers, which are shown in figure 5.3. The river-sections are modeled each by one
element, in the same way as the canal, and the head at the centers is also kept at the initial
level.

(3¢,9¢)

(-85 60 -62)

figure 5.3. Well and infiltration canal with sections of nearby rivers
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With the extended near-field the distributed discharge of the canal converges to a con-
stant value, as can be seen in figure 5.4. However, the model does only become steady in the
area of interest. That the heads keep changing away from the center of the model is shown
in figure 5.5 by means of contour plots of the head at two different times.
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figure 5.4. Discharge of canal as function of time
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figure 5.5. Fquipotentials at different times for well and infiltration canal

If the near-field is not extended far enough to include all aquifer features that have a significant
influence on the flow in the area of interest, then the model will not becomes steady there. Models
that are too small are used as simple problems to test a computer program and in the initial phase
of a project, when the problem is explored.

If the near-field is too small, then extra control has to be added to the model in order to
make the area of interest converge to a final steady state. This may be done by adding special
transient functions to the potential that change the parameters of the steady state in (5.5). Two
of these special functions will be derived later in this chapter. The one function gives a value
unequal to zero for the constant C in the limit ¢ — co. The other makes it possible for a transient
potential that does not fulfill (5.3) to converge to a steady state. Thus the final steady state can
have a value of the sum of the total discharges @ that is different from the initial steady state.
These functions will be called transient far-field functions since they change the values of C and
Q, which are the parameters of the steady far-field (3.34). To be able to use these functions the
final steady state needs to be determined so that the amount of change of these parameters is
known.

final steady state

A steady state can be calculated directly with the conditions and elements that are used in
the transient model, without using transient elements in the limit for ¢ — co. This steady state is
not necessarily the final steady state of the transient model. Far-field functions with the correct
values of the changes in C and @ have to be used in order for the entire model to converge to the
calculated steady state.
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This steady state is modeled using the conditions and corresponding elements from the tran-
sient state and the elements from the initial steady state. The strengths of the elements from the
initial steady state are all known. There is a condition for every unknown strength of the new
elements. There is one more unknown in the model however, the constant. The corresponding
condition usually is the reference equation. In this case a steady state is being determined that
is connected to the initial steady state. Thus it is more logical to select a condition that connects
the far-fields of the initial and the final steady state, in stead of adopting some arbitrary reference
point and - head. One choice is to set the total discharge of the new elements equal to zero, so
that the sum of the discharges of the elements in the steady state that is being calculated is equal
to the sum of the discharges in the intial steady state

= 5.6
99 (5.6

where the subscripts f and o indicate final and initial state respectively. Another choice is that
the values of the constants in the initial and final steady states are equal

c=C 5.7
c=¢ (5.7

For practical purposes one can determine the final steady state twice, once with each condi-
tion. If the two are close in the area of interest the area of interest is apparently not significantly
influenced by the far-field, so that all aquifer features that control the flow there are included in
the near-field. Since there is enough control on the flow in the area of interest included in the
model, the transient state will converge to the same values in the area of interest.

example.

The final steady state will be determined for the cases with a well and infiltration canal.
Both the cases without and with the river-sections will be given. The steady model for the
case with only the well and the canal shown in figure 5.1 is set up with a steady well of
discharge @) (3.4) and a steady line-sink of order one (3.13) with a specified head at the
center equal to the head that was specified at the center of the canal in the transient model
(the initial head in this example). The model for the final steady state is completed by either
the condition that the sum of the discharges is equal to zero (the value in the initial steady
state), or that the constant C has the same value. Contour plots of the heads for the two
solutions obtained with the two different conditions are given in figure 5.6.

CONTOUVUR-INTERVAL
A é :.05 Q

figure 5.6. Fquipotentials for two steady states with well and infiltration canal

The lines of constant head and the discharges of the canal are quite different, indicating
that the model does not have a large enough near-field, as was seen from the transient
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calculations also (see figure 5.2). In the transient calculations for the case in which the river-
sections were added, the control on the flow in the area of interest was large enough to give
a steady state locally. That the near-field is extended far enough can also be seen from the
comparison of the solutions for the final steady state with the two different conditions (see

figure 5.7)
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figure 5.7. Fquipotentials for two steady states with well and infiltration canal plus river-sections

If the two solutions differ too much in the area of interest, then the model is not extended far
enough outward. In that case the far-field has to simulate the influence of the important aquifer
features that are left out of the model. The special transient functions then have to be added to
the potential for the transient state and the parameters have to be chosen such that the far-field
functions model the influence of the features that are left out.

The special transient functions also have to be used to get the entire model to converge to a
final steady state and not just in the area of interest.

The change in C and Q that the transient far-field functions have to create can be determined
from the far-fields of the initial and final steady state. The equation for the far-field of a steady
state (3.34) is recalled

x> +y2

steady Q 5 5
@ +EIH(T)( x? +y? — 00) (5.8)

=C

From the vizualization of the imaginary boundary in the far-field, a circle with radius L,
potential C and normal discharge —% (see figure 3.9), a change in the constant C can be inter-
preted as a general change in the water table that is caused by the aquifer features left out of the
model. These aquifer features recharged or discharged an amount of water for a limited time. A
different value of @ means that the continuous recharge from the aquifer features that were not
included to the near-field changes.

Two transient functions will be derived next, that effectuate such changes. The first function
changes the value of the constant C, by changing the value of the potential evenly in the far-field.
The second function produces extra flow to the near-field continuously and so changes the value

of Q.

changing C, the constant

A transient far-field function that changes the value of C changes the level of the potential
but does not influence the discharge vector far away. A function that changes the value of the
potential uniformly in the far-field has this behavior. Such a function is the potential uniform
evapotranspiration. However the extraction should only take place in the far-field. Therefore a
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function is chosen with a potential ®, which gives extraction outside of the near-field only (see
P

figure 5.8). The extraction lasts for a limited period of time.
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figure 5.8. FEuxtraction of far-field function for changing the constant

A potential for extraction away from the near-field is obtained from superposition of the
potential of an area-sink of order one and degree zero (4.98) onto the potential for uniform
evapotranspiration of order one and degree zero (equation (4.10) with n = 0). The strength of the
area-sink is equal in magnitude and opposite in sign to the strength of the evapotranspiration so
that the extraction of the latter is canceled inside the area-sink. The area-sink is placed in such
a way that all the elements included in the model are inside it, so that the far-field function does
not disturb extraction conditions in the near-field.

The first part of the potential starts the extraction at time ¢,

0 <ty
1;{; T\ —Epalt —tp1) + Pasleg=—n, T>tp (5.9)

to=1p1

After time tps the extraction is stopped by the second part of the potential that contains an
extraction that cancels the extraction of the first part

0 t<tp
b= { —(—Ep)alt —tp2) + Pasleg—r, > th (5.10)

p2
to=tp2

so that the complete potential for the second function to change the value of the potential at
infinity is equal to

0 t <1y
—FEa(t—1t,)+® _ i, <t<t
@~ poll ~lp) T Pale—e, S (5.11)
_Epa(tﬂ - tpl) + (I)as|6017Ep + (I)as|eo:Ep L > 1p2
to=1p1 to=tp2

see figure 5.9.
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figure 5.9. Construction of far-field function for changing ®

The limit for large times of the potential (5.11) is equal to

lim ® = —Epa(tys — tp) (5.12)

t—oo p

since the two area-sinks cancel each other in the limit ¢ — co. The limit (5.12) has one constant
value in the entire plane, so that the condition (5.7) can be replaced by

C=C+ lim & (5.13)
f o t—o0 p

where the subscript f indicates the final steady state. The potential (5.11) has three degrees

of freedom, E,, t,1 and t,3. Equation (5.13) gives only one condition, so that two of the three

parameters can be chosen freely. The choice is made such that the influence of the far-field in the

model is close to the influence of the aquifer features that have not been included in the model

explicitly in the form of elements.

example.

In figure 5.6 a steady state has been shown with % = @ for the case of just a well and
(2]
an infiltration canal (without the river-sections). The parameters of the far-field function
(5.22) are chosen to create the corresponding amount of change in C. Three different sets of
parameters are fiven in figure 5.10. In the same figure the potentials of the farfield functions
are shown at the center of the line-segment, where the condition for the specified head is
applied.

The first and the second set differ in the duration of the extraction in the far-field. The
potential at the center of the line-segment increases more gradually in the beginning for the
second set. Later the potentials change similarly so that the second curve has a time lag after
the first one. The third set of parameters for the far-field function has the same extraction as
the first, but the sides of the area-sink are twice as long. This causes the potential to change
more slowly and converge much later to the final value.
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figure 5.10. Well and canal with far-field function for for C

For all three sets the flow converges to a steady state, as was to be expected. The
distributed discharges of the canal are shown in figure 5.11 (compare figure 5.2 where no
far-field function was used). The rates at which the final value are approached differ in the
same fashion as those for the potential for the far-field function.

EV | 10 oo [oeYe) '%E-t
¢
[ I I
S
Q L—— ""‘
R S S

— - =

figure 5.11. Discharge of canal as function of time with far-field function for C

The parameters for the far-field function for changing C have to be chosen such that the
product of the extraction £, and the difference of the times tp2 — tp1 is equal to the value that
follows from the required change of C (see equations (5.12) and (5.13)). The locical choice for
the time ¢, is the starting time of the transient elements, so that the transient effects in the far-
field and the near-field start simultaneously. This leaves the size of the area-sink and one of the
parameters tp2 and F, to be chosen. The smaller the duration t,5 —t,1 of the extraction is chosen,
the more sharply the increase in potential is and the more it varies between different locations.
Increasing the size of the area-sink counteracts the latter effect: the larger the area-sink, the more
evenly the potential changes in the near-field, but the slower the rate of convergence becomes.

changing Q, the discharge at infinity

A transient far-field function that changes the value of @ changes the flow toward the near-
field but does not change the constant. A transient ring-source with a large diameter has this
effect. The ring-source injects water into the aquifer evenly along a circle (see figure 5.12).

1) J,UJ |

figure 5.12. Ring-source



chapter 5. final steady state and far-field functions 63

The potential for a ring-source will be obtained by superposition of two solutions. The first
one is a solution presented by Glover(1974) and the second one is a well of degree zero (4.16).

Glover(1974) presented the solution for a transient well of degree zero in the center of a
circular island (see figure 5.13). Initially the head is constant. At time zero the well starts
pumping. The piezometric head stays at the initial level on a circle with radius R around the well

P =0 5.14
g |r:L ( )

where the subscript g stands for Glover’s solution and 7 is the radial coordinate measured from
the center of the island.

A Q

ENZS

L )l rcpld e i f pf 0 = s v

figure 5.13. Solution of Glover(1974)

|

Glover obtained his solution to the boundary value problem as a Fourier series on the disk
r < L, so that it cannot be used for > L. The solution that he presented is

Q. r f: 2Jo(B,r)eFrot

o= or ML T 2 G DR D)

r<L (5.15)

where the factors 3,, correspond to the zeros of the Bessel function of the first kind of order zero
Jo(B.L) =10 (5.16)
The limit for large times of this potential also is given by Glover(1974)

m o= 2wl y<r (5.17)

t—o00 g 2 L

The difference between Glover’s solution (5.15) and the well of degree zero (4.16) is the
condition for Glover’s solution that the potential does not change at a distance L away from the
well (5.14), while the potential for the well of degree zero remains constant at infinity (4.2).

The solution of Glover consists of a transient well of degree zero at the origin and a discharge
at a circle of radius L around the well, that maintains the potential on the circle at a constant level.
If the potential for a well of degree zero is subtracted from the potential for Glover’s solution, then
the potential due to the discharge at the circle remains. This is the potential for a ring-source
®, so that the potential <7IB is equal to the sum of the potentials (5.15) and (4.16) with opposite

-
discharges

b= —
r g w0
Er = 2J0(ﬁnr)e’ﬁi°‘t —E r2
_ =g, sJol\onrje 5 =R Ty .
oo+ G DEEGD) 1w inlay) r=t (5.18)

n=1
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where the discharge of Glover’s solution is equal to = and the discharge of the well of degree zero
is equal to —=. The potential (5.18) can be written as

= 4J0 ﬂn not 7"2
&= —[n E:——————— Ey(— <L 1
r AT + 2J2 ﬁn ) + 1(4at)} = (5 9)

In order to show that this function can be used for the convergence to a final steady state
with a new value of @, the behavior for large values of time is considered. The limit for { — oo
of the potential of the ring-source (5.19) is found using (5.17) and (4.27)

lim ® = lim (® — ®)

t—oo r t—oo g w0
.0 =, r? dad
—EhEt W gy )
= dad
4—(] ﬁ — fy) r<L (5.20)
Combination of the result (5.19) with the sum (5.2) of potentials at large times for transient
elements gives
Zm toéal
- Steady =17 4ot = 4ot
hm z:: Z T[—ln(ﬁ)—b—’ﬂ%—ﬂ(lnﬁ—y)

steady

J
The limit exists only if
E=)Q (5.22)
J

Thus the ring-source indeed changes the sum @ of the total discharges Q. The parameter =
is the amount of the change. In this case the limit (5.21) is equal to the sum of the normalized
steady elements that correspond to the transient elements, so that the constant C is not influenced
(compare (3.32) and (5.4)) and the function @ is a function that changes only the discharge at

r

infinity.
example.
In figure 5.6 a steady state has been shown with C = C for the case of just a well and an
(2]

infiltration canal (without the river-sections). The far-field function for changing Q (5.19) is
added to the potential with the corresponding amount of change in Q (see figure 5.14).

Qq.c’:-é%
AN,
...................... L 33488

figure 5.14. Well and canal with far-field function for Q
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Now the distributed discharge of the canal converges to a constant value, as can be seen
in figure 5.15 (compare figure 5.2 where no far-field function was used).

XN

t 10 100 1000 '2; .
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figure 5.15. Discharge of canal as function of time with far-field function for Q

The potential of the ring-source (5.19) is not valid for values of the radial coordinate r that
are larger than L. This does not complicate practical modeling, but is rather unelegant in a model
that only contains functions that are defined for radii up to infinity.

A real drawback of the function is the formulation as a series in which each term contains
trancendental functions, which make the computation time consuming.

The logical choice for an element for changing the discharge @ at infinity would have been
a transient element that injects water at infinity, rather than at some arbitrary distance L. The
potential for a transient well at infinity could not be found however.
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6. a model with transient elements

In this chapter the implementation of the transient elements in a model for transient ground-
water flow is covered. The elements have been derived in chapter 4 and 5. The aquifer parameters,
the initial steady state and the transient aquifer features are input to the model. Some features
give rise to elements with strengths which are a priori unknown and can be determined from a
condition, that is specific for the feature. The potential and the components of the discharge
vector are known as functions of location and time, once the unknown strengths have been deter-
mined. Using these functions, output can be generated such as contour plots of the head, numeric
values of the head, of the discharge vector or of the extraction at a specified location and time,
or pathlines, following a water particle downstream or tracing its origin upstream.

The model contains transient wells, line-sinks and area-sinks of degree zero and two far-field
functions. The line-sinks and area-sinks have an order one. Besides these elements with the
strength specified, line-segments can be entered with a specified head. These line-segments are
represented by a number of line-sinks each with a different starting time. The strengths of these
line-sinks are a priori unknown, and have to be determined from the condition that the value
of the head at the center of the line-segment is equal to the specified value. Thus a system of
equations is set up that is solved to obtain the values of the unknown strengths.

Before the equations are discussed, a notation is introduced, which makes it possible to use
the potentials for the elements in equations without having to give the entire expression for the
potential, while the important parameters are clearly identified in the equation.

notation

well.
Let well number j be located at (131(:13', Y ;), have a discharge Q); and start at time ut;lj' Define
ul 0

a real function u/)l\oj for well j using the potential (4.16) for a well of degree zero

u‘/}oj(xvyvt)zo téut)lj
(@ — ;) + (y — ;)
Ay, 1) = — oy (—2 Wy s, (6.1)
aio? Y T T 4a(t—£lj) ut’ '
Using this function, the potential for well j can be written as
%ju{lxoj (.’L‘, Y, t) (62)
and the potential for all m wells with a given strength as
w
;[?jé}oj (.’L‘, Y, t)] (63)

line-sink.
Let the strength specified line-sink number j have end-points (s}:j,gbj) and (%jjj), strength
a; and starting time Ltsj' A function lé})j is defined for line-sink j using the potential (4.56) for a
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line-sink of order one and degree zero
é})j(w,y,t) =0 L= Ltsj
S g ¢ g ¢
A —_ vV & 7 Lorf — erf
lsoj(x,y,t) NG € {er 0(2 a(t—ztsj ) —er 0(2 Oé(t—ztsj))}
2 1
1 20 (E=8%+n? E—-&*+7
+E{(€_£)E1( 4Oé(t—1tsj) )_(5_5) 1( 4Oé(t—1tsj) )}
- 2 1
1 e ferfe(u—2) — erfe(u®—=2)} du t> 15 (6.4)

12
where &, £, £ and 7 are given below. The local coordinates ¢ and 7) are parallel and normal to the
element respectively (see figure 3.4). The relation to the global coordinates z and y is given by

(4.64), (4.65) and (4.66)

1 2 1 2
Ti+Z; Yj +Y;
5:(3{:—LS QLS)COSH—O—(y—LS 2k)sin9 (6.5)
12
'%j +%J Y + Y
77:—(31:—1S b )sin@—b—(y—LS 2LS)COSH (6.6)
where 6 is equal to the orientation of the line-sink
2 1
Yi =Yy
Hzarctan(;S lls ) —rm<f§<mw (6.7)

s s

where the range of the arctangent is from —m to 7. The £; coordinates of the end-points are equal

to
1 1 /2 1 2 1
e p— )2 L 1:)2
e= =3y~ + G- ) (6.8
21 /2 1 2 1
T e L 2k (6.9
2 1 2 1., .
where (izs:J — i(;‘j)2 + (y; — y;)? is the length of the element.
5k
With the function (6.4) the potential for line-sink j can be written as
gjé})j (.’L‘, Y, t) (610)
The potential for all m line-sinks with given strength is equal to
(6.11)

[‘gjé})j(m,y,t)]

M-

j=1
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area-sink.
Let the quadrilateral area-sink number j have strength & starting time ¢ ; and corner-points
as
2 2. .3 3 . . . . .
(31(:, gb), (Z,y), (z,y) and (S(L:, é) A function Aoj is defined using the potential for an area-sink of
as as as as as as as as as'!

order one and degree zero which is given by (4.98) and (4.97)

AO(J:,y,t) =0 t<t;
2
P tsid

A, y.t) = , T s (6.12)
—at + Aj(z,y,t) inside

2
where A; is equal to (compare (4.97))

(€@ — &)+

(6 — )2 4172
da(t — 1) )}

2 " 2 1
A@,y,t) = QZ[SZ_IQ (& — 51)E1(W) — (& — SEA(
=1 as
2 1
+ —{% + (t—atsj)}/ 2 efuz{erfc(u& — &) —erfc(u& — &)}du
2 1
& —& §&—4&
Y & fo —t Sty epfo(—t—SE
IV NI fer C(2 a(t — tj)) “ C(2 at — tj))}] (6.13)

as as

12 5 1 5 1
where &;, &, & and 17 are given below with Tj=Tj and y; = y;
as as

1 1 /4 l I+1 l
f=—g (b2 (- 1123 (6,14
2 1 /41 L o\o | 41 L\
5125 (a:I.;sj_a:I.;sj) +(yj—yj) 1=1,2,3,4 (6.15)
I i1
2+ Y+ Yy
&= (x— %) cosf; + (y — %) sin 6, 1=1,2,3,4 (6.16)
I i+l
{llTj—Fl}Ij Yj+ Y
m:—(x—%)sin@l—o—(y—%)wsﬁl 1=1,2,3,4 (6.17)

where 6; is equal to the orientation of side ! of the area-sink

+1 1
Yi—Y;

0, = arctan (-=——=- 1=1,2,3,4 —w7<6 < 6.18
1 1
Tj—Tj

The range for the arctangent is from — to .
The potential for area-sink j can be written as

gja.‘/S\Oj(xayat) (619)
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The potential for all m area-sinks is equal to
Z[Sja/s\()j ({L‘, Y, t)] (620)

Jj=1

line-segments with specified head.
Line-segments with a specified head are represented in the model by line-sinks with an a
priori unknown strength. A number of line-sinks with different starting times is placed on one

line-segment. The subcript s is used to indicate line-segments with a specified head.
. . ) . 2 2
Let the head specified line-segment number j have end-points (S%:Lj, gbj) and (Sﬂzj, y;). Define
h h

k
a function ©; for a linesink on the boundary segment that has a starting time ¢ (compare (6.4))

k k
l(s%j(x,y,t,t) =0 t<t
k 2 2 1
k —1) % — _
0, (z,y,t,1) = — Me ta(t—5) {erfc(L) _ erfc(L)}
50 2/m k k
2V a(t—1t) 2V a(t—t)
2 1
1 20 €=+ Lo (=9 +7
B G LN B BT SN el B
4ot — 1) da(t — 1)
- 2 1
+ 1 e {erfc(u — 5) — erfe(u )} du t> I; (6.21)
2/ 1
A ()
12
where &, &, £ and 7) are given below (compare (6.5) through (6.9))
1 1 /2 1 2 1
§= —5\/(£j — )+ (U - vy)? (6.22)
2 1 /2 1 2 1
€= 5/ 07+ (s - o0 (629
where \/(3(:J — 53123)2 + (33J — gbj)z is the length of the element.
s
1 2
'%j -+ '%j Yi + Yi
E=(z— il )cos@—b—(y—Sh 25h )sin 6 (6.24)
1 2
'%j -+ '%j Yi + Yi
n=—(z—2 25h)sin9+(y—5h 25h)c0s9 (6.25)
where 6 is equal to the orientation of the line-segment
2 1
Yi —Yj
0 = arctan(3 Sf ) —m<f <7 (6.26)
Ty — Ty
S
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where the range for the arctangent is from — to m.

With (6.21) the potential for one line-sink with a priori unknown strength g; can be written

" 5.0 e 6.27
(gjlsoj(xvyvtv 13 ) ( . )

k-1
The kth line-sink (with strength O'J) at line-segment j is given the starting time ¢ for reasons
that will become clear when the equatlons are set up later in this chapter. The potential for all

1 line-sinks at line-segment j is equal to
n

5.0,z yt, t 6.28
;[gjlsoj(xaya s )] ( . )
The potential for all n line-sinks at all m line-segments with specified head is given by

m

sh k—1

n
Z J OJ .’L‘ Yt t )] (629)
j=1k=1
transient potential in model.
The elements included in the model are wells, line-sinks and area-sinks. It further contains
line-segments with a specified head, far-field functions and the initial steady state. The potential
can be written as

wl ls as
=2 1Q; Ay 0] + > lgi Ay, 1) +Z@ i@y, 0)]
j=1 j=1
. AT ST i 6.30
+§;;ggowy,, J+2+2+ @ (6.30)
J

where (6.3), (6.11), (6.20) and (6.29) have been included. The far-field functions for changing the
constant and the discharge at infinity are indicated by ® (5.11) and ® (5.19) respectively. The
P T

steady
initial steady state is represented by &
(2]

determining unknown strengths

There are several steps in obtaining a complete solution for a transient groundwater flow
problem:
¢ determining the initial steady state
e choosing the parameters of the functions to adjust the far-field from the initial steady state to
the final steady state
e solving for the transient part of the potential

The initial steady state is modeled with the analytic element method for steady flow (see

chapter 3 and Strack, 1988). The flow for the steady state is simulated before the transient
steady

modeling is started, so that the potential <IO> for the initial steady state is known as a function
of position.

The functions to adjust the far-field are only useful in the case that the model is applied to
the transition from the initial steady state to a new steady state. In that case it is not necessary
to use them, unless the modeled area is not extended far enough beyond the area of interest (see
chapter 5). If the final steady state is modeled, using the analytic element method for steady flow
again, it can be decided whether the far-field functions need to be included. If so, the parameters
can be determined from this final steady state, as is described in chapter 5.
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equations.
The potential for the model is given by (6.30). The potential contains n line-sinks at each of
the m line-segments. The strengths of these line-sinks are not known beforehand. This amounts to

7 times ma priori unknown strengths. An equal number of equations is needed to determine these

strengths. The equations are obtained from the specified heads. There are m line-segments at

S
which the heads are specified. A number of n different times £ is selected, at which the conditions
S
for the specified heads will be set. The times t are ordered such that

n—1

1 2 — n
t<t<..< t <t (6.31)

0
moreover the first time is greater than the time ¢ at which the transient modeling starts

n—1

0 1 2 — n
t<t<t<..< t <t (6.32)

The times ; with 0 < s < n —1 are chosen to coincide with the starting times of the line-sinks at
the line-segments (see (6.27)).
Let the value of the head specified at line-segment [ be equal to ¢;. This value of the head can

sh
be translated into the value ;Izl for the potential, by means of either (2.10) or (2.14), depending
on the type of flow. The condition is set that the potential has the value 31 at the center (il’ gjl)
h

of line-segment number I. The m known potentials at n different times give n times m equations

that are needed to determine the potential for the model at these n times

@(gzl,yl,t) = 31 1=1,2, S = 1,2,..n (6.33)

s

Using (6.30), the conditions can be written as

m m m
wl is as
c c ¢ S
D Q5 A (0 i O]+ D las M@ D) + z;[Sjaé‘oj(i“gj’m
J= J= J=
m
oM . e o s k-1
+ZZ[%ng(xlaylata t )}
j=1k=1
c s steady . .
+(I)+(I)({El,yl,t)+ () xlayl)
P "" sh sh
:31 l:1,2,....Z} s=1,2,...n (6.34)
or
m
oM
k ¢ ¢ S k-1
Z[gjl(;%j(xlaylata t )
j=1k=1

Jj=1 j=1 j=1
¢ ¢ 8 ¢ s steady ¢
_(I)(xlaylat)_q)(gllaylat)_ ® (xlayl) l:1727 ZLL 821727 n
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where the right hand side of the equation is known. The n times m equations (6.35) do not have

to be solved simultaneously. From (6.21) it can be seen that

s k—1 k—1

O;(w,y,, 1) =0 t<'t (6.36)

and with (6.32)
s k—1
L(S%j(x,y,t, t)y=0 s<k (6.37)

Thus the potential for line-sinks number k at a line-segment is equal to zero at the times tif
k is greater than s, no matter what the value of the strength of the line-sink is. Therefore the
equations (6.35) can be written as follows for s =1

* 1 c 10
Zgﬂ OJ xlaylatat)}
j=1
Z? m m
=o; — E[qu{l\oj(ﬁl’ yi,t)] — ' l[gjé})j(xz,gll,t)] - 2[83015\03(@, v1,1)]
- j= =
e 1 steady c ¢
_q)(xlayla ) (I)(.’L‘l,yl,t)— [ xlayl) = 1’2’ m (638)
sh 4 E: py

This represents m equations with mm unknowns. This system of equations can be written in matrix
h h

form
ALY AL2) . AL - AQm)
X(1) B(1)
A1) A@22) ... AZg) ... A(2m) X B(2)
A(i,1) A(i,z) A(i,j) A(l',m) xX@ | = | BO (6.39)
sh . .
Do Do X(m) B(m)
A(m,1) A(m,2) ... A(m,j) ... A(m,m) sh s
sh sh sh sh sh
where Lo
A(lj) = gj(ﬁl’il’t’t) l= 1,2,....757}} j= 1,2,....757}} (6.40)
N1 .
X)) = g J= 1,2, e (6.41)
u oo " 1
B(l) =®: — Z[?g’u/}oj(gbz,gz,tﬂ = loihi(z l‘z,yz, Z i Az (1, yl, t)]
Jj=1 j=1 j=1
(51, 1,1) — B D" ey =12 6.42
- p(iﬁi“ﬁ,i“ ) (l‘l,yl, )— b (ilagll) =1 7----7;} ( . )

The m strengths ((I{j can be determined from the matrix equation (6.39) using Gaussian
elimination (see Wylie and Barrett (1982) for instance).

2 2
With this solution the potential now is known for times ¢ < ¢. The time ¢ is the time at
which the next elements start with strengths that are yet undetermined. The potential is known

S
as a funcion of position and time up to t after s solutions.
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The equations (6.35) give for s =2

%3

Z lsOJ xlaylatat)}

j=1
4 ) 4 -
=@~ [Q; A (1, 41,1)] — g3 Aoz i t)] = >l asog(wz,yz, t)]
j=1 j=1 j=1
2 2 steady ¢
_(I)(xlayla ) — ®(xy, y1,1) — : l‘l,glz)
— Z O'J .’I}l, yl,t,t)] 1=1,2, e (6.43)

.. . . . 2 .
This is again a system of m equations. In this system only the m strengths g; are unknown, since

the strengths ((I{j are known from (6.38). Next the strengths %j can be solved from the equations

that result from (6.35) for s = 3

m
sh
3 c ¢ 32
Z[gjgj(glz,yz,t,t)}
j=1
m m m
wl . . 3 ls . . 3 as
—gz—Z[qu{l\oj(xz,yz,t)]— [fgjé})j(xz,glz,t)]—Z[S asog(wz,yz, t)]
j=1 j=1 j=1
3 steady ¢
— (2, y1,t) — (w4, Y1, 1) — Ty, Y1)
T (2] sh
m
sh 2 i e 3 k-1
—zg[cgjgj(xl,yl,t t) = 1,2,....2} (6.44)
J: =

So that in general the strengths %j can be solved from the following system of equations, once the

k . . .
strengths a; have been determined up to and including k =s— 1

m
i s s s—1
Z[%jg (xlaylat t )}
j=1
m m m
wl s ls c c s as
=<I>z—Z[quZ}0g(wz,yz,t)}—z;[gjé})j(wuyz,t)} - l[Sﬂaé%ﬂ(ﬁ“y“ )]
i= i= i=
s s steady
—®(z, Y, t) — B(T0, i, t) — @ (24,90)
P sh s r o h
m
s s—1
k ¢ ¢ S k-1
—z;k 1[%jgj(£l,gll,t, t) l:1,2,....757hl s=1,2,..n (6.45)
=1 ke

And once these strengths have been obtained, the potential is known as a function of position

0 s
and time for ¢t <t < t.
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The elements of the matrices A, X and B in equation (6.39) can be written in general
form applicable to any time t. The following three equations replace (6.40), (6.41) and (6.42)
1
respectively, which apply to time t only.

s s—1

Al g) = gj(iz,zz,t, t) l= 1,2,....757}} ji= 1,2,....2} (6.46)
X(j):gj -7_1727 ZLL 821727 ZLL (647)
B(l) = - ;[QJ A (& 1, 1)] = ;[gglg})j(wz,glz,t)] - ;[Sjﬁoj(il’gl’t)]
¢ ¢ S s steady . .
—O(zy, y;,t) — (2, 95.t) — @ (74, 91)
r r s o S
ZZ s—1
- O (it 1) 1=1,2.m s=1,2..n (6.48)
. [(gjzsoj shl’;l,/f’ ’ A A :
j=1k=1
h—1

Now it can be seen why the kth line-sink at a line-segment was given the starting time t
in equation (6.27) and why the solving times were chosen to coincide with the starting times.
These choices made it possible to solve i times a system of m equations in stead of one time the

original system (6.35) of n times m equations, which means an large reduction in memory and

computation time in a computer program.

Moreover, now that the solution is obtained gradually stepping forward in time, it is possible
to adjust the size of the next time-step, based on the last results. One can also monitor the
potential solution and decide earlier if some of the elements in the model need to be changed.

Above it has been assumed that all line-segments are active during the entire period that
is modeled. This is not necessary. Line-segments can be added or removed without changing
the above procedure significantly. The difference is that m is not the same for every system of

h
equations (6.45) so that the matrices (6.46), (6.47) and (6.48) vary in size.
However it is advantageous to have all line-segments active during the entire proces if a

constant step-size is used. The elements (6.46) of the matrix A are the same for every solution, if
s+1 s
the time-step t —t is constant since

O (gt £ ) = (st — 1,0 6.49
Lst(x’y’ ) )_Lsoj(x’y’ - ) ) ( )

as can be seen from (6.21).

So with a constant time step another large reduction in calculation time can be achieved.
The Gaussian form of the matrix A is obtained when the first solution is determined. The column
matrix B is determined in the next time-steps and the solutions can be obtained using the same
Gaussian form of the matrix.

It has also been assumed that the heads specified at the line-segments are constant in time.

. . . o . k .k,
Varying the specified head is easily incorporated. The head is equal to ¢; at time ¢, in stead of
h

k
equal to ¢; at all times of solving. The corresponding potential gj is obtained with (2.11) or
h
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(2.14) depending on the type of flow. This potential replaces the potential gj in the system of

equations (6.45), which corresponds to a change of B in the matrix equation (6.38). In stead of
(6.48) it is equal to

65 A (&1, 51, 0)]
T as0? Va3,

ZLL s—1
k c c s k-1
- 2;[‘3jgj(£ugz,t, t )] l= 1,2,....7;} s=1,2,..n (6.50)
j= =

example.

The process of solving will be illustrated below for a simple example (see figure 6.1),
which has been used in chapter 5 also. The potential is constant in the initial steady state.
At time zero a well starts to pump a constant amount. At a line-segment the head is specified
to remain at the initial level.

The far-field functions will not be considered here. It has been described in chapter 5
how these are used. The description was illustrated with examples involving the same simple
case of flow.

£,
Y
1
"y
RS

(-4,-4) €-2)

figure 6.1. Problem for example of solving

The potential for the initial steady state is equal to

steady

= (6.51)

o co

where the subscript o indicates the initial steady state and ¢ the constant. The potential at
the center (., y.) of the line-segment remains equal to this value

¢ =@ (6.52)

co

The discharge of the well is ()., and starts at { = (. The first line-sink at the line-segment
starts at this time also. The potential for this case of flow is given by (compare (6.30))

n k k-1
@(.’L‘,y,t) - Qwu{lxol(xayat) +;glgl(xayata t )+ZI()) (653)
The potential up to the first time of solving is
1
(e, 1) = QuA1(2,9,0) +0101(2,9,1,0)+ & 0<t<t (6.54)
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where ((1{1 has to be determined from equation (6.33)

1
D(ze, Yo, t,0) = 31 (6.55)

Using (6.52) (compare (6.38)), this can be written as,

1 1 1
fg1g1($c,yc,t,0) - 31 - Qwu{lxol(xcaycat) - ZI; (656)
so that
1
q)l - Qw Al(xcaycat) - @
g = b g (6.57)

1
gl(xcaycatao)

The strength %1 can be determined from the equation (6.43)

9 21 2 1 2
glgl(xcaycatat) = g)Ll - Qwuj}ol(xcaycat) b gll(;%l(x07y07t70) (658)

co

which gives
2 1 2
;I)Ll _Qwu{lxol(xcaycat) _g_glgl(xcaycatao) (6 59)
5 .
L(S%l(xca Ye, ta 0)

g1 =

3 4
so that the potential (6.53) is known now up to time t. To extend it up to t equation (6.44)
is used

3 32
glgl(xca Yes t, t)
co

3 1 3 2 31
— 31 - Qwu{l\Ol(xca Ye, t) - (I) - glgl(xca Ye, ta 0) - %'lg())l (xcayca ta t) (660)

from which the strength of the third line-sink is obtained

3 9k 3 k-1
_ 31 - Qwu/)lxol(xcaycat) - Cq; - Zk:l glgl(xmyca t, t ) 6.61
a1 = 3 2 (6.61)
0
L(S'%l(xca (e t)
and the process can be continued using (6.45) to give the next strengths up to n
s s—1 k s k—1
B 31 - Qwuj}ol(xcaycat) - ;I; - Zk:l gll(;%l(xcaycata t ) 6.62
%1 - s s—1 ( ) )

L(S%l(xcaycata t )

The resulting discharge at the line-segment is shown in figure 6.2. Contour plots of the
potential at different times are shown in figure 6.3.
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figure 6.3. Fquipotentials at different times

time-steps and errors

The above results were given for one arbitrary size of the time-step. The influence of the
time-step on the solution is considered in the following.

First the same case (see figure 6.1) will be examined. Solutions obtained with different
step-sizes that are kept constant in the process of solving are compared. The effect of changing
the size of the time-step is also shown.

Next the case will be considered that the well is not pumping and the head at the
line-segment is suddenly raised. The discharge of the line-segment as a function of time is
compared to that of the previous case. The cause of the transient effects at the line-segment
has a quite different character. The well is located at some distance from the line-segment
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and its effect increases in time, while the sudden raising of the head occurs right at the
line-segment and its effect decreases in time.

well and line-segment.

constant size of time step. The case of a well and a line-segment (see figure 6.1) was
solved with a constant step size in the example above. The total distributed discharge and
contour plots were given in figures 6.2 and 6.3 respectively. The potential at the center of
the line-segment is plotted versus time in figure 6.4. The value of the specified potential
coincides with the horizontal axis. The actual potential assumes this value only at the times
of solving. During each time step the curve for the error has approximately the same shape.
It increases sharply at the beginning of the interval, reaches a peak at about a fifth of the
interval, and then decreases more gradually toward the end of the interval. The magnitude
decreases with time.

1
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figure 6.4. Potential at center of line-segment

The problem was solved again using three different values for the time step, equal to
.02, .2 and 2 times the step used above. In figure 6.5 the total distributed discharge at the
line-segment is plotted versus time for the three different time steps. The three stair-case
curves follow the same path. This indicates that the errors do not accumulate in time. In
figure 6.6 the potentials at the center of the line-segment are plotted for solutions obtained
with stepsizes with factors .5, 1 and 2 in stead of .02, .2 and 2, so that the errors are visible
in the graph.
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figure 6.5. Distributed discharges at the line-segment for three different constant time steps
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figure 6.6. Potentials at the center of the line-segment for three different constant time steps

increasing size of time step. The case of a well and a line-segment (see figure 6.1) is
solved next with a time step that increases in time. The steps will be increased in such a
way that the maximum error in a time step at the center of the line-segment is constant. In
figure 6.7 the potentials at the center of the line-segment is given as a function of time for two
different initial step sizes (compare figure 6.6). In figure 6.8 the corresponding distributed
discharges of the line-segment are given (compare figure 6.5).
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figure 6.8. Distributed discharges at the line-segment for different increasing time steps

varying size of the time step. In figure 6.9 the potentials at the center are given for
different solutions with varying time-steps. The final time step is the same for the three
solutions. The errors in this interval do not vary much between the three solutions. The
difference of a factor four in the stepsizes translates into a factor of four thirds in the maximum
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error. The relatively small of influence of previous steps can also be seen from the the
discharges at the line-segment, which are plotted versus the time in figure 6.10.
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figure 6.9. Potentials at the center of the line-segment for varying time steps
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figure 6.10. Distributed discharges at the line-segment for three time steps

line-segment with suddenly increased head.

The case of a line-segment with a head that suddenly increases is discussed next. Ini-
tially the head is constant in space. At time zero the head at the line-segment is raised
instantaneously. The amount of change is chosen such that the effect is comparable to the
effect of the well on the line-segment. The new potential at the line-segment is indicated by
®4. The graphs for the potentials and the distributed discharges are given at the same scale
as for the above case and the similar time-steps are used.

constant size of time step. In figure 6.11 the potential at the center of the line-segment is
plotted versus the time. The initial level of the potential coincides with the horizontal axis.
The specified potential at the line-segment is indicated by a horizontal line. The potential is
equal to the specified value at the times of solving. It is lower in between these times; lower
means in this case closer to the initial value. The corresponding distributed discharges at the
line-segment are given in figure 6.12.
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figure 6.12. Distributed discharge at center of line segment

The problem was solved with time steps that were .02, .2 and 2 times the size of the
time step that was used for figure 6.11 and figure 6.12. The distributed discharges are given
in figure 6.13. A different choice of time-steps was made for the plot of the potential at the
center of the line-segment (see figure 6.14). The steps are now .5, 1 and 2 times the step in
figure 6.11 so that the deviations from the specified value of the potential are visible in the

graph.
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figure 6.13. Distributed discharges at the line-segment for three different constant time steps
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figure 6.14. Potentials at the center of the line-segment for three different constant time steps

increasing size of time step. The case of a line-segment with a suddenly raised head at
the center is solved with an increasing step size. The steps are increased such way that the
maximum error during the third and following time steps is the same as the maximum error
in the second step, see figure 6.16. The corresponding distributed discharges are shown in

figure 6.17.
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figure 6.15. Potentials at the center of the line-segment for two different increasing time steps
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figure 6.16. Distributed discharges at the line-segment for two different increasing time steps

varying size of the time step. The case with a line-segment with suddenly increased head
is solved with the same varying time steps as used for the case with a well and a line-segment
shown in figure 6.9 and figure 6.10. The size of the final time step is equal for the three cases.
The results are given in figure 6.18 and figure 6.19. Again the errors in the final time step
are not very sensitive to the size of the previous time step.
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figure 6.19. Distributed discharges at the line-segment for varying time steps

discussion.

The cases of flow that were examined above are very simple. However, they contain
elementary sources of transient flow, and a general conclusion can be drawn.

The step size can be increased gradually after the driving force for the transient effect
has started to keep the errors at a constant level during the entire modeled period. The
errors at larger times are not sensitive to the step sizes used at smaller times in the solution.

reducing computational effort

Elements are added to the potential at each time step. In this way the number of
functions that have to be evaluated to get the value of the potential or the discharge at a
point increases steadily with time. Measures have to be taken to prevent the computational
times from becoming excessive.

One way to reduce the computational effort is to replace a number of line-sinks at one
line-segment. Above it was seen that the errors correlated to the size of the time step mainly
depend on the last time steps and hardly on the earlier ones. So for evaluating the potential
at a certain time, the solution before that time does not need the detail it was solved with,
but can be represented more coarsely. The influence of a group of elements at one location
can be approximated by just two elements. The two elements start at the starting times of
the first and last elements of the group. The total amount of water that is removed from
the aquifer is the same and the value of the sum of the strengths at the starting time of the
last element is the same (see figure 6.20). This is done by giving the first substitute well a
strength equal to the weighted average of the discharges in the period of substitution. The
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discharge of the second substitute well is equal to the sum of the discharges of the wells that
are being replaced minus the strength of the first substitute.
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figure 6.20. Reducing the number of elements

The error introduced by the replacement is negligible if the potential or discharge is being
calculated sufficiently later than the starting time of the last replaced element. In figure 6.21
the differences between the potentials for five and two wells are given as a function of time
for four points. The strengths of the five and two wells are shown in figure 6.20. In figure
6.22 contours are shown at a time, equal to three times the last starting time.
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figure 6.21. Error introduced by reducing number of elements
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A second method of reducing computational times is to replace transient elements of
order one at large times by their limits for the time becoming infinite (these are (4.27) for
a well, (4.61) for a line-sink, (4.103) for an area-sink and the corresponding steady elements
for a line-doublet.

In the following a potential is considered, that consists of the potentials (4.16) of m wells
of degree zero. The wells all have the same location (2.,%y). The discharge Q; of well j
starts at time 75, so that the potential is equal to

:Ll Qi .2 2
:;[—E—WEI(( Zo)é(tt(fj) gl (6.63)

If the current time ¢ is so much larger then every starting time ¢; that the limit (4.27) can
be used then

m Qj
@Y 2 {ln((w — 2.,)? + (v~ )?) ~ In(da(t —1;)) =7}
m Qj " .
=S (@ - 20)? + (- o)) — (et — )= QL >
= i=1° (6.64)

which can be written as

Z;'n:1 Q; Qj
® o ———{In((z — 2)” + (¥~ 9w)?) ~ () +9} ~I(I [t = t)°])  t>>1
(6.65)

1

Sf=1]}

The evaluation of this expression requires much less computational effort than (6.63).

using elements of degree one or higher

In the above discussion line-sinks of degree zero were used. Therefor the discharge of the
boundary segment is piecewise constant with discontinuities at the times of solving (see figure
6.2). Line-sinks of degree one ((4.68)) could have been used in stead. Their strength would have
been chosen equal to zero at their starting time (see figure 6.23).
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figure 6.23. Strength of line-sinks of degree one for solving

The number of equations in each time step would have been the same as with using line-sinks
of degree one. The computational effort would not have been much more (compare (4.56) and
(4.68)) per time step, while a larger size of the time steps could have been chosen. Moreover, the
resulting distributed discharge at the boundary segment would have been continuous (see figure

6.24).
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figure 6.24. Summed discharge using line-sinks of degree one

Another possibility is to use a line-sink of a high degree n. In that case the problem could
have been solved at once, as was mentioned in application of line-sinks of order one and
degree n in chapter 4. Then the system of equations would have been a lot larger. In stead of
the equation for the unknown strength of the one new line-sink in every time step, there would
have been a system of nn equations of conditions at n different times at which the condition at the
center of the boundary segment would have been met exactly. In modeling realistic problems the
number of equations would soon be prohibitively large, if this method of solving were used.
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7. comparisons with exact solutions

In this chapter five cases of flow are modeled with analytic elements. The modeling was done
by means of a computer program. The results are compared with the exact solutions that were
taken from Carslaw and Jaeger (1986).

The computer program is based on the model described in chapter 6. It contains wells and
line-sinks with given strengths and line-segments with specified heads. The wells and line-sinks
are of degree one. The program was written in ANSI FORTRAN-77 and runs on micro-computers
under DOS. The size is 144 kilobytes, with a capacity of 33 equations and 5000 line-sinks, 50 wells
and 100 boundary segments. The input can either be read from a file or entered inter-actively. The
output can be graphical and numerical. Contour plots and graphs of the head can be generated
on the screen. The strengths of the elements and values of the head are example of the options
of written output.

The first four problems are cases of one-dimensional flow in a semi infinite aquifer. The flow
is parallel to the z axis. The potential is defined for z > 0. FEither the discharge or the potential
is prescribed at the boundary x = 0. The fifth problem involves two-dimensional flow. It is the
problem of a well near a long straight canal. The y axis chosen along the edge of the canal and
the well is located on the positive  axis. Thus flow in the half plane > 0 is modeled for all five
problems. The aquifer diffusivity is equal to a and the potential is equal to the constant ®( at
time ¢ = 0, the time that the transient effects start

®|,_, = Po (7.1)
The condition at infinity requires that the potential does not change in the limit for z — oo

lim & = & (7.2)
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figure 7.1. Flow due to discharge of degree zero at x =0

In the first of the one-dimensional problems the discharge is prescribed at the boundary

x = 0. It starts at time zero and is equal to the constant value @), from that moment on
0

0 t<0
Qul,o = { Q. t>0 (7.3)
0
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The exact solution to this problem is given by (2.9.7) in Carslaw and Jaeger (1986). The potential
can be written as
2vat _ L2
P =Py + Qm[—ae*m — zerfe(
0

N (7.4)

m)]

The discharge is equal to
x

o) (7.5)

The problem has been modeled with a very long line-sink of order one and degree zero (see
figure 7.2). The flow is two-dimensional around a line-sink, but the equipotentials are practically
straight close to its center. This is illustrated in figure 7.2. The line-sink has a length equal to
one hundred times the length of the sides of the square in which the equipotentials are shown.
Calculated potentials both at the mid-point of the line-sink and at the center of the square are
compared with the potentials (7.4) for the exact solution in figure 7.3. The slight deviation of the
curves for z = 0 is caused by the fact that the potential is not calculated exactly at the line-sink,
but at a slight off-set, at « = .02l.
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figure 7.2. Model of flow due to discharge of degree zero at x =0
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figure 7.3. Calculated potential compared with exact solution to flow due to discharge of degree zero at x =0

The second problem is very similar to the first problem. The only difference is that the
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boundary condition (7.3) is replaced by

0 t<0
Qm|m:0 =) Qut t>0 (7.6)
1
The exact solution is (Carslaw and Jaeger, 1986, equation 2.9.7)

4/ at 2 .z 3

o =Dy + ?mt[ﬁ(l + e T — o+ @)erfc(%\/a)] (7.7)
2 T T _ =2

The problem is modeled with a long line-sink of degree one. The potentials, obtained with a line-
sink of degree one, at the centers both of the line-sink and the square in figure 7.2 are compared
with the exact solution (7.7) in figure 7.4. The difference between the curves for x = 0 is again
due to the fact that the potential in the program is actually calculated at x = .02l.
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figure 7.4. Calculated potential and potential for exact solution to flow due to a discharge of degree one at x =0

The third and fourth problem have boundary conditions in terms of the potential in stead of
the discharge. The boundary is represented by line-segments at which the potential is specified.
For the third problem the potential at the boundary is raised instantaneously at time ¢ =0

to the value ®;
Py, t<0
P = - 7.9
oo { ® >0 (7.9)

The exact solution to this problem (7.9) is given by equation (2.5.2) in Carslaw and Jaeger (1986).

B =dy+ (B — <I>0)erfc(2i\/a) (7.10)

The discharge is equal to

22

€ 4at

Qz = (@1 — ®0) (7.11)

ot
The problem was modeled with five line-segments with the potential specified at their centers
(see figure 7.5). The problem has been solved stepping forward in time as has been described in
chapter 6. At each time step a line-sink of order one and degree zero is added at each line-segment.
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In the square in figure 7.5 the flow is practically one-dimensional. The potentials at (0,0)
and (1,0), the middle of the square, are compared with the exact solution (7.10). The time step
in figure 7.6 is ten times the step of figure 7.7. The discharges at © = 0 are compared with (7.11)
in figure 7.8. The curves will coincide in the graphs in figures 7.6, 7.7 and 7.8 if the time-steps in
the beginning are made smaller.
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figure 7.5. Model of flow due to sudden change in potential at x =0
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figure 7.6. Cualculated potential compared with exact solution to flow due to sudden change in potential at x =0
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figure 7.7. Cualculated potential compared with exact solution to flow due to sudden change in potential at x =0
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figure 7.8. Calculated discharge compared with exact solution to flow due to sudden change in potential at x =0
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In the fourth problem, the potential at the boundary rises lineary in time, starting at ¢t =0

(I)|:L‘:0 :{

The exact solution is given by (2.5.4) in Carslaw and Jaeger (1986). The potential is equal to

dy t <0

(7.12)
Py + Dot t>0

x? x x <2
D =Py + Pyt |(1 + — )erfe(—=) — —=¢ 1at 7.13
o+ @l [(t+ gperlel o7 — ot ™ (19
The corresponding discharge is
T T NG 22
2 = P | ——erfe(——=) + ——¢ ™ 2at 7.14
Q 2[ aeI‘ C(Q\E) \/ﬁe ] ( )

The problem has been modeled using the same five line-segments as in the previous problem (see
figure 7.5). The potentials that are specified at the line-segments are given new values for each
solution, to reflect the linealy increasing potential. The potential at the center of the square in
figure 7.5 is compared with the potential for the exact solution (7.13) in figure 7.9. The discharge
at £ = 0 is compared with (7.14) in figure 7.10. A large time-step was used so that the errors are
clearly visible. This does not cause the errors to become increasingly large in time.
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figure 7.9. Calculated potential and potential for exact solution to flow due to linear increase of the potential at x =0
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figure 7.10. Calculated discharge and discharge for exact solution to flow due to

linear increase of the potential at x =0
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The {ifth problem is the problem of a well near a long, straight canal (see figure 7.11). The
water level in the canal is constant, so that it is an equipotential for the neighboring groundwater

flow. The equipotential coincides with the y-axis. The well is of degree zero (4.16), is located at

(21,0), and starts pumping at time zero

Qo = { 0 t<0 (7 15)
"1 Qn t>0 '
$ —
@
| —Q
-~ (gl’o)
—_ AQUIFER
— DIFFUSIVITY 0oL

figure 7.11. Problem with a well near a canal

The exact solution is obtained by using the method of images. A second well with the opposite
discharge of (7.15) is put at a point which is the mirror image of the location of the first well (see
figure 7.12) with respect to the equipotential. The potential is given by

Qw (($—2l)2+y2)

P =9, — —E;
47 4ot
Qu ., (z+20)2 +y?
—EF,(— 7.16
- 47 1( 4ot ) ( )

where the potential for a well (4.16) has been used. The potential (7.16) is indeed equal to ®¢ at
the y-axis as can be seen from simple substitution of = 0. The discharge in z-direction is equal

to
_ Qo x — 21 (=204
Qe = 27T({I:—2l)2+y26 ’
Qo x4+ 21 ey (7.17)

o (x+ 202 1y

where (4.18) has been used.
y

-Qw "‘1 L F Qw
(-24,0) X (23,0)

figure 7.12. Ezact solution for problem with a well near a canal

The problem has been modeled similarly to the third and fourth problem (see figure 7.13).
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figure 7.13. Model for problem with a well near a canal

The potential at a point in between the well and the equipotential (see figure 7.11) is compared
with the exact solution (7.16) for two different sets of time steps. The time step in figure 7.14
is ten times as large as the time step in figure 7.15. In figure 7.16 the discharge in z-direction
at the point (0,0) obtained with the first set of time steps with the program is compared with
the exact solution (7.17). The same large step is used for the solution that is contoured in figure
7.17. Equipotentials from the computer program and the exact solution are plotted in one plot
in figure 7.17. The time of the contours is at the end of the first time step and at two fifths of the
time step, when the error at the centers of the line-segments are close to the maximum values.
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figure 7.14. Calculated potential and potential for exact solution of problem with a well near a canal

w0l*
) 5 0 3%
i §° | | | T | t
1) LI
T §o“Q TIME-STEP .2 ;ﬁ;
EXQcT —~—

CALCULATED vesee

$.-3Q

figure 7.15. Calculated potential and potential for exact solution of problem with a well near a canal
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figure 7.16. Cualculated discharge and discharge for exact solution of problem with a well near a canal
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8. application of computer program

In this chapter an application of the analytic element method for transient flow, as discussed
in the previous chapters, is given. A hypothetical case of groundwater flow will be modeled.

The computer program TS, that is used for the modeling was written for a project funded
by the Legislative Commission on Minnesota Resources. It is to be used in conjunction with a
separate program for steady flow, SLAEM.

The initial steady state is modeled with SLAEM. This program has the option to store a
solution on disk. The solution is read by the program TS. It automatically places a transient
line-segment with a specified head at the location of each steady line-sink with a specified head.
It is possible to change the values of the specified heads. This can be done immediately or after
one or more time-steps have been performed. More line-segments can be added as well as transient
wells, line-sinks and area-sinks with given strength of degree zero. The program also contains the
far-field functions, that were discussed in chapter 5. The method of solving in time-steps was
outlined in chapter 6. The program can generate contour plots of the head, plots of path-lines
and a variety of numerical output.

Both programs SLAEM and TS are written in ANSI FORTRAN-77 and run on a MC68020
co-processor board installed in a micro-computer. The program TS with a capacity for 100
equations, 50 area-sinks, 50 wells and 1000 line-sinks takes up about 30 percent of the 1 Mbyte
of memory that is available on the board.

The hypothetical problem (see figure 8.1) is centered around a number of agricultural fields.
The fields are located in an area between two forks of a river. The level of the river is taken to be
constant during the entire year. The yearly cycle of the precipitation is simplified to a half year
of zero infiltration and a half year of constant infiltration. The fields are irrigated during a part
of the dry season. The water for the irrigation is pumped up from wells that are located nearby.
The total infiltration of the irrigation is taken to be equal to the extraction of the wells from the
aquifer. All quantities will be expressed in terms of meters [m| and days [day].

o 1000 m 2000 m
.« A -l

figure 8.1. Hypothetical problem

The modeling will be carried out in steps. After the data have been specified, an average
steady state will be determined. Next transient modeling will be done which includes the seasonal
variation of the precipitation. Finally the irrigation and extraction will be added.
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figure 8.2. Geometry of problem for modeling

The geometry as it is approximated for the modeling is shown in figure 8.2. The river is
represented by 15 straight line-segments. The aquifer is unconfined with a hydraulic conductivity
of k = 15 m/day. The storativity S is equal to the porosity v = .3. The average saturated
thickness is set equal to h = 20m so that the aquifer diffusivity (2.19) has a value of o = 1000
m?/day. The river is in direct contact with the aquifer, so that the head at the river is equal to
the level of the water in the river, which is 10 m. The extraction that represents the precipitation
is equal to F =0 during one hall year and equal to £ = —.1 m/day the next half year. The fields
are irrigated for a period of hundred days in each dry season with an extraction rate of £ = —.1
m/day.

The dimensions of the problem and the values of most parameters are fairly realistic, ex-
cept for the rain and the irrigation. The values of both the rain and the irrigation have been
exaggerated, so that their influence on the groundwater flow is clearly visible.

The area shown in figure 8.2 contains all elements that will be used. A smaller area will be
considered to evaluate the results of the modeling. This area is indicated in figure 8.3.

) 200m 500 m
| S LI W——— }

7

figure 8.3. Area used for output of the model

First the steady state model will be discussed. A steady line-sink is placed at each straight
line-segment of the river (see figure 8.3). The strength is determined by the condition that the
head at the center is equal to ¢ = 10m. The yearly averaged rain is represented by a steady
uniform extraction function. For the reference-point the location (—1000,500) has been chosen
with a head ¢ = 25m.

After the solution had been made the resulting heads were contoured. The contour plot is
given in figure 8.4.
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figure 8.4. Contour plot of the heads for the steady state

Secondly the model for the transient state with the seasonally varying infiltration will be
presented. Transient area-sinks are superimposed on the steady state to change the constant
average rain into seasonally varying rain. The area-sinks have the same location and cover the
entire model area (see figure 8.5). The starting times are different (see figure 8.6). These are
chosen such that the transient model starts in the middle of a period with rain, so that the initial
situation is close to the transient situation at that time if the transient flow had started a long
time back .

(2000, 1S00)

(-2000, 1500)

(-2000,~I500) (2000, ~1500)

figure 8.5. Area-sinks used for the varying precipitation
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figure 8.6. Seasonally extraction of area-sinks and steady rain

The river is modeled by transient line-sinks. At selected time intervals new transient line-
sinks are added at the straight sections of the river, on top of the steady line-sinks of the initial
steady state. The strengths of the line-sinks that started at the beginning of the time-interval
are determined from the condition that the head at the center of the line-sink at the end of the
time-interval is equal to the river-level ¢ = 10m.

The far-field functions of chapter 5 are not needed, since fluctuations around an average
situation are modeled.

A solution was made with time-intervals Atgope = 30day. Plots with contours of the heads
at several different times are given in figure 8.7.
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t: 270 da.Y t =360 day

figure 8.7. Contour plots of the head for the transient state without irrigation

Thirdly the irrigation and extraction will be added to the transient model. Two periods are
chosen for the irrigation and extraction. The first one toward the end ¢ = 273day of the first
dry half year from ¢ = 150day to ¢t = 250day. The second one toward the end ¢t = 638day of the
second dry period from t = 525day to ¢t = 625day. The periods are indicated in figure 8.8 in the
graph for the extraction representing the precipitation versus time.
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figure 8.8. Periods of irrigation

In the first period the water that is irrigated on the three fields is pumped up from the aquifer
with 5 wells with each a discharge of @ = 3174.9m?/day. In the second period all irrigation water
is pumped up with one single well pumping Q = 15874.5m®/day. In both periods the total
discharge of the wells is taken to be equal to the total infiltration of the area-sinks that model the
irrigation (see figure 8.9).
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figure 8.9. Configuration of irrigation and extraction
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The river is modeled in the same way as for the transient state with only the seasonal varying
rain. Again no far-field functions are needed since the net discharge of the transient elements
fluctuates around zero. The solution was made with time intervals of Afs e = 25d. Contours
during the period of irrigation and extraction are given in figure 8.10.
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figure 8.10. Contour plots of the head in the transient model with irrigation and extraction using five wells

Contours during the second period of irrigation and extraction are given in figure 8.11. The
contours indicate that the level of the head becomes equal to zero at some distance from the well.
This is physically impossible. It means that the discharge of the well is larger than is possible in
reality. So it is not feasible to use just one well to pump up the water for the irrigation.
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figure 8.11. Contour plots of the head in the transient model with irrigation and extraction using one well
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9. concluding remarks

In this chapter some concluding remarks are given about the analytic elements for transient
flow that have been derived in this thesis and their application to modeling groundwater flow.

Transient groundwater flow can be modeled accurately with the model that was described in
chapter 6. The hydraulic head and the components of the discharge vector are known as functions
of position and time in the model.

It is a useful extension to the analytic element method. Regional flow can be modeled accu-
rately. To do the modeling efficiently more effort has to be put into reducing the computational
times. Gains can be made in the functions of the elements and the evaluation of a number of
elements at one location as they occur on the boundaries with unknown strength. The computer
program, that was demonstrated in chapter 8, is too slow to be able to model practical regional
flow problems interactively.

The adjustment of the far-field as presented in chapter 5 is not very elegant. If the expression
for the Glover well or the ring-source could be extended so that it is valid in the entire plane, that
one function would be the only one needed to adjust the far-field and the modeling would not be
restricted by the radius R. Moreover the well could be used to create a dipole at infinity which
would make it possible to change the uniform flow between the initial and the final steady state.

The model described in chapter 6 will be applicable to a wider range of regional groundwater
flow problems if it is extended to include domains with an extraction, that depends on the head,
and inhomogeneities in the aquifer parameters. The domains would be used to model leakage
through the confining layers from the aquifer to lakes or rivers above the aquifer or to other
aquifers (compare Strack(1988) for the steady equivalents). The varying extraction of the domains
could be modeled by area-sinks with different starting times and unknown strengths. Inside an
inhomogeneity, the parameters in the definitions for the potential and the aquifer diffusivity
have different values, which causes a discontinuity in the potential and the diffusivity across the
boundary of the inhomogeneity (see Strack(1988) for the modeling of inhomogeneities in steady
flow). In unconfined flow, regions with a significantly different average saturated thickness could
be modeled as an inhomogeneity with only a different value of the aquifer diffusivity.
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appendix A.
the fU.IlCthIl faof/n_Q e’“z{erfc(u%l) - erfc(u%)}du

In this appendix the function

/ e forfo(u™—52) _ erfe(u®—L)} du (A1)
V= Ui Ui
is discussed.

The function is closely related to functions that are discussed by Barkley Rosser (1948) and

Litkouhi and Beck (1982). Using the equality erfc(z) = 1 — erf(2) (equation 7.1.2 of Abramowitz
and Stegun, 1972) equation (A.1l) can be written as

/ooﬂéeu2 {erfc(u5 _7752) - erfc(u5 _7751 )} du

= /\;i% e’uz{l - erf(u5 _7752) -1+ erf(u%)} du

- / T et 7751) - erf(u%)} du

2
dat

= /\;i% e v erf(u%) du — /\O/Og e*“Qerf(u%) du (A.1.1)

For the integrals in this equation the following change of variables is applied

_ =& &
v =u— w=uy—>=
Ui Ui
Ui
U= uU=w A.1.2
§—& §—& ( )
Ui Ui
du = dv du = dw
§—& §—&
The change of variables results in
/ e {erfc(u5 — 52) - erfc(u5 —& )} du
= Ui Ui
:/ e v erf(uﬁ) du — / e*“Qerf(uﬁ) du
Vi U Vi U
B o0 7(e—n&1 )2 7 B o0 —(w &—fz )2 7
_/%L\/ge erf(v) —5_51 du /%2\/%6 erf(w)5_52 du

§-¢1

g )Qerf(v) du

:ﬁ[ 1 l/oo o
2 -G VTea /2
n_2 (¥
5—@7?/%21@7

Fg b6 [ n L E-6 [ g
=7 M Vi g 105 Vi =g (819

§-¢&2

e S )Qerf(w) du)
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Where the definition of the function H in equation 12 of Litkouhi and Beck (1982) has been
used:

/OO 2 e*uz{erfc(ui&) —erfc(ug_n&)}du (A.1.4)

The function calls of H are reworked as:

- —u’ §-& —erfc i
/ e et — el
§—¢& n §—=& [n* n
e 1 e £~ g M Vi)
_ [(5 51/ (5 51) by (5 & t’(ﬁ;ﬁz)q)]
LB82 \/ 5 51 ) — LB82 \/ 5 52
:IEER(\/%F;&,%) (A.1.5)

Where LB82 and IEER denote the Real Functions used to code the approximation of the
integral (A.1). The function IEER is called with the following arguments:
IF (ABS(RY).LT.RTOL) THEN
IF (RX1.LT.RX2) THEN
RX1T = RX1
RX2T = RX2
ELSE
RX1T = RX2
RX2T = RX1
END IF
IF (RX.LE.RX1T .0OR. RX.GE.RX2T) THEN
RVAL = 0.DO
ELSE
IF (RY.GE.0.DO) THEN
RVAL = 1.772453850905516027298167D0 I SQRT(PDA
ELSE
RVAL =-1.772453850905516027298167D0 S |

§—&1
n

“f5 +lo

IS

SQRT(PI)
END TIF
IF (RX2.LT.RX1) RVAL=-RVAL
END IF
ELSE
RXIN=0.5*ABS(RY)*SQRT (RP/RTIME)
RA=(RX-RX2) /RY
RB=(RX-RX1)/RY
RVAL=RFIEER (RXIN,RA,RB)
END IF
The listing of the function and subsequent functions is given below. The functions are based
on Litkouhi & Beck (1982) and Barnes & Strack (2003). Note that the variable RP is the inverse
of the aquifer diffusivity e RP=1/a.
DOUBLE PRECISION FUNCTION RFIEER(RX,RA,RB)
* function returns the value of the integral of the e power of minus
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x squared times the difference of the complementary error functions
of RA*x and RB*x evaluated from x=RX to x=infinity
IMPLICIT NONE
DOUBLE PRECISION RX, RA, RB
DOUBLE PRECISION RSQRPI, RCUTFX
* Abramowitz & Stegun: page 3
PARAMETER (RSQRPI=1.772453850905516027298167D0,
& RCUTFX=10.D0)
DOUBLE PRECISION RFLB82
IF (RX.GT.RCUTFX) THEN
for large x the integral is zero because the exp(-x*x) part of
the integrand becomes zero and the rest stays finite
RFIEER=0.D0O
ELSE
the function can be expressed in terms of the funtion H
defined in eq.12 in Litkouhi and Beck (1982)
RFIEER(x,a,b)=.5/sqrt(pi)*[H(b*x,1/b)-H(a*x,1/a)]
=.5/sqrt(pi)*[LB82(x,b) - LB82(x,a)]
without combining anything (which would speed things up in some
cases) this can be calculated as:
RFIEER=.5DO*RSQRPI*( RFLB82(RX,RB)-RFLB82(RX,RA) )
END IF
RETURN
END
The function LB82 which the above function IEER calls is listed below:
DOUBLE PRECISION FUNCTION RFLB82(RXIN,RAIN)

¥ X ¥ X X ¥

function taken from Litkouhi and Beck (1982)
equations (20) and (15), (16), (17a)
RFLB82 (RXIN,RAIN)=H(RXIN*RAIN, 1/RAIN)=H(RHX,RHP)=H(X,p)
IMPLICIT NONE
DOUBLE PRECISION RXIN, RAIN
DOUBLE PRECISION RPI, R20PI
* Abramowitz&Stegun p.3
PARAMETER (RPI=3.141592653589793238462643D0,
& R20PI=2.DO/RPI)
DOUBLE PRECISION RHPXLARGE , RHPXSMALL , RHXBIG
PARAMETER (RHPXLARGE=10.D0, RHPXSMALL=0.0001DO, RHXBIG=4.DO)
DOUBLE PRECISION RHP1PLUS , RHPIMINUS, RASMALL
PARAMETER (RHP1PLUS=1.3D0, RHP1MINUS=0.6DO, RASMALL=1D-30)
DOUBLE PRECISION RX, RA, RHX, RHP, RHPX
DOUBLE PRECISION RFERFC, RFLBSU, RFBARST
* work with absolute values because of symmetry relations
RX ABS (RXIN)
RA ABS(RAIN)
RHX = RAx*RX I X of H(X,p)
IF (RA.LT. RASMALL) THEN
RHP = 1.DO/RASMALL
ELSE
RHP
END IF

¥ ¥ X ¥

1.DO/RA ! p of H(X,p)
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RHPX= RX I =pX
IF (RHPX.GT.RHPXLARGE) THEN
pX is large
this is never reached when called from RFIEER
where this condition is taken care of without
calling this routine RFLB82
RFLB82=0.D0
ELSE IF (RHPX.LT.RHPXSMALL) THEN
* pX is small
IF (RHP.GT.1.DO) THEN
* Litkouhi & Beck eq.2la: H(X,p)=2/pi*(arctan(l/p)-pX
RFLB82=R20PI*ATAN (RA) -RHPX
ELSE
Litkouhi & Beck eq.21b:
H(X,p)=1-erf (px)erf(x)-2/pi*(arctan(1/p)-pX
RFLB82=1.D0-(1.DO-RFERFC (RHPX) ) * (1 .DO-RFERFC(RHX))
& -R20PI*ATAN(RA)-RHPX
END IF
ELSE
* pX is neither large nor small
IF (RHX.GT.RHXBIG) THEN
X is large
Litkouhi & Beck: equation 20
RFLB82=RFERFC(RHPX)
ELSE
* X is not large
IF (RHP.GT.RHP1PLUS) THEN
p is decisively greater than 1
Litkouhi & Beck: equation 16
RFLB82=R20PI*EXP (-RX*RX) *RFLBSU(RX,RA)
ELSE IF (RHP.LT.RHPIMINUS) THEN
p is decisively less than 1
Litkouhi & Beck: equation 15
RFLB82=1.D0-(1.DO-RFERFC(RHX) ) *(1.DO-RFERFC(RX)) -
& R20PI*EXP (-RHX*RHX) *RFLBSU (RHX ,RHP)
ELSE IF (RHP.EQ.1.DO) THEN
p is exactly 1
Litkouhi & Beck: equation 17a
RFLB82=.5D0-.5D0* (1.DO-RFERFC (RX) ) **2
ELSE
p is about 1
Barnes & Strack ICAEM2003
RFLB82=RFBARST (RHPX,RHX, RHP)
END IF
END IF
END IF
H(X,-p) =-H(X,p)
H(-X,p) = H(X,p)
H(a(-x),1/a) = H(-ax,1/a) = H(ax,1/a)
H(-ax,1/(-a))= H(-ax,-1/a)= H(ax,-1/a) = H(ax,1/a)
IF (RAIN.LT.0.DO) RFLB82=-RFLB82

* X X ¥

¥ ¥ X ¥
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RETURN
END

The function LBSU which the above function LB82 calls is listed below:

X ¥ ¥ ¥ ¥

DOUBLE PRECISION FUNCTION RFLBSU(RX,RA)

(-1)**n * e_n(RX**2) * RA**(2n+1)
sum for n=0 to inf of ---------------- - \-\-\\-----—-——-

2n+1

used for formula (15) and (16) of Litkouhi and Beck (1982)
e_n from Abramowitz and Stegun: page 262, equation 6.5.11
IMPLICIT NONE
DOUBLE PRECISION RX, RA

INTEGER NORDMX

PARAMETER (NORDMX=100)

DOUBLE PRECISION RACC , RCUT

PARAMETER (RACC=1.D-8, RCUT=50.DO0)

DOUBLE PRECISION RSIGN, RXNONF, RENRX, RAA, RA2NP1, R2NP1,
& RO, RSUM, RI

INTEGER I

IF (RX.GT.RCUT) THEN
RFLBSU = 0.DO

ELSE

RSIGN = 1.DO

RXNONF= 1.DO

RENRX = 1.DO

RAA = RAx*x*2
RA2NP1= RA

R2NP1 = 1.DO

RSUM = RA

RO = ABS(RA)*RACC

DO I=1,NORDMX
RSIGN = -RSIGN
RXNONF= RXNONF*RX/DBLE(I)
RENRX = RENRX+RXNONF
R2NP1 = R2NP1+2.DO
RA2NP1= RA2NP1xRAA
RI = RSIGN*RENRX*RA2NP1/R2NP1
RSUM = RSUM+RI
IF (ABS(RI).LE.RO) EXIT
END DO
RFLBSU=RSUM
END IF
RETURN
END

110

The function BARST which the above function LB82 calls implements an approximation that
has been presented by Barnes & Strack (2003). The listing is given below:

X ¥ ¥ ¥ ¥

DOUBLE PRECISION FUNCTION RFBARST(RHPX,RHX,RHP)
approximation for H(X,p) function in the range

0.0001 <= pX <= 4, X<=4, and 0.6 <= p <= 1.3

the function H(X,p) is defined by Litkouhi and Beck (1982)
the approximation was formulated by Barnes & Strack in

a paper for the ICAEM conference in France in April 2003
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* which was cancelled unfortunately
IMPLICIT NONE
DOUBLE PRECISION RHPX, RHX, RHP
DOUBLE PRECISION RPI, R20PI

* Abramowitz&Stegun p.3

PARAMETER (RPI=3.141592653589793238462643D0,
& R20PI=2.DO/RPI)

INTEGER NMAX

PARAMETER (NMAX=100)

DOUBLE PRECISION RTOL

PARAMETER (RTOL=1.D-8)

INTEGER I

DOUBLE PRECISION RPHIA, RPHIB, RPHIC, RSUM, RTEST, RI, RHXX, RHPP,
& R1MPPO2, R1PPPN

DOUBLE PRECISION RFERFC, RFBRF
RTEST = RFBRF(RHX)

RPHIA = 0.B5DO*RTEST

RPHIB = RTEST**2

RSUM = RPHIB
RTEST = ABS(RPHIB)*RTOL
RHXX = RHX*x2
RHPP = RHP*x2
R1MPP0O2=.5DO-.5D0*RHPP
R1PPPN =1.D0O
DO TI=1,NMAX

RPHIC = ( (DBLE(2*I-1)-2.DO*RHXX)*RPHIB
& + 4.DO*RHXX*RPHTA - 0.5DO
& ) / DBLE(I)

R1PPPN= R1PPPN*R1MPP0O2

RI = R1PPPN*RPHIC

RSUM = RSUM+RI
IF (ABS(RI).LT.RTEST) EXIT
RPHIA = RPHIB
RPHIB = RPHIC
END DO
RFBARST = RFERFC(RHPX)-R20PI*RHP*EXP ((-1.DO-RHPP)*RHXX) *RSUM
RETURN
END
The function BRF which the above function BARST calls is listed below:
DOUBLE PRECISION FUNCTION RFBRF (RHX)

* function from Barkley Rosser (1948): equation 6-2
* that is used in the approximation for H(X,p) by
* Barnes & Strack in a paper for the ICAEM conference
* in France in April 2003 which was cancelled unfortunately
IMPLICIT NONE

DOUBLE PRECISION RHX

DOUBLE PRECISION RSQRPI, RSQRPIO2
* Abramowitz & Stegun: page 3

PARAMETER (RSQRPI=1.772453850905516027298167D0,

& RSQRPI02=RSQRPI/2.D0)

DOUBLE PRECISION RFERFC
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RFBRF = EXP (RHX**2)*RSQRPIO2*RFERFC(RHX)
RETURN
END
The function ERFC which is used in a number of the previously mentioned functions is taken
from Abramowitz & Stegun (1972)
* complementary error function erfc(x)= l-erf(x)
using formula 7.1.26 on page 299 of Abramowitz & Stegun
DOUBLE PRECISION FUNCTION RFERFC(RX)
IMPLICIT NONE
DOUBLE PRECISION RX
DOUBLE PRECISION RP, RA1, RA2, RA3, RA4, RAS

PARAMETER (RP= .3275911D0 , RA1= .254829592D0,
& RA2= -.284496736D0, RA3=1.421413741DO0,
& RA4=-1.453152027D0, RA5=1.061405429D0)

the function returns practically zero for values

of RX greater than 10. ( RFERFC(9.)=4.28E-37 )

DOUBLE PRECISION RXABS, RT

RXABS=ABS (RX)

RT=1.DO/(1.DO+RP*RXABS)

RFERFC=RT* (RA1+RT* (RA2+RT* (RA3+RT* (RA4+RT*RA5) ) ) ) *EXP (-RX*RX)
IF (RX .LT. 0.DO) RFERFC=2.DO-RFERFC

RETURN

END

%

10,
teip €V
a0

figure A.1. Contours at different times
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Contour plots in the &, 77 plane at different times obtained with this approximation are figure
A.1. The plots illustrate the behavior of the function. When the time ¢ is equal to zero the
value of the function is zero throughout the entire plane. For positive times there is a constant
discontinuity along the &-axis between &; and &3. The value at infinity remains zero, while the
function becomes constant for large values of the time.

The definition of the complementary error function in the integrand of the function (A.1) is

(4.39)

erfcx = %/x e du (A.2)

Using the equations (7.1.2), (7.1.19) and (B.4.8) in Abramowitz and Stegun (1972), its derivative
is found to be

d 9

aerfcx = —\/—Ee (A?))

The derivative of the function (A.1) with respect to ¢ is equal to

e {erfc(u5 — &

) — erfe(u

6%/;: 5—7751

= /\;;g{% [e’“2 {erfc(u5 :752) - erfc(ui—&)}] } du
o0 Wy 2 ety

”? -4+ —e 72 —ldu
77}

:/\/ZeUQ{_\/_ [ NG

_ - d
/\/_ \/_{ n bdu
L (£ —&2) —H72 — g2 (EmE2) 24
n? d
\/_|: 5 52 +7’] /1/ n 7 € U
I D S (SR SOt i —2u,2md
€-&r+ 2/ =y ; q
_ 1 7 —uz(g—’gw 00 n 2 lee )22+n2 -
= \/_F {me " | 2= me n | ﬂ%}
(A.4)
so that
o [* £-& =&
il u {erfc(u ) — erfc(u )} du
o€ /w/f_je ;
n _(egp)in? (e
Y A5
\/77{(5—52)2+n E—&)2+ 2} (A.5)

Using Leibnitz’ rule for the derivative of an integral (see e.g. Wylie and Barrett (1982) page 454)

h(z) h(z) €T u T X
3/ F,u) du:/g %duﬁ(x,uﬂ i D) _ pau)], oy ()

@) 2 u=h(@) dy dx
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the derivative with respect to 1 of the function (A.1) is equal to

§—& §— 51
n

e*“Q{erfc(u ) — erfc(u

w2 B &2)2( ug_gz 2 eiuQ(E*ﬁfZl)z B £E—-&
n

8 >0
%/r Ty
)+

/@“{f AR

1

Sy @} e (A7)

for which the following expression is obtained after an integration similar to the one in (A.4)

§—&

) —erfc(u

- {67“2 {erfe(u>——==

% /\O/Og e v {erfc(u5 _7752) - erfc(u5 &1 )} du
_ L{ &E—& o (&—&ﬁi%ﬁ _ E—& _ (§—§];i+n2 )
Y (5 &)+ =&+
e dar §— & §—&

{erfe(

ova \/a) — erle( QM)} (A.8)

Both derivatives (A.5) and (A.8) do not exist at the straight line-segment from (£1,0) to (£2,0).
However the limits for i1 appoaching zero from above and below are equal for both derivatives

lnif(} % \;i% e {erfc(u5 — 52) - erfc(u5 :751 )} du

g a% \O/Ogeuz{erfc(ug;—&) - erfc(u%)} du (A.9)
lnif(} % OOZZ% e {erfc(u5 :752) — erfe(u $ 7751 )} du

g a% OOJQ_ e ferfe(u® _7752) - erfc(u%)} du (A.10)

The function (A.1l) f{ulfills the differential equation (2.21) in the entire plane except the line-
segment from (£1,0) to (£2,0).

{352 az_aat}{

e {erfc(u5 — 2) — erfe(u

§—&
=0 A1l
; (A.11)

4at

A.1l singularity.
The function has a discontinuity along the £-axis between & and & of size 2,/7. It is shown
below that this follows from properties of the complementary error function

erfc(—z) = 2 — erfe(z) (A.12)
lim erfc(z) =0 (A.13)
T —ro0
so that
lim erfe(z) =2 (A.14)

T——00
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If 1 is equal to zero the variable of integration u does not attain negative values, so that the signs
of the arguments of the complementary error functions in the integrand are determined by &, n

and &1, £2. On the &-axis the difference of the error functions is equal to

2-2=0 17nl0,{<& <&
2-0=+2 7]0,& <E<&
_ — 0-0=0 0,61 <& <
erfc(u5 52) erfc(u5 51) = M08 <& <¢ (A.15)
7 n 0-0=0 710{<& <&
0-2=-2 710,56 <§<&
2-2=0 710,& <6<
The integrand in (A.1) then is equal to zero on the £-axis except in between £; and &3
(e (e +2e 10,6 <E<&
e {erfc(uTz) - erfc(uTl)} ={ =2 10,6, <E< &y (A.16)
0 n=0,{<&VE> &

So that the integral has a jump with a magnitude of 2,/7 across the £-axis between & and &

B fooo 12 % du 70,6 <&<&
—)}du= fooo —2¢~% dy n10,§ <E<
0 N=0,6<EVE>&

/T
=4 VT
0

nd 0,6 <<

n10,& <E<&

n=0¢§<&EVE>E
(A17)

The function is bounded is the entire plane. Therefor the limit for 1 going to zero both from

above and from below for 7 times the function exists

: e §—& §—&

hmn“/ e~ {erle(u ) — erfc(u }du=0 a>0

oSN i U

lni%ln“ /\;;geuz {erfc(u5 :752) - erfc(u%)} du=0 a>0 (A.18)

The limit is equal to zero independent of the direction from which 7 approaches zero, so that the

function times a positive power of 77 is continuous everywhere.
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A.2 infinity. It is shown below that the function is zero at infinity

—u? {erfc(u%l) — erfc(u%)}
~ (€ — &) §2£:£JH~>OO /\/: 4 C du

_1 1 1 1
o2 (-Z‘I"fC(u5 (€1+62) Ag) _ erfc(u§ (E1+82)+ A&)

=(©-&) Jim - ! . du

A¢
N J_

_1
= w28 51 / 9 ferte(w =28 T2y
VEE+n?—oo vV = 35
. & — 51 n (- d (g1 tEanin’®
= lim — I 3 S€ dat
V242 o0 \/7_T (5_ 5(51 +£2)) +7
—0 (A.19)
From (A.19) it follows that the function behaves at infinity like
Ui _ 2402
_—52 + 772 (4 dat (A20)
so that because of the limit
lim 2% * =0 (A.21)
T—ro0

(Abramowitz and Stegun (1972) equation 4.2.20) the integral times £7n° vanishes at infinity also

im e / @euz{erfc(u%) erfo(u ngl)}du_ (A.22)

A.3 time zero. The limit of the fucntion for positive times approaching zero is equal to zero.
The lower bound of the integral approaches the upperbound while the integrand remains bounded

ltljg /\/g e v {erfc(u5 :752) — erfe(u— ; )} du = blggo A e “adu=0 (A.23)

A.4 large times. The function becomes steady for large values of time. The discontinuity
remains and the function becomes equal to two arctangents

e*uz{erfc(ui&) erfo(u®—5L 51)}d

lim

i [
/ Jim / e ag e ferfe(u

—2u _, 25zEay2 2u p2(E=ELy?
7u e/ ) e/ )
/[thm /\/_ {\/_776 g \/_77 7 b du

(E—£2)2 492 _(5—80)%49?
dat

—52

) — erfc(u

§—&1
T)}] du d¢

1 € o e o
:/tlggo[_fn{(%) T
1 1

1
=/%%MQ%%P NEnE

§—&
n

= \/_{arctan(

= L arctan ] — arctan ]
= = {arctan(z ) — avctan(77 ) (r.20)
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appendix B. limits involving E1

In this appendix limits are given for the function

% + y2
4ot

El(

) (B.1)
where the exponential integral E; is defined as (4.17)
By (2) = / P (B.2)

The derivative of the exponential integral can be found from the equations (5.1.26) and (5.1.4) in
Abramowitz and Stegun (1972)

%El(x) = () = — /1 ey (B.3)

which gives
%Fd(x) = _ex“’ (B.4)

Using (B.4) the derivatives of (B.1) with respect to « and y are found to be equal to

%El(%) =2 =2 (B.5)
and 5 2 sy y e

o 1( ot )= —QWe Tat (B.6)

singularity

At the point (0,0) the function has a logarithmic singularity as can be seen from an approx-
imation for the exponential integral for small arguments (Abramowitz and Stegun, 1972)

Ei(z)~—logz—v o<1 (B.7)

where 7 is Euler’s constant. However multiplied by the distance to the origin the function is zero
there

2 2
m (@2 4+ 92 () = lm o[22 + y?)%{— log(e® +4?) + log(dat) — 4}]
W%O dat z2+y2—0
=— lim [(@® +y*) " log(z? + 3?)]
S0
=0 (B.8)

because of the limit
lir% 2%logz =0 a>0 (B.9)
T

(Abramowitz and Stegun (1972), equation 4.1.31).
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infinity

For the behavior at infinity bounding values are considered from Abramowitz and Stegun

(1972), equation 5.1.19

1
*E - B.1
x+1<e 1(x)<x x>0 (B.10)
so that L L
¢ <E1(x)<Ee x>0 (B.11)

It follows that Eq(x) goes to zero as %e’“’ for large values of , so that the limit for the exponential

integral times a power of z also goes to zero

lim 2°FE1(x) =0 x>0 (B.12)

T—r0o0

so that

2 2
X
lim  atyRy (Y

S ) =0 (B.13)

time zero
The function is zero at time zero
. z? + 2 .
fy B = Jim B9
= lim —du
b—o0 b U
=0 (B.14)

large times

The limit for large values of t can be found by using (B.7) to write

2?4 y? 22 4 y?
lim E =—1 —
vl a 4ot ) o8 4ot )=
x? +y? 4ot
= —log(—p5—) +log(47) = (B.15)

where R is a length.
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appendix C. limits involving . #wwsy

In this appendix limits are given for the function

§—&
2/at

The derivative with respect to £ is equal to

0 _x2 £E—& E—& 1 _E—£)2 4’ _(E—g4y?

—e et {erfc ——={e ot —e ot C.2
ferfe(S—22) — rte(§ 2} = - = b ©
The derivative with respect to 7 is equal to

o a2 §—&

—e ™ st {erfc(

§—&1
2V/at

e P ferfe(322) —erfe(225L)) (C.1)

) — erfe(

) erfe(S=S)y = - e B ferte(S22) —enfe(B 22 (C3)

on 2v/at 2v/at 2at 2v/at 2vat
singularity
The function does not have singularities.
infinity
From equation (A.21) it follows that
lim n“e*ﬂ% =0 (C.4)

n—00

Limiting values for the complementary error function can be derived from the expression

v zs il AR dt<x+¢T (C5)

(Abramowitz and Stegun (1972) equation 7.1.13). Using the definition of the complementary error
function (4.39) this can be written as

@67“"2 < erfe(z) < @e’“’z (C.6)
— =2 <erfe(x _— .
T+ 2242 -

4
Y R

so that the complementary error function of x goes to zero for large values of x like

mlingo erfc(z) = \/7?6;; (C.7)
and
glingo 5“(—:'1"fc(5 \_/%) =0 (C.8)
Combining (C.4) and (C.8) gives
lim 5“771’67ch%{erfc(5 — 52) —erfe (5 3 )1}=0 (C.9

N/ZEr 2/t 2Vt
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time zero

The limit for small times follows from (A.21) and (C.7)

. §—&2 §—&1\y
tlgr(l)e 1at {erfc(Q—\/a) — erfe( QM)} =0 (C.10)

large times

2
lim e” st = lime * =1 (C.11)

t—o0 a—0

The power series for the complementary error function is equal to

erfer = 1 — %x +0(a%) (C.12)
so that
§—&, &, . 2&-& §—& .3
erfc(2\/a) erfc(QM)— 1 \/EQ\/E_‘_O((Q\/E))

—1+

2 -6 §—&.3
Vrovar T OGED)

- 5\2/;75; Lot (C.13)

from which it follows that

0 a<%

. afz*lz_ 5_52 5_51 _ 2—&1 — 1
tlgglot e 1ot {erfc(Q—\/a) — erfc(Q—M)} = e 0= ? (C.14)

2
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appendix D.
limits for the exponential function

In this appendix limits are given for the function

C(E=£) 407

e iat (D.1)
The derivative with respect to £ is equal to
—e)24,2 _ . 24,2
367(5 &Zitﬂ _ _5 & ef(g &Zitﬂ (D.2)
19/ 2at
The derivative with respect to 7 is equal to
o (5-£)% 72 7 (£-£;)% 72
—e dat = ———e dat (D3)
on 2at
singularity

The function does not have discontinuities or singular points

infinity
From the limit (A.21) it follows that the function vanishes at infinity even when multiplied
by & or i

(E—£)% 402
lim  &4Pe " dar =0 (D.4)
VE2+nE—o0
time zero

The function vanishes for small values of the time

IR G i
lim e iat = lim e
t—0 b—o0
=0 (D.5)

large times

For large time the function becomes steady

2 2
. _(EgTm” .y
lim e iat =lime
t—o00 b—0
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appendix E. derivation and checking
of line-sink of arbitrary degree

In this appendix the potential for a transient line-sink of order one and arbitrary degree is

derived and checked.

E.1 derivation of line-sink of arbitrary degree.
It was shown in chapter 4 that the potential for a line-sink of order one and degree n can be
written as the integral (4.40)

U G ¢ ¢
L;{:L_/O —me a( *){erfc(m)—erfc(m)}dT (El)

Using the binomial theorem (Abramowitz and Stegun (1972), equation 3.1.1)

={t—(t—7) Z{ Yern k(e — 1)k} (E.2)
to change the factors 7 in (E.1) into factors (t — T) this integral can be rewritten as

/ Y )’“t" -k}

Lsn t — T
2 2 :
eﬁt_r){erfc(%) — erle( 6(_t£_7'))}d7—

k=n n k+1tn k\/_
-3

/0 (t—r)i—be ﬁ%{erfc(%)—erfc(%)}dﬂ (E.3)

In order to evaluate the integrals in this equation the following change of variables is applied

2
we |
4ot — 1)
2
Ui
t—7=——
T to?
7>
dr = 5o du (E.4)
With this change of variables the integral in equation (F.3) becomes
2 1
t 2 _ —
/ (t— T)k7%67 Tate=7) {erfc(#) - erfc(#)} dr}
0 2/ a(t—1) 2/ a(t—1T)
: —¢ §—&,
Ui kf— 7u — _ Ui
f — erf
ﬂ%<40&u2 {erfc(u ; ) — erfc(u ; )}2au3
2 a1 ¢ —¢
_ N ki —u? — —
=2(—)""2 — fe(u—=) — erf d
(4a) /\/gu%”e {erfe(u ; ) — erfe(u )} du
2 k
= o(L kb, k>0 (E.5)

4o



appendix E. line-sink of degree n

123
k
where I is equal to
. - . 2 1
I, = /\/g Wefuz{erfc(u%) - erfc(u5 — 5)} de k>0 (E.6)
k
The integral I is integrated by parts as follows:
k 0 - [e%s)
11:/ f’gdu:fg|u:oo 7 —/ —fg' du
= AV
1
F'w) ==
-1 1
Ju) = g T
2 1
o) = e~ ferfe(u®—2) — erfe(ut=2)}
n n
2 etpE—f -2 etpg—g
) = e W g2 @sPET8 | 22 i
g =c¢ —e T ——¢ g
=107 T v
2 1
+ (—2u)e ferfo(u®=2) — erfe(ut - )
2 1 1
—2 - ¢ _p2Em9i? E—§ Lo’
= —{—e 72 — [ n? }
VT n
2 1
— ue ¥ {erfc(u5 — 5) - erfc(u5 — 5)}
n n
(E.7)
which yields
e a1 ¢ —¢
Ilzmme’“ {erfc(u ; ) — erfe(u ; )}|u;\/g
/OO it S
VZ 2k + Lukt
[_2{5_5 7u2(§—§)§+32 5_% a2 &—é §+ 2}
—_——€ n — (4 n
VT n
2 1
— e ferfe(ut—2) — erfe@ =S\ du k>0 (E.8)
n n
so that
k 1 1 e ¢ [P
I = s (e i et [ o225 D))
2k+1Y n? n dat n 4ot
2 2 1 1
-1 2 00 1 E—& 2 gg—e)in E—§& e §+ 2
+2k—0—1\/77//—4_n_tu2’“+1{ n ¢ oy ¢ bdu
i / Lo ferte(@ =S — erfe(t=5)}du k>0 (E.9)
2k+1) /= u?k
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which, for k > 0 can be written as

k 1 4ot 2k+1 _ 22
I = % = 1( 77—2) e 4ot {erfc(

Iy
|
Sy
N
Q
o~
Iy
|
Sy =
N
Q
o~
"
—

=
=
o
=
=
o

2 1
12 -gh g-g
T By S Chulrea £
_—2 k>0
To1 ! >

k
where the integrals Iy (j = 1,2) are equal to
j

J
k < 1 _pee?
=] _—me i
J dat

This integral can be evaluated with integration by parts, assuming k > 0

k oo - oo
I, = "gdu = fg|“ " —/ 'du
jz /ﬂ_tfg fg|u:\/g 4_Z?fg

1
o) —
F'(w) = =
—-11
Fw) = 50—
7u2(67§)2+n2
o) = ¢
¥ j
— &2 42 2 (6= )24 n?
g'(u) = €8+ 5)2 ] (—2u)e “ 7
n
which yields
ko1 1 e (ef§>§+n2 ——o
L=grame 7 vz

J j
-1 1 (£=8*+n? 2 8% 4n?
V= Ui

1 4ot
= %(77—2) €
J j
L[ 1 (£=82+n® oL

B E/\/I u2k—1 72 ¢ !

4dat
1 4ot
= %(—2
Ui

J
(582492
dat

du

)ke’ (&—%)anQ
J j
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(E.10)

(E.11)

(E.12)

(E.13)
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k
so that, using the definition (E.11), the integral I3 can be written as
J

k 1 4atk75—§'2+2
h=gGE)e
J
1(£—£)2 2 k-1
_E% I, j=1,2 k>0 (E.14)
J

k k
The expressions (E.10) and (E.14) for the integrals I'1 and I3 are not valid for & = 0, but once
J
the integrals have been determined for k = 0 these equations can be used as recursion formulas to

0
obtain the integrals for any value of k. The integral of I'1 can be determined from equation (E.9)

1

2
%1:1/%67117{61{0(5_5 %)—erfc(€;5 @)}

n 7
2 S | 5_2 7u2(67§)2+n2 5_é ,uz<s—é>2+n2
_ T —42 e n2 — e n? }du
TJ/Z=v 0 n
2 1
9 / e ferfe(ut—2) — erfe(u®—%)} du (E.15)
= n
Using
© 1 .z L
/ —e n? du
U
dat
3 J
1 /> 1 2 2 Em©2 42 — 62 1 p?
= 5/ ﬁj]—e ’ n? . QU%&M
/-
Vs o (§ =82 +n?
1 [~ 1 [2(§—§)2+n2] (5_2)2_0_772
=c j — T d[uz—]
2 Je—e2m? AT 72
Iat [uzﬂé 522+n ]
n
1 [ v
= = 7 e—dw
2 (e—i)iw? w
=E ; E.16
l(w)|w:(67§)2+n2 ( )
dat
equation (E.15) can be written as
0 4 : 4 : 4
t 2 — t — t
I, = 1/%6717]07{61‘&(5 51/%) —erfc(u %)}
n n n n n
L b (E-97inE £ (-9t
— — )2+ — —&)? +
- = R )}
NZ 4ot n 4ot
2 1
o[ e ferfo(t =) — erfe(ut=S)} du (E.17)
= n n
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The integral on the last line of equation (E.17) can not be expressed in terms of functions,
that are listed in Abramowitz and Stegun (1972). Barkley Rosser (1948) discusses an integral
which is closely related. An approximation adapted from Litkouhi and Beck (1982) is given in
appendix A, where the integral is discussed.

k
The integral I3 (E.11) for k = 0 is equal to
J

0 Rl R (=822
12 = —€ n?
J

n_ U
1ot

du  j=1,2 (E.18)

using (E.16), this can be written as

J
0 1, =9+

E.2 line-sink of arbitrary degree.
Now the potential for a line-sink of degree n (equation (E.3)) can be written as

oo k=n 2
n n

& =5 D DD (5:20)

where ? 1 can be calculated from the recursion formulas (F.10) and (FE.14) and the expressions
(E.17) and (F.19).

Two special cases of the general degree line-sink are worked out in chapter 4: a line-sink
with a constant strength alter time zero (degree zero) and a line-sink with a linearly increasing
strength (degree one).

E.3 checking line-sink of arbitrary degree.

The above potential derived for a line-sink of order one and degree n, will be checked against
the initial condition and the boundary condition. The final condition does not apply to elements
which have a degree higher than zero. The check of the final condition for a line-sink with a
degree zero is given after the special case of the line-sink of degree zero has been presented.

E.3.1 initial condition. The initial condition is that the potential (FE.20) is equal to zero ev-
erywhere when the time is equal to zero. From equation (E.14) and the limit (24.5) it follows
that

J

k 1 4ot ( ,jlz 2 1 _ )2 2 k-1
lim I5 = lim _(&)ke* o = _w I,
t—0 j t—0 | 2k n? k 72 j
(=8P 4n
=lim————"—— I i=12 k>0
=0k J (E.21)
which leads to the recursive relation
. k71 . k .
tlgr(l) 52:022%52:0 j=12 (E.22)
Limit (22.14) applied to equation (E.19) gives
J
R S (et 3 it/
gy Lo =y gt )

=0 j=1,2 (E.23)
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Combination of this result with the recursion of equation (E.22) makes it possible to say

k
ml,=0 k>0 j=1,2 (E.24)

t—0 7

Application of this together with the limit (23.10) to the expression (E.10) gives

b L dat vopir - 22
fin =i o () e ekl

k
— — I
+2k—0—1ﬁ{ n 22 7 12}
—92 k}1
S S
) k—1

= o1 am I (E.25)
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=
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=
=
%)

which leads to the recursion formula
k—1
hr% 11—0:>11m11—0 k>0 (E.26)

Equation (E.17) combined with the limits (23.10), (22.14) and (21.23) gives

2 1
0 4ot o E—¢ Jdat E—¢ Jdat
tlgr(l)ll = tlgr(l) A/ 77_26 {erf ( ; 7 ) — erfc( )}

n V0
¢ ¢ (5—2)2+n2 £ ¢ (5—%)2+n2
B ﬁ{ n El( 4ot ) B n El( 4ot )}
2
S S
- 2/ — e {erle(u ; ) — erfc(u ; )} du
0 (E.27)

so that with the recursive relation (F.26)
k
liml; =0 k>0 (E.28)
t—0
Substituting this result into the formula for the potential (E.20) shows that the initial condition
is satisfied
o k=n

2 k

k+1 n—ky " \E+i
t 2]
(4a) 1

lim & = hm

t—0sn t—0 T Z
= ;_ﬁ kzzo[o]
=0 (E.29)

E.3.2 boundary condition. The boundary condition along a line-sink requires that the element
removes an amount of water from the aquifer per unit length that is equal to the strength o. The
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boundary condition for a line-sink of degree n with strength o = ot™ can be stated as the condition

n
that the normal component of the discharge has a jump equal to the strength across the element
lim @, — lim Q " : : E.30
im@, —limQ, = —ot <&< .
n0 e T §<6<¢ (E.30)

which implies that the derivative with respect to 1 of the potential (E.20) is discontinuous across
the element

limy 0 g) 2gtn 1 2
® — E<E <t (E.31)
" sn

w|m é"lw

lim
710 2 "

The derivative of the potential (E.20) with respect to 77 is equal to

k
o g o k=n . (_1)k+1tn7k 3(77%“[1)

Below the condition (E.31) is checked first for n = 0 and next for arbitrary degree n. This partial

2k lk
A(n>Ft

derivative Tﬁ) for k =0 is equal to

0
6(77[ ) 0 6[1
o =Lyt (E.33)

0
The integral I; is given in (E.17) and its derivative is equal to

0
1
——2\/ [——e Znﬂ——ie 4at {erfc

ﬂ‘rw

n 2t 7 72
L7 &~ 5 (€ - 5) 5 5 (€ - 5)
B \/_F[_ 72 B 4ot ) B 4ot )
-+ 5 _2 _277 - Ei%jj : — 5 5 _277 : icfj 2:|
To—ep T e-9

VT e b2 (- &2+
_e;‘i ﬂ'j{erfc(gf %)—erfc( %)}}
:_zﬁnize 5 ferfe( nz %)—erfc(5 : %)}
+%{577—25E1((5—§§t+n2)_5n25 (= iyt ) 534
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where (22.6) and (21.8) have been used. Substitution of (E.17) and (E.34) into (E.33) gives

8 =I1 +n—— on
{doit I3 2 [ 4ot I3 é 4ot
af _ »? — v — «
= 77—26 4at{erfc(T n—z)—erfc(T 77—2)}
1 1
L & 5 (€ - 5) §=&, (£=8*+7
_ﬁ{ n 1( 4ot )_ n El( 4ot )}
2 1
—2/ e*“Z{erfc(ug_g) — erfe(u 5)}du
2
—0—77[—2\/&77%6 4at{erfc(5_5 @)—erfc(g_5 @)}

vl n? 4ot 7> 4ot
2
s / ﬂ_teuz{erfc(ug ;5)—erfc(u£; )} du (E.35)

Using (21.17) the limits for 7 approaching zero are found to be equal to

lim OM:—2+ T) = —27
74 (+vT) (E.36)
lim o 241 L) —2(—v/m) =27
Substitution of (E.35) into (E.32) for n = 0 gives
T P z
llmn¢0 %150_ 2\/— \/H( 2\/_) L
e (E.37)

a
: a —
hmyﬂo 8_77190_ 2\/_ \/52\/_ _%

so that the boundary condition (E.31) is satisfied for n = 0.

Now that the boundary condition has been checked for n = 0, the boundary condition for
k
2k+1
arbitrary n will be examined. All partial derivatives w in equation (E.32) for k£ > 0 vanish
as will be shown below, so that only the one for ¥ = 0 contributes to the partial derivative for

k
7= 0. The partial derivative, which contains the integral I; (E.10), is equal to

S
iy

k 1
8(n2k+111) B (2 /o )2k+1 el 5 — at 5 — 5 Aot
n 877 %1 e~ {erfc( ; 7 ) — erfe( ; 7 )}

1 2k 1k
- g€ 0L - (€~ O1)
2 k-1
— mn2k+1 I 1:| k>0 (E38)
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which, in turn, is equal to

k 2 1
O™ L) (Vat)* 2 §—¢ [dat £ [1at
n = o 2ne~ 7a7 {erfc( ; 77—2) — erle( 77—2)}
k k
L2 HMTR 2,
2%k + 1T on on
k—1
2 8(n2k+1 I 1)
~ T 7 k>0 (E.39)

2

2 1
The function e~ et {erfc(§;$1 / %)—erfc(% %)} which is discussed in appendix C, is bounded

for n = 0, so that 7 times this function is equal to zero for n = 0.

=

2
E—¢ Jdat
o

& — dat |
— 77_2)} =0 (E.40)

2
. _a_
71]% ne” st {erlc(

) — erfe(

so that the term on the first line of equation (E.39) is equal to zero in the limit for 7 approach-
ing zero. To evaluate the contributions of the terms on the second line of (E.39) the following

k
derivative is evaluated using the expression for Iy (E.14)
J

k
6(772k12) k J .
i 0 r(dat)t o2 1 J B E-1
— = - Lot I _n\2,,2k-2 2k
an anl 28 ¢ FlE=™ 2™} L) k>0 (E.A1)
so that
2
OrL) — (qagye R
on P
2(k—1 kot 2k k-1
DR WA EV PR Ul £
TS -7 k>0 E.42

Next it will be shown that this partial derivative is equal to zero.

k
A 1z) k
If the derivative 87;] is equal to zero in the limit for n — 0 then 7**I5 must behave as
J

k
lim n** I, = an® (E.43)
J

where @ is independent of 77 and either b > 1 or b = (). The derivative with respect to 1 would be
unbounded at 17 = 0 if b had a negative value or a value between zero and one. It follows from

(E.43) that

k
lim n*™ Iy = an’n™ * (E.44)
n—0 J
so that for m > k
k k
O(n**I2) O(i*" I2)
lim ——2— =0=lim —2—=0 m>k (E.45)

n—0  On n—0  On
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k
(" 13) 0
The derivative 87;] for k = 0 is determined by using the expression for the integral I
Fj

(E.19) and equation (22.6)

0
oI ]
it _o1y ((5_5)2 +772)
on  on2 4ot
[ —JT] e Eiiat+ (E46)
(=82 +n?

Since the e-power in (E.46) is bounded for = 0 the following limit is equal to zero

. _ (E*§)2+n2 -
71]13}) ne”~ 4ot =10 (E.47)
so that
0
oI,
. it
It follows from (E.45) and (E.48) that
50
an 52)
71]136 n =0 (E.49)

With (E.47), (E.48) and (E.49) it follows from (E.42) for k¥ =1 that

1
on?I)
lim J

iy —5— =0 (E.50)

Alternate application of (E.47) and (E.42) then makes it possible to extend this to

k
O(n*F 1)

. 7 _

To evaluate the term on the third line of (E.39) a relation similar to (E.45) is derived that

k k k
contains . If the derivatives %;lh) are finite in the limits 7 | 0 and 5 1 0 then n?*T1I; must

behave like .
li k17— bt
T A = 4 (E.52)

k _
limyro n?* 1 = a nP

where a™ and @™ are independent of 7 and b and b~ either equal to zero or greater than or equal
to one. It follows from (E.52) that

k
. ST
lim,, 0 772"”1[1 = a*nb tm—k

(E.53)

k _
limnTO 772m+1[1 — a’nb +m—k
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so that for m > k

=0 m>k (E.54)

= E.
Jim =2 =0 (E.55)

so that the term on the third line of (E.39) also is equal to zero for k = 1 in the limit 77 — 0, while
the terms on the first and the second line are equal to zero for any k (see (E.40) and (E.51)).
Repeated use of the equation (E.40), (E.51) and (E.39) alternating with (E.54) makes it possible
to generalize (E.55) to

9 2k+1k}1
fi 20— 1)

- k E.
Jim = 0 >0 (E.56)

Because of (E.56) all terms in (E.32), the derivative of the potential, vanish for k£ > 0 in the
limits for 7 approaching zero both from above and below. The only term that is not equal to zero
for n =0, is the term for k = 0 of the sum in (E.32), so that the limits become using (E.35) and
(21.17)

1 9 g\/a ny —t" 1. n
limy 1o %SL = 2\/;[(0)\/5(_2)@ = 30t
: a gve ny —t" 1 n
im0 2 @ = S [(3) A2 (<) (—y7)] = ot

which conforms to the boundary condition (E.31).
Thus the potential for the line-sink of arbitrary degree n (E.20) fulfills the boundary condition
at the element.

(E.57)

The condition at infinity requires that the potential is equal to zero at infinity

lim @& =0 (E.58)
VB oo BT

or with (E.20)
« k=n k+1tn k i
. 2k+1 _
lim 2\/_ g —k+2 L =0 (E.59)

§2+n2 —o0

The parts that are functions of £ and 7 can be rewritten using (E.10)

2 1
9 2kl o B Tl B o
2k+II — ( \2/]:_21 ¢ 4at{erfc(5 ¢ %)—erfc(gn § niz)}
Lt 2k
2 2Rt }11 E>0 (E.60)

2k+1
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k
The expression n?" 11, where m is greater than or equal to k, will be examined rather than
k
n**+11,, because the exponent in the last term in equation (E.60) is 2k + 1 while the supersecript

is equal k£ — 1.

2 1
2’”“[ _—(2\/_)2k+ 20m—k) g~ 4at{erf0(€_5 @)—erf(z(u at)}

2k +1 7 72 7 n?
12 2k 1k
- 2k+1ﬁn {(5—5)52—(5—5){2}
2 772’”“]711 m>k k>0
2k+1

(E.61)

Equation (E.14) is used in order to evaluate the term on the second line

J

(€ - &)

J
(6-8)2+7?
dat

2

_(40‘t)k J 2(m—k) —

o ey

CHEY -9y Ty j=12 mzk k>0
! (E.62)

The term for k =1 is equal to (see (E.19))

3
(6-8)247?

O =255 (6~ G 2e ST (e~ PP 4 (6~ O,

n*" (& — &)1

J

J
(E-5)2472

40ét (5 5) 2m7267 ey

. . J
(- bt e - bl T
j=1,2 m>0 (F.63)
which is equal to zero at infinity
. o j1
\/ﬁ%mn (&— 5)52 =0 m>1 (E.64)

because of the limits (23.9) and (22.13). The equation (E.62) can be used repeatedly in this way
to get

ik
lim ™ -&I2=0 m>k k>0 (E.65)
N j

The term for k = 0 which was excluded in (E.61) is found with the use of (E.17)

2 1
s 2\/@72””‘3’%{effc(g;_5 %) B erfc(% %)}
2
1 9 N2 2 1 —£)2 2
- =~ N et B R P )
2
— 2p?mHl e {erfc(u5 — 5) — erfe(u — 5)} du m >0
L Ui n (E.66)
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Using the limits (23.9), (22.13) and (21.22) it can be seen that (E.66) is equal to zero at infinity

0
lim 7, =0 m>0

NG

The equation (E.61) together with the limits (23.9), (E.65) and (E.67) gives

1
lim 7", =0 m>1

NG

and by repeating the process with (E.61)

k
lim 7", =0 m>k

N e

Substitution of (E.69) in (E.59) shows that the condition (E.58) at infinity is fulfilled.

(E.67)

(E.68)

(E.69)
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appendix F. list of symbols
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roman symbols

matrix

constant

column matrix

constant

constant in potential for far-field  [I.°/T]
distributed extraction  [L/T]
acceleration of gravity — [L/T?]

thickness of aquifer  [L]

saturated thickness of aquifer  [L]
average saturated thickness of aquifer  [L]
Bessel function of first kind of order j [
hydraulic conductivity — [L/T]

length [

integer constant  [-]

integer constant  [-]

discharge of continuous well ~ [I.?/T]

discharge of instantaneous well  [L°]

discharge in direction j  [L2/T]
specific discharge in direction j  [L/T]
discharge at infinity ~ [I.*/T]

length [

radial coordinate  [L]

storativity — [-]

strength of instantaneous doublet  [L*]
time [T

variable of integration

seepage velocity in direction j  [L/T]
column matrix

cartesian horizontal coordinate  [L]
cartesian horizontal coordinate  [L]

cartesian vertical coordinate  [L]
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greek symbols

diffusivity ~ [I.?/T]

factor for zero of Bessel function — [1/1)]

Euler’s constant  [-]

=.5772 15664 90153 28606 06512 (Abramowitz and Stegun, 1972)
extraction of continuous areasink  [L/T]

extraction of areasink of degree 0  [I/T)]
part linear in j of extraction of areasink of degree 0 [1/T]

variation

local coordinate perpendicular to line element  [L]
influence function for element with unknown strength
angle [

influence function for element with known strength
strength of continuous linedoublet  [I.?/T]

strength of instantaneous linedoublet  [L?]

porosity  [-]

strength of ring-source  [L%/T]

local coordinate along line-element  [L]
density groundwater  [M/L?]

discharge of linesink  [1.?/T]

discharge of instantaneous linesink  [L?]

variable of integration in time [T]

L2 /T]
piezometric head  [L]
complex potential (R(Q) = ®)  [L*/T]

discharge potential
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list of symbols

subscripts

area-sink

constant in space

point-doublet

line-doublet

evapo-transpiration

final steady state

Glover(1974)’s solution
line-segment with specified head
instantaneous

linear in space

line-sink

degree n

initial steady state

far-field function for constant
far-field function for discharge at infinity
well

degree 0

degree 1

137
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Figure

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
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5.4
9.5
5.6
5.7

5.8
5.9

5.10
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5.12
5.13
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appendix G. list of figures

Description

Equipotentials for evapotranspiration of order one.

Equipotentials for uniform flow.

Equipotentials for a doublet

Local coordinates for line-elements.

Line-element in complex variable Z

Equipotentials for an area-sink

Equipotentials for a case with eight wells

Potential as function of the radius r for several values of the angle 6

Visualization of far-field as imaginary boundary

Application of wells of degree one
Derivation of instantaneous line-sink
derivation of continuous line-sink
Solution of Litkouhi and Beck(1982)
line-doublet.

strength of linear doublet

local coordinates at side j of an area-sink

Well and infiltration canal

Discharge of canal as function of time

Well and infiltration canal with sections of nearby rivers

Discharge of canal as function of time

Equipotentials at different times for well and infiltration canal
Equipotentials for two steady states with well and infiltration canal
Equipotentials for two steady states with well and infiltration canal plus
river-sections

Extraction of far-field function for changing the constant

Construction of far-field function for changing ®
C

Well and canal with far-field function for for C

Discharge of canal as function of time with far-field function for C
Ring-source

Solution of Glover(1974)

Well and canal with far-field function for @

Discharge of canal as function of time with far-field function for Q
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Figure

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.18
6.19
6.20
6.21
6.22
6.23
6.24

7.1
7.2
7.3

7.4

7.5
7.6

7.7

7.8

7.9
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Description

Problem for example of solving

Summed discharge at line-segment

Equipotentials at different times

Potential at center of line-segment

Distributed discharges at the line-segment for three different constant time steps
Potentials at the center of the line-segment for three different constant time steps
Potentials at the center of the line-segment for different increasing time steps
Distributed discharges at the line-segment for different increasing time steps
Potentials at the center of the line-segment for varying time steps

Distributed discharges at the line-segment for three time steps

Potential at center of line-segment

Distributed discharge at center of line segment

Distributed discharges at the line-segment for three different constant time steps
Potentials at the center of the line-segment for three different constant time steps
Potentials at the center of the line-segment for two different increasing time steps
Distributed discharges at the line-segment for two different increasing time steps
Potentials at the center of the line-segment for varying time steps

Distributed discharges at the line-segment for varying time steps

Reducing the number of elements

Error introduced by reducing number of elements

Contours due to five wells and two equivalent wells

Strength of line-sinks of degree one for solving

Summed discharge using line-sinks of degree one

Flow due to discharge of degree zero at x =0

Model of flow due to discharge of degree zero at z =0
Calculated potential compared with exact solution to flow due
to discharge of degree zero at x =0

Calculated potential and potential for exact solution to flow
due to a discharge of degree one at z =0

Model of flow due to sudden change in potential at z =0
Calculated potential compared with exact solution to flow due
to sudden change in potential at © =0

Calculated potential compared with exact solution to flow due
to sudden change in potential at © =0

Calculated discharge compared with exact solution to flow due
to sudden change in potential at © =0

Calculated potential and potential for exact solution to flow

due to linear increase of the potential at z =0
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Figure

7.10

7.11
7.12
7.13
7.14

7.15

7.16

7.17

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

8.11

Al

list of figures 140

Description

Calculated discharge and discharge for exact solution to flow

due to linear increase of the potential at x =0

Problem with a well near a canal

Exact solution for problem with a well near a canal

Model for problem with a well near a canal

Calculated potential and potential for exact solution of problem with
a well near a canal

Calculated potential and potential for exact solution of problem with
a well near a canal

Calculated discharge and discharge for exact solution of problem with
a well near a canal

Calculated equipotentials and equipotentials for exact solution of problem

with a well near a canal

Hypothetical problem

Geometry of problem for modeling

Area used for output of the model

Contour plot of the heads for the steady state

Area-sinks used for the varying precipitation

Seasonally extraction of area-sinks and steady rain

Contour plots of the head for the transient state without irrigation
Periods of irrigation

Configuration of irrigation and extraction

Contour plots of the head in the transient model with irrigation and
extraction using five wells

Contour plots of the head in the transient model with irrigation and

extraction using one well

Contours at different times



